当前位置:文档之家› 准纳米级聚合物中空微球的制备与性能

准纳米级聚合物中空微球的制备与性能

准纳米级聚合物中空微球的制备与性能
准纳米级聚合物中空微球的制备与性能

空心微球型材料的制备及应用进展

空心微球型材料的制备及应用进展/孙瑞雪等 ? 19 ? 空心微球型材料的制备及应用进展。 孙瑞雪 李木森吕宇鹏 (山东大学材料科学与工程学院,济南250061) 摘要 空心微球型材料由于具有特殊的空心结构而致使其具有许多独特的物理化学性质,因而具有广阔的应 用前景。综述了近几年来空心微球材料的制备方法,如喷雾反应法、模板法、微乳液聚合法等,并简要介绍了空心微球 型材料在药物输送系统、催化剂及建材等应用方面的研究进展。 关键词 空心微球制备应用 ProgressinPreparationandApplicationofHollow Microspheres SUNRuixue LI MusenLUYupeng (SchoolofMaterialsScienceandEngineering,ShandongUniversity,Jinan250061) Abstract Due to theirinnerhollowstructure,thehollowmicrosphereshavenlanyspecialphysicalandchemi— calpropertiesandhaveextensivepotentialapplications. Thepreparationmethodsofthehollowmicrospheres,such as spary dryingmethod,templatingmehtod,emulsionpolymerization,anditsapphcationindrugdeliverysystem,catalyzer andbuildingmaterialsfields are reviewed. KeywordshoUowmicosphere,preparation,app“cation 0 引言 近几年来,空心微球由于其独特的特性如密度小、比表面积 大、热稳定性和表面渗透性好以及较大的内部空间而受到越来越多的关注和研究[1]。许多材料如无机材料(沸石、羟基磷灰石等)、高分子材料(聚苯乙烯等)、金属氧化物(二氧化钛、氧化铝 等)以及半导体材料(氧化镓、氮化镓等)等均已被制成空心球结 构而呈现出常规材料所不具备的特殊功能,因而广泛地应用于药物缓释/控释系统、色谱分离、催化剂、涂料、微反应器以及光电材料等众多领域[2 ̄7]。目前,制备空心微球的方法主要有喷雾反应法、模板法、微乳液聚合法以及界面缩聚法等。本文主要介绍了近几年来国内外空心微球型材料的制备方法及其在应用方面的研究进展。 1 空心微球型材料的制备 制备空心微球的方法较多,但是不同类型的材料需要用不 同的制备方法才能够赋予材料特定的结构和表面性能,进而满足各种应用的要求。有研究者指出[8],目前空心微球型材料的应用和商业化受到限制的主要原因是因为空心微球的制备过程较为复杂,不易于产业化。因此,根据不同的需要,为各种材料寻找一种简单的制备空心微球的方法是非常重要和有意义的。 1.1高温熔解和喷雾反应法 高温熔解法制备空心微球的基本原理是:在较高的温度下, 将各种形状的固体颗粒熔融,并以一定的速度喷入液体介质中 冷却,形成球形颗粒。由于熔融颗粒在飞行的过程中,其内部含有的水蒸气或因本身材料分解而形成的气体在颗粒内部聚集,然后经由颗粒表面的微孔释放,从而形成空心的结构,其步骤如图1所示。 不规则形状颗粒 熔融液滴 气体聚集于颗粒内部 空心微球 图1高温熔解法制备空心微球的一般步骤 Fig.1耐picalprocedurefor hi曲teInpemturesmelti呜 pIq婀确ti帆of hollow哪舳er鹤 KaroIy等[9]采用热喷涂的方法制备了粒径为40肛m左右的 空心氧化铝微球,认为原始粉末具有多孔的结构以及较高的含水量更有利于空心球的形成。另外,我们课题组[10’11]采用等离 子喷涂的方法将羟基磷灰石粉末喷入水中制备了粒径在40~50“m之间的羟基磷灰石的空心微球,其形貌如图2所示。通过选择不同的喷涂工艺参数和原始粉末可以控制空心微球的形 图2羟基磷灰石空心微球的形貌 Fi吕2 11le唧hology oftheho¨owhydro科apatite microsphe煅 *山东省科技发展计划资助项目(032040105) 吕宇鹏:联系人,男,教授,主要从事生物医用材料的研究 Tel:0531—8395966 E-mail:dxb@sdu.edu.cn   万方数据

(完整版)纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性[ 1 ] ,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切[ 2 ] [ 3 ] 。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法 纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中通过直流放电使气体电离产生高温等离子体,从而使原料溶化和蒸发,蒸汽达到周围的气体就会被冷凝或发生化学反应形成超微粒。 2 化学制备方法 化学法是指通过适当的化学反应, 从分子、原子、离子出发制备纳米物质,它包括化学气相沉积法[5][6]、化学气相冷凝法、溶胶-凝胶法、水热法、沉淀法、冷冻干燥法等。化学气相沉积(CVD)是迄今为止气相法制备纳米材料应用最为广泛的方法,该方法是在一个加热的衬底上,通过一种或几种气态元素或化合物产生的化学元素反应形成纳米材料的过程,该方法主要可分成热分解反应沉积和化学反应沉积。该法具有均匀性好,可对整个基体进行沉积等优点。其缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积门、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。

微球的制备

明胶微球的制备 一、目的和要求 1.1.了解制备微球剂的基本原理。 2.2.掌握用交联固化法制备微球的方法。 二、仪器和村料 仪器:电动搅拌器,烧杯(250ml),布氏滤器(?5cm),水浴,电炉,显微镜,马尔文粒度仪等。 材料:液状石蜡,明胶(B型,等电点 pH 4.8-5.2), 司盘80,甲醛,石油醚等。 四、实验内容 1. 乳化量取50ml 液体石蜡置烧杯中,加入适量司盘80(1%,w/v),预热至 60?C, 将螺旋形搅拌桨置于烧杯中央液面下2/3高处(见图27-1),调节转速约400rpm。另取20%(w/v)明胶溶液5ml预热至60?C,在搅拌下缓缓加入液体石蜡中,继续搅拌15min使充分乳化。 2. 洗涤将上述乳液在搅拌下迅速冷却至5?C,抽滤,从滤器上用适量石油醚 分三次洗去微球表面的液体石蜡,抽干,转移至平皿上,加少量丙酮分散后在红外灯下40?C挥去丙酮。 3. 固化取干燥的微球细粒置盛有40%甲醛溶液的密闭容器中,微热,6h 后取出,挥去残留甲醛即得明胶微球。 4. 粒度测定马尔文粒度仪测定。 实验指导 一、预习要求 1. 1.了解微球剂的应用及一般制备方法。 2. 2.了解明胶的性质。 二、操作要点和注意事项 1. 1.本实验采用乳化法制备微球,先制备w/o型乳浊液,故选择司盘80为乳 化剂,用量为油相重量的1%(w/v)左右。乳化剂用量太少,形成的乳液不

稳定,在加热时容易粘连。 2. 2.乳化搅拌时间不宜过长,否则分散液滴碰撞机会增加、液滴粘连而增大 粒径。搅拌速度增加有利于减小微球粒径,但以不产生大量泡沫和漩涡为度。 3. 3.适当降低明胶溶液浓度、升高温度,加快搅拌速度和提高司盘80的加入 量均可减小微粒的粒径,在实验条件下,微球粒径范围约在2-10 m。 4. 4.甲醛和明胶会产生胺醛缩合反应使明胶分子相互交联,达到固化目的。 交联反应在pH8-9容易进行,所以预先将明胶溶液调节至偏碱性有利于交胶完全。 5. 5.明胶微球完全交联固化时间约在12h以上。 6. 6.本实验系制备不含药明胶微球。制备含药微球时可将药物预先溶解后再 加入明胶。例如可先将5-氟尿嘧啶溶于碱性溶液后再用以浸泡明胶。

纳米空心微球

二氧化硅中空纳米微球及其导热系数小结纳米中空微球的制备与性能研究是近年来纳米科技领域的热点领域,此种材料具有中空的形态结构,粒径在纳米至微米级,具有大比表面积,低密度,稳定性好的特点[1]。由于其内部的空心结构可容纳大量的客体分子或大尺寸的客体,可以产生一些奇特的基于微观“包裹”效应的性质,使得空心微球材料在医药、生化和化工领域都有重要的作用,其大比表面积低密度等特点也是一种很好的催化材料和轻体材料[2,3]。此外中空纳米微球还具有良好的隔热性能在保温隔热领域也有良好的应用前景。 1.中空纳米微球的表征方法 2.1 扫描电镜(SEM) SEM可被用来直接观察样品的外观形貌,但不能确定内部结构。 2.2 透射电镜(TEM) TEM 是观察样品形状和内部结构最常用的表征方法。从TEM 照片上可测量出空心球的大小,球壳的厚度;用HTEM 还可以观察到球壳的微观结构。 2.3 X射线衍射(XRD) 通过对X 射线衍射分布和强度的分析可获得空心微球的晶体结构等信息。 2.4 氮气吸附 氮气吸附法可用于测试形成过程中孔径变化以及空心球内比表面积。冷文光等[1]通过氮气吸附-脱附测试研究空心微球被四氢呋喃溶解之前后的孔径分布和形貌对比。 2.4 X射线光电子能谱(XPS) XPS 是应用于分析粒子表面成分最为广泛的一种表征方法,主要分析表面元素组成、价态及含量的信息。对于空心球结构的材料,通过XPS 分析可以得到球壳的化学组成及各种成分的含量,同时可以检测出核模板是否完全去除,为空心结构的确认提供可靠的依据[2,3]。 2.5 红外光谱(FTIR) 利用FTI R 可得到材料所含有的重要官能团信息。如果在处理材料的过程中研究FTI R 中特定基团吸收峰的位移,以及某些吸收峰的出现或消失情况,还可得出材料在处理过程中的变化情况。冷文光等[1]通过红外光谱验证聚苯乙烯/二氧化硅杂化空心微球是由二氧化硅与聚苯乙烯链段共同组成。 除此之外空心微球的表征方法还有热重分析(TG)、小角X 射线散射(SAXS)、核磁 共振、磁谱等方法[1,2,3]。 2.中空纳米微球的合成 2.1模板法 模板法是制备中空纳米微球使用较为多的一种,先以特定物质制成球形模板,然后在外侧包覆上所需材料形成外壳,最后将内部模板去除就得到空心球体结构。按照外部壳体的生长方式可分为溶胶凝胶法和层层自组装法[2]。 2.1.1溶胶凝胶法 溶胶凝胶法是利用有机硅烷的水解缩合反应在模板的表面形成二氧化硅层。其优点是通过调整聚合物尺寸、聚集情况以及溶剂可以实现对胶束的尺寸和形貌进行控制。罗花娟等[4]发现在制备过程中氨水、TEOS的用量会影响到空心球的内径和空心球的壁厚,溶解模板时的温度也会对空心球的形貌产生影响。 2.1.2层层自组装法(LBL) 由G.Decher等在1991年提出,通过利用不同带电物质静电吸附作用,层层沉积。这种方法的优势在于通过调整末班尺寸和沉积的量可以更加简便的对中空二氧化硅的内径、壁厚进行控制,但其实验的设计和操作以及模板的去除都相对繁琐[2,3]。

中空二氧化硅微球的制备方法研究进展

技术进展 ,2009,23(4):257~264SI L I CONE MATER I A L 中空二氧化硅微球的制备方法研究进展 3 顾文娟 1,2 ,廖 俊2,吴卫兵2,易生平2,黄 驰 2,33 ,黎厚斌 1 (1.武汉大学印刷与包装系,武汉430072;2.有机硅化合物及材料教育部工程研究中心,武汉430072) 摘要:介绍了中空二氧化硅微球的性质特点和应用范围,归纳了中空微球的一些主要制备方法,重点介绍了模板法(溶胶-凝胶法、层层自组装法)和乳液法的研究进展,讨论了不同方法之间的的优缺点。在此基础上,对中空二氧化硅微球的研究前景进行了展望。 关键词:中空,二氧化硅,模板法,乳液法 中图分类号:TK12712 文献标识码:A 文章编号:1009-4369(2009)04-0257-08 收稿日期:20090226。 作者简介:顾文娟(1985—),女,博士生。 3基金项目:湖北省自然科学基金(2005ABA034);湖北省催化材料重点实验室基金(CHCL06003)。33联系人,E -mail:chihuang@whu 1edu 1cn 。 近年来,具有特殊拓扑结构的粒子引起了人 们广泛的关注。其中,有关中空微球的研究已经 成为材料科学领域的研究焦点[1] 。 中空微球是一类具有独特形态的材料,粒径在纳米级至微米级,具有比表面积大、密度低、稳定性好等特性。由于其内部中空,可以封装气体或者小分子物质(如水、烃类)等易挥发溶剂,当然也可以封装其它具有特殊功能的化合 物;因此可以应用到药物控释[2-4] 、形貌控制模板[5-6]或微胶囊封装材料 [7] (药物[8]、颜料、化妆品[9] 、油墨和生物活性试剂),处理水污染[10],化学催化[11]和生物化学[12]等方面;同时,通过调整微球尺寸以及空腔和壁厚可以有效 实现对隔声、光[13] 、热、机械等性能随心所欲的设计,在工业上有广泛的应用前景。 中空二氧化硅微球由于本身的高熔点、高稳定性、无毒等特殊性质,使其应用领域得到进一步的拓展。例如可以做成轻质填料、耐火材料应用到高端包装领域;在其空腔封装功能化合物[14],既可以制成具有缓释功能的药物[15],又能够在人造细胞、疾病诊治等方面具有一定的价 值,被应用到医药、医疗[16-17] 、防伪和香料等行业。因此,二氧化硅中空微球的制备受到了广大研究人士的关注。本文对二氧化硅中空微球的制备方法进行了总结。 1 制备方法 111 模板法 模板法是在制备特殊形貌材料中应用比较多 的一种方法。顾名思义,就是先以特定的物质作为形貌辅助物———模板,然后根据需要将材料包覆或填充在模板中得到所需的形貌。可以作为模板的材料有囊泡[18] 、胶束[19-22] 、聚合物乳胶粒[23-27]、无机物小颗粒[28-31]等等。 模板法按照壳层的生成方式不同又分为溶胶-凝胶法(s ol -gel )和层层自组装法(layer by layer )。11111 溶胶-凝胶法(s ol -gel )溶胶-凝胶法一般是先制备表面功能化的模板颗粒或者加入表面活性剂,利用有机硅烷的水解/缩合反应,在模板的表面形成二氧化硅壳层。 聚合物胶束和乳胶粒虽然都可被应用做模板。但一般来讲,乳胶粒作为模板粒径较大;在亚微米到微米范围,胶束作为模板粒径较小,大多低于100nm 。胶束作为模板的优点是:通过调整聚合物的尺寸、聚集情况以及溶剂可以实现对胶束的尺寸和形貌的控制。 迄今为止,应用的聚合物胶束都是由AB 或ABA 型聚合物组成的核-冠结构。在这些体系 中,胶束的“冠”可以汇集无机物前驱体,“核”则作为中空结构的模板。无机材料的前驱体被吸附到胶束的“冠”部,聚合形成中空颗粒的壳;聚合物核将通过煅烧或者其它方式去

空心纳米微球的制备及研究进展

湖州师范学院2012—2013学年第一学期 《纳米材料结构与性能》期末考查试卷 学院生科院班级100926 学号43 姓名成绩 论文(共100分) 根据本课程所学内容,查找国内外相关文献,围绕纳米材料的结构特性、制备方法、应用前景等撰写一篇3000字以上的综述性论文。论文题目五选一:(1) 一维纳米阵列的生长及其研究进展;(2) 空心纳米球的制备及其研究进展; (3) 纳米太阳电池材料研究进展;(4) 纳米光催化材料研究进展;(5) 上转换纳米材料的合成及其光学性能。 通过广泛阅读中、英文的论文文献,结合国内外在所选论题方面的研究现状及发展前景,阐述自己对纳米材料及纳米科技的认识。 要求: (1)针对性强,严格围绕所选论题; (2)论文除正文外还应包含100字左右的中、英文的摘要300及3 -5个关键词; (3)参考文献部分文献数应不少于5篇; (4)论文格式严谨; 论文字数不少于3000字。

空心纳米球的制备及其研究进展 摘要:空心纳米球作为一种新的纳米结构,其特有的核——壳空心结构及纳米厚度的壳层使它具有许多优异的物理化学性能。因此其在医学、制药学、材料学、染料工业等领域具有良好的应用前景。本文综述了近年来空心纳米球制备的主要方法:模板法、微乳液聚合法、自组装法,以及几种最新方法的研究和开发的最新进展,重点阐述各法的制备方法和原理,并简评其优缺点和应用领域。最后展望了空心纳米球的发展前景。 关键词:空心纳米球、制备方法、研究进展 1引言 空心纳米球由于具有低密度、高比表面积、中空结构及特殊的力学性能,在催化材料、光电材料、磁性材料、生物医药材料及轻体材料等领域有重要的应用前景。由于纳米空心球材料的优异性能及广阔应用前景,其开发研究引起了人们的广泛关注,现已形成制备纳米空心球的多种方法,如模板法[6,13,14]、微乳液法[7,10,16]、自组装法[15]等,已制备出Fe O4[6],SiO2[13,14],ZnSe [16]等纳米空心球。 3 这些方法往往步骤较多,操作复杂,条件苛刻。因此,各大实验者积极创新,比如采用水热法与微乳法结合[2],模板法与溶胶—凝胶法的结合[12]等方法,甚至发明了电火花—超声复合加工法等其他新型制备法。 模板可以分为:conventional hard template,sacrificial template,soft template和template-free methods,那么微乳液法和胶束法可以归类于soft template。自组装法在一定程度上需要用到模板。因此本文将从模板法、自组装法两大类方法展开介绍,重点阐述各法的制备方法和原理,并总结近年来研究和开发的最新进展,简评其优缺点和应用领域。 2模板法 模板法是制备空心纳米球的重要方法,也是最常用的方法。如图1所示,先通过控制前驱体在模板表面沉积或反应,形成表面包覆层;然后用溶解、加热或

中空微球的制备

中空微球的制备方法 摘要: 中空微球具有低密度、高比表面积且可以容纳客体分子等特点, 在众多领域受到广泛关注。本文对中空微球的制备方法进行了综述, 主要介绍了乳液聚合法、模板法、自主装法制备中空微球。 关键词: 中空微球; 乳液聚合法;模板法;自主装法 引言: 具有特殊结构和特殊形貌的微球材料近年来备受人们关注。相比于实心微球材料,中空微球由于内部具有空腔结构而表现出低密度、高比表面积且可以容纳客体分子等特点, 因此在涂料、电子、催化、分离、生物医药等众多领域有着广阔的应用前景[ 1~ 5]。随着中空微球的特殊功能逐渐为人们所认识,对其制备方法的研究也日益深入。目前,制备中空微球的方法主要有乳液聚合法、模板法、自组装法等。不同的制备方法对应于不同材料、不同结构和不同尺度的中空微球。许多材料如有机高分子材料、无机材料、聚合物/无机复合材料都可以用来制备中空微球。 1、乳液聚合法 根据单体选择和制备方法的不同,乳液聚合法可以进一步细分为:渗透膨胀法、动态溶胀法、W/O/W乳液聚合法等。 (l)渗透膨胀法 渗透膨胀法是利用渗透膨胀机理制备中空聚合物微球的方法。首先要选用带羧酸基团的单体(如丙烯酸、甲基丙烯酸、丙烯酸丁酯等)与其它不饱和单体进行乳液共聚制得酸性的核乳胶粒;再选择合适的壳层单体(如苯乙烯、丙烯氰等单体)包裹在酸性聚合物核上聚合成硬质聚合物壳,得到核/壳乳胶粒;然后在接近壳聚合物玻璃化温度时,碱溶液透过壳层中和核中的羧基使之溶解,获得中空聚合物微球。渗透膨胀法制备中空聚合物微球的过程可以用图1说明[6]。

图1碱溶涨法制备中空微球示意图 根据膨胀方式的不同,渗透膨胀法可以进一步细分为:碱溶胀法和碱/酸溶胀法。碱溶胀法是在制得的核/壳聚合物的基础上加入碱溶液调节初始pH值,然后在壳层聚合物的玻璃化温度以上,对乳胶粒子进行碱溶胀。在碱溶胀过程中,碱液进入乳胶粒子内部与酸性核中和,使其离子化,同时水化作用使核的体积膨胀至原来的几倍至几十倍。由于操作温度在壳层聚合物的玻璃化温度以上,壳层也相应地发生膨胀,当再冷却至室温时,壳在膨胀状态下固化冻结而不能回缩,从而在乳胶粒的内部产生中空结构。Kowalski等最早开发了通过碱溶胀法来制备中空乳胶粒子的方法,在此方面做出了巨大贡献。图1.2为Rohm & Hass公司使用碱溶胀法制备的空心聚合物粒子的TEM照片,该方法制得的空心粒子粒径约为1微米,中空的体积分数约为50%。图1.3为空心粒子的SEM冷冻切片照片能清楚地显示渗透溶胀法制备的中空乳胶粒的内部中空结构[7-9] 图2空心粒子TEM照片

空心纳米球的制备方法及其研究进展

空心纳米球的制备方法及其研究进展 摘要: 空心纳米球作为一种新的纳米结构, 其特有的核-壳空心结构及纳米厚度的壳层使它具有许多优异的物理化学性能, 从而在医学、制药学、材料学、染料工业等领域具有很好的应用前景。本文综述了微乳液聚合法、模板法和由模板法发展而来的L-b-L 自组装法制备无机材料空心纳米球的一般过程及原理, 最后总结了空心纳米球材料的研究进展。 1 引言 探索新的纳米结构已成为近年来物理、化学、材料等领域的研究热点之一。如今已问世的纳米结构有准一维纳米材料包括纳米管、纳米线、纳米棒和纳米电缆等, 而且这些纳米结构材料的制备技术已日趋成熟并逐步实用化。 空心纳米球作为一种新的纳米结构, 其一个明显的特征就是具有很大的内部空间及厚度在纳米尺度范围内的壳层。这种特殊结构使它可作为客体物质的载体, 从而在医学和制药学领域应用范围很广。此外, 空心球的特殊空心结构还使得这种材料与其块体材料相比具有比表面积大、密度小等很多特性, 因此空心纳米球的应用范畴不断扩大, 已扩展到材料科学、染料工业等众多领域。可作为轻质结构材料[ 1] 、隔热、隔声和电绝缘材料[ 2] 、颜料、催化剂载体[ 3] 等。 由于空心纳米球材料的优异性能及广阔应用前景, 其开发研究引起了人们的广泛关注, 现已形成制备空心纳米球的多种方法, 如模板法[ 4, 5] 、吸附技术[ 5] 、喷雾高温分解法[ 6, 7] 、超声化学法[ 8] 、水热法[ 9] 等。用这些方法已成功制备出CdS[ 10] 、ZrO2[ 11] 、金属Ag[ 12, 13] 、TiO2[ 14] 、Si[ 15] 、SnO2[ 1 6] 等多种无机材料空心纳米球,及聚合物空心纳米球, 如PSt [ 17, 18] 、聚甲基丙烯酸甲酯[ 19] 等。 目前关于空心纳米球的报道多局限于空心球的制备, 而对具体制备方法的阐述则比较少。模板法作为最常用的一种制备方法被广泛地用于各种材料的空心纳米球的制备中, 而其在聚合物空心纳米球制备中的应用已有文献综述报道[ 20] , 且技术已相对成熟。因此本文将综述使用微乳液聚合法、模板法和由模板法发展而来的L-b-L 自组装法制备无机材料空心纳米球的一般过程及原理。 2.1 Microemulsion method Microemul sion technology was applied to produce polymer in the 1980s. Stoffer et al[ 45] fir stly polymerized the methyl methacrylate (MMA) and methacrylate (MA) by microemulsion technology. Since then , the microemul sion technology as a roused widespread concern. And now it has become an important approach to prepare the hollow nanospheres , especially for those that the diameter is small (minimum 10 ~60nm) . The preparation process has three steps[ 46] : firstly ,precur sors of target product s hydrolyze and generate oxide with aquifer or hydroxides on the surface of the droplet of microemul sion ; afterwards , the stable colloidal particles that is produced by polycondensation coat and form the core-shell structure of emul sion and gel ; at last , water or organic solvent are used to separate the product f rom the microemulsion. Then hollow nanospheres can be prepared. The process is shown in Fig. 1.

纳米材料的一种制备方法

固液界面反应一水热晶化法制备二氧化锡纳米颗粒 一、简介 水热晶化法: 水热晶化法是合成无机纳米材料广泛采用的一种方法,装置简单,只需衬有聚四氟乙烯内胆的高压釜和加热设备(例如鼓风烘箱、油浴锅等)即可。在高温与溶剂自生高压的条件下,体系能够模拟自然界的成矿过程。水热晶化法的特点是适用范围广,可以用来制备各种金属氧化物、硫化物、磷酸盐等无机纳米材料。生产成本低,合成的材料纯度高,结晶度好。可以通过调节溶剂、物料配比、体系的pH值、有机添加剂等参数达到对粒径、形貌、结构的控制。 二氧化锡纳米材料的制备也常常运用水热晶化法。Chiu等人使用2-propanol 与蒸馏水作为混合溶剂,SnCl4?5H2O为锡源,在碱性条件下(pH=12)水热合成了3nm的SnO2纳米颗粒。Guo等人使用水热晶化法,通过调节SnCl4和NaOH的摩尔比,即体系的pH值,控制合成出空心微球、中空核-壳微球和纳米颗粒三种形态的二氧化锡。水热过程中,不同的结构导向剂也能控制二氧化锡的形貌结构。例如,Guo等人同样使用SnCl4玩为锡源,在CTAB模板剂的作用下,水热获得了棒状纳米二氧化锡。而Han等人换用环六亚甲基四胺作为结构导向剂,依旧使用SnCl4作为锡源,水热合成了核-壳结构的二氧化锡微球。Sun等人使用PVP(MW=30000)作为结构导向剂,并换用SnC12?2H2O作为锡源,双氧水预处理后,水热获得了蒲公英状二氧化锡。 在各种结构导向剂中,油酸分子由于能在颗粒表面选择性吸附,从而可以有效地引导各种结构的形成,并对纳米微粒起到稳定保护作用。 固液界面反应: 在纳米材料的制备过程中,通常会发生氧化、水解、沉淀等各种化学反应。利用在两相界面发生的化学反应来控制材料的合成引起了一定的关注。Kang等人利用水相与油相界面Sn2+的氧化反应制备出了不同粒径大小的二氧化锡纳米材料。由于水-油界面的存在,产物的结晶度比较高,尺寸分布也较窄。Deng等人使用PVP(MW=30000)作为保护试剂,乙二胺作为催化剂,过氧化氢作为氧化剂,室温下,利用单质锡块与水的界面发生的氧化反应,获得了由约3.8nm的纳米晶自组装形成的纳米球。纳米球的直径约为30nm,且具有良好的分散性。Wang 等人基于liquid-solid-solution(LSS)相转移原理合成了一系列纳米材料,其实也利用了界面间的化学反应。在这些利用界面反应控制纳米材料合成的文献中,有些纳米材料的制备其实也运用了水热晶化过程,综合利用了界面反应与水热晶化两者在材料控制合成方面的优势。 金属油酸盐是一种合成无机纳米材料比较理想的有机前驱物,它不能溶解于水或一些低碳醇(如乙醇)中,而会形成固液界面相。对于油酸锡而言,它又易发生水解反应。所以在本章中使用油酸锡作为锡源,利用固液界面反应-水热晶化过程来制备二氧化锡纳米材料。并且在油酸锡的水解过程中,可生成目前较受关注的油酸表面修饰结构导向剂。 二、实验步骤 所有原料均未作任何纯化处理,直接使用。首先,10mL去离子水中溶解

实验十四 微球的制备

实验十四 微球的制备 一、实验目的 1.掌握交联固化法制备明胶微球的方法。 2. 熟悉利用光学显微镜目测法,测定微球体积径的方法。 二、实验指导 微球是高分子材料制备而成的1-300um的球状实体,亦有小于1um的毫微球(纳米粒)。药物微球是以高分子材料为骨架,药物镶嵌其中制备而成的。 控制微球的大小,可使微球具有物理栓塞性、肺靶向性以及淋巴靶向性,以改善药物在体内的吸收与分布。 制备微球的方法有:交联固化法、热固化法、溶剂挥发法等。 本实验采用交联固化法制备可用于肺部靶向的明胶微球。 三、实验内容与操作 明胶微球的制备 1.处方 明胶 3g 36%甲醛-异丙醇混合液 3:5(体积比) 蒸馏水 适量 2. 操作 (1) 明胶溶液的制备:称取明胶,用蒸馏水适量浸泡待膨胀后,加蒸馏水至20ml,搅拌溶解(必要时可微热助其溶解),备用。 (2) 甲醛-异丙醇混合液的制备:按36%甲醛:异丙醇为3:5的体积比配制40ml,混合均匀,即得。 (3) 明胶微球的制备:量取蓖麻油40ml,置于100ml的烧杯中,在50℃恒温条件下搅拌,滴加(1)中制备的明胶溶液3ml、司盘80约0.5ml,在显微镜下检查所形成w/o型乳剂粒径的大小以及均匀程度。将乳剂冷却至约0℃,加入甲醛-异丙醇混合液40ml,搅拌15min,用20%氢氧化钠溶液调节pH至8~9,继续搅拌约lh,于显微镜下观察微球形态,静置至微球沉降完全,倾去上清液,过滤,用少量异丙醇溶液洗涤微球至无甲醛气味(或用Schiff试剂试至不显色),抽干,即得。 3.操作注意 (1) 成乳阶段的搅拌速度可影响微球的大小,在显微镜下观察乳滴的大小,以约小于10um 以下为佳,同时,加入乳化剂的量是以成乳为佳。 (2) 加入甲醛-异丙醇混合液,甲醛易透过油层,使W/O型乳剂固化。 4.微球大小的测定 本实验所制备的微球,均为圆球形,可用光学显微镜进行目测法测定微球的粒径。具体操作见微囊实验。 四、实验结果与讨论 1.绘制明胶微球的形态与外观。 2. 分别将制得的微球大小记录于表11-l

无机材料纳米空心球的制备方法研究进展_严春美

无机材料纳米空心球的制备方法研究进展* 严春美,罗贻静,赵晓鹏 (西北工业大学电流变技术研究所,陕西西安710072) 摘 要: 探索新的纳米结构已成为近年来物理、化学、材料等领域的研究热点之一。纳米空心球作为一种新的纳米结构,其特有的核-壳空心结构及纳米厚度的壳层使它具有许多优异的物理化学性能,从而在医学、制药学、材料学、染料工业等领域具有很好的应用前景。本文综述了模板法和由模板法发展而来的L-b-L自组装法制备无机材料纳米空心球的一般过程及原理,最后展望了纳米空心球材料的发展前景,并探讨了目前在无机材料纳米空心球研究领域中存在的问题。关键词: 无机材料纳米空心球;模板法;L-b-L自组装法 中图分类号: TB383文献标识码:A 文章编号:1001-9731(2006)03-0345-06 1 引 言 探索新的纳米结构已成为近年来物理、化学、材料等领域的研究热点之一。如今已问世的纳米结构有准一维纳米材料包括纳米管、纳米线、纳米棒和纳米电缆等,而且这些纳米结构材料的制备技术已日趋成熟并逐步实用化。 纳米空心球作为一种新的纳米结构,其一个明显的特征就是具有很大的内部空间及厚度在纳米尺度范围内的壳层。这种特殊结构使它可作为客体物质的载体,从而在医学和制药学领域应用范围很广。此外,空心球的特殊空心结构还使得这种材料与其块体材料相比具有比表面积大、密度小等很多特性,因此纳米空心球的应用范畴不断扩大,已扩展到材料科学、染料工业等众多领域。可作为轻质结构材料[1]、隔热、隔声和电绝缘材料[2]、颜料、催化剂载体[3]等。 由于纳米空心球材料的优异性能及广阔应用前景,其开发研究引起了人们的广泛关注,现已形成制备纳米空心球的多种方法,如模板法[4,5]、吸附技术[5]、喷雾高温分解法[6,7]、超声化学法[8]、水热法[9]等。用这些方法已成功制备出CdS[10]、ZrO2[11]、金属Ag[12,13]、TiO2[14]、Si[15]、SnO2[16]等多种无机材料纳米空心球,及聚合物纳米空心球,如PSt[17,18]、聚甲基丙烯酸甲酯[19]等。 目前关于纳米空心球的报道多局限于空心球的制备,而对具体制备方法的阐述则比较少。模板法作为最常用的一种制备方法被广泛地用于各种材料的纳米空心球的制备中,而其在聚合物纳米空心球制备中的应用已有文献综述报道[20],且技术已相对成熟。因此本文将综述使用模板法和由模板法发展而来的L-b-L 自组装法制备无机材料纳米空心球的一般过程及原理。 2 模板法制备纳米空心球 传统的制备空心球的方法主要是利用各种可牺牲性模板,如聚苯乙烯球[11,14,21]与二氧化硅粒子及它们的晶体阵列[16]、液滴[10]、硅球[22]、树脂球[23]、囊泡[24]、微乳液滴[25]等作为核制备空心球,因此称为模板法。其过程是首先通过物理或化学方法得到核-壳型复合粒子,然后通过加热、煅烧或溶剂溶解除去核,得到空心球,其过程可见图1 。 图1 模板法制备纳米空心球的一般步骤 Fig1Ty pical procedure for tem plate preparatio n of ino rganic hollo w nanospheres 该方法是在空心球制备中使用最早、应用范围最广的一种方法。以下根据模板的作用状态(分散态与“晶格”堆积态)及模板形态(固态与非固态)将模板法制备空心球的原理及过程分为3类详细介绍。 2.1 直接模板包覆法制备纳米空心球 这里以高分子乳胶粒模板为例。把乳胶粒模板先分散于溶剂中,通过吸附作用或化学反应(如沉淀反应、sol-gel缩合反应等)使产物或其前驱体直接包覆于乳胶粒外表面,形成核-壳结构,然后经焙烧或有机溶剂溶解除去模板,得到相应的空心球[26]。 这种方法的原理简单,是目前应用最多的制备空心球的方法之一。用此方法人们已成功制备了CdS[10]、ZrO2[11]、Si[15]、Fe3O4[27]、ZnS[28]、TiO2[29]等多种无机材料的纳微米空心球,以及有机物的核/壳结构,如PSt/PEDOC的纳米复合材料[30]等。在这些材料的制备中,常用的模板有聚苯乙烯(PSt)[15,22,27,29]、苯乙烯与甲基丙烯酸的共聚物(PSMA)[28]、苯乙烯与 345 严春美等:无机材料纳米空心球的制备方法研究进展 *基金项目:国家杰出青年科学基金资助项目(50025207);国家自然科学基金资助项目(50272054)收到初稿日期:2005-07-14收到修改稿日期:2005-09-13通讯作者:赵晓鹏 作者简介:严春美 (1981-),女,安徽黄山人,在读硕士,师从赵晓鹏教授,主要从事纳米ZnO电致发光性能研究。

3M实心陶瓷微球与空心玻璃微球的介绍与应用

3M实心陶瓷微球和空心玻璃微球介绍及应用 3M中空玻璃微球(空心微球)是一种中空密闭的正球形、粉沫状的超轻质填充材料。视粒径、壁厚其真实密度在0.12~0.60g/cm3!之间,粒径在15~135um之间(内含多种规格)。具有重量轻体积大、导热系数低、分散性、流动性、稳定性好的优点。另外,还具有绝缘、自润滑、隔音隔热、不吸水、耐腐蚀、防辐射、无毒等优异性能。本产品可填充于绝大部分类型的热固性、热塑性树脂产品中,可改善或决定材料的如下几个性质:密度(降低)、流动性、粘度(降低)、流变性质(增稠、不流挂)、磨砂效果、收缩(降低)、机械加工性(提高)、冲击强度、硬度、绝缘、爆炸物性能、声学性质、隔热保温性质,提高树脂的耐磨性能,将它加入到树脂后,降低了树脂的摩擦系数,提高了不粘性。聚合物添加剂一般添加到塑料和工程塑料中,用于生产轴承,连接件和导轨等需要滑动的零件。在提高耐磨性的同时,也提高了树脂的耐化学药品性和耐温性。 3M中空玻璃微球—— 一种坚硬、中空、薄壁、轻质的球体,并且具有很高的强度密度比,适合多种工艺条件。 3M高强度陶瓷微球—— 一种高强度、惰性、坚硬、精细的球状颗粒。作为填充剂能带给您耐磨耐腐蚀等好处。 3M微球,解决各种工业难题: 3M玻璃微球能在许多行业中对棘手的问题提供解决方案。例如:降低PCB板中的介电常数;增强体育用品的性能;降低机身合成泡沫的重量;防止墙面修补腻子的开裂等等。 3M微球在以下市场中有着广泛的应用: 1、建筑材料:腻子、胶黏剂、人造石、涂料等。 2、轻质塑料:热塑性塑料、SMC、BMC、RIM、RTM等。 3、航天航海部件和各种军用设施。 4、油气田开采:完井液、轻质水泥、浮体等。 3M玻璃微球的物理特点使之产生的优势: (A) 玻璃微球的碱石灰硼硅酸盐成分使它的化学性质稳定,惰性,从而赋予其安全地作为填料或作为添加剂,而不必担心其会与基材或其他物质发生反应,并且使其能耐除强碱以外的其他化学腐蚀。 (B) 完美的球形赋予其优良的各向一致性,从而在加工之后不会由于应力不一致而产生翘曲与收缩。 (C) 中空玻璃微球是微小圆球,在液体中,动作象微型滚珠轴承,要比片状、针状或不规则形状的填料更具有较好的流动性,由此产生的微球效应,使混合料粘度下降,充模性能自然优异;良好的加工性能,可使生产效率提高10%~20%。 (D) 完美的球形使其拥有最小的比表面积,因此其吸油量低,与常规填充材料碳酸钙相比,中空玻璃微球的吸油率/量要低得多,不同型号产品每100克的吸油率在7~40毫克之间,而每100克轻质碳酸钙的吸油率高达120~130毫克,重质碳酸钙也高达50~60毫克。降低了树脂的用量,同时由于其可以起到树脂增加流动性的作用,使树脂只作为基材而不是填料进行加工,从而也减少了树脂的用量。 (E) 由于玻璃微球的粒径分布,小的微球填充了大的微球的空隙,从而使其的固含量增加,同时其挥发量很低,也就降低了VOC. (F) 颜色为白色,因此有良好的颜色配伍性。 (G) 很低的真实密度及很强的抗压强度,造成了其很高的抗压强度密度比,这使其在一些要求抗压强度很高的应用过程中,如挤出,压模或石油工业中不仅能起到密度减轻的填料或添加剂的作用,也可以使其在加工过程中有很好的存活率及稳定性

纳米材料的制备与合成

纳米材料的合成与制备 (1) 摘要 (1) 关键词 (1) The synthesis and preparation of nanomaterials (1) Abstract (1) Keywords (1) 引言 (1) 1纳米材料的化学制备 (1) 1.1纳米粉体的湿化学法制备 (1) 1.2纳米粉体的化学气相法制备 (2) 1.2.1气体冷凝法 (2) 1.2.2溅射法 (2) 1.2.3真空蒸镀法 (2) 1.2.4等离子体方法 (3) 1.2.5激光诱导化学气相沉积法(LICVD) (3) 1.2.6爆炸丝方法 (3) 1.2.7燃烧合成法 (3) 1.3纳米薄膜的化学法制备 (4) 1.4纳米单相及复相材料的制备 (4) 2纳米材料的物理法制备 (5) 2.1纳米粉体(固体)的惰性气体冷凝法制备 (5) 2.2纳米粉体的高能机械球磨法制备 (5) 2.3纳米晶体非晶晶化方法制备 (6) 2.4深度塑性变形法制备纳米晶体 (6) 2.5纳米薄膜的低能团簇束沉积方法(LEBCD)制备 (6) 2.6纳米薄膜物理气相沉积技术 (6) 3纳米材料的应用展望 (7) 4 总结 (7) 参考文献 (8)

纳米材料的合成与制备 摘要本文综述了近年来在纳米材料合成与制备领域的一些最新研究进展,包括纳米粉体、块体及薄膜材料的物理与化学方法制备。从纳米材料合成和制备的角度出发,较系统的阐述了纳米材料合成与制备的最新研究进展,包括气相法,液相法及固相法合成与制备纳米材料;并介绍了纳米材料在高科技领域中的应用展望。 关键词纳米材料,合成,制备 The synthesis and preparation of nanomaterials Abstract This paper summarized the recent years in the field of nanometer material synthesis and preparation of some of the latest research progress, including nano powder, bulk and thin film materials preparation physical and chemical methods. From the perspective of nano material synthesis and preparation, systematically expounds the synthesis and the latest progress in the preparation of nanometer materials, including gas phase, liquid phase method and solid phase synthesis and preparation of nano materials; And introduces the application of nanomaterials in the field of high-tech prospects. Keywords nano materials, synthesis, preparation 引言 纳米材料是晶粒尺寸小于100nm的单晶体或多晶体,由于晶粒细小,使其晶界上的原子数多于晶粒内部的,即产生高浓度晶界,因而使纳米材料有许多不同于一般粗晶材料的性能,如强度硬度增大、低密度、低弹性模量、高电阻低热导率等。正是因为纳米材料具有这些优良性能,因此纳米材料在今后一定有着广泛的应用。本文系统地阐述纳米材料的结构、性能、制备以及应用,以获得对纳料材料更为深刻和全面的理解。[1] 纳米材料的制备科学在当前纳米材料科学研究中占据极为重要的地位。新的材料制备工艺和过程的研究与控制对纳米材料的微观结构和性能具有重要的影响.纳米材料的合成与制备包括粉体、块体及薄膜材料的制备。 1纳米材料的化学制备 1.1纳米粉体的湿化学法制备 湿化学法制备工艺主要适用于纳米氧化物粉体,它具有无需高真空等苛刻物理条件、易放大的特点,并且得到的粉体性能比较优异。 上海硅酸盐所在采用共沉淀法、乳浊液法、水热法图等湿化学法制备氧化错

相关主题
文本预览
相关文档 最新文档