当前位置:文档之家› 高中数学必修2立体几何专题-线面垂直专题典型例题精选精讲

高中数学必修2立体几何专题-线面垂直专题典型例题精选精讲

高中数学必修2立体几何专题-线面垂直专题典型例题精选精讲
高中数学必修2立体几何专题-线面垂直专题典型例题精选精讲

线面垂直的证明中的找线技巧

通过计算,运用勾股定理寻求线线垂直

1 如图1,在正方体1111ABCD A B C D -

中,M 为1CC 的中点,AC 交BD 于点O ,求证:1A O ⊥平面MBD .

证明:连结MO ,1A M

,∵DB ⊥

1A A ,DB ⊥AC ,1A A

AC A =,

∴DB ⊥平面

11A ACC ,而1

AO ?平面11A ACC ∴DB ⊥1A O . 设正方体棱长为a ,则22132A O a =,2

234MO a =.

在Rt △11A C M 中,2

21

94

A M a =.∵22211A O MO A M +=,∴1

AO OM ⊥. ∵OM ∩DB =O ,∴ 1A O ⊥平面MBD . 评注:在证明垂直关系时,有时可以利用棱长、角度大小等数据,通过计算来证明.

利用面面垂直寻求线面垂直

2 如图2,P 是△ABC 所在平面外的一点,且PA ⊥平面ABC ,平面PAC ⊥平面PBC .求证:BC ⊥平面PAC .

证明:在平面PAC 内作AD ⊥PC 交PC 于D .

因为平面PAC ⊥平面PBC ,且两平面交于PC ,

AD ?平面PAC ,且AD ⊥PC , 由面面垂直的性质,得AD ⊥平面PBC . 又∵BC ?平面PBC ,∴AD ⊥BC .

∵PA ⊥平面ABC ,BC ?平面ABC ,∴PA ⊥BC .

∵AD ∩PA =A ,∴BC ⊥平面PAC .

(另外还可证BC 分别与相交直线AD ,AC 垂直,从而得到BC ⊥平面PAC ).

评注:已知条件是线面垂直和面面垂直,要证明两条直线垂直,应将两条直线中的一

条纳入一个平面中,使另一条直线与该平面垂直,即从线面垂直得到线线垂直.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,通过本题可以看到,面面垂直?线面垂直?线线垂直.

一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直???→←???判定性质

线面垂直???→←???

判定

性质

面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面是判定定理,而从后面推出前面是性质定理.同学们

应当学会灵活应用这些定理证明问题.下面举例说明.

3 如图1所示,ABCD 为正方形,SA ⊥平面ABCD ,过A 且垂直于SC 的平面分别交SB SC SD ,,于E F G ,,.

求证:AE SB ⊥,AG SD ⊥.

证明:∵SA ⊥平面ABCD , ∴SA BC ⊥.∵

AB BC ⊥,∴BC ⊥平面SAB .又∵AE ?平面SAB ,∴

BC AE ⊥.∵SC ⊥平面AEFG ,∴SC AE ⊥.∴AE ⊥平面SBC .∴AE SB ⊥.同理可证AG SD ⊥.

评注:本题欲证线线垂直,可转化为证线面垂直,在线线垂直与线面垂直的转化中,平面起到了关键作用,同学们应多注意考虑线和线所在平面的特征,从而顺利实现证明所需要的转化.

4 如图2,在三棱锥A-BCD 中,BC =AC ,AD =BD ,作BE ⊥CD ,E为垂足,作AH ⊥BE 于H.求证:AH ⊥平面BCD .

证明:取AB 的中点F,连结CF ,DF . ∵AC

BC =,∴CF AB ⊥.

∵AD BD =,∴DF AB ⊥.

又CF DF F =,∴AB ⊥平面CDF . ∵CD ?平面CDF ,∴CD AB ⊥. 又CD BE ⊥,BE AB B =, ∴CD ⊥平面ABE ,CD AH ⊥.

∵AH CD ⊥,AH BE ⊥,CD BE E =,

∴ AH ⊥平面BCD .

评注:本题在运用判定定理证明线面垂直时,将问题转化为证明线线垂直;而证明线线垂直时,又转化为证明线面垂直.如此反复,直到证得结论.

5 如图3,AB 是圆O的直径,C是圆周上一点,PA ⊥平面ABC .若AE ⊥PC ,E为垂足,F是PB 上任意一点, 求证:平面AEF ⊥平面PBC .

证明:∵AB 是圆O的直径,∴AC BC ⊥.

∵PA ⊥平面ABC ,BC

?平面ABC ,

∴PA BC ⊥.∴BC ⊥平面APC . ∵BC ?平面PBC ,

∴平面APC ⊥平面PBC .

∵AE ⊥PC ,平面APC ∩平面PBC =PC , ∴AE ⊥平面PBC .

∵AE ?平面AEF ,∴平面AEF ⊥平面PBC . 评注:证明两个平面垂直时,一般可先从现有的直线中寻找平面的垂线,即证线面垂直,而证线面垂直则需从已知条件

出发寻找线线垂直的关系.

6. 空间四边形ABCD 中,若AB ⊥CD ,BC ⊥AD ,求证:AC ⊥BD

D

证明:过A 作AO ⊥平面BCD 于O 。

AB CD CD BO ⊥∴⊥, 同理BC ⊥DO ∴O 为△ABC 的垂心

7. 证明:在正方体ABCD -A 1B 1C 1D 1中,A 1C ⊥平面BC 1D

A

C

证明:连结AC

BD AC ⊥

AC 为A 1C 在平面AC 上的射影

∴⊥⊥?

???⊥BD A C

A C BC A C BC D

11111同理可证平面

8. 如图,PA ⊥平面ABCD ,ABCD 是矩形,M 、N 分别是AB 、PC 的中点,求证:MN AB ⊥

C

.

证:取PD 中点E ,则

EN DC //

12

C

?EN AM //

∴AE MN //

又平面平面平面 CD AD PA AC CD PAD AE PAD ⊥⊥????⊥???

? ?⊥?

??

???⊥CD AE CD AB AE MN MN AB

////

9如图在ΔABC 中, AD ⊥BC , ED=2AE , 过E 作FG ∥BC , 且将ΔAFG 沿FG 折起,使∠A 'ED=60°,求证:A 'E ⊥平面A 'BC

分析:弄清折叠前后,图形中各元素之间的数量关系和位置关系。 解:

∵FG ∥BC ,AD ⊥BC ∴A 'E ⊥FG ∴A 'E ⊥BC

设A 'E=a ,则ED=2a 由余弦定理得: A 'D 2=A 'E 2+ED 2-2?A 'E ?EDcos60°=3a 2

∴ED 2=A 'D 2+A 'E 2

∴A 'D ⊥A 'E

∴A 'E ⊥平面A 'BC

10如图, 在空间四边形SABC 中, SA ⊥平面ABC , ∠ABC = 90?, AN ⊥SB 于N , AM ⊥SC 于M 。求证: ①AN ⊥BC; ②SC ⊥平面ANM 分析:

①要证AN ⊥BC , 转证, BC ⊥平面SAB 。

②要证SC ⊥平面ANM , 转证, SC 垂直于平面ANM 内的两条相交直线, 即证SC ⊥AM , SC ⊥AN 。要证SC ⊥AN , 转证AN ⊥平面SBC , 就可以了。 证明:

①∵SA ⊥平面ABC

∴SA ⊥BC 又∵BC ⊥AB , 且AB SA = A ∴BC ⊥平面SAB ∵AN ?平面SAB ∴AN ⊥BC ②∵AN ⊥BC , AN ⊥SB , 且SB BC = B ∴AN ⊥平面SBC ∵SCC 平面SBC ∴AN ⊥SC 又∵AM ⊥SC , 且AM AN = A ∴SC ⊥平面ANM

11已知如图,P ?平面ABC ,PA=PB=PC ,∠APB=∠APC=60°,∠BPC=90 °求证:平面ABC ⊥平面PBC

分析:要证明面面垂直,只要在其呈平面内找一条线,然后证明直线与另一平面垂直即可。显然BC 中点D ,证明AD 垂直平PBC 即可

证明:取BC 中点D 连结AD 、PD ∵PA=PB ;∠APB=60° ∴ΔPAB 为正三角形

同理ΔPAC 为正三角形 设PA=a 在RT ΔBPC 中,PB=PC=a

BC=

2a ∴PD=

2

2a 在ΔABC 中 AD=

2

2BD AB -

=

22

a ∵AD 2

+PD 2

=2

2

2222???

?

??+???? ??a a =a 2=AP 2

∴ΔAPD 为直角三角形即AD ⊥DP 又∵AD ⊥BC

∴AD ⊥平面PBC

∴平面ABC ⊥平面PBC 12. 如图,直角BAC 在α外,

α//AB ,C AC =?α,求证:BAC ∠在α内射影B A C ''∠为直角。

A B C D

F E

G A'

C A A AB A A AB B A A A B A AB AB AB '⊥???

???'⊥???

?

?

?

?'

'⊥''??????面////αβ?13 A .平面ABD ⊥平面ADC B .平面ABD ⊥平面ABC C .平面ADC ⊥平面BCD D .平面ABC ⊥平面BCD

【解析】由AD ⊥BC ,BD ⊥AD ?AD ⊥平面BCD ,面AD ?平面ADC ∴平面ADC ⊥平面BCD .【答案】C 2.直三棱柱ABC —A 1B 1C 1中,∠ACB=90°,AC=AA 1=a ,则点A 到平面A 1BC 的距离是( )

A .a

B .2a

C .2

2a D .3a

【解析】取A 1C 的中点O ,连结AO ,∵AC=AA 1,∴AO ⊥A 1C ,又该三棱柱是直三棱柱.∴平面A 1C ⊥平面ABC .又

2

3.三个平面两两垂直,它们的三条交线交于一点O ,P 到三个面的距离分别是3,4,5,则OP 的长为( ) A .53 B .52 C .35 D .25

【解析】构造一个长方体,OP 为对角线.【答案】B

4.在两个互相垂直的平面的交线上,有两点A 、B ,AC 和BD 分别是这两个平面内垂直于AB 的线段,AC=6,AB=8,BD=24,则C 、D 间距离为_____.

【解析】如图,CD=2

2

AD CA +=2

2

2

BD AB CA ++=2

2

2

2486++=676=26

5.设两个平面α、β,直线l ,下列三个条件:①l ⊥α,②l ∥β,③ α⊥β.若以其中两个作为前提,另一个作为结论,则可构成三个命题,这三个命题中正确的命题个数为( )

A .3

B .2

C .1

D .0 【解析】①②?③,其余都错【答案】C 【典型例题精讲】

[例1] 如图9—39,过S 引三条长度相等但不共面的线段SA 、SB 、SC ,且∠ASB=∠ASC=60°,∠BSC=90°,求证:平面ABC ⊥平面BSC .

图9—39

【证明】∵SB=SA=SC ,∠ASB=∠ASC=60°∴AB=SA=AC 取BC 的中点O ,连AO 、SO ,则AO ⊥BC ,SO ⊥BC ,

∴∠AOS 为二面角的平面角,设SA=SB=SC=a ,又∠BSC=90°,∴BC=

2a ,SO=

2

2a ,

AO 2=AC 2-OC 2=a 2-21a 2=2

1

a 2,∴SA 2=AO 2+OS 2,∴∠AOS=90°,从而平面ABC ⊥平面BSC .

【评述】要证两平面垂直,证其二面角的平面角为直角.这也是证两平面垂直的常用方法. [例2]如图9—40,在三棱锥S —ABC 中,SA ⊥平面ABC ,平面SAB ⊥平面SBC .

图9—40

(1)求证:AB ⊥BC ;(2)若设二面角S —BC —A 为45°,SA=BC ,求二面角A —SC —B 的大小.

(1)【证明】作AH ⊥SB 于H ,∵平面SAB ⊥平面SBC .平面SAB ∩平面SBC=SB ,∴AH ⊥平面SBC , 又SA ⊥平面ABC ,∴SA ⊥BC ,而SA 在平面SBC 上的射影为SB ,∴BC ⊥SB ,又SA ∩SB=S , ∴BC ⊥平面SAB .∴BC ⊥AB .

(2)【解】∵SA ⊥平面ABC ,∴平面SAB ⊥平面ABC ,又平面SAB ⊥平面SBC ,∴∠SBA 为二面角S —BC —A 的平面角,

∴∠SBA=45°.设SA=AB=BC=a ,

作AE ⊥SC 于E ,连EH ,则EH ⊥SC ,∴∠AEH 为二面角A —SC —B 的平面角,而AH=

2

2

a ,AC=

2a ,SC=3a ,

AE=

3

6

a

∴sin ∠AEH=

23

,二面角A —SC —B 为60°.

【注】三垂线法是作二面角的平面角的常用方法.

[例3]如图9—41,PA ⊥平面ABCD ,四边形ABCD 是矩形,PA=AD=a ,M 、N 分别是AB 、PC 的中点.

(1)求平面PCD 与平面ABCD 所成的二面角的大小;(2)求证:平面MND ⊥平面PCD

(1)【解】PA ⊥平面ABCD ,CD ⊥AD ,

∴PD ⊥CD ,故∠PDA 为平面ABCD 与平面PCD 所成二面角的平面角,在Rt △PAD 中,PA=AD , ∴∠PDA=45°

(2)【证明】取PD 中点E ,连结EN ,EA ,则EN 2

1CD AM ,∴四边形ENMA 是平行四边形,∴EA ∥MN . ∵AE ⊥PD ,AE ⊥CD ,∴AE ⊥平面PCD ,从而MN ⊥平面PCD ,∵MN 平面MND ,∴平面MND ⊥平面PCD . 【注】 证明面面垂直通常是先证明线面垂直,本题中要证MN ⊥平面PCD 较困难,转化为证明AE ⊥平面PCD 就较简单了.另外,在本题中,当AB 的长度变化时,可求异面直线PC 与AD 所成角的范围.

[例4]如图9—42,正方体ABCD —A 1B 1C 1D 1中,E 、F 、M 、N 分别是A 1B 1、BC 、C 1D 1、B 1C 1的中点.

图9—42

(1)求证:平面MNF ⊥平面ENF .(2)求二面角M —EF —N 的平面角的正切值.

(1)【证明】∵M 、N 、E 是中点,∴M C NC N B EB 1111===∴?=∠=∠45MNC ENB 11

∴?=∠90MNE 即MN ⊥EN ,又NF ⊥平面A 1C 1,11C A MN 平面?∴MN ⊥NF ,从而MN ⊥平面ENF .∵MN ?

平面MNF ,

∴平面MNF ⊥平面ENF .

(2)【解】过N 作NH ⊥EF 于H ,连结MH .∵MN ⊥平面ENF ,NH 为MH 在平面ENF 内的射影,

∴由三垂线定理得MH ⊥EF ,∴∠MHN 是二面角M —EF —N 的平面角.在Rt △MNH 中,求得MN=

2

2

a ,NH=

33

a ,

∴tan ∠MHN=26=

NH

MN ,即二面角M —EF —N 的平面角的正切值为26

[例5]在长方体ABCD —A 1B 1C 1D 1中,底面ABCD 是边长为

2的正方形,侧棱长为3,E 、F 分别是AB 1、CB 1

的中点,求证:平面D 1EF ⊥平面AB 1C .

【证明】如图9—43,∵E 、F 分别是AB 1、CB 1的中点,

图9—43∴EF ∥AC .∵AB 1=CB 1,O 为AC 的中点.∴B 1O ⊥AC .故B 1O ⊥EF .在Rt △B 1BO 中,∵BB 1=

3,BO=1.

∴∠BB 1O=30°,从而∠OB 1D 1=60°,又B 1D 1=2,B 1O 1=21

OB 1=1(O 1为BO 与EF 的交点)

∴△D 1B 1O 1是直角三角形,即B 1O ⊥D 1O 1,∴B 1O ⊥平面D 1EF .又B 1O ?平面AB 1C ,∴平面D 1EF ⊥平面AB 1C .

1.棱长都是2的直平行六面体ABCD —A 1B 1C 1D 1中,∠BAD=60°,则对角线A 1C 与侧面DCC 1D 1所成角的正弦值为_____.

【解】过A 1作A 1G ⊥C 1D 1于G ,由于该平行六面体是直平行六面体,∴A 1G ⊥平面D 1C ,连结CG ,∠A 1CG 即为A 1C 与侧面DCC 1D 1所成的角.

∵A 1G= A 1 D 1 ·sin ∠A 1 D 1 G=2sin60°=2·

23

=3而

AC=???-+120cos 222BC AB BC AB =

3

2)21

(2222222=-???-+∴

A 1C=

4124221=+=+AC A A ,

∴sin ∠A 1CG=

4311=C A G A .【答案】43

2.E 、F 分别是正方形ABCD 的边AB 和CD 的中点,EF 、BD 相交于O ,以EF 为棱将正方形折成直二面角,则∠BOD=_____.

【解析】设正方形的边长为2a .

则DO 2=a 2+a 2=2a 2OB 2=a 2+a 2=2a 2DB 2=DF 2+FB 2=a 2+4a 2+a 2=6a 2∴cos ∠

DOB=21

222622222-

=??-+a

a a a a ,∴∠DOB=120° 3.如图9—44,已知斜三棱柱ABC —A 1B 1C 1的各棱长均为2,侧棱与底面成3π

的角,侧面ABB 1A 1垂直于底面,

图9—44

(1)证明:B 1C ⊥C 1A .(2)求四棱锥B —ACC 1A 1的体积.

(1)【证明】过B 1作B 1O ⊥AB 于O ,∵面ABB 1A 1⊥底面ABC ,面AB ABC A ABB 11=面 ∴B 1O ⊥面ABC ,

∴∠B 1BA 是侧棱与底面所成角,∴∠B 1BA=3π

,又各棱长均为2,∴O 为AB 的中点,连CO ,则CO ⊥AB ,而OB 1∩CO=O ,

∴AB ⊥平面B 1OC ,又B 1C ?平面OB 1C ,∴B 1C ⊥AB ,连BC 1,∵BCC 1B 1为边长为2的菱形,∴B 1C ⊥BC 1,而AB ∩BC 1=B ,

∴B 1C ⊥面ABC 1∵A 1C ?面ABC 1∴B 1C ⊥AC 1

(2)【解】在Rt △BB 1O 中,BB 1=2,BO=1,B 1O=

3,V

=Sh=

43·4·3=3,∴111C B A B V -=31V

=1,

C C AA B V 11-=V

-111C B A B V

-=3-1=2

4.如图9—45,四棱锥P —ABCD 的底面是边长为a 的正方形,PA ⊥底面ABCD ,E 为AB 的中点,且PA=AB .

图9—45

(1)求证:平面PCE ⊥平面PCD ;(2)求点A 到平面PCE 的距离.

(1)【证明】PA ⊥平面ABCD ,AD 是PD 在底面上的射影,

又∵四边形ABCD 为矩形,∴CD ⊥AD ,∴CD ⊥PD ,∵AD ∩PD=D ∴CD ⊥面PAD ,∴∠PDA 为二面角P —CD —B 的平面角,∵PA=PB=AD ,PA ⊥AD ∴∠PDA=45°,取Rt △PAD 斜边PD 的中点F ,则AF ⊥PD ,∵AF ?面PAD ∴CD

⊥AF ,又PD ∩CD=D ∴AF ⊥平面PCD ,取PC 的中点G ,连GF 、AG 、EG ,则GF

2

1CD 又AE

2

1CD ,

∴GF AE ∴四边形AGEF 为平行四边形∴AF ∥EG ,∴EG ⊥平面PDC 又EG ?平面PEC ,∴平面PEC ⊥平面PCD . (2)【解】由(1)知AF ∥平面PEC ,平面PCD ⊥平面PEC ,过F 作FH ⊥PC 于H ,则FH ⊥平面PEC ∴FH 为F 到平面PEC 的距离,即为A 到平面PEC 的距离.在△PFH 与 △PCD 中,∠P 为公共角,

而∠FHP=∠CDP=90°,∴△PFH ∽△PCD .∴PC PF

CD

FH =

,设AD=2,∴PF=2,PC=

324822=+=+CD PD ,∴FH=3623

22=

?∴A 到平面PEC 的距离为

3

6

5.已知直四棱柱ABCD —A 1B 1C 1D 1的底面是菱形,对角线AC=2,BD=23,E 、F 分别为棱CC 1、BB 1上的点,且

满足EC=BC=2FB .

图9—46

(1)求证:平面AEF ⊥平面A 1ACC 1;(2)求异面直线EF 、A 1C 1所成角的余弦值.

(1)【证明】∵菱形对角线AC=2,BD=2

3∴BC=2,EC=2,FB=1,取AE 中点M ,连结MF ,设BD 与AC 交于

点O ,MO

21EC

FB ?

(2)在AA 1上取点N ,使AN=2,连结NE ,则NE

AC

A 1C 1

故∠NEF 为异面直线A 1C 1与EF 所成的角,连结NF ,在直角梯形NABF 中易求得NF=

5,同理求得EF=5.

在△ENF 中,cos ∠NEF=555

22543=

??-+,即EF 与A 1C 1所成角的余弦值为55.

【解题指导】在证明两平面垂直时,一般方法是先从现有的直线中寻找平面的垂线;若没有这样的直线,则可通过作辅助线来解决,而作辅助线则应有理论根据并且要有利于证明,不能随意添加.在有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直.解决这类问题的关键是熟练掌握“线线垂直”“线面垂直”“面面垂直”间的转化条件和转化应用.

【拓展练习】 一、备选题

1.如图,AB 是圆O 的直径,C 是圆周上一点,PA ⊥平面ABC . (1)求证:平面PAC ⊥平面PBC ;

(2)若D 也是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.

(1)【证明】∵C 是AB 为直径的圆O 的圆周上一点,AB 是圆O 的直径 ∴BC ⊥AC ;

又PA ⊥平面ABC ,BC ?平面ABC , ∴BC ⊥PA ,从而BC ⊥平面PAC . ∵BC ?平面PBC ,

∴平面PAC ⊥平面PBC . (2)【解】平面PAC ⊥平面ABCD ;平面PAC ⊥平面PBC ;平面PAD ⊥平面PBD ;平面PAB ⊥平面ABCD ;平面PAD ⊥平面ABCD .

2.ABC —A ′B ′C ′是正三棱柱,底面边长为a ,D ,E 分别是BB ′,CC ′上的一点,BD =21

a ,EC =a .

(1)求证:平面ADE ⊥平面ACC ′A ′; (2)求截面△ADE 的面积.

(1)【证明】分别取A ′C ′、AC 的中点M 、N ,连结MN , 则MN ∥A ′A ∥B ′B ,

∴B ′、M 、N 、B 共面,∵M 为A ′C ′中点,B ′C ′=B ′A ′,∴B ′M ⊥A ′C ′,又B ′M ⊥AA ′且AA ′∩A ′C ′=A ′

∴B ′M ⊥平面A ′ACC ′. 设MN 交AE 于P ,

∵CE =AC ,∴PN =NA =2a

又DB =21

a ,∴PN =BD .

∵PN ∥BD , ∴PNBD 是矩形,于是PD ∥BN ,BN ∥B ′M , ∴PD ∥B ′M .

∵B ′M ⊥平面ACC ′A ′,

∴PD ⊥平面ACC ′A ′,而PD ?平面ADE , ∴平面ADE ⊥平面ACC ′A ′.

(2)【解】∵PD ⊥平面ACC ′A ′,

∴PD ⊥AE ,而PD =B ′M =2

3a ,

AE =

2a . ∴S △

ADE =21

×AE ×PD

=21

×246232a

a a =?.

高中数学试卷必修二基础100题

高中数学试卷必修二基础50题 一、单选题(共15题;共30分) 1.如图所示,观察四个几何体,其中判断正确的是() A. ①是棱台 B. ②是圆台 C. ③不是棱锥 D. ④是棱柱 2.直线y=2x+1关于y轴对称的直线方程为() A. y=-2x+1 B. y=2x-1 C. y=-2x-1 D. y=-x-1 3.已知直线的倾斜角为,则直线的斜率为( ) A. B. C. D. 4.若点到直线的距离为1,则的值为() A. B. C. 或 D. 或 5.若两个球的表面积之比为1:4,则这两个球的体积之比为() A. 1:2, B. 1:4, C. 1:8, D. 1:16。 6.已知直线,则直线l的倾斜角为() A. B. C. D. 7.如果两条直线a与b没有公共点,那么a与b() A. 共面 B. 平行 C. 异面 D. 平行或异面 8.有一个几何体的三视图如图所示,这个几何体应是一个() A. 棱台 B. 棱锥 C. 棱柱 D. 都不对 9.设是两个不同的平面,是一条直线,以下命题正确的是()

A. 若,则 B. 若,则 C. 若,则 D. 若,则 10.已知倾斜角为θ的直线,与直线x﹣3y+1=0垂直,则tanθ=() A. B. 3 C. ﹣3 D. 11.已知一个圆锥的底面半径是3,母线长是5,则该圆锥的体积是() A. B. C. D. 12.椭圆x2+4y2=36的弦被(4,2)平分,则此弦所在直线方程为() A. x﹣2y=0 B. x+2y﹣8=0 C. 2x+3y﹣14=0 D. x+2y﹣4=0 13.在空间中,有三条不重合的直线a,b,c,两个不重合的平面,,下列判断正确的是() A. 若∥,∥,则∥ B. 若,,则∥ C. 若,∥,则 D. 若,,∥,则∥ 14.在△ABC中,∠BAC=90°,PA⊥平面ABC,AB=AC,D是BC的中点,则图中直角三角形的个数是() A. 5 B. 8 C. 10 D. 6 15.若两直线,的斜率分别是,,倾角分别是,,且满足,则() A. B. C. D. 二、填空题(共20题;共24分) 16.曲线在点处的切线方程为________.

高中数学-立体几何-线面角知识点

WORD文档 立体几何知识点整理 一.直线和平面的三种位置关系: 1. 线面平行 2. 线面相交 3. 线在面内 l l A l α α α 二.平行关系: 1. 线线平行: 方法一:用线面平行实现。 l l // l l // m m m 方法二:用面面平行实现。 // l l l // m β m γ m α 方法三:用线面垂直实现。 若l ,m ,则l // m 。 方法四:用向量方法: 若向量l 和向量m 共线且l、m 不重合,则l // m 。 2. 线面平行: 方法一:用线线平行实现。 l // m m l // l

l β// l // α l 方法三:用平面法向量实现。n l 若n为平面的一个法向量,n l 且l,则l // 。 α 2.面面平行: 方法一:用线线平行实现。 l // // , m ', m l l 且相交 且相交 // α l βm l' m' 方法二:用线面平行实现。l // // m // β l m l ,m 且相交 α三.垂直关系: 3.线面垂直:

l AC l l AC AC, A l A α C B 方法二:用面面垂直实现。 β l m l m l m,l α

3.面面垂直: 方法一:用线面垂直实现。 l βl C θ l α A B 方法二:计算所成二面角为直角。 4.线线垂直: 方法一:用线面垂直实现。 l l m l m α m 方法二:三垂线定理及其逆定理。 P PO l OA l PA l A O l α 方法三:用向量方法: 若向量l 和向量m 的数量积为0,则l m 。 三.夹角问题。 (一)异面直线所成的角: (1)范围:(0 ,90 ] (2)求法: 方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(常用到余弦定理) 余弦定理: a c cos 2 a 2 b 2ab 2 c θ b (计算结果可能是其补角)

高一数学必修1知识点总结

高中高一数学必修1各章知识点总结 第一章集合与函数概念 一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素 2、集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性; 3.元素的无序性 说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。 (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。 (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。 (4集合元素的三个特性使集合本身具有了确定性和整体性。 3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} 1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} 2.集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N*或N+ 整数集Z 有理数集Q 实数集R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作a∈A ,相反,a不属于集合A 记作a?A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。 ①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2} 4、集合的分类: 1.有限集含有有限个元素的集合 2.无限集含有无限个元素的集合 3.空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D 解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1 =V A ﹣BB 1C 1 ∴1/3 S △AB 1C 1 ·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 ,

高中数学必修2知识点总结归纳 整理

高中数学必修二 ·空间几何体 1.1空间几何体的结构 棱柱 定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边 形的公共边都互相平行,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、 五棱柱等。 表示:用各顶点字母,如五棱柱或用对角线的端点字母,如 五棱柱'''''E D C B A ABCDE - 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形, 由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、 五棱锥等 表示:用各顶点字母,如五棱锥'''''E D C B A P - 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。 棱台 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间 的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、 五棱台等 表示:用各顶点字母,如四棱台ABCD —A'B'C'D' 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 圆柱 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的 曲面所围成的几何体 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面 圆的半径垂直;④侧面展开图是一个矩形。

圆锥 定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的 曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面 展开图是一个扇形。 圆台 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之 间的部分 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点; ③侧面展开图是一个弓形。 球体 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 1.2空间几何体的三视图和直观图 1.中心投影与平行投影 中心投影:把光由一点向外散射形成的投影叫做中心投影。 平行投影:在一束平行光照射下形成的投影叫做平行投影。 2.三视图 正视图:从前往后 侧视图:从左往右 俯视图:从上往下 画三视图的原则:长对齐、高对齐、宽相等 3.直观图:斜二测画法 斜二测画法的步骤: (1).平行于坐标轴的线依然平行于坐标轴; (2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;(3).画法要写好。

新课标高中数学必修二基础练习卷(答案)

高一数学必修二基础练习卷 班别 ____ 姓名________ 座号_____ 一、选择题 1 .用符号表示点A在直线I上,I在平面G外”正确的是() A. A I,丨二匚 B. A l,l「 C. A 丨,丨二: D. A I ,l「 2、正棱柱L长方体?=() A. ■正棱柱} B.长方体1 C. ■正方体} D.不确定 3、已知平面a内有无数条直线都与平面B平行,那么() A . all 3 B. a与B相交 C . a与3重合 D . al 3或a与3相交 4、在空间四边形ABCD各边AB BC、CD、DA上分别取E、F、G、H四点,如果与EF、GH能相 交于点P,那么 A、点P不在直线AC上 B、点P必在直线BD上 C、点P必在平面ABC内 D、点P必在平面ABC外 5、已知正方体的ABC^A1B1C1D1棱长为1,则三棱锥C -BC i D的体积是() 1 1 A. 1 B. C.— 3 2 6、有一个几何体的三视图及其尺寸如下(单位 A.24 n 捅12 n cn3 B.15 n c n i 12 n cn3 C.24 n cn, 36 n cn3 D.以上都不正确 1 D.— 6 cm),则该几何体的表面积和体积为:( 7. 利用斜二测画法,一个平面图形的直观图是边长为 () A .3 B 2 C 2.2 8. 半径为R的半圆卷成一个圆锥,则它的体积为( 1的正方形,如图所示.则这个平面图形的面积为 A .仝二R3 24 B. 乜二R3 8 C .乜二R3 24

9.用与球心距离为1的平面去截面面积为 二,则球的体积为() 2 2 18 .圆x y -2y -1 = 0的半径为 () A.1 B.2 C. 3 D. 2 19、直线 3x+4y-13=0 与圆(x -2)2,( y - 3)2 =1 的位置关系是:( ) A.相离; B.相交; C.相切; D.无法判定. 20 .圆:x 2 y 2 -2x -2y ? 1 =0上的点到直线x - y =2的距离最大值是( f — A 、2 B 、12 C 、1 - D 、12.2 232-: A. B. 3 10. 已知m, n 是两条不同直线,:■ A .若m IN- ,n II 〉,则m II n C .若mil :■ ,m | ,则:-I : 11. 已知点 A(1,2)、B (-2, 3)、C (4, 1 A . - B . 1 2 12. 直线x -3y T =0的倾斜角是( A. 300 B. 600 C. 1200 - C. D. 3 ,'-,是三个不同平面,下列命题中正确的是 B .若口丄?,B 丄?,则a II P D .若m 丨r , n 丨-,则m I n y )在同一条直线上,贝U y 的值为( 3 C. - D . -1 2 ). D. 1500 13. 直线I 经过两点A1,2、B 3,4,那么直线I 的斜率是 A. -1 B. -3 C. 1 D. 3 14. 过点P (T,3)且垂直于直线x 「2y ,3 = 0的直线方程为( ) A . 2x y-1=0 B . 2x y-5=0 C. x 2y-5=0 D . x-2y 7=0 k A . (0,0) B . (0,1) C . (3,1) D . (2,1) 16 .两直线3x ? y -3 =0与6x my ^0平行,则它们之间的距离为( A . 4 B . ■— 13 17 .下列方程中表示圆的是( A . x 2 + y 2 + 3x + 4y + 7=0 C . 2x ?+ 2y 2— 3x — 4y — C . D . — 26 20 ) B . x 2+ 2y 2— 2x + 5y + 9=0 D . x 2— y 2— 4x — 2y +

新课标高考立体几何线面角的计算归类分析知识分享

新课标高考立体几何——线面角的计算归类分析 深圳市第二实验学校 李平 作者简介 李平,男,1970年12月生,硕士研究生,高级教师,现任深圳市第二实验学校总务处副主任。深圳市“技术创新能手”称号、深圳市高考先进个人。在教材教法、高考研究、教材编写等方面成效显著。主持和参与省、市级课题多项,主编和参编教育类书籍多部,发表教研论文多篇,辅导学生参加各类竞赛有多人次获奖。 摘 要 求线面角的基本思想方法是将空间角的计算转化为计算平面内的角, 然后再用代数、三角的方法求解,这种将空间问题向平面问题转化的思想方法, 是立体几何中十分重要的思想方法, 同时它也体现了等价转化、数形结合的思想, 充分地展示了平移法、射影法、补形法这些立体几何特有方法的威力. 关键词 线面角 空间角 平移法 等体积法 空间向量方法 线面角——直线和平面所成的角 1.定义: 平面的一条斜线和它在平面上的射影所成的锐角, 叫做这条斜线和这个平面所成的角. 若直线l ⊥平面α, 则l 与α所成角为90?; 若直线l //平面α或直线l ?平面α, 则l 与α所成角为0?. 2.线面角的范围: [0]2 π ,. 3.线面角的求法: (1)定义法(垂线法). (2)虚拟法(等体积法). (3)平移法. (4)向量法. 线面角是立体几何中的一个重要概念, 它是空间图形的一个突出的量化指标, 是空间位置关系的具体体现, 是培养学生逻辑推理能力, 树立空间观念的重要途径, 故线面角一直以高频率的姿态出现在历年高考试题中. 求解线面角问题一般遵循(找)、证、算三个步骤, 并多以棱锥与棱柱作为考查的载体. 求解线面角的方法主要有两种: 一是利用传统几何方法; 二是利用空间向量方法. 总之, 求线面角的基本思想方法是将空间角的计算转化为计算平面内的角, 然后再用代数、三角的方法求解, 这种将空间问题向平面问题转化的思想方法, 是立体几何中十分重要的思想方法, 同时它也体现了等价转化、数形结合的思想, 充分

高中数学必修1各章节测试题全套含答案

(数学1必修)第一章(上) 集合 [基础训练A 组] 一、选择题 1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数 2.下列四个集合中,是空集的是( ) A .}33|{=+x x B .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D . },01|{2R x x x x ∈=+- 3.下列表示图形中的阴影部分的是( ) A .()()A C B C B .()()A B A C C .()()A B B C D .()A B C 4.下面有四个命题: (1)集合N 中最小的数是1; (2)若a -不属于N ,则a 属于N ; (3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{ }1,1; 其中正确命题的个数为( )A .0个 B .1个 C .2个 D .3个 5.若集合{},,M a b c =中的元素是△ABC 的三边长, 则△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 6.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( ) A .3个 B .5个 C .7个 D .8个 二、填空题 1.用符号“∈”或“?”填空 (1)0______N , 5______N , 16______N (2)1 ______,_______,______2 R Q Q e C Q π- (e 是个无理数) (3{} |,,x x a a Q b Q =∈∈ 2. 若集合{}|6,A x x x N =≤∈,{|}B x x =是非质数,C A B =,则 C 的 非空子集的个数为 。 3.若集合{}|37A x x =≤<,{}|210B x x =<<,则A B =_____________. A B C

高中数学必修一知识点总结完整版

高中数学必修 1 知识点总结 集合 (1)元素与集合的关系:属于( )和不属于( ) (2)集合中元素的特性:确定性、互异性、无序性 集合与元素 (3)集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集 (4)集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法 子集:若 x A x ,则 A ,即 是 的子集。 B B A B 、若集合 中有 个元素,则集合 的子集有 2 n 个,真子集有 (2 n -1) 个。 1 A n A 、任何一个集合是它本身的子集,即 A A 注 2 关系 、对于集合 A,B,C, 如果 A ,且 B C, 那么 A C. 3 B 、空集是任何集合的(真)子集。 4 真子集:若 且 (即至少存在 x 0 但 ),则 是 的真子集。 集合 ABAB B x 0 A A B 集合相等: A 且 A B A B B 集合与集合 定义: A B x / x 且 x B 交集 A 性质: , , , , AAAA ABBAABA,ABBAB A 定义: A B x / x 或 x B 并集 A 性质: , , , , , 运算 AAAA AABBAABAABBAB A Card( A B) Card( A) Card( B) - Card( A B) 定义: C U A x/ x U 且x A A 补集 性质: A) A , A U , C U (C U A) , , (C U (C U A) A C U (A B) (C U A) (C U B) C U (A B) (C U A) (C U B) 函数

高中数学必修二知识点、考点及典型例题

必修二 第一章 空间几何体 知识点: 1、空间几何体的结构 ⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。 ⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。 ⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。 2、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3= 3、球的体积公式:3 3 4 R V π= ,球的表面积公式:2 4 R S π= 4、柱体h s V ?=,锥体h s V ?=3 1,锥体截面积比: 2 2 212 1h h S S = 5、空间几何体的表面积与体积 ⑴圆柱侧面积; l r S ??=π2侧面 ⑵圆锥侧面积: l r S ??=π侧面 1 三视图: 正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则: 长对齐、高对齐、宽相等 3直观图:斜二测画法 4斜二测画法的步骤: (1).平行于坐标轴的线依然平行于坐标轴; (2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。 5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 第二章 点、直线、平面之间的位置关系 知识点: 1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。 2、公理2:过不在一条直线上的三点,有且只有一个平面。 3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共 直线。

4、公理4:平行于同一条直线的两条直线平行. 5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。 6、线线位置关系:平行、相交、异面。 7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。 8、面面位置关系:平行、相交。 9、线面平行: ⑴判定:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简称线 线平行,则线面平行)。 ⑵性质:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线 平行(简称线面平行,则线线平行)。 10、面面平行: ⑴判定:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简称线面 平行,则面面平行)。 ⑵性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行(简称面面平 行,则线线平行)。 11、线面垂直: ⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。 ⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直(简称 线线垂直,则线面垂直)。 ⑶性质:垂直于同一个平面的两条直线平行。 12、面面垂直: ⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。 ⑵判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直(简称线面垂直, 则面面垂直)。 ⑶性质:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。 (简称面面垂直,则线面垂直)。 第三章 直线与方程 知识点: 1、倾斜角与斜率:1 212tan x x y y k --==α 2、直线方程: ⑴点斜式:()00x x k y y -=- ⑵斜截式:b kx y += ⑶两点式:1211 21 y y y y x x x x --=--

高一数学必修1知识网络

高一数学必修1知识网络 123412n x A x B A B A B A n A ∈??? ????? ∈?∈?()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ??????????? ???????????≠∈?????=???=∈∈?=??=??=???真子集有个。、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。 真子集:若且(即至少存在但),则是的真子集。集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ????????=????=∈∈???=??=?=????????=???=+?=∈?=?=??==?=?,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ????? ?? ?? ???? ?????????? ???????? ?????????????????????? ??????????????????????=???????

人教版高中数学必修2全部教案(最全最新)

人教版高中数学必修2 第一章:空间几何体 1.1.1柱、锥、台、球的结构特征 一、教学目标 1.知识与技能:(1)通过实物操作,增强学生的直观感知。 (2)能根据几何结构特征对空间物体进行分类。 (3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。 (4)会表示有关于几何体以及柱、锥、台的分类。 2.过程与方法: (1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。 (2)让学生观察、讨论、归纳、概括所学的知识。 3.情感态度与价值观: (1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。 (2)培养学生的空间想象能力和抽象括能力。 二、教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。 难点:柱、锥、台、球的结构特征的概括。 三、教学用具 (1)学法:观察、思考、交流、讨论、概括。 (2)实物模型、投影仪。 四、教学过程 (一)创设情景,揭示课题 1、由六根火柴最多可搭成几个三角形?(空间:4个) 2在我们周围中有不少有特色的建筑物,你能举出一些例子 吗?这些建筑的几何结构特征如何?

3、展示具有柱、锥、台、球结构特征的空间物体。 问题:请根据某种标准对以上空间物体进行分类。 (二)、研探新知 空间几何体:多面体(面、棱、顶点):棱柱、棱锥、棱台; 旋转体(轴):圆柱、圆锥、圆台、球。 1、棱柱的结构特征: (1)观察棱柱的几何物体以及投影出棱柱的图片, 思考:它们各自的特点是什么?共同特点是什么? (学生讨论) (2)棱柱的主要结构特征(棱柱的概念): ①有两个面互相平行;②其余各面都是平行四边形;③每相邻两上四边形的公共边互相平行。 (3)棱柱的表示法及分类:

立体几何线面平行垂直,线面角二面角的证明方法

A P B C E D 一:线面平行的证明方法: 1、用“近似平行法”先找到面上与已知直线平行的直线(一般为表示面的三角形的边界直线,或三角形某边上的中线) 看找到的这条线与已知线的长度关系,1)若相等应该构造平行四边形;2)若不相等一般利用三角形中位线的性质(将这两个不相等的线段的端点连结并延长即会出现关键三角形)。 2、若既不能构造平行四边形也不能性用中位线性质,则应再构造一个此直线所在的平面,证明此平面与已知平面平行(先证面面平行,推出线面平行) 例一:如图,已知菱形ABCD ,其边长为2, 60BAD ∠= ,ABD ?绕着BD 顺时针旋转120 得到PBD ?,M 是PC 的中点. (1)求证://PA 平面MBD ; (2)求直线AD 与平面PBD 所成角的正弦值. 例二:已知四棱锥P-ABCD ,底面ABCD 是 60=∠A 、 边 长为a 的菱形,又ABCD PD 底⊥,且PD=CD ,点M 、N 分别是 棱AD 、PC 的中点. (1)证明:DN//平面PMB ; (2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离. 例三:如图,已知点P 是平行四边形ABCD 所在平面外的一点, 上的点且PE EA BF FD =∶∶,求证:EF //平面PBC . 二:线面垂直的证明方法: 通过线线垂直,证明线面垂直 1) 利用勾股定理逆定理及三角形中两个角和为90°; 2) 利用等边、等腰三角形(中线即高线),正方形、矩形邻边垂直,正方形菱形对角线垂 直等; 3) 通过线面垂直,反推线线垂直; 4) 利用面面垂直的性质,证明垂直于交线即垂直于另一个平面。 例四:如图,四边形ABCD 为矩形,CF ⊥平面ABCD ,DE ⊥平面ABCD , AB=4a ,BC= CF=2a,P 为AB 的中点. (1)求证:平面PCF ⊥平面PDE ; (2)求四面体PCEF 的体积. C

新人教A版高中数学必修1全套教案

课题:§集合 教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。 课型:新授课 教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 教学重点:集合的基本概念与表示方法; 教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合; 教学过程: 一、引入课题 军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生 在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。 阅读课本P2-P3内容 二、新课教学 (一)集合的有关概念 1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一 个给定的东西是否属于这个总体。 2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。 3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评, 进而讲解下面的问题。 4.关于集合的元素的特征 (1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。 (2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。 (3)集合相等:构成两个集合的元素完全一样 5.元素与集合的关系; (1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A (2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a?A(或a A)(举例) 6.常用数集及其记法 ∈ 非负整数集(或自然数集),记作N 正整数集,记作N*或N+; 整数集,记作Z 有理数集,记作Q 实数集,记作R (二)集合的表示方法 我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表 示集合。 (1)列举法:把集合中的元素一一列举出来,写在大括号内。 如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…; 例1.(课本例1)

高中数学必修一知识点总结(全)

第一章集合与函数概念 课时一:集合有关概念 1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东 西,并且能判断一个给定的东西是否属于这个整体。 2.一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。 3.集合的中元素的三个特性: (1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。 例:世界上最高的山、中国古代四大美女、教室里面所有的人…… (2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。 例:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合 例:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 1)列举法:将集合中的元素一一列举出来 {a,b,c……} 2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。 {x R| x-3>2} ,{x| x-3>2} ①语言描述法:例:{不是直角三角形的三角形} ②Venn图:画出一条封闭的曲线,曲线里面表示集合。 4、集合的分类: (1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合 (3)空集:不含任何元素的集合例:{x|x2=-5} 5、元素与集合的关系: (1)元素在集合里,则元素属于集合,即:a A (2)元素不在集合里,则元素不属于集合,即:a A 注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R

高三立体几何大题线面角专题

高三立体几何专题 1.如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面,,,, (Ⅰ)设分别为的中点,求证:平面; (Ⅱ)求证:平面; (Ⅲ)求直线与平面所成角的正弦值. 1.解析 (Ⅰ)连接,易知,.又由, 故,又因为平面,平面,所以平面. (Ⅱ)取棱的中点,连接.依题意,得,又因为平面平面,平面平面,所以平面,又平面,故. 又已知,,所以平面. (Ⅲ)连接,由(Ⅱ)中平面,可知为直线与平面所成的角, 因为为等边三角形,且为的中点,所以 又, 故在中,. 所以,直线与平面所成角的正弦值为 . 2.如图 ,已知三棱柱,平面平面,, 分别是AC ,A 1 B 1的中点. (1)证明:; (2)求直线EF 与平面A 1BC 所成角的余弦值. P ABCD -ABCD PCD PAC ⊥PCD PA CD ⊥2CD =3AD =G H ,PB AC ,GH ∥PAD PA ⊥PCD AD PAC BD AC BD H =BH DH =BG PG =GH PD ∥GH ?PAD PD ?PAD GH ∥PAD PC N DN DN PC ⊥PAC ⊥PCD PAC PCD PC =DN ⊥PAC PA ?PAC DN PA ⊥PA CD ⊥CD DN D =PA ⊥PCD AN DN ⊥PAC DAN ∠AD PAC PCD △2CD =N PC DN =DN AN ⊥Rt AND △sin 3 DN DAN AD ∠= =AD PAC 3 111ABC A B C -11A ACC ⊥ABC 90ABC ∠=?11 30,,,BAC A A AC AC E F ∠=?==EF BC ⊥

高中数学必修2知识点总结

高中数学必修2知识点 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 表示。即tan k α=。斜率反映直线与轴的倾斜程度。 当[ ) 90,0∈α 时,0≥k ; 当() 180,90∈α时,0

立体几何中二面角和线面角

立体几何中的角度问题 一、 异面直线所成的角 1、如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 底面ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求: (1)三角形PCD 的面积; (2)异面直线BC 与AE 所成的角的大小。 2、如图6,已知正方体1111ABCD A B C D -的棱长为2,点E是正方形11BCC B 的中心,点F、G分别是棱111,C D AA 的中点.设点11,E G 分别是点E,G在平面11DCC D 内的正投影. (1)求以E为顶点,以四边形FGAE 在平面11DCC D 内的正投影为底面边界的棱锥的体积; (2)证明:直线11FG FEE ⊥平面; (3)求异面直线11E G EA 与所成角的正弦值

二、直线与平面所成夹角 1、如图,在四棱锥P ABCD -中,底面为直角梯形,//AD BC , 90BAD ∠=,PA ⊥ 底面ABCD ,且2P A A D A B B C ===,M N 、分别为PC 、PB 的中点。 求CD 与平面ADMN 所成的角的正弦值。 2、长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角的正弦值。 三、二面角与二面角的平面角问题 1、如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60?,PA PD == E,F 分别是BC,PC 的中点. (1) 证明:AD ⊥平面DEF; (2) 求二面角P-AD-B 的余弦值.

2、如图5,?AEC 是半径为a 的半圆,AC 为直径,点E 为?AC 的中点,点B 和点C 为线 段AD 的三等分点,平面AEC 外一点F 满足FB FD ==,EF =。 (1)证明:EB FD ⊥; (2已知点,Q R 为线段,FE FB 上的点,23FQ FE =,2 3 FR FB =,求平面BED 与平面RQD 所成二面角的正弦值。

人教版高中数学必修1(全册)导学案

1.1.1集合的含义 使用说明: “自主学习”10分钟,发现问题,小组讨论,展示个人成果,教师对重点概念点评。 “合作探究”10分钟,小组讨论,互督互评,展示个人成果,教师对重点讲评。 “巩固练习”10分钟,组长负责,组点评。 “个人总结”5分钟,根据组讨论情况,指出对规律,方法理解不到位的问题。 能力展示5分钟,教师作出总结性点评。 通过本节学习应达到如下目标: (1)初步理解集合的含义,知道常用数集及其记法.,初步了解“∈”关系的意义.。. (2)通过实例,初步体会元素与集合的”属于”关系,从观察分析集合的元素入手,正确地理解集合. (3)观察关于集合的几组实例,并通过自己动手举出各种集合的例子,初步感受集合语言在描述客观现 实和数学对象中的意义. (4)学会借助实例分析、探究数学问题(如集合中元素的确定性、互异性). (5)在学习运用集合语言的过程中,增强认识事物的能力,初步培养实事、扎实严谨的科学态度. 学习重点: 集合概念的形成。 学习难点: 理解集合的元素的确定性和互异性. 学习过程 (一)自主学习 阅读课本,完成下列问题: 1、例(3)到例(8)和例(1)(2)是否具有相同的特点,它们能否构成集合,如果能,他们的元 素是什么?结合现实生活,请你举出一些有关集合的例子。 2、一般地,我们把研究对象称为 .,把一些元素组成的总体叫做。 3、集合的元素必须是不能确定的对象不能构成集合。 4、集合的元素一定是的,相同的几个对象归于同一个集合时只能算作一个元素。 5、集合通常用大写的拉丁字母表示,如。元素通常用小写的拉丁字母表示,如。 6、如果 a是集合A 的元素,就说 a属于A ,记作 ,读作””。 如果 a不是集合 A的元素,就说 a不属于A ,记作,读作””。 7、非负整数集(或自然数集),正整数集,整数集,有理数集, 有理数集,实数集。 (二)合作探讨 1、下列元素全体是否构成集合,并说明理由 (1)世界上最高的山(2)世界上的高山。(3) 2的近似值 (4)爱好唱歌的人 (5)本届奥运会我国取得优秀成绩的运动员。(6)本届奥运会我国参加的所有运动项目。

相关主题
文本预览
相关文档 最新文档