当前位置:文档之家› 变速传动轴承的动力学仿真分析

变速传动轴承的动力学仿真分析

变速传动轴承的动力学仿真分析
变速传动轴承的动力学仿真分析

湖南大学

硕士学位论文

变速传动轴承的动力学仿真分析

姓名:杨文敏

申请学位级别:硕士

专业:机械设计及理论

指导教师:文桂林

20080216

齿轮机械传动动力学研究文献综述完整版

基于齿轮传动的机械动力学研究文献综述 摘要:本文结合相关文献对机械动力学中齿轮传动动力学部分的研究进行了综述。综合文献对齿轮传动动力学研究现状和发展趋势有了整体把握。 关键词:动力学;齿轮传动;综述; The Literature Review of Mechanical Dynamics based on gear transmission Abstract:In this paper, the studies of mechanical dynamics of gear transmission were reviewed. On the whole, we grasp the studies status and development trend of gear transmission. Keywords: Dynamics;Gear transmission;Review 1.前言 随着机械向高效、高速、精密、多功能方向发展,对传动机械的功能和性能的要求也越来越高,机械的工作性能、使用寿命、能源消耗、振动噪声等在很大程度上取决于传动系统的性能。因此必须重视对传动系统的研究。机械系统中的传动主要分为机械传动、流体传动(液压传动、液力传动、气压传动、液体粘性传动和高等优点机械传动的形式也有多种,如各种齿轮传动、带(链)传动、摩擦传动等。 齿轮传动是机械传动中的主要形式之一。在机械传动中占有主导地位。由于它具有速比范围大、功率范围广、结构紧凑可靠等优点,已广泛应用于各种机械设备和仪器仪表中。成为现有机械产品中所占比重最大的一种传动。齿轮从发明到现在经历了无数次更新换代,主要向高速、重载、平稳性、体积小、低噪等方向发展。 2. 齿轮动力学的发展概述 齿轮的发展要追溯到公元前,迄今已有3000年的历史。虽然自古代人们就使用了齿轮传动,但由于动力限制了机器的速度。因此齿轮传动的研究迟迟未发展到动力学研究的阶段。 第一次工业革命推动了机器速度的提高,Euler提出的渐开线齿廓被广泛运用,这属于从齿轮机构的几何设计角度来适应速度的提高。

齿轮系的运动分析

16.2齿轮系的运动分析 齿轮系由曲轴齿轮、惰齿轮和凸轴齿轮。本例要模拟三个齿轮键的运动。 (1)设置齿轮系的连接。须分别定义简易曲轴齿轮、简易惰性轮、简易凸轮轴齿轮与简易机体之间的旋转运动副。 (2)设置齿轮副连接。定义曲轴齿轮与惰齿轮之间、凸轮轴齿轮与惰齿轮之间的齿轮副连接。 (3)模拟仿真。 (4)运动分析。 16.2.1设置齿轮系的连接 1.新建组文件 (1)点击“开始”选取“机械设计”中的“装配件设计”模块。 (2))进入装配件设计模块后,点击添加现有组件图标,再点击模型树上的Product1图标,此时会出现文件选择对话框,按住Ctrl键,分别选取“Chapter16/ duo-gear.CATPart、qu-zhou-gear.CATPart、tu-lun-gear.CATPart、duolunzhou.CATproduct、jianyi-quzhou.CATpart、jianyi-tulunzhou. CATPart、jianyi-jizuo. CATpart”,将这些零件体载入到Product1中. (3) 此时,零件体载入后重合到一起,点击分解图标,出现分解对话框,然后点击模型树上的Product1,点击确定,此时弹出警告对话框,警告各零件的位置会发生变,点击警告对话框的按钮“是”,我们会发现各个零件分解开来。如图16-101所示。

图16-101 分解重和的各个零件 2.设置各简易齿轮轴与简易机座之间的运动连接 (1)点击“开始”选取“数字模型”中的“DMU Kinematics(数字模型运动)”模块,进入模型运动工作台。 (2)单击“Kinematics Joint(运动饺)”工具栏中的“Revolnte Joint(旋转铰)”按 钮,弹出“Joint Creation: Revolute(生成旋转铰)”对话框。如图16-101所示。 图16-101 “Joint Creation: Revolute(生成旋转铰)”对话框 (3)单击对话框中的“New Mechanism(新运动机构)“按钮弹出“Mechanism Creation(生成运动机构)”对话框,单击对话框中的“确定”按钮,按照对话框中的默认机构名称“Mechanism.1”生成新的运动机构。同时“Mechanism Creation(生成运动机构)”对话框被关闭,回到“Joint Creation:Revolute(生成旋转铰)”对话框。

齿轮传动系统的动力学仿真分析

齿轮传动系统的动力学仿真分析 摘要:本文对建立好的整体机械系统的虚拟样机模型进行运动学和动力学的仿真分析,通过仿真分析,可以方便地得出齿轮传动系统在特定负载和特定工况下的转矩,速度,加速度,接触力等,仿真分析后,可以确定各个齿轮之间传递的力和力矩,为零件的有限元分析提供基础。 关键词:传动系统动力学仿真 adams 虚拟样机 中图分类号:th132 文献标识码:a 文章编号: 1007-9416(2011)12-0207-01 随着计算机图形学技术的迅速发展,系统仿真方法论和计算机仿真软件设计技术在交互性、生动性、直观性等方面取得了较大进展,它是以计算机和仿真系统软件为工具,对现实系统或未来系统进行动态实验仿真研究的理论和方法。 运动学仿真就是对已经添加了拓扑关系的运动系统,定义其驱动方式和驱动参数的数值,分析其系统其他零部件在驱动条件下的运动参数,如速度,加速度,角速度,角加速度等。对仿真结果进行分析的基础上,验证所建立模型的正确性,并得出结论。 本文中所用的动力学仿真软件是adams软件。adams软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格郎日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。adams

软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、峰值载荷以及计算有限元的输入载荷等。虚拟样机就是在adams软件中建的样机模型。 1、运动参数的设置 先在造型软件ug中将齿轮传动系统造型好,如下图所示。在已经设置好运动副的齿轮传动系统的第一级齿轮轴上绕地的旋转副上 给传动系统添加一个角速度驱动。然后进行仿真。在进行仿真的过程中,单位时间内仿真步数越多,步长越短,越能真实反映系统的真实结果,但缺点是仿真时间也随之变长,占用的系统空间也就越大。所以应该在兼顾仿真真实性与所需物理资源和仿真时间的基础上,选择一个合适的仿真时间和仿真的步长。 在仿真之前先设置系统所用到的物理量的单位,在工程实际中,角速度一般使用的单位是r/min,所以在系统的基本单位中把时间的单位设为min,角度的单位设成rad,而在adams中转速单位为 rad/min。本过程仿真的运动过程为:系统从加速运动到额定转速,平稳运动一段时间后,再减速运动直到停止。运动过程用函数来模拟,输入的角速度驱动的函数表达式为: step( time ,0 ,0 ,2.5 ,9168.8)+ step(time ,7.5 ,0 ,10 ,-9168.8),此函数表达式的含义为:系统从开始加速运动一直到2.5s时达到了系统的额定转速 9168.8rad/min(1460r/min),从2.5s到7.5s的时间段内,系统以额定转速运动,在7.5s到10s的时间段内,系统从额定转速减速

航空轴承动力学特性分析

航空发动机高速滚动轴承的动力学行为研究航空发动机不断向大推重比、长寿命和高可靠性方向发展,对航空发动机高速滚动轴承的转速、载荷等指标提出了越来越苛刻的要求。长期工作在高转速和重载荷情况下的滚动轴承常呈现应力过大、温升过高等特点,发生擦伤、烧伤等失效,严重的还会带来轴承卡死抱轴等严重后果。同时,航空发动机在工作过程中的高转速巡航以及多工况转换的特点,使得滚动轴承的动态稳定性问题日益凸显,带来保持架断裂、转子系统失稳等严重后果。因此,对航空发动机高速滚动轴承进行动态性能分析,研究其高速动力学行为,是面向工况进行轴承结构优化、保证轴承工作可靠性和延长轴承寿命的必不可少的共性基础研究课题。项目将以航空发动机高速滚珠轴承和滚柱轴承为研究对象,建立发动机高速滚动轴承动力学模型,深入研究轴承在不同载荷、转速、温度等工况下的动力学行为,获取其振动模态特性。拟定开展的研究如下: 一.两种类型的滚动轴承建模 以高速滚珠轴承和高速滚柱轴承为研究对象,通过分析轴承内部零件间的运动和位置关系、轴承与转子系统之间的相互作用关系,考虑航空发动机苛刻的工作环境,转速、载荷的不稳定性和滚动轴承零件间的非线性作用力,建立高速球轴承和滚柱轴承的动力学模型、滚动轴承-转子系统的非线性振动模型。 目前已经基本完成两种滚动轴承的基本尺寸建模。 二.两种类型的滚动轴承动力学特性分析

分析不同工况和轴承结构参数对滚动轴承及转子系统动特性的影响,分析轴承装配、温差及离心作用对轴承动力学特性的影响,研究非线性振动模型工况参数和结构参数对滚动轴承动态特性的影响规律,分析轴承套圈、滚动体、保持架等零件材料对轴承动态特性的影响。 三.保持架冲击振动特性及故障机理分析 发动机中主轴承保持架的轴向突然断裂是航空发动机破坏的重要因素之一。根据保持架的运动特点及保持架碰撞的激励源特性,建立轴承保持架的冲击振动模型。分析影响保持架振动的因素及其关系,研究保持架的轴向突然断裂和疲劳断裂机理,从而有针对性地解决保持架的碰撞问题和保持架断裂问题。 四.滚动轴承的稳定性分析 针对滚动轴承装配导致的内外圈轴线不对中现象,分析轴承内外圈偏斜对承载区载荷特性的影响。从描述保持架稳定性的保持架质心涡动速度偏差比及反映滚动体整体打滑的保持架滑动率两方面分析定常工况下高速滚动轴承的动态性能。

第四章 斜齿行星齿轮传动系统动力学分析精选

第四章斜齿行星齿轮传动系统动力学分析 4.1 引言 行星齿轮传动由于具有重量轻、结构紧凑、传动比大、效率高等优点,在民用、国防领域中都得到了广泛的应用,行星齿轮传动的振动和噪声是影响传动系统寿命和可靠性的重要因素。近年来,国内外学者对行星齿轮传动的动态特性进行了大量研究:J.Lin、R.G.Parker、宋轶民等分析了行星齿轮传动的固有特性[42-49]; A.Kahraman等研究了行星齿轮传动的均载特性 [50-52],并分析了加工误差对动态响应的影响[53-54];R.G.Parker等还提出了通过控制啮合相位差抑制系统振动的方法[55-57];潜波、罗玉涛、D.R.Kiracofe等探讨了复杂行星齿轮传动的动力学建模与分析[59-65];沈允文、孙涛、孙智民等对星型齿轮传动和行星齿轮传动的非线性动力学特性进行了深入研究[66-70]。 目前,关于行星齿轮传动的研究多针对直齿行星轮系,而对斜齿行星传动的研究还很少,所建立的模型也有待进一步完善。建立精确的动力学模型,是研究动态特性的首要工作,本章针对斜齿行星齿轮传动,以变形协调分析为基础,建立了其耦合非线性动力学模型,推导了其运动微分方程,最后分析了斜齿行星轮系的自由振动特性,对固有频率和固有振型的特点进行了总结。 4.2 系统的动力学模型及方程 4.2.1 传动系统的动力学模型 行星齿轮传动平移-扭转耦合动力学模型考虑的自由度非常多,因此其动力学方程也非常复杂。为方便动力学方程的推导,建立各个集中质量的坐标系如下:OXY为静坐标系,其原点在行星轮系的几何中心,坐标系不随行星轮系运动;Oxy 为行星架随动坐标系,其原点在行星架回转中心,固连在行星架上随行星架的运 O x y为行动而等速运动,其x轴正向通过第一个行星轮中心平衡位置;坐标系n n n 星轮坐标系,也固连在行星架上随之等速旋转,其原点位于行星轮的中心平衡位置,x轴通过太阳轮中心与行星轮中心的连线指向内齿圈,y轴与行星架相切指

齿轮动力学

(一) 直齿圆柱齿轮传动的扭转振动模型 若忽略传动轴的扭转变形,只考虑齿轮副处的变形,则得到最简单的扭转振动模型,如图1所示。其中r b1、r b2为主从动齿轮的基圆直径,k v 为齿轮副的综合啮合刚度,并且考虑齿轮副的啮合阻尼系数c v 以及齿廓误差e 的作用,主动轮上作用与转动方向相同的驱动力矩T 1,从动轮上作用与转动方向相反的阻力矩T 2 图1 齿轮副的扭转振动模型 啮合线上的综合变形δi 可写为: 1122i b b i r r e δθθ=-- (1) 设重合度小于2,啮合齿对为i ,法向啮合力可以表示为: ()()() 11221122i vi i vi i vi b b i vi b b i i i i F F k c k r r e c r r e δδθθθθ??==+=--+--??∑∑∑&&&& (2) 式中:i 为参与啮合的齿对序号,i =1,2;k vi 、c vi 为齿对i 在啮合点位置的综合啮合刚度和阻尼系数。 主、从动齿轮的力矩平衡方程为: 12111222 b b J T r F J T r F θθ=-=-&&&& (3) 将(2)带入(1)中得到: ()() ()() 111112211221222112211222 b vi b b i vi b b i i b vi b b i vi b b i i J r k r r e c r r e T J r k r r e c r r e T θθθθθθθθθθ??+--+--=????---+--=-??∑∑&&&&&&&&&& (4)

由此式可看出,即使主动齿轮转速以及传动载荷恒定,由于时变综合刚度k v 的变化,也会使从动轮的转动出现波动,即造成齿轮的圆周振动。为了方便讨论时变综合刚度k v 对振动方程(4)的影响,定义啮合线上两齿轮的相对位移x 为: 1122b b x r r θθ=- (5) 不考虑齿轮传动的效率,齿轮的静态啮合力为: 12 01 2 b b T T F r r = = (6) 将式(5)、(6)带入方程(4)中,则可将其简化为一元微分方程: e v v d m x c x k x F ++=&&& (7) 式中,m e 称为系统的当量质量: 12 22 2112 e b b J J m J r J r = + (8) 激振力为: 0d vi i vi i i i F F c e k e =++∑∑& (9) 根据方程(9)可以将一对齿轮的振动视为单自由度系统的振动,如图2所示。可以看出时变综合刚度k v 和齿廓误差e i 都是随时间变化的量,也即是齿轮系统的刚度激励和误差激励。 图2 齿轮传动的单自由度模型 与方程(7)对应的系统的固有频率可以表示为: n f = = (10) (二) 直齿圆柱齿轮副啮合耦合型振动分析 在不考虑齿面摩擦的情况下,典型的直齿圆柱齿轮副的啮合耦合型动力学模型如图4所示。

行星齿轮机构运动规律 原理及应用分析

行星齿轮机构运动规律原理及应用分析 类型:转载来源:济民工贸的博客作者:齐兵责任编辑:李笛发布时间:2009年06月11日 我们熟知的齿轮绝大部分都是转动轴线固定的齿轮。例如机械式钟表、普通机械式变速箱、减速器,上面所有的齿轮尽管都在做转动,但是它们的转动中心(与圆心位置重合)往往通过轴承安装在机壳上,因此,它们的转动轴都是相对机壳固定的,因而也被称为"定轴齿轮"。 有定必有动,对应地,有一类不那么为人熟知的称为"行星齿轮"的齿轮,它们的转动轴线是不固定的,而是安装在一个可以转动的支架(蓝色)上(图中黑色部分是壳体,黄色表示轴承)。行星齿轮(绿色)除了能象定轴齿轮那样围绕着自己的转动轴(B-B)转动之外,它们的转动轴还随着蓝色的支架(称为行星架)绕其它齿轮的轴线(A-A)转动。绕自己轴线的转动称为"自转",绕其它齿轮轴线的转动称为"公转",就象太阳系中的行星那样,因此得名。 也如太阳系一样,成为行星齿轮公转中心的那些轴线固定的齿轮被称为"太阳轮",如图中红色的齿轮。在一个行星齿轮上、或者在两个互相固连的行星齿轮上通常有两个啮合点,分别与两个太阳轮发生关系。如右图中,灰色的内齿轮轴线与红色的外齿轮轴线重合,也是太阳轮。 轴线固定的齿轮传动原理很简单,在一对互相啮合的齿轮中,有一个齿轮作为主动轮,动力从它那里传入,另一个齿轮作为从动轮,动力从它往外输出。也有的齿轮仅作为中转站,一边与主动轮啮合,另一边与从动轮啮合,动力从它那里通过。

在包含行星齿轮的齿轮系统中,情形就不同了。由于存在行星架,也就是说,可以有三条转动轴允许动力输入/输出,还可以用离合器或制动器之类的手段,在需要的时候限制其中一条轴的转动,剩下两条轴进行传动,这样一来,互相啮合的齿轮之间的关系就可以有多种组合: 单排行星齿轮机构的结构组成为例 ● (1)行星齿轮机构运动规律 设太阳轮、齿圈和行星架的转速分别为n1、n2和n3,齿数分别为Z1、Z2、Z3;齿圈与太阳轮的齿数比为α。则根据能量守恒定律,由作用在该机构各元件上的力矩和结构参数可导出表示单排行星齿轮机构一般运动规律的特性方程式: n1+αn2-(1+α)n3=0和Z1+Z2=Z3 ●(2)行星齿轮机构各种运动情况分析 由上式可看出,由于单排行星齿轮机构具有两个自由度,在太阳轮、齿圈和行星架这三个基本构件中,任选两个分别作为主动件和从动件,而使另一元件固定不动(即使该元件转速为0),或使其运动受一定的约束(即该元件的转速为某定值),则机构只有一个自由度,整个轮系以一定的传动比传递动力。下面分别讨论各种情况。 行星齿轮机构各种运动情况分析 固定件主动件从动件转速成转向 太阳轮行星架齿圈增速同向 太阳轮齿圈行星架减速同向 齿圈行星架太阳轮增速同向 齿圈太阳轮行星架减速同向 行星架齿圈太阳轮增速反向 行星架太阳轮齿圈减速反向

齿轮动力学国内外研究现状

1.2.1 齿轮系统动力学研究 从齿轮动力学的研究发展来看,先后进行了基于解析方法的非线性齿轮动力学研究、基于数值方法的齿轮非线性动力学研究、基于实验方法的齿轮系统的非线性动力学研究和考虑齿面摩擦及齿轮故障的齿轮系统的非线性动力学研究。其中,解析方法包括谐波平衡法、分段技术法和增量谐波平衡法等;数值方法则不胜枚举,包括Ritz法、Parametric Continuation Technique方法等。[1]齿轮系统间隙非线性动力学的研究起始于1967年K.Nakamura的研究。[2]在1987年,H. Nevzat ?zgüven等人对齿轮系统动力学的数学建模方法进行了详细的总结。他分别从简化的动力学因子模型、轮齿柔性模型、齿轮动力学模型、扭转振动模型等几个方面分类,详细总述了齿轮动力学的发展进程。[3]1990年,A. Kaharman等人分析了一对含间隙直齿轮副的非线性动态特性,考虑了啮合刚度、齿侧间隙和静态传递误差等内部激励的影响,考察了啮合刚度与齿侧间隙对动力学的共同影响。[4] 1997年,Kaharaman和Blankenship对具有时变啮合刚度、齿侧间隙和外部激励的齿轮系统进行了实验研究,利用时域图、频域图、相位图和彭家莱曲线等揭示了齿轮系统的各种非线性现象。[5]同年,M. Amabili和A. Rivola研究了低重合度单自由度的直齿轮系统的稳态响应及其系统的稳定性。 [6]2004年,A. Al-shyyab等人用集中质量参数法建立了含齿侧间隙的直齿齿轮副的非线性动力学模型,利用谐波平衡阀求解了方程组的稳态响应,并研究了啮合刚度、啮合阻尼、静态力矩和啮合频率对齿轮系统振动的影响。[7]2008年,Lassaad Walha等人建立了两级齿轮系统的非线性动力学模型,考虑了时变刚度、齿侧间隙和轴承刚度对动力学的影响。对非线性系统分段线性化并用Newmark迭代法进行求解,研究了齿轮脱啮造成的齿轮运动的不连续性。[8]2010年,T. Osman 和Ph. Velex在齿轮轻微磨损的情况下,建立了动力学模型,通过数值模拟揭示了齿轮磨损的非对称性。[9]2011年,Marcello Faggioni等人通过分析直齿轮的非线性动力学特性及其响应,建立了以齿轮振动幅值的目标函数,利用Random–Simplex优化算法优化了齿廓形状。[10]2013年,Omar D. Mohammed等人对时变啮合刚度的齿轮系统动力学进行了研究,对于裂纹过长所带来的有限元误差问题,提出了一种新的时变啮合刚度模型。通过时域方面的故障诊断数据和FEM结果对比,证明了新模型能够更好地解长裂纹问题。[11] 国内研究齿轮系统动力学也进行了大量的研究。2001年,李润芳等人建立了具有误差激励和时变刚度激励的齿轮系统非线性微分方程,利用有限元法求得齿轮的时变啮合刚度和啮合冲击力,研究了齿轮系统在激励作用下的动态响应。 [12]2006年,杨绍普等人研究了考虑时变刚度、齿轮侧隙、啮合阻尼和静态传递误差影响下的直齿轮副的非线性动力学特性,利用增量谐波平衡法对系统方程进行了求解,研究了系统的分岔特性以及阻尼比和外激励大小对系统幅频曲线的影响。[13]2010年,刘国华等人建立了考虑齿轮轴的弹性、齿侧间隙、油膜挤压刚度和时变啮合刚度等因素的多体弹性非线性动力学模型,研究了齿廓修形和轴的扭转刚度对动力学特性的影响。[14] 2013年,王晓笋,巫世晶等人建立了含有非线性齿侧间隙、内部误差激励和含磨损故障的时变啮合刚度的三自由度齿轮传动系统平移—扭转耦合动力学方程。采用变步长Gill积分、GRAM—SCHMIDT方法,得到了系统对应的分岔图和李雅普诺夫指数谱,研究发现了系统内部丰富的非线性现象,而系统进入混沌运动的途径也是多样的。[15]

机械传动系统的运动分析报告

机械传动系统的运动分析-----------------------作者:

-----------------------日期:

第4单元学时数:学时教学目的与要求: 理解运动链的可动性及运动确定性的条件; 能正确计算平面机构的自由度。 教学重点与难点: 重点:平面机构自由度的计算 难点:自由度计算时应注意的特殊结构 教学手段与方式: 课堂讲授, 教学内容: 第一章机械传动系统的运动分析 第三节平面机构的自由度 一、平面机构自由度的计算 二、机构具有确定运动的条件

三、计算平面机构的自由度时应注意的特殊结构 第四节机械传动系统的运动分析实例 第一章机械传动系统的运动分析 第三节平面机构的自由度 一、平面机构自由度的计算 1.平面机构自由度 机构中各构件相对于机架所能有的独立运动的数目。 构件的自由度 两构件用运动副联接后,彼此的相对运动受到某些约束。 低副引入两个约束!(图形见课件) 高副引入一个约束!(图形见课件) 2.机构自由度计算的一般公式 F=3n-2P L-P H n —活动构件数;P L—低副数;P H—高副数 例1:计算曲柄滑块机构的自由度(动画见课件) 解:活动构件数n=3 低副数PL=4 高副数PH=0 F=3n - 2PL - PH =3×3 - 2×4 =1 例2:计算五杆铰链机构的自由度解:活动构件数n=4 S3 1 2 3 1 2 3 4 θ 1

低副数PL =5 F =3n - 2PL - PH =3×4 - 2×5 =2 例3:计算图示凸轮机构的自由度(动画见课件) 解:活动构件数n =2 低副数PL =2 高副数PH =1 F =3n - 2PL - PH =3×2 - 2×2 -1 ×1 =1 F = 3×2 – 2×3= 0 (桁架) F = 3×3 – 2×5 = -1(超静定桁架) 二、机构具有确定运动的条件 1.机构自由度数2 三、计算平面机构的自由度时应注意的特殊结构 1.复合铰链 两个以上的构件在同一处以转动副相联。 计算:m 个构件,有m -1转动副。 1 2 3 31 2 1 2 3 两个低副

基于ANSYS的齿轮运动学和静力学仿真分析

? 54 ?内燃机与配件基于ANSYS的齿轮运动学和静力学仿真分析 黄如周淤;张伟雄于 (①珠海格力精密模具有限公司,珠海519070;②清远职业技术学院,清远511510) 摘要:为了解决在注塑模的螺纹抽芯机构中齿轮的选用问题,详细阐述了利用A N SYS有限元分析软件对齿轮传动作运动学和 静力学仿真分析,使得能够合理选用液压马达及优化齿轮的结构设计,从而提高齿轮的使用寿命。 关键词院齿轮;ANSYS;仿真;螺纹抽芯机构;注塑模 0引言 在注塑模的抽芯机构中常用齿轮传动结构进行抽芯, 然而齿轮由于几何形状、载荷工况及材料力学性能的原因 常常会发生失效。一般来说,齿轮的失效通常都集中在轮 齿部分,主要的失效形式有:轮齿折断、齿面磨损、齿面点 蚀、齿面胶合、齿面塑性变形等五种。圆柱齿轮主要有两种 失效形式,即接触疲劳失效和弯曲疲劳失效。弯曲疲劳主 要发生在齿根部,这是因为齿轮在载荷作用下,其根部所 产生的弯曲应力最大,且在齿根过渡圆角处有应力集中[|]。同时,齿轮在转动过程中使轮齿重复受载,在交变应力反 复作用下,齿根处将产生疲劳裂纹,裂纹扩张导致轮齿弯 曲疲劳折断[2]。 本文将以带有螺纹的塑料产品作为注塑模中抽芯结 构的分析依据,并运用ANSYS有限元分析软件通过对齿 轮静力学和运动学仿真分析[3],可得到抽芯齿轮机构中主 动轮上的转矩大小,为液压马达的选择作出数据支撑。通 过静力学仿真分析,计算出齿面的接触应力和齿根的弯曲 应力,从而可通过材料和结构的优化减小齿面接触应力和 齿根弯曲应力。 1分析过程 1.1包紧力计算 根据注塑模具中关于抽芯机构的原理,要将产品的螺 纹部分从模具型芯中旋转脱出,则必须先考虑产品的包紧 力,因此要先对其包紧力进行计算。此处采用经验公式来 计算该产品的抱紧力[4],同时考虑到该产品的复杂程度,将 模型进行简化分成五个部分,分别如图1所示。材料属 性如表1所示。 1.1.1第一段径向包紧力 第一段可以视为圆筒环,其尺寸为:H=8.5mm;t= 3.5mm;R1=32.65mm;R2=36.15mm。厚径比为 3.5/36.15< 0.05,为薄壁圆筒。可以采用经验公式算出塑件对型芯产 生的径向包紧力: P=2n H t E€t(1)式中:H为塑件高度; 基金项目:本课题获广东清远职业技术学院2016年度精品在线 开放课程项目资助(JK16003 )。 作者简介:黄如周(1984-),男,广东汕头人,塑胶模具工程师,本 科,主要研究方向为塑胶模具、3D打印;张伟雄 (1986-),男,广东梅州人,井师,在读硕士,主要研究 方向为机械工程、模具CAD/CAM。 图1产品塑件零件图 表1产品塑件材料属性 名称参数 弹性模量E(M Pa) 泊松比滋 弹性应变着 1340 0.392 0.0124 t为塑件的壁厚; E为塑件在脱模温度下的弹性模量; st为塑件的周向应变,即塑件的瞬时收缩率; R,为塑件的内半径; R2为塑件的外半径。 第一段径向包紧力计算得:P1=3104.4N 1.1.2第二段径向包紧力 第二段为带有螺纹的圆筒环,其尺寸为:H=18mm;R,=31.5mm;R2=36mm;螺纹倾角为45。,简化模型为高度 为H,cos45。圆筒环。 p_I t t R^HE e 采用经验公式:R2-r\+^(2) 式中:滋为泊松比。 第二段径向包紧力计算得:P2=10263.2N 1.1.3第三段径向包紧力 第三段也视为圆筒环,其尺寸为:H=8.5mm;R,= 29.44mm;R2=36mm;t=7mm;为厚壁圆筒,可以采用经验公 式(2),算出塑件对型芯产生的径向包紧力:P3=4899.1N 1.1.4第四段径向包紧力 第四段为带有筋条的圆筒环,先不考虑筋条作用,其 尺寸为:H=31mm;R1=26.4mm;R2=30.5mm;t=3.75mm。而筋 条能增加接触面积,提高包紧力,但是筋条能减少成型变 形,故综合考虑,在厚壁圆筒包紧力的基础上乘以1.1,采 用经验公式算出塑件对型芯产生的径向包紧力:4= 10847.4N 1.1.5第五段径向包紧力 第五段也就是底部收缩对型芯产生的径向包紧力,其 经验公式为: P=2仔RtEe/(1-滋) (3)

直齿行星齿轮传动动力学分析设计说明

XXXX 学士学位论文 直齿行星齿轮传动动力学分析 作者:AAA 指导教师:BB 班级:CCC班 2020年10月31日

摘要: 行星齿轮被广泛应用于船舶、飞机、汽车、重型机械等许多领域,它的振动和噪音一直以来都是普遍关注的问题。为了减小其振动和噪音,动力学分析是必不可少的。 本文分析了行星齿轮动力学当中的一些关键性问题,提高了对于行星齿轮传动动态特性的理解。本文在系杆随动参考坐标系下建立NGW型直齿行星齿轮传动的动力学模型。把行星齿轮机构划分成几个相互关联的子系统,通过分析各构件间的相对位移关系利用牛顿第二定律推导出系统的运动微分方程。 应用仿真分析软件ADAMS对行星齿轮传动系统模型进行仿真模拟及运动学分析,并应用solidworks软件对行星齿轮传动系统进行三维实体参数化建模。实现了用虚拟样机来代替实际样机进行验证设计,提高了设计质量和效率。 关键词:行星齿轮,动力学分析,ADAMS,仿真

Abstract: Planetary gear noise and vibration are primary concerns in their applications in the transmissions of marine vessels, aircrafts, automobiles, and heavy machinery. Dynamic analysis is essential to the noise and vibration reduction. This work analytically investigates some critical issues and advances the understanding of planetary gear dynamics. This work Developed An analytical dynamic model of NGW spur planetary gear unit. In order to derive the displacement relationships between gears and carrier, divided the planetary gear mechanism into several sub systems. The governing differential equations were obtained by Newton's second law. ADAMS simulation analysis software for planetary gear drive system is applied to simulate and perform dynamic analysis. And solidworks software for planetary gear drive system to build three-dimensional solid parametric modeling is applied. With a virtual prototype instead of the actual prototype for the design verification, the design quality and efficiency is improved. Key word:planetary gear transmissions, dynamic analysis, ADAMS, simulation

齿轮机构的动力学特性分析

齿轮机构的动力学特性分析 宋雪峰w (1.黄石新兴管业有限公司,湖北黄石435005;.北京工业大学电子信息与工程控制学院,北京100000) 摘要:建立圆柱齿轮副三维啮合模型,通过定义接触对的方式对其进行有预应力的有限元模态分析;在模态分析的基础 上,应用Newmark -jS 法分析了齿轮副在不同啮合刚度下的动态响应以及不同阻尼条件下的频谱变化,分析结果可为齿轮 传动系统的优化设计提供有力的技术参考。关键词:齿轮;动力学特性;Newmark -S 法中图分类号:TP 391.7 文献标志码:A 文章编号:1002-2333(2016)07-0040-04 Dynamic Characteristics Analysis of Gear M echanism SONG Xuefeng 1,2 (l.H u a n g s h i X in x in g P ip e s C o ., L td ., H u a n g s h i 435005,C h in a ; 2. I n s t it u t e o f E le c tr o n ic I n f o r m a t i o n a n d C o n t r o l E n g in e e r in g , B e ijin g U n iv e r s it y o f T e c h n o lo g y ,B e ijin g 100000,C h in a ) Abstract : The prestressed finite element modal analysis is carried out by defining contact pair based on a cylindrical gear pair of 3D mesh model . The dynamic response of the gear pair is analyzed using the Newmark - method under different meshing stiffness . The changes of spectrum are explained with different damping conditions based on modal analysis . Analysis result can provide powerful technical reference for the optimization design of the gear transmission system . Keywords : gear ; dynamic characteristics ; newmark -茁 method 0 引言 齿轮传动系统是目前最重要而且应用最广泛的机械 传动机构,由于齿轮传动系统的工作状态的复杂性,使其 力学行为和工作性能对整个机器有着重要的影响[1]。齿轮 的模态分析是对掌握齿轮的结构振动特性的必要工作之 一,通过模态分析可以避开这些结构或者传动部件的固有 频率,最大限度地减少对这些频率的激励,避免共振发生。 目前,关于齿轮的模态分析的例子数不胜数[2^,但这些分 析都是针对单个齿轮或者基于数值方法进行的,没有考虑 齿轮之间的啮合关系,也就是轮齿之间的约束关系对系统 的影响。因为齿轮的工作特性是以啮合为基础的,所以单 一齿轮的分析已经不能满足分析的需要,本文以渐开线直 齿圆柱齿轮副为研究对象,建立了啮合三维模型,分析其 啮合状态下的特性,并且在其基础上建立了不考虑齿面间 摩擦力的情况下齿轮传动系统的非线性动力学模型。1 齿轮的三维建模 此传动系统齿轮的参数如下:齿轮模数m =5 mm ;大齿轮齿数Z 1=97,小齿轮齿数Z 2=20;压力角琢=20毅,大齿轮 齿宽b =100 mm ,小齿轮齿宽b = 100 mm 。使用参数化的方法绘制齿轮的三维啮合模型如图1所示。 图1齿轮副的啮合模型 将文件保存为IGS 格式导人ANSYS 有限元软件中进 行动力学模态分析,如图2所示。齿轮啮合传动时轮齿之 间是相互接触的,之间存在约束关系,也就是说啮合过程 中随着啮合位置的改变啮合刚度是变化的,所以齿轮啮 合模态分析是一种非线性的动态分析。在文中对齿轮进 行啮合分析时主要考虑的情况是两个齿轮的啮合不是简 单的装配过程中的啮合,在有限元分析中要考虑定义接 触对。定义接触对的过程就是要保证齿轮的啮合过程。2 装配体的模态分析 首先对三维实体模型划分网格如图3所示。定义材料 属性:弹性模量E =2.06x l 05 MPa ,泊松比滋=0.3,材料密度 p =7.85x 103 kg /m 3。 图2齿轮副啮合模型 图3齿轮副模型的网格划分 由于此传动系统是适合于高速重载工况,所以在分 析时要考虑其在高速旋转情况下的模态。也就是有预应力 模态分析,有预应力模态分析用于计算有预应力结构的固 有频率和振型,小齿轮是主动轮,在进行模态分析之前,要 先进行静力学分析,需要注意的是预应力选项必须打开。 然后重新进人solution ,进行模态分析。求得的结果 为:一阶固有频率为1493.3 Hz ,二阶固有频率为1604.0 Hz , 三阶为1683.0 Hz ,四阶为1909.9 Hz ,五阶为1972.3 Hz ,六阶 40 I 2016 年第 7 期 网址 :https://www.doczj.com/doc/8c17596919.html, 电邮: hrbengineer@https://www.doczj.com/doc/8c17596919.html,

相关主题
文本预览
相关文档 最新文档