Experimental-evaluation-of-a-R134a-CO2-cascade-refrigeration-plant_2014_Applied-Thermal-Engineering
- 格式:pdf
- 大小:1.73 MB
- 文档页数:10
亨德森-哈塞尔巴尔赫方程计算电催化co2还原过程中电极表面的ph引言部分的内容包括概述、文章结构和目的。
具体如下:1.1 概述本篇文章旨在探讨在电催化CO2还原过程中pH对电极表面的影响。
CO2的高效还原是解决碳排放和能源问题的重要途径之一,而电催化是一种有效的CO2还原方法。
pH值作为一个重要的调节因素,在电催化反应中可以对反应活性、产物选择性和电极稳定性等方面产生重要影响。
了解pH对于电催化CO2还原过程中电极表面的作用机制,将有助于优化这一反应体系,并推动其工业研发和应用。
1.2 文章结构本文共分为五个部分。
首先,在第二部分中介绍了亨德森-哈塞尔巴尔赫方程,该方程是描述液体溶液中自由酸碱浓度与pH之间关系的经典公式。
然后,在第三部分简要介绍了电催化CO2还原过程,包括反应原理、机理研究现状以及电催化剂在此过程中发挥的作用。
接下来,在第四部分探讨了pH对电催化CO2还原中电极表面的影响,包括对反应活性、产物选择性和电极稳定性的影响。
最后,在第五部分总结了研究结果,并展望了未来在这一领域的研究方向。
1.3 目的本文旨在全面探讨pH对电催化CO2还原过程中电极表面的影响,以增进我们对该体系的理解。
通过分析现有研究成果,总结pH调节对反应活性、产物选择性和电极稳定性等方面的影响规律,可以为优化CO2还原反应提供指导,并推动相关技术在碳减排和可持续能源方面的应用。
同时,本文也展望了未来在这一领域需要进一步开展的研究工作,以期为实现高效、可持续地利用CO2提供更多科学依据和技术支持。
2. 亨德森-哈塞尔巴尔赫方程:2.1 方程介绍亨德森-哈塞尔巴尔赫方程是一种用于计算电化学体系中电极表面pH值的数学模型。
它是由G.A.亨德森和E.J.哈塞尔巴尔赫于1974年提出的。
该方程基于平衡态下物质在溶液与电极之间的转移过程,通过考虑氢离子浓度和活性来描述电极表面的pH值。
2.2 方程应用亨德森-哈塞尔巴尔赫方程在电催化CO2还原反应中具有广泛的应用。
二氧化碳制冷剂CO 2制冷剂通常被称为R744制冷剂,它的GWP 值最低,仅为1。
R134a 的GWP 值为1430,比CO 2制冷剂的破坏能力强1430倍。
尽管有些CO 2会从空调系统中泄露出去,但泄露的CO2对环境产生的影响却很小。
R152a 的GWP 值为124,介于二者之间。
使用CO2制冷剂的空调系统比目前市场上流行的使用R134a 制冷剂的空调系统最多可节能25%。
由于CO 2的临界点溫度相当的低(31.1℃相当于88℉),我们的环境溫度便已接近此溫度,若使用CO 2为冷媒进行压缩,则其冷凝散热溫度勢必将超过临界点溫度,而处于超临界区之中。
不幸的是,CO 2的临界点压力相当高(73.8 bar 相当于107O psi),而且,其冷凝散热是位在超临界区之中进行,因此,其工作压力将更高于临界压力。
就国际间所开发的CO 2压缩机测试数据显示,其压缩机的吸入囗压力便已达35~4O bar(約500~60O psi),而其出囗压力更高达80~llO bar(约1200~1600 psi),平均压力约为R-l2压力的10倍左右。
一、CO 2冷媒的优点如下:1、对人体健康与居住环境无短、中、长之害外,故不需回收或再外理。
2、无毒且不会分解出刺激性物质。
3、不可燃(Non-Flammable)与不会爆炸(Non-Explosive)。
4、极佳的热力性质。
5、气体密度高,可降低使用的管路与压缩机尺寸,而使系统重量减轻、结构紧凑、体积小,同時压缩机的压缩比降低,压缩过程可以更接近等熵压缩而使效率提升。
6、取得容易(可从工业废气中取得),成本低。
7、不破坏臭氧层(臭氧层破坏潜能值ODP=0)。
8、溫室效应指数(全球变暖潜能值GWP)为1。
应用在汽车空调实列:用于冷却的CO 2空调系统的基本结构与传统的采用HFC134a 制冷剂的汽车空调系统有很大区别。
首先,在新系统中采用了一个气体冷却器来冷却从压缩机里排出的 CO 2 制冷剂,该气体冷却器相当于传统的冷凝器。
文章编号:1005-0329(2014)05-0067-04收稿日期:2013-07-31修稿日期:2014-02-27基金项目:香港政府基金GCF (522709)R290替代R134a 热泵热水器的性能分析与试验研究胡敏东,王昶,胡懿梵,龙凤元(康特能源科技(苏州)有限公司,江苏苏州215200)摘要:分别对R290和R134a 进行了热力学分析,采用R290对R134a 成熟机组进行灌注量试验,节流元件匹配试验,不同环境温度下,R290试验机组对比变工况试验。
理论及试验结果表明:R290在系统中的单位制热量约为R134a 的1.37倍,R290的单位理论COP 值约为R134a 的94.2%;R290的制冷剂充注量为R134a 的30.3%;R290专用试验机组制热性能平均为R134a 成熟机组的1.27倍,COP 整体略高于R134a 成熟机组,尤其在低温方面(-5ħ,0ħ),平均为R134a 成熟机组的1.05倍。
关键词:R290;R134a ;热泵热水器;热力学分析;试验研究中图分类号:TH12;TB65文献标志码:Adoi :10.3969/j.issn.1005-0329.2014.05.016Performance Analysis and Experimental Study on R290Substituting forR134a Heat Pump Water heaterHU Min-dong ,WANG Chang ,HU Yi-fan ,LONG Feng-yuan(Quantum Energy &Technology (Suzhou )Co.Ltd.,Suzhou 215200,China )Abstract :One thermodynamic analysis between the propane and R134a is done.Also the refrigerant charge test ,throttling ele-ment matching test and variable condition tests are all running in this paper.The performance analysis results show that ,the unit heating capacity and COP in propane system are 1.37times and 94.2percent than R134a system ,respectively.And from experi-mental tests ,the refrigerant charging amounts of propane system is only 30.3percent than R134a system.The heat performance of this propane test unit is 1.27times than R134a mature unit.Also the whole COP of the propane test unit is a little higher ,es-pecially in the low -temperature point (-5ħ,0ħ),it ’s 1.05times average than the R134a mature unit.Key words :R290;R134a ;heat pump water heater ;thermodynamic analysis ;experimental research1前言R290制冷剂ODP 为0,GWP 接近于20(100年),热力性质与R22相当[1],较R134a 性能出色,与酯类油、金属材料、软管材料互溶,无需在原R134a 系统上进行较大变动,且广泛存在于石油、天然气中,提炼方便,一般作为副产品出现,成本较低。
混合制冷剂R12,R134a和实验设计所用的混合工质R290/R600的性能预测统计模型开发摘要:在本文中,作为R12和R134a替代品的油气混合制冷剂R290/R600(79 / 21重量%),对其性能进行了分析。
R12,R134a,制冷剂混合物R290/R600在不同的冷凝和蒸发温度以及在不同压缩机转速环境下进行了实验。
此外,统计模型采用了实验技术的设计,用来对制冷系统的参数的预测,如预测制冷量和性能系数,功率消耗。
开发的模型利用F-测试对上述这些参数是否足够进行检查。
蒸汽压缩制冷系统的各种制冷剂R12,R134a和R290/R600的性能进行了比较。
结果显示,制冷剂混合物R290/R600的性能系数高于R12和R134a 19.3-27.9 %,并且发现,由79%的丙烷于21%丁烷进行混合的烃类混合物可作为R12和R134a 的替代品。
关键词:设计;建模;碳氢化合物;能量消耗;HFC;制冷剂。
1.引言由于热泵和空调系统对臭氧层的消耗和全球变暖等环境问题, 氯氟烃(CFC)和氢氟烃(HFC)和它们的混合制冷剂,因其高臭氧消耗潜能值(ODP)和全球变暖潜能值(GWP)含氯氟烃已经在大多数国家于1996年被禁止。
R134a 已经发展成为一个替代R12的制冷剂。
制冷剂R134a的使用导致气候变化,因为其较高的全球变暖潜能,蒙特利尔议定书和京都议定书已订阅要求完全取消对氟氯化碳和氢氟碳化合物的使用。
Granryd在2001年关于在制冷系统和热泵设备中使用碳氢化合物作为工作流体所产生的问题做过研究。
发现碳氢化合物(HC)是环保的天然制冷剂,它们具有零ODP和GWP。
大量研究和出版物表示碳氢化合物可作为替代R12的制冷剂,碳氢化合物(HC)的制冷剂有一些积极的特点,比如ODP值为零的特点,GWP很小,无毒性,与矿物油,通常在制冷系统采用的材料都具有良好的相容性等优势。
使用碳氢化合物作为制冷剂主要缺点是极易引燃,如果采取安全措施以防止这种易燃制冷剂泄漏,那么碳氢化合物仍可以像其他安全的制冷剂进行使用。
美国计划2025年禁止R134a在冷水机组中使用
张磊华
【期刊名称】《暖通空调》
【年(卷),期】2016(46)3
【摘要】根据最新行业议案,R134a,R410A和R407C等HFC制冷剂将自2025年起禁止在美国境内的冷水机组设备中使用。
美国环境组织——自然资源保护委员会(NRDC)与美国空调、供暖和制冷协会(AHRI)同意在所有类型和冷量的新冷水机组中削减HFC制冷剂使用的时间表。
【总页数】1页(P74-74)
【关键词】机组设备;R134a;自然资源保护;环境组织;环境保护署;三菱重工;灵和;产品类型;压缩机技术
【作者】张磊华
【作者单位】
【正文语种】中文
【中图分类】TU831.4
【相关文献】
1.论我国刑事诉讼中的证据使用禁止——以证据取得禁止和证据使用禁止之间的关系为中心 [J], 艾明
2.R1234ze(E)与R134a在冷水机组中的应用对比与探讨 [J], 杜国良
3.R513A与R1234ze在螺杆冷水机组上替代R134a的试验研究 [J], 王勇; 杜国
良; 王发忠; 余江海
4.征文——冷水机组系统中R515A和R1234ze(E)替代R134a的性能分析 [J], 齐和乐
5.美国明确禁止使用R410A和R134a制冷剂 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
制冷剂R22与R134a的应用比较摘要:目前全社会越来越重视环保问题,部分地区政府相关职能部门也发出了全面禁氟的政策法令,但禁氟不仅是错误的概念,也导致了广大用户和生产厂家的应用困惑。
本文从氟利昂概念、国际公约、国家政策、应用特性入手对常用制冷剂R22和R134a做全面分析,以明确制冷剂R22的优势地位。
关键词:制冷剂R22 R134a 禁氟环保冷媒一、氟利昂的概念目前,国内很多用户都要求生产厂家采用R134a等环保冷媒,拒绝使用氟里昂R22冷媒,理由是响应国家号召保护环境。
其实R22和R134a都是氟利昂家族的成员,属于氢氯氟烃类。
氟里昂是饱和烃类(碳氢化合物)的卤族衍生物的总称。
从氟里昂的定义可以看出,现在人们所谓的环保冷媒R134a、R410A及R407C等其实都属于氟里昂家族。
所以禁氟这一概念把该禁不该禁的内容混为一谈。
氟里昂之所以能够破坏臭氧层是因为制冷剂中含有CL元素,而且随着CL原子数量的增加对臭氧层破坏能力也增加,随着H元素含量的增加对臭氧层破坏能力降低;造成温室效应主要是因为制冷剂在缓慢氧化分解过程中,生成大量的温室气体,如CO2等。
根据分子结构的不同,氟里昂制冷剂大致可以分为以下三大类:1.氯氟烃类:简称CFC,主要包括R11、R12、R113、R114、R115、R500、R502等,由于其对臭氧层的破坏作用最大,被《蒙特利尔议定书》列为一类受控物质。
此类物质目前已被我国逐步禁止使用。
2.氢氯氟烃:简称HCFC,主要包括R22、R123、R141b、R142b等,臭氧层破坏系数仅仅是R11的百分之几,因此,《中国消耗臭氧层物质逐步淘汰国家方案》将HCFC类物质视为CFC类物质的最重要的过渡性替代物质。
3.氢氟烃类:简称HFC,主要包括R134a,R125,R32,R407C,R410A、R152等,臭氧层破坏系数为0,但是气候变暖潜能值较高。
我国目前所使用的所有制冷剂(包括环保冷媒)全部都是氟里昂制品,理想的非氟里昂制冷剂到目前为止还没有研发出来。
Experimental evaluation of a R134a/CO2cascade refrigeration plant Carlos Sanz-Kock a,Rodrigo Llopis a,*,Daniel S a nchez a,Ram o n Cabello a,Enrique Torrella ba Jaume I University,Dep.of Mechanical Engineering and Construction,Campus de Riu Sec s/n,E-12071Castell o n,Spainb Polytechnic University of Valencia,Department of Applied Thermodynamics,Camino de Vera,14,E-46022Valencia,Spainh i g h l i g h t sThe experimental evaluation of a R134a/CO2cascade refrigeration plant is presented.Temperature difference in cascade heat exchanger varied from3.3to5.3 C.Variation of intermediate level produced maximum COP variations of6%.Cooling capacity ranged from4.5kW(À40and40 C)to7.5kW(À30and30 C).COP ranged from1.05(À40and40 C)to1.65(À30and30 C).a r t i c l e i n f oArticle history:Received26May2014 Accepted16July2014 Available online23July2014Keywords:CascadeTwo-stageLow GWPR134aCarbon dioxideEnergy efficiency a b s t r a c tWe present the experimental evaluation of a R134a/CO2cascade refrigeration plant designed for low evaporation temperature in commercial refrigeration applications.The test bench incorporates two single-stage vapour compression cycles driven by semi hermetic compressors coupled thermally through two brazed plate cascade heat exchangers working in parallel and controlled by electronic expansion valves.The experimental evaluation(45steady-states)covers evaporating temperatures fromÀ40 toÀ30 C and condensing from30to50 C.In each steady-state,we conducted a sweep of the condensing temperature of the low temperature cycle with speed variation of the high temperature compressor.Here,the energy performance of the plant is analysed,focussing on the compressors'per-formance,temperature difference in the cascade heat exchanger,cooling capacity,COP and compressors discharge temperatures.©2014Elsevier Ltd.All rights reserved.1.IntroductionThe high warming impact associated to refrigeration systems, due to the direct leakage of refrigerants and to the indirect emis-sions of CO2by electricity consumption,moves scientific commu-nity and institutions to more environmental friendly solutions. Among refrigeration groups,centralized commercial refrigeration highlights because of its high annual leakage rate,commonly higher than10%of the total charge of the system[1]and because of its high energy consumption[2].Both negative aspects motivated European Commission to approve the revision of the F-Gas regu-lation[3],focussing the efforts on reducing the emissions to the atmosphere of greenhouse refrigerants.The agreements that most affect centralized commercial refrigeration in Europe are:from 2020on refilling of systems with refrigerants of GWP>2500will not be allowed if the total equivalent charge of the system overcomes40tonnes of equivalent CO2;from2022in centralized commercial refrigeration systems with capacity of more than 40kW,refrigerants with GWP!150will not be permitted except for the primary refrigerant of cascade systems,where refrigerants with GWP up to1500will be allowed.Both agreements represent the future disappearance of the most used refrigerants in central-ized commercial refrigeration at low temperature in Europe[4],the R404A and the R507A with GWP of3700and3800,respectively[5]. Commercial refrigeration section,specially supermarkets,needs to adapt their refrigeration systems andfluids to the new F-Gas regulation.The adaptation will be based on low GWP refrigerants, and generally it would need to replace the common single-stage refrigeration systems by new refrigeration configurations adapted to the newfluids.The system that now attracts more attention is cascade refrigeration using CO2as LT refrigerant,although different refrigerant options are considered for the HT cycle.In literature,the most analysed cascade refrigeration system is the combination NH3/CO2.For this pair,Lee et al.[6]evaluated*Corresponding author.Tel.:þ34964728136;fax:þ34964728106.E-mail address:rllopis@uji.es(R.Llopis).Contents lists available at ScienceDirect Applied Thermal Engineeringjournal ho mepage:www.elsevier.co m/locate/apthermeng/10.1016/j.applthermaleng.2014.07.0411359-4311/©2014Elsevier Ltd.All rights reserved.Applied Thermal Engineering73(2014)41e50theoretically the optimal condensing temperature of the cascadeheat exchanger and the COP for evaporating levels between À45and À55 C.Dopazo et al.[7],also theoretically,analysed the in flu-ence of the cycle parameters on its ef ficiency and evaluated the optimal condensing temperature,too.Both works presented poly-nomials to evaluate the optimum condensing level.And finally,Messineo [8]evaluated theoretically the performance of this system regards a direct two-stage R404A system,stating that the cascade system is an interesting alternative in commercial refrigeration for energy,security and environmental reasons.For other combinations of refrigerants,Getu and Bansal [9]analysed theoretically cascades of CO 2with ammonia,propane,propylene,ethanol and R404A,concluding that the best pair from an energy point of view was ethanol/CO 2followed by NH 3/CO 2.And,Xiao and Liu [10]studied theoretically the application of R32as HT refrigerant.Regarding experimental evaluation of cascade systems,Bingm-ing et al.[11]presented the experimental results of a NH 3/CO 2cascade driven by two screw compressors for a condensing tem-perature of 40 C and evaporating temperatures between À50and À30 C.They evaluated experimentally the in fluence of the temperature difference in the cascade heat exchanger,the condensing temperature in the LT cycle and the degree of superheat in this heat exchanger.Also,they presented an experimental comparison with single-stage and two-stage NH 3systems,concluding that the cascade system is very competitive in low temperature applications,specially below À40 C.With recipro-cating compressors,Dopazo and Fern andez-Seara [12],evaluated the performance of a NH 3/CO 2cascade for evaporating tempera-tures between À50and À35 C and for a condensing temperature of 30 C.They studied experimentally the optimum condensing temperature of the LT cycle and compared the performance of the plant with a direct two-stage NH 3system,concluding that the cascade better performs for evaporating temperatures below À35 C.Finally,da Silva [13]presents a comparison of a R404A/CO 2cascade with semi hermetic compressors with direct expansion single-stage systems of R404A and R22in a supermarket application designed for operation at À30 C.The study concludes that the cascade can reduce energy consumption between 13and24%respect the single-stage con figuration and the refrigerant charge is reduced,however,the investment cost of the cascade is 18.5%higher.However,they do not present the energy evaluation of the cascade system under different operating conditions.As can be observed,most part of scienti fic work deals with theoretical performance evaluation of cascade systems and with establishing their optimum LT condensing conditions.Few experi-mental works have been reported up to now and most of them deal with NH 3/CO 2systems for industrial applications,which are not recommended for commercial systems because of security reasons.UNEP [14]promotes the R134a/CO 2cascade refrigeration systems as a high-security low-GWP solution for centralized commercial refrigeration,especially for supermarkets,and some brands have selected this system as a future solution to overcome the new F-Gas regulation.However,no experimental work exists about this con figuration.Therefore,this communication pretends to cover this lack of research and presents the experimental evaluation of R134a/CO 2cascade refrigeration prototype driven by semi hermetic compressors over a wide range of working conditions.2.Experimental plantThe experimental plant,which can be appreciated in Fig.1,corresponds to a R134a/CO 2cascade refrigeration system designed to operate at the low evaporating temperature level of commercial refrigeration (À40to À30 C).The plant is driven by two single-stage reciprocating compressors,the heat exchangers are of brazed plate type and incorporates electronic expansion valves.We present the schematic diagram of the plant,the position of the measurement devices and the designation in Fig.2.Next,we pre-sent the details of the plant,of the thermal support system and of the measurement instrumentation.2.1.Refrigeration cycleThe refrigerating cycle is detailed in Fig.2.It is an indirect two-stage or cascade system composed of two single-stage cycles coupled thermally with two cascade heat exchangers workinginC.Sanz-Kock et al./Applied Thermal Engineering 73(2014)41e 5042parallel,which act as evaporator of the HT cycle and condenser of the LT cycle.We use CO 2in the LT cycle and R134a in the HT cycle.2.1.1.LT cycleA CO 2variable speed semi hermetic compressor for subcritical applications,with a displacement of 3.48m 3/h at 1450rpm and a nominal power of 1.5kW,drives the LT cycle.The lubricant oil is POE C55E.The compressor absorbs the vapour at the suction point (suc,L)and compresses it to the LT high pressure (dis,L),then we separate the lubricant oil.Following,the refrigerant gets into a gas-cooler (gc,i,L)where the CO 2is desuperheated with an air cooler heat exchanger before entering to the cascade heat exchangers (gc,o,L),since generally the discharge temperature is higher than the environment temperature.This cross flow heat exchanger,driven at its nominal speed with a fan of 75W of power con-sumption,has a heat transfer area of 0.6m 2in the refrigerant side and of 3.36m 2in the air side.Next,CO 2flow is divided and con-densated it in two plate heat exchangers (C1,i,L and C2,i,L)with a total heat transfer area of 3.52m 2CO 2leaving the condensers (C1,o,L and C2,o,L)is joined and its mass flow rate is measured with a Coriolis mass flow meter (M ref,L ).Then,it enters to the receiver and feeds the expansion valve of the cycle (exp,i,L),an electronic expansion valve that controls the evaporating process in a brazed plate evaporator with a heat transfer area of 2.39m 2.The valve regulates the degree of superheat at the evaporator exit (O,o,L)withan NTC and a pressure gauge.The heat load to the evaporator is provided with a loop working with a tyfoxit-water mixture (84%by volume)which allows to operate up to À45 C.This loop allows regulating the inlet temperature of the SF to the evaporator (sf,i)and varying the SF flow rate (V sf ).2.1.2.High temperature cycle (HT cycle)A R134a variable speed semi hermetic compressor,with a displacement of 32.66m 3/h at 1450rpm and nominal power of 3.7kW,drives the single-stage HT cycle.The lubricant oil is POE SL32.The compressor absorbs the superheated refrigerant coming from the cascade heat exchangers (suc,H)and delivers it com-pressed to the HT high pressure (dis,H).Then,lubricant oil is separated and it feeds the condenser (k,i,H),a brazed plate heat exchanger with a heat transfer area of 2.39m 2.At the exit of the condenser the HT refrigerant mass flow rate (M ref,H )is measured with a coriolis mass flow meter.Then the refrigerant gets into the receiver.Next,the refrigerant feeds two electronic expansion valves (C1,exp,i,H and C2,exp,i,H)that regulate the evaporation process in the two cascade heat exchangers.The valves regulate indepen-dently the degree of superheat at the exit of these heat exchangers (C1,O,o,H and C2,O,o,H)with NTC sensors and pressure gauges.Heat rejection in the condenser is performed with a loop working with water,which allows controlling the inlet temperature (w,i)and varying the flow rate (V w ).More information abouttheFig.1.View of the cascade refrigerationprototype.Fig.2.Schematic diagram of the experimental plant.C.Sanz-Kock et al./Applied Thermal Engineering 73(2014)41e 5043secondary loops can be found in the work of Torrella et al.[15]and Llopis et al.[16,17]2.2.Measuring systemThe experimental plant is fully instrumented to analyse the energy performance of the cycle.The allocation of sensors is pre-sented in Fig.2.It is equipped with24T-type immersion thermo-couples for measuring refrigerant and secondaryfluids temperature and a T-type air thermocouple for the environment one.Pressure is measured with7piezoelectric gauges for the LT cycle and4for the HT cycle,refrigerant massflow rates with two Coriolis massflow meters(M ref,L and M ref,H)and secondary volu-metricflow rates(V sf and V w)with electromagneticflow meters. Power consumption is obtained with two digital watt meters(P c,L and P c,H)and the compressors'speed(N L and N H)with the signal from the inverter drives,calibrated using accelerometers and a frequency analyzer system.The calibration range and accuracies of the measurement devices are detailed in Table1.All the information obtained from the sensors is gathered by a cRIO data acquisition system(24bits of resolution)and handled online with an own developed application based on LabView[18].3.Data reductionThe analysis of the experimental plant is based on the infor-mation provided by the detailed measurement system.With the measurements,thermodynamic properties of the refrigerants in the cycles are evaluated using Refprop9.1database[19].Phase change temperatures in the heat exchangers are calcu-lated using measured inlet pressure values and considering satu-rated state.LT evaporating temperature is calculated with Eq.(1) using pressure at the inlet of the evaporator,and LT condensing temperature with Eq.(2)with pressure at the inlet of the cascade condensers.For the HT,the evaporating temperature is evaluated with Eq.(3)using pressure at the inlet of cascade condenser1,and the condensing level with Eq.(4)using the discharge pressure.T O;L¼f ÀP¼P O;i;L;x v¼0;CO2Á(1)T K;L¼fÀP¼P C;i;L;x v¼1;CO2Á(2)T O;H¼fÀP¼P C1;o;i;H;x v¼0;R134aÁ(3)T K;H¼fÀP¼P dis;H;x v¼1;R134aÁ(4)Then,the temperature difference in the cascade heat exchangeris computed with Eq.(5).D T casc¼T K;LÀT O;H(5)Eqs.(6)and(7)represent the pressure ratios of the CO2andR134a compressors,respectively.t L¼P dis;LP suc;L(6)t H¼P dis;HP suc;H(7)Regarding compressors'performance,the global efficiencies ofthe LT and HT compressors are calculated with Eqs.(8)and(9),respectively,where the specific isentropic compression works areobtained with relations Eqs.(10)and(11).The compression work isevaluated with the specific enthalpy at compressor inlet and thesubsequent isentropic specific enthalpy at discharge.h G;L¼_m ref;L$w s;LP c;L(8)h G;H¼_m ref;H$w s;HP c;H(9)w s;L¼h s;LÀh suc;L(10)w s;H¼h s;HÀh suc;H(11)About the energy parameters of the plant,the heat transfer ratesin the LT cycle are evaluated as follows:The cooling capacity,whichcorresponds to the cooling capacity provided by the plant,with Eq.(12),considering the expansion process as isenthalpic.Heat rejec-tion at the gas-cooler with Eq.(13).Condensation heat transfer inthe cascade heat exchanger with Eq.(14),where we average theenthalpy difference of both condensers.And the individual refrig-erating COP of the LT cycle with Eq.(15)._QO;L¼_m ref;L$Àh O;o;LÀh O;i;LÁ(12)_Qgc;L¼_m ref;L$Àh gc;i;LÀh gc;o;LÁ(13)_QK;L¼_m ref;L$"Àh C1;k;i;LÀh C1;k;o;LÁþÀh C2;k;i;LÀh C2;k;o;LÁ2#(14)COP L¼_QO;LP C;LþP gc;L(15)Regarding the HT cycle,cooling capacity in the cascade heatexchanger is evaluated with Eq.(16),where the specific coolingcapacity is the average of the enthalpy difference in both cascadeheat exchangers.In this case,the expansion processes are consid-ered isenthalpic too.The heat rejection in the HT condenser iscalculated with Eq.(17).And the individual refrigerating COP of theHT cycle with Eq.(18).Table1Accuracies and calibration range of the transducers.Sensors Measuredvariable MeasurementdeviceCalibrationrangeCalibratedaccuracy25Temperature T-typethermocoupleÀ62to125 C±0.5 C3Low pressureLT cyclePiezoelectric gauge0to60bar±0.18bar4High pressureLT cyclePiezoelectric gauge0to100bar±0.3bar2Low pressureHT cyclePiezoelectric gauge0to10bar±0.03bar2High pressureHT cyclePiezoelectric gauge0to25bar±0.075bar1LT massflowrate Coriolis8.5kg minÀ1±0.15%of lecture1HT massflowrate Coriolis52.8kg minÀ1±0.15%of lecture2SF volumetricflow rates Magneticflowmeter0to4m3hÀ1±0.33%of lecture2Compressorpowerconsumption Digital wattmeter0to6kW±0.5%of lecture2Compressorspeed inverter drivesignal0to1800rpm±1.3%of lectureC.Sanz-Kock et al./Applied Thermal Engineering73(2014)41e5044_Q O ;H ¼_mref ;H $ Àh C1;O ;o ;H Àh C1;O ;i ;H ÁþÀh C2;O ;o ;H Àh C2;O ;i ;HÁ!(16)_Q K ;H ¼_m ref ;H $Àh k ;i ;H Àh k ;o ;H Á(17)COP H ¼_Q O ;H C ;H(18)Finally,refrigerating COP of the whole plant is evaluated with Eq.(19),which considers the cooling capacity of the plant,Eq.(12),the electrical power consumption of both compressors and of the fan of the gas-cooler (75W).COP ¼_Q O ;LP c ;LþP c ;H þP gc(19)The heat transfer rates of the secondary fluids are also calcu-lated:in the LT evaporator with Eq.(20)and in the HT condenser with Eq.(21).Tyfoxit properties provided by the manufacturer [20]are used and water properties are evaluated with Refprop 9.1.These heat transfer rates are used for data validation._Q sf ¼_V sf $r sf $c p ;sf $T sf ;i ÀT sf ;o (20)_Q w ¼_V w $r w $c p ;w $ÀT w ;o ÀT w ;iÁ(21)4.Experimental procedure and data validation 4.1.Experimental procedureThe test campaign used to evaluate thecascade refrigeration system covered LT evaporating from À40to À30 C and HT condensing temperatures 50 C,those values regulated and maintained by the fluid loop systems.For each combination of the operation of the cascade was registered at five LT temperatures regulating the HT compressor compressor speed was maintained at its nominal explained before.Tests were done fixing a degree of the valves of the R134a cascade condensers and of the orator at 10 C.Also,the fan of the gas-cooler was that consuming a constant value of 75W.In total,45steady-states of the plant were measured,at least 20min,with 5s sampling rate,with maximum the phase-change temperatures of 2%,as detailed in Additionally,two additional tests were carried out to performance of the compressors under speed test,the compression rates were kept constant while varying the compressor's speed.4.2.Data validationData validation was done comparing the heat transfer rates in the main heat exchangers of the plant.In Fig.3,we represent in red dots (in web version)the heat transfer rate of water,Eq.(21),versus the heat rejection of R134a in the HT condenser,Eq.(17);in green diamonds the heat rejection of CO 2,Eq.(12),versus the cooling capacity of R134a in the cascade heat exchangers Eq.(16);and in blue squares (in web version)the heat transfer rate of the sec-ondary fluid,Eq.(20),versus the cooling capacity of CO 2,Eq.(12),in the LT evaporator.Regarding the heat balance at the HT condenser 99.6%of values present a deviation below ±10%,at the cascade heat exchanger 97.0%of data are inside ±10%,and data in the LT evaporator 92.4%deviates less than ±10%.5.Experimental resultsA detailed energy balance of the cascade plant for a given operating condition is given in Section 5.1,the compressors'per-formance is discussed in Section 5.2and the global performance of the plant over a wide range of operating conditions is analysed in Section 5.3.5.1.Energy balance of the cascade plantTable 2Test summary of the cascade refrigeration plant evaluation.T O,L ( C)T K,L ( C)D T SH,L ( C)N L (rpm)T O,H ( C)T K,H ( C)D T SH,H ( C)T env ( C)N H (rpm)Steady-states Test 1À29.98±0.05À4.98to 0.219.01±0.261450À9.17to À3.4350.07±0.078.74±0.8227.54±1.57906.8to 1309.65Test 2À35.00±0.04À6.66to À0.359.03±0.231450À11.29to À3.5050.01±0.0710.04±0.5026.60±0.92704.7to 1208.75Test 3À39.96±0.02À11.52to À4.839.04±0.221450À17.10to À9.5249.96±0.079.46±1.8524.31±1.27806.4to 1409.45Test 4À30.01±0.03À6.93to À1.599.44±0.441450À10.68to À5.0040.06±0.049.51±0.6521.80±1.3806.4to 1208.75Test 5À35.03±0.06À11.00to À6.349.28±0.271450À15.29to À10.2840.05±0.099.43±0.4621.39±1.40906.8to 1309.65Test 6À40.03±0.03À12.80to À8.029.32±0.071450À17.96to À12.4940.07±0.059.65±0.4420.68±0.69806.4to 1208.75Test 7À30.05±0.12À9.23to À3.829.31±1.081450À12.71to À7.2530.17±0.1410.49±1.1922.75±0.71806.4to 1208.75Test 8À34.94±0.05À12.17to À7.239.48±0.401450À16.03to À10.5729.97±0.079.67±1.0920.98±1.39806.4to 1208.75Test9À40.04±0.05À15.36to À10.279.39±0.071450À20.15to À14.4330.07±0.069.43±0.9019.99±1.13806.4to 1208.75C.Sanz-Kock et al./Applied Thermal Engineering 73(2014)41e 5045refrigeration cycles is presented in Fig.4,where the allocation of all measurement points in the plant is re flected (Fig.2).Also,in Fig.5,the energy flows through the cascade plant are detailed.Both fig-ures represent the operation of the plant an LT evaporating tem-perature of À29.98 C,an HT condensing temperature of 40.08 C for compressors'speeds of 1450rpm in the LT compressor and 806.4rpm in the HT compressor.For this condition,the COP of the cascade plant is of 1.42.LT cycle absorbs heat in the evaporator (_Q O ;L)and through the suction line (_Q suc ;L),this last accounting for less than 1%of the cooling capacity.It consumes electricity in the CO 2compressor (P c,L )and in the fan of the gas-cooler (P gc,L ),this last accounting for 3.6%of the total consumption of the LT cycle.The cycle rejectsenergy in the cascade condenser (_Q K ;L),through the discharge line (_Q dis ;L )and in the gas-cooler (_Q gc ;L ),this last meaning 15.3%of the total heat rejection.It is worth highlighting the objective of the gas-cooler.If environment temperature allows it,the gas-cooler rejects heat to the environment,thus avoiding pumping it to the condensing temperature of the HT cycle.This way the COP of the plant improves.The individual refrigerating COP of the LT cycle for this condition is of 3.10.HT cycle absorbs heat in the cascade condenser (_Q O ;H )and in thesuction line (_Q suc ;H ),this last accounts for 1.2%of the heat taken bythe cycle.About electricity consumption,it absorbs energy in the R134a compressor (P C ,H ).Cycle rejects heat in the HT condenser (_Q K ;H )and through the discharge line (_Q dis ;H ),this last means 6.9%of the total heat rejection.The individual refrigerating COP of the HT is of 2.84.pressors'performanceThe way of modifying the intermediate conditions of the cascade cycle (T K,L or T O,H )for a given operating condition (T O,L and T K,H )is through the variation of the compressors speed,either of the LT compressor or the HT compressor.If for a constant N H ,N L is increased,the LT cycle moves more refrigerant and the heat rejec-tion at the cascade condenser increases,thus increasing T K,L and T O,H ,and obviously temperature difference in the cascade heat exchanger also increases.The same applies for variation of N H .Accordingly,to verify the best way to regulate the intermediate conditions,both compressors were subjected to a speed variation test under fixed compression ratios.Two individual tests were performed,one for each compressor,where their energy perfor-mance was evaluated.We summarize the test in Table 3.In Fig.6,the evolution of the global ef ficiency is presented,Eqs.(8)and (9)(continuous line,left axis)and the discharge tempera-ture (dashed line,right axis)of each compressor under speed variation for fixed compression ratios.Although both compressors are ready for variable speed operation,a big degradation of the global ef ficiency of the CO 2compressor at low speeds was observed (5.2%of reduction each 100rpm in average),which consequence was an increase of the discharge temperature (from 80to 122 C).This last effect is associated to the refrigeration of the electrical motor of the compressor,as analysed for another CO 2compressorby S anchez et al.[21].About R134a compressor,ef ficiency variation with the speed is observed,but more soft (0.9%of reduction each 100rpm).Accordingly,the experimental evaluation of the cascade plant was carried out fixing N L at the nominal design condition of the LT compressor (1450rpm)and N H was varied to modify the intermediate conditions.In Fig.7,the global ef ficiencies of both compressors versus the compression ratio are presented,and in Eqs.(22)and (23)the adjusted polynomials for the global ef ficiency of the CO 2(at 1450rpm)and R134a compressors respectively,of all experimental data presented in Table 2.We observe the performance of CO 2compressor is more dependent to the compression ratio than that of R134a one.h G ;L ¼0:7245À0:0852$t L(22)h G ;H ¼0:5871À0:01021$t H þ6:067$10À5$N H(23)Fig.4.Temperature-entropy of the cascade plant at T O,L ¼À29.98 C,T K,H ¼40.08 C,NL ¼1450rpm,NH ¼806.4rpm.Fig.5.Energy flow through the cascade plant at T O,L ¼À29.98 C,T K,H ¼40.08 C,NL ¼1450rpm,NH ¼806.4rpm.C.Sanz-Kock et al./Applied Thermal Engineering 73(2014)41e 50465.3.Energy performance of the cascade refrigeration plantHere,the measured performance of the cascade plant over a wide range of operating conditions is presented,as detailed in Table 2.In the test,the degrees of superheat in the heat exchangers were kept constant.The plant was evaluated at fixed operating conditions (T O,L and T k,H ),for constant N L ¼1450rpm,while varying the intermediate level through modi fication of N H ,as presented in Fig.8.In it,N H was increased while maintaining constant T O,L and T K,H .When N H increases,the HT cycle provides more cooling ca-pacity,the result being a decrease of the intermediate temperature level (for both T K,L and T O,H ).This modi fication of the intermediate level modi fies the individuals COP (if N H increases,COP L increases and COP H decreases)and the temperature difference in the cascade.5.3.1.LT condensing temperature versus HT compressor speedAs mentioned,the way of modifying the intermediate condi-tions is through the variation of N H .We present experimental measurements of the condensing temperature of the LT cycle (T K,L )for the operation of the cascade plant at constant T O,L ¼À30 C for three T K,H values in Fig.9and at constant T K,H ¼40 C for three T O,L in Fig.10.From the results,we observe the variations of T K,L versus N H are similar in both variation tests,with an average slope of À1.3 C for each 100rpm increment.Regarding the modi fication of T O,L (Fig.10),T K,L increases 2.5 C for an increment of 5 C of the T O,L .Nonetheless,when we modify T K,H (Fig.9),the increments of T K,L are not uniform,it increases 2 C when T K,H rises from 30to 40 C and 3 C when T K,H increases from 40to 50 C.Eq.(24)rep-resents the dependence of the LT condensing temperature in ( C)with N H ,T K,H and T O,L adjusted from the experimental data.T K ;L ¼14:3617207À0:0111471$N H þ0:2922665$T K ;Hþ0:6279067$T O ;L(24)5.3.2.Temperature difference in the cascade heat exchangerModi fication of N H causes variations of the compression ratios,refrigerant mass flow rates,and energy parameters in each single-stage cycle.When N H is increased,the cooling capacity of the HT cycle rises,and it modi fies the temperature difference in theTable 3Test summary of compressors'evaluation.P suc (bar)P dis (bar)t L (À)T suc ( C)N (rpm)m ref (kg/s)P C (kW)h G (À)T dis ( C)Steady-states LT Comp test 11.78±0.1127.44±0.45 2.33±0.06À12.46±0.511100to 16000.013to 0.024 1.66to 1.830.29to 0.5778.0to 122.66HT Comp test1.24±0.0110.18±0.048.23±0.09À4.71±0.481200to 16000.031to 0.0452.71to3.630.70to 0.7788.0to 89.65Fig.6.Global ef ficiency of the compressors and discharge temperature pres-sor's speed (fixed compressionratios).pressors'ef ficiencies pressionratio.Fig.8.Phase-change temperatures vs.NH (at T O,L ¼À30 C,T k,H ¼40 C,NL ¼1450rpm).Fig.9.LT condensing temperature vs.HT compressor speed (T O,L ¼À30 C).C.Sanz-Kock et al./Applied Thermal Engineering 73(2014)41e 5047。