当前位置:文档之家› 第二章 1 交变电流

第二章 1 交变电流

第二章 1 交变电流
第二章 1 交变电流

1交变电流

[学习目标] 1.理解交变电流和直流电的概念.2.了解正弦交变电流的产生过程,电动势和电流方向的变化规律.3.明确正弦交变电流的变化规律及表示方法.4.知道中性面的特点.

一、交变电流

1.交变电流:大小和方向随时间作周期性变化的电流叫交变电流,简称交流电.

2.直流:方向不随时间变化的电流称为直流电.

3.正弦交变电流:按正弦函数规律变化的交变电流叫正弦交变电流,简称正弦交流电.二、正弦交变电流的产生

闭合线圈置于匀强磁场中,并绕垂直于磁场方向的轴匀速转动.

三、正弦交变电流的变化规律

1.中性面

(1)中性面:与磁感线垂直的平面.

(2)当线圈平面位于中性面时,线圈中的磁通量最大,线圈中的电流为零,且线圈平面经过中性面时,电流方向发生改变,故线圈转动一周电流方向改变两次.

2.从中性面开始计时,线圈中产生的电动势的瞬时值表达式:e=E m sin ωt,E m叫电动势的峰值.

1.判断下列说法的正误.

(1)如图1所示的电流为交流电.(×)

图1

(2)只要线圈在磁场中转动,就可以产生交变电流.(×)

(3)线圈通过中性面时磁通量最大,电流也最大.(×)

(4)线圈通过中性面时电流的方向发生改变.(√)

2.有一个正方形线圈的匝数为10匝,边长为20 cm,线圈总电阻为1 Ω,线圈绕垂直磁场方向的OO′轴以10π rad/s的角速度匀速转动,如图2所示,匀强磁场的磁感应强度为0.5 T,该线圈产生的感应电动势的峰值为__________,感应电流的峰值为________,在图示位置时感应电动势为________,从图示位置转过90°时感应电动势为________.

图2

答案 6.28 V 6.28 A 6.28 V0

解析感应电动势的峰值为E m=nBSω=10×0.5×0.22×10π V≈6.28 V

=6.28 A

感应电流的峰值为I m=E m

R

题图所示位置线圈中产生的感应电动势最大,为6.28 V

从题图所示位置转过90°时,线圈位于中性面,切割磁感线的两边的速度与磁感线平行,感应电动势为0.

一、交变电流的产生

线圈绕OO′轴沿逆时针方向匀速转动,如图3甲至丁所示,则:

图3

(1)线圈转动一周的过程中,线圈中的电流方向的变化情况.

(2)线圈转动过程中,当产生的感应电流有最大值和最小值时线圈分别在什么位置? 答案 (1)

转动过程 电流方向 甲→乙 B →A →D →C 乙→丙 B →A →D →C 丙→丁 A →B →C →D 丁→甲

A →

B →

C →D

(2)线圈转到乙或丁位置时线圈中的电流最大.线圈转到甲或丙位置时线圈中电流最小,为零,线圈此时所处的平面称为中性面.

两个特殊位置

1.中性面位置(S ⊥B ,如图3中的甲、丙)

线圈平面与磁场垂直的位置,此时Φ最大,ΔΦ

Δt 为0,e 为0,i 为0.

线圈经过中性面时,电流方向发生改变,线圈转一圈电流方向改变两次. 2.垂直中性面位置(S ∥B ,如图3中的乙、丁) 此时Φ为0,ΔΦ

Δt

最大,e 最大,i 最大.

例1 (多选)矩形线框绕垂直于匀强磁场且在线框平面内的轴匀速转动时产生了交变电流,下列说法正确的是 ( )

A .当线框位于中性面时,线框中感应电动势最大

B .当穿过线框的磁通量为零时,线框中的感应电动势也为零

C .每当线框经过中性面时,感应电动势及感应电流的方向就改变一次

D .线框经过中性面时,各边切割磁感线的速度为零 答案 CD

解析 线框位于中性面时,线框平面与磁感线垂直,穿过线框的磁通量最大,但此时切割磁感线的两边的速度与磁感线平行,即不切割磁感线,所以感应电动势等于零,此时穿过线框的磁通量的变化率也等于零,感应电动势及感应电流的方向在此时刻发生变化;线框垂直于中性面时,穿过线框的磁通量为零,但切割磁感线的两边都垂直切割磁感线,有效切割速度最大,所以感应电动势最大,即此时穿过线框的磁通量的变化率最大,故C 、D 选项正确.

二、交变电流的变化规律

如图4所示,单匝矩形线圈绕bc 边的中点从中性面开始转动,角速度为ω.经过时间t ,线圈转过的角度是ωt ,ab 边的线速度v 的方向跟磁感线方向间的夹角也等于ωt . 设ab 边长为L 1,bc 边长为L 2,线圈面积S =L 1L 2,磁感应强度为B ,则:

图4

(1)ab 边产生的感应电动势为多大? (2)整个线圈中的感应电动势为多大?

(3)若线圈有n 匝,则整个线圈的感应电动势为多大? 答案 (1)e ab =BL 1v sin ωt =BL 1L 2ω

2sin ωt

=12BL 1L 2ωsin ωt =1

2

BSωsin ωt . (2)整个线圈中的感应电动势等于ab 和cd 两边产生的感应电动势组之和,且e ab =e cd ,所以 e 总=e ab +e cd =BSωsin ωt .

(3)若线圈有n 匝,则相当于n 个完全相同的电源串联,所以e =nBSωsin ωt .

1.峰值表达式 E m =nBSω,I m =

E m R +r =nBSωR +r ,U m =I m R =nBSωR

R +r

说明:电动势峰值E m =nBSω由线圈匝数n 、磁感应强度B 、转动角速度ω和线圈面积S 决定,与线圈的形状无关,与转轴的位置无关.

如图5所示的几种情况中,如果n 、B 、ω、S 均相同,则感应电动势的峰值均相同.

图5

2.正弦交变电流的瞬时值表达式

(1)从中性面位置开始计时

e =E m sin ωt ,i =I m sin ωt ,u =U m sin ωt (2)从与中性面垂直的位置开始计时 e =E m cos ωt ,i =I m cos ωt ,u =U m cos ωt .

例2 一矩形线圈,面积是0.05 m 2,共100匝,线圈总电阻r =2 Ω,外接电阻R =8 Ω,线圈在磁感应强度B =1

π T 的匀强磁场中以n =300 r/min 的转速绕垂直于磁感线的轴匀速转动,

如图6所示,若从中性面开始计时,求:

图6

(1)线圈中感应电动势的瞬时值表达式;

(2)从开始计时经1

30 s 时线圈中的感应电流的瞬时值;

(3)外电路R 两端电压瞬时值的表达式. 答案 (1)e =50sin 10πt (V) (2)53

2 A

(3)u =40sin 10πt (V)

解析 (1)线圈转速n =300 r /min =5 r/s , 角速度ω=2πn =10π rad/s ,

线圈产生的感应电动势最大值E m =NBSω=50 V , 由此得到的感应电动势瞬时值表达式为 e =E m sin ωt =50sin 10πt (V).

(2)将t =1

30 s 代入感应电动势瞬时值表达式中,

得e ′=50sin (10π×1

30) V =25 3 V ,

对应的感应电流i ′=e ′R +r

=53

2 A.

(3)由闭合电路欧姆定律得u =e

R +r

R =40sin 10πt (V).

确定正弦交变电流电动势瞬时值表达式的基本方法

(1)确定从线圈转动到哪个位置开始计时,以确定瞬时值表达式是按正弦规律变化还是按余弦规律变化.

(2)确定线圈转动的角速度.

(3)确定感应电动势的峰值E m =nBSω.,(4)写出瞬时值表达式e =E m sin ωt 或e =E m cos ωt . 三、交变电流的图像

如图7甲、乙所示,从图像中可以得到以下信息:

图7

(1)交变电流的峰值E m 、I m 和周期T . (2)两个特殊值对应的位置

①e =0(或i =0)时:线圈位于中性面,此时ΔΦ

Δt =0,Φ最大.

②e 最大(或i 最大)时:线圈平行于磁感线,此时ΔΦ

Δt 最大,Φ=0.

(3)e 、i 大小和方向随时间的变化规律.

例3 如图8所示,一矩形线圈abcd 放置在匀强磁场中,并绕过ab 、cd 中点的轴OO ′以角速度ω逆时针匀速转动.若以线圈平面与磁场夹角θ=45°时为计时起点,并规定当电流自a 流向b 时电流方向为正,则下列四幅图像中可能正确的是( )

图8

答案 C

解析以线圈平面与磁场夹角θ=45°时为计时起点,由楞次定律可判断,初始时刻电流方向为b到a,且线圈远离中性面,Φ减小,电流增大,故选项C正确.

1.(交变电流的产生)(多选)下图中哪些情况线圈中产生了交变电流()

答案BCD

解析由交变电流的产生条件可知,轴必须垂直于磁感线,但对线圈的形状及转轴的位置没有特殊要求,故选项B、C、D正确.

2.(交变电流的产生及图像)如图9甲为风速仪的结构示意图.在恒定风力作用下风杯带动与其固定在一起的永磁铁转动,线圈产生的电流随时间变化的关系如图乙所示.若风速减小到原来的一半,则电流随时间变化的关系图可能是()

图9

答案 C

解析由题图乙可知产生的电流为正弦式交变电流,当风速减小时,转速减小,ω减小,周期变大,由E m=nBSω可知,电动势峰值减小,I m减小,故选项C正确.

3.(交变电流的图像及变化规律)(2019·重庆巴蜀中学月考)一个矩形线圈在匀强磁场中绕垂直于磁感线的轴匀速转动,穿过线圈的磁通量随时间变化的图像如图10甲所示,则下列说法中正确的是()

图10

A.t=0时刻,线圈平面与中性面垂直

B.t=0.01 s时刻,磁通量的变化率最大

C.t=0.02 s时刻,感应电动势达到最大

D.该线圈产生的相应感应电动势的图像如图乙所示

答案 B

解析由题图甲可知,t=0时刻,穿过线圈的磁通量最大,线圈处于中性面,t=0.01 s时刻,穿过线圈的磁通量为零,但磁通量的变化率最大,故A项错误,B项正确;t=0.02 s时刻,感应电动势应为零,故C、D项错误.

4.(交变电流的变化规律)如图11所示,匀强磁场的磁感应强度B=

2

πT,边长L=10 cm的

正方形线圈abcd共100匝,线圈总电阻r=1 Ω,线圈绕垂直于磁感线的轴OO′匀速转动,角速度ω=2π rad/s,外电路电阻R=4 Ω.求:

图11

(1)转动过程中线圈中感应电动势的最大值.

(2)从图示位置(线圈平面与磁感线平行)开始计时,感应电动势的瞬时值表达式. (3)由图示位置转过30°角时电路中电流的瞬时值. 答案 (1)2 2 V (2)e =22cos 2πt (V) (3)

6

5

A 解析 (1)设转动过程中线圈中感应电动势的最大值为E m ,则E m =nBL 2ω=100×2π

×0.12×2π V =2 2 V.

(2)从图示位置开始计时,感应电动势的瞬时值表达式为e =E m cos ωt =22cos 2πt (V).

(3)从图示位置转过30°角时感应电动势的瞬时值e ′=22cos 30° V = 6 V ,则电路中电流的瞬时值为i =e ′R +r =65

A.

考点一 交变电流及产生

1.如图所示,属于交流电的是( )

答案 C

解析 方向随时间做周期性变化是交变电流最重要的特征之一.A 、B 、D 三项所示的电流大小随时间做周期性变化,但其方向不变,不是交变电流,它们是直流电,故A 、B 、D 错误;C 选项中电流符合交变电流的特征,故C 正确.

2.(2019·山东枣庄八中期中)如图1所示为演示交变电流产生的装置图,关于这个实验,正确的说法是( )

图1

A.线圈每转动一周,线圈中感应电流的方向改变1次

B.图示位置为中性面,线圈中无感应电流

C.图示位置ab边的感应电流方向为a→b

D.线圈平面与磁场方向平行时,磁通量变化率为零

答案 C

解析线圈每转动一周,线圈中感应电流的方向改变2次,故A项错误;图示位置线圈与磁场平行,垂直于中性面,线圈中感应电流出现最大值,故B项错误;根据线圈转动方向,可知图示位置ab边向右运动切割磁感线,由右手定则可知,图示位置ab边的感应电流方向为a→b,故C项正确;线圈平面与磁场方向平行时,磁通量为零,磁通量变化率最大,故D项错误.

3.一个矩形线圈,在匀强磁场中绕一个垂直磁场方向的固定轴匀速转动,当线圈处于如图2所示位置时(线圈平面与磁感线平行),它的()

图2

A.磁通量最大,磁通量变化率最大,感应电动势最大

B.磁通量最小,磁通量变化率最大,感应电动势最大

C.磁通量最大,磁通量变化率最小,感应电动势最小

D.磁通量最小,磁通量变化率最小,感应电动势最小

答案 B

解析线圈处于题图所示位置时,它与磁感线平行,磁通量为零,磁通量变化率最大,感应电动势最大,故选项A、C、D错误,B正确.

考点二交变电流的变化规律及图像的描述

4.(2019·聊城市高二下期末)如图所示,面积均为S的单匝线圈绕轴在磁感应强度为B的匀强磁场中以角速度ω匀速转动,从图中所示位置开始计时,下图中能产生正弦交变电动势e =BSωsin ωt的是()

答案 A

解析由题图知,只有A、B图中线圈在切割磁感线,导致磁通量变化,从而产生感应电流,但B中在t=0时产生的感应电动势最大,不是按e=BSωsin ωt规律变化,故只有A中产生正弦交变电动势e=BSωsin ωt,A正确.

5.(2019·烟台市高二下期末)一矩形线圈绕垂直于匀强磁场并位于线圈平面内的固定转轴匀速转动,线圈中产生的感应电动势e随时间t的变化规律如图3所示.下列说法中正确的是()

图3

A.t1时刻通过线圈的磁通量最大

B.t2时刻通过线圈的磁通量为0

C.t3时刻通过线圈的磁通量变化率的绝对值最大

D.每当电流方向变化时,线圈平面就会与中性面垂直

答案 C

解析t1时刻,感应电动势为最大值,通过线圈的磁通量为零,故A错误;t2时刻感应电动势为零,线圈处于中性面位置,通过线圈的磁通量最大,故B错误;t3时刻感应电动势最大,

由法拉第电磁感应定律知感应电动势E=nΔΦ

Δt

,可知此时通过线圈的磁通量变化率的绝对值最大,故C正确;每当电流方向改变时,线圈平面与磁场垂直,处于中性面位置,故D错误.6.交流发电机工作时电动势为e=E m sin ωt,若将发电机的转速提高一倍,同时将电枢所围面积减小一半,其他条件不变,则其电动势e′变为()

A.E m sin ωt

2B.2E m sin

ωt

2

C .E m sin 2ωt D.E m

2

sin 2ωt 答案 C

解析 感应电动势的瞬时值表达式e =E m sin ωt ,而E m =nBωS ,当ω加倍而S 减半时,E m 不变,故C 正确.

7.矩形线圈在匀强磁场中绕垂直于磁场的转轴匀速转动时,产生的感应电动势最大值为50 V ,那么该线圈由图4所示位置(线圈平面与磁场方向平行)转过30°时,线圈中的感应电动势大小为( )

图4

A .50 V

B .25 V

C .25 3 V

D .10 V

答案 C

解析 线圈绕垂直于磁感线的转轴匀速转动,从垂直中性面的位置开始计时,感应电动势的瞬时值为e =E m cos θ,当θ=30°时,感应电动势的瞬时值为e =E m cos 30°=25 3 V ,故选C. 8.(多选)如图5甲所示,一个矩形线圈abcd 在匀强磁场中绕垂直于磁场方向且与线圈共面的轴OO ′匀速转动,从某个时刻开始计时,穿过线圈的磁通量Φ随时间t 的变化如图乙所示,则下列说法中正确的是( )

图5

A .t =0时刻线圈处于中性面位置

B .t 1、t 3时刻线圈中的感应电流最大且方向相同

C .t 2、t 4时刻穿过矩形线圈的磁通量最大,但感应电流为零

D .t 5时刻穿过线圈的磁通量为零,磁通量的变化率也为零 答案 AC

解析 t =0时刻穿过线圈的磁通量最大,所以线圈平面处在中性面位置,故A 正确;t 1、t 3

时刻穿过线圈的磁通量为零,线圈与磁场平行,磁通量的变化率最大,感应电流最大,但方向相反,故B 错误;t 2、t 4时刻穿过矩形线圈的磁通量最大,磁通量的变化率为零,所以感应电流为零,故C 正确;t 5时刻穿过线圈的磁通量为零,磁通量的变化率最大,故D 错误. 9.如图6甲所示,一矩形闭合线圈在匀强磁场中绕垂直于磁场方向的转轴OO ′以恒定的角速度ω转动.当从线圈平面与磁场方向平行时开始计时,线圈中产生的交变电流按照图乙所示的余弦规律变化,则在t =

π

时刻( )

图6

A .线圈中的电流最大

B .穿过线圈的磁通量为零

C .线圈所受的安培力最大

D .线圈中的电流为零 答案 D

解析 由题图乙知,t =π2ω=T

4=t 1,此时i =0,则F 安=0,线圈在中性面位置,Φ最大,故

D 正确.

10. (2019·重庆市巴蜀中学高二上期末)如图7所示,一个N 匝矩形闭合线圈在匀强磁场中绕垂直于磁场方向的转轴OO ′以恒定的角速度ω转动,线圈产生的电动势的最大值为E m ,从线圈平面与磁感线平行时开始计时,则( )

图7

A .线圈电动势的表达式为e =E m sin ωt (V)

B .在0~π

2ω这段时间内,线圈中的感应电流先减小后增大

C .穿过线圈的磁通量的最大值为E m

D .在0~π

2ω这段时间内,穿过线圈的磁通量一直减小

答案 C

解析 从线圈平面与磁感线平行时开始计时,线圈电动势的表达式为e =E m cos ωt (V),故A 错误;在0~π2ω时间内,即0~T

4时间内,线圈从线圈平面与磁感线平行转动到线圈平面与磁

感线垂直,这段时间内线圈中的感应电流逐渐减小,穿过线圈的磁通量一直增大,故B 、D 错误;线圈产生的电动势的最大值E m =NBSω,则穿过线圈的磁通量的最大值为Φm =BS =E m

,故C 正确.

11.在垂直纸面向里的有界匀强磁场中放置了矩形线圈abcd .线圈cd 边沿竖直方向且与磁场的右边界重合.线圈平面与磁场方向垂直.从t =0时刻起,线圈以恒定角速度ω=2π

T 绕cd 边

沿如图8所示方向转动,规定线圈中电流沿abcda 方向为正方向,则从t =0到t =T 时间内,线圈中的电流i 随时间t 变化的图像为( )

图8

答案 B

解析 在0~T

4内,线圈在匀强磁场中匀速转动,故产生正弦式交流电,由楞次定律知,电流

为负;在T 4~34T 内,线圈中无感应电流;在3

4T 时,ab 边垂直切割磁感线,感应电流最大,且

电流为正,故B 项正确.

12.(多选)(2019·湖南岳阳一中高二期末)单匝闭合线框在匀强磁场中绕垂直于磁场方向的轴匀速转动,在转动的过程中,穿过线框的最大磁通量为Φm,最大感应电动势为E m,下列说法中正确的是()

A.当穿过线框的磁通量为0时,线框中的感应电动势也为0

B.当穿过线框的磁通量减小时,线框中的感应电动势在增大

C.当穿过线框的磁通量等于Φm

2时,线框中的感应电动势为

E m

2

D.线框转动的角速度为E m

Φm

答案BD

解析当穿过线框的磁通量为零时,磁场与线框平面平行,磁通量的变化率最大,所以感应电动势最大,故A错误;假设磁通量的表达式为Φ=Φm sin ωt,则感应电动势的表达式为e =E m cos ωt,当穿过线框的磁通量减小时,线框的感应电动势在增大,故B正确;根据磁通量与感应电动势的表达式可知,当穿过线框的磁通量等于0.5Φm时,感应电动势不等于0.5E m,故C错误;最大感应电动势为E m=BSω,最大磁通量Φm=BS,所以E m=Φmω,则线框转动的角速度为ω=E m

Φm

,故D正确.

13.(多选)(2019·浙江金华一中期末)如图9所示,一单匝闭合线框在匀强磁场中绕垂直于磁场方向的轴匀速转动,转动过程线框中产生的感应电动势的瞬时值表达式为e=0.5sin (20t) V,由该表达式可推知以下哪些物理量()

图9

A.匀强磁场的磁感应强度

B.线框的面积

C.穿过线框的磁通量的最大值

D.线框转动的角速度

答案CD

解析根据正弦交变电流的感应电动势的瞬时值表达式:e=BSωsin ωt,可得ω=20 rad/s,而穿过线框的磁通量的最大值为Φm=BS,根据BSω=0.5 V可知磁通量的最大值Φm=

0.025 Wb ,无法求出匀强磁场的磁感应强度和线框的面积,故C 、D 正确.

14.一矩形线圈有100匝,面积为50 cm 2,线圈内阻r =2 Ω,在匀强磁场中绕垂直于磁场方向的轴匀速转动,从线圈平面与磁场平行时开始计时,已知磁感应强度B =0.5 T ,线圈的转速n =1 200 r/min ,外接一纯电阻用电器,电阻为R =18 Ω,试写出R 两端电压的瞬时值表达式. 答案 u =9πcos (40πt ) V

解析 n =1 200 r/min =20 r /s ,角速度ω=2πn =40π rad/s ,

线圈产生的感应电动势的最大值E m =NBSω=100×0.5×50×10-4×40π V =10π V , 线圈产生的感应电动势e =E m cos ωt =10πcos (40πt ) V , 由闭合电路欧姆定律得:i =

e

R +r

, 故R 两端电压的瞬时值表达式u =Ri =9πcos (40πt ) V .

15.(2020·泉州市泉港区第一中学月考)如图10所示,矩形线圈匝数N =100,ab =30 cm ,ad =20 cm ,匀强磁场磁感应强度B =0.8 T ,绕轴OO ′从图示位置(线圈平面与磁感线平行)开始匀速转动,角速度ω=100π rad/s ,则:

图10

(1)穿过线圈的磁通量最大值Φm 为多大? (2)线圈产生的感应电动势最大值E m 为多大?

(3)写出感应电动势e 随时间t 变化的表达式;(从图示位置开始计时) (4)从图示位置开始匀速转动60°时,线圈中产生的感应电动势为多少? 答案 (1)0.048 Wb (2)480π V (3)e =480πcos 100πt (V) (4)240π V

解析 (1)当线圈转至与磁感线垂直时,磁通量有最大值Φm =BS =0.8×0.3×0.2 Wb = 0.048 Wb

(2)线圈与磁感线平行时,感应电动势有最大值 E m =NBSω=480π V ;

(3)从题图所示位置开始计时,感应电动势的瞬时值表达式为e =E m cos ωt =480πcos 100πt (V); (4)从图示位置开始匀速转动60°,即ωt =π3

,则此时线圈中产生的感应电动势为E =480π×

cos 60° V=240π V

人教版高二物理选修3-2第五章5.1交流电(二)同步练习(word 无答案)

第五章交流电 第一节交流电(二) (总分:100分时间:30分钟) 必做题体会和积累 1.矩形线圈,绕垂直于匀强磁场并位于线圈平面内的固定轴转动.线圈中的感应 电动势e随时间t的变化如图1所示.下面说法中正确的是() 图1 A.t1时刻通过线圈的磁通量为零 B.t2时刻通过线圈的磁通量的绝对值最大 C.t3时刻通过线圈的磁通量变化率的绝对值最大 D.每当e变换方向时,通过线圈的磁通量绝对值都为最大 2.一矩形线圈在匀强磁场中绕垂直于磁感线的轴匀速转动,穿过线圈的磁通 量随时间的变化图象如图2所示,则下列说法中,正确的是() 图2 A.t=0时刻,线圈平面与中性面垂直 B.t=0.01 s时刻,穿过线圈平面的磁通量的变化率最大 C.t=0.02 s时刻,线圈中有最大感应电动势 D.t=0.03 s时刻,线圈中有最大感应电流 3.关于线圈在匀强磁场中转动产生的交变电流,下列说法中正确的是() A.线圈平面每经过中性面一次,感应电流方向就改变一次,感应电动势方向

不变 B .线圈每转动一圈,感应电流方向就改变一次 C .线圈每平面经过中性面一次,感应电动势和感应电流的方向都要改变一次 D .线圈每转动一圈,感应电动势和感应电流方向都要改变一次 4.线圈在磁场中匀速转动产生的交流电的瞬时电动势为e =102sin 20πt V ,则下列说法正确的是( ) A .t =0时,线圈平面位于中性面 B .t =0时,穿过线圈的磁通量最大 C .t =0时,导线切割磁感线的有效速度最大 D .t =0.4 s 时,e 达到峰值10 2 V 5.交流发电机在工作时的电动势为e =E m sin ωt ,若将其电枢的转速提高1倍,其他条件不变,则其电动势变为( ) A .E m sin ωt 2 B .2E m sin ωt 2 C .E m sin 2ωt D .2 E m sin 2ωt 6.一闭合矩形线圈abcd 绕垂直于磁感线的固定轴OO ′匀速转动,线圈平面位于如图3甲所示的匀强磁场中.通过线圈的磁通量Φ随时间t 的变化规律如图乙所示,下列说法正确的是( ) 图3 A .t 1、t 3时刻通过线圈的磁通量变化率最大 B .t 1、t 3时刻线圈中感应电流方向改变 C .t 2、t 4时刻线圈中磁通量最大 D .t 2、t 4时刻线圈中感应电动势最小 7.如图4所示,一正方形线圈abcd 在匀强磁场中绕垂直于磁感线的对称轴OO ′匀速转动.沿着OO ′观察,线圈沿逆时针方向转动.已知匀强磁场的磁感应强度为B ,线圈匝数为n ,边长为l ,电阻为R ,转动的角速度为ω,则当线圈

2014届高考物理一轮复习交变电流的产生和描述学案

交变电流的产生和描述 1.交变电流:和都随时间做周期性变化的电流叫做交变电流,简称交流电.交变电流的图象如图所示都属于交变电流.其中按正弦规律变化的交变电流叫正弦交流电,如图(a)所示. 2.正弦交流电的产生:在匀强磁场里,线圈绕磁场方向的轴匀速转动. ⑴中性面:与磁场方向的平面 ⑵中性面与峰值面的比较: 比较项中性面峰值面 位置线圈平面与磁场方向线圈平面与磁场方向 磁通量零 磁通量的变化率0 感应电动势0 电流方向 3.正弦交变电流的函数表达式、描述交变电流的物理量: ⑴周期和频率:交变电流完成一次周期性变化(线圈转一周)所需的时间叫做周期,T= ,单 位是秒(s);交变电流在1 s内完成周期性变化的次数叫做频率,f= ,单位是赫兹(Hz). ⑵正弦式交变电流的函数表达式(线圈在中性面位置开始计时):①电动势e随时间变化的规律e= E m sinωt.②负载两端的电压u随时间变化的规律u = U m sinωt.③电流i随时间变化的规律 i = I m sinωt.其中ω等于线圈转动的角速度,E m = nBSω. 4.交变电流的瞬时值、峰值、有效值:①瞬时值:交变电流某一时刻的值,是时间的函数.②峰值:交变电流(电流、电压或电动势)所能达到的最大的值,也叫最大值.③有效值:跟交变电流的等效的恒定电流的值叫做交变电流的有效值.对正弦交流电,其有效值和峰值的关系为:E = E m,U = U m,I = I m. 5.电感和电容对交变电流的影响: ⑴电感对交变电流的阻碍作用:电感线圈对交变电流有作用,电感对交变电流的阻碍作用的大 小用感抗表示,线圈的自感系数越大,交变电流的频率越高,阻碍作用越大,感抗也就越大. ⑵电容器对交变电流的阻碍作用:交变电流能够“通过”电容器,电容器对交变电流有作用, 电容器对交变电流的阻碍作用用容抗表示.电容器的电容越大.电容器对交变电流的阻碍作用就越小,也就是说,电容器的容抗就越小,电容器在交流电路中起的作用是通,隔,通________、阻. 二.思考与练习思维启动 1.关于线圈在匀强磁场中转动产生的交流电,以下说法中正确的是()A.线圈平面每经过中性面一次,感应电流方向就改变一次,感应电动势方向不变 B.线圈每转动一周,感应电流方向就改变一次 C.线圈在中性面位置时,磁通量最大,磁通量的变化率为零 D.线圈在与中性面垂直的位置时,磁通量为零,感应电动势最大 2.一个单匝矩形线框的面积为S,在磁感应强度为B的匀强磁场中,从线圈平面与磁场垂直的位置开始计时,转速为n转/秒,则()A.线框交变电动势的最大值为nπBS B.线框交变电动势的有效值为2nπBS C.从开始转动经过1/4周期,线框中的平均感应电动势为2nBS D.感应电动势瞬时值为e = 2nπBS sin2nπt 3.如图所示,在电路两端加上正弦交流电,保持电压有效值不变,使频率增大,发现各灯的亮暗情况是:灯1变亮,灯2变暗,灯3不变,则M、N、L中所 接元件可能是()A.M为电阻,N为电容器,L为电感线圈 B.M为电感线圈,N为电容器,L为电阻 C.M为电容器,N为电感线圈,L为电阻 D.M为电阻,N为电感线圈,L为电容器 三.考点分类探讨典型问题 〖考点1〗正弦交变电流的产生及变化规律 【例1】图甲所示是交流发电机模型示意图.在磁感应强度为B的匀强磁场中,有一矩形线圈abcd可绕线圈平面内垂直于磁感线的轴OO′转动,由线圈引出的导线ae和df分别与两个跟线圈一起绕OO′转动的金属圆环相连接,金属圆环又分别与两个固定的电刷保持滑动接触,这样矩形线圈在转动中就可以保持和外电路电阻R形成闭合电路.图乙是线圈的主视图,导线ab和cd分别用它们的横截面来表示.已知ab长度为L1,bc长度为L2,线圈以恒定角速度ω逆时针转动.(只考虑单匝线圈) ⑴线圈平面处于中性面位置时开始计时,试推导t时刻整个线圈中的感应电动势e1的表达式; ⑵线圈平面处于与中性面成φ0夹角位置时开始计时,如图丙所示,试写出t时刻整个线圈中的感 应电动势e2的表达式; ⑶若线圈电阻为r,求线圈每转动一周电阻R上产生的焦耳热.(其它电阻均不计) 【变式跟踪1】如图所示,单匝矩形线圈放置在磁感应强度为B的匀强磁场中, 以恒定的角速度ω绕ab边转动,磁场方向垂直于纸面向里,线圈所围面积 为S,线圈导线的总电阻为R.t= 0时刻线圈平面与纸面重合,且cd边正在 向纸面外转动.则() A.线圈中电流t时刻瞬时值表达式为I = (BSω/R) cosωt B.线圈中电流的有效值为I = BSω/R C.线圈中电流的有效值为I = 2BSω/2R D.线圈中消耗的电功率为P = (BSω)2/2R 〖考点2〗交变电流的图象 【例2】在匀强磁场中,一矩形金属框绕与磁感线垂直的转轴匀速转动,如图甲所示,产生的交变电动势的图象如图乙所示,则()A.t = 0.005 s时线框的磁通量变化率为零 B.t = 0.01 s时线框平面与中性面重合 C.线框产生的交变电动势有效值为311 V D.线框产生的交变电动势频率为100 Hz

交变电流的产生和描述(含答案)

第1课时交变电流的产生和描述 导学目标 1.能掌握交变电流的产生和描述,会写出交变电流的瞬时值表达式.2.能认识交变电流的图象和进行有效值、最大值的计算. 一、交变电流的产生和变化规律 [基础导引] 关于线圈在匀强磁场中转动产生的交流电,以下说法中正确的是() A.线圈平面每经过中性面一次,感应电流方向就改变一次,感应电动势方向不变B.线圈每转动一周,感应电流方向就改变一次 C.线圈在中性面位置时,磁通量最大,磁通量的变化率为零 D.线圈在与中性面垂直的位置时,磁通量为零,感应电动势最大 [知识梳理] 1.交变电流 大小和方向都随时间做__________变化的电流.如图1(a)、(b)、(c)、(d)所示都属于交变电流.其中按正弦规律变化的交变电流叫正弦式交变电流,简称正弦式电流,如图(a)所示. 图1

2.正弦交流电的产生和变化规律 (1)产生:在匀强磁场里,线圈绕________________方向的轴匀速转动. (2)中性面:①定义:与磁场方向________的平面. ②特点:a.线圈位于中性面时,穿过线圈的磁通量________,磁通量的变化率为______,感应电动势为______.b.线圈转动一周,________经过中性面.线圈每经过____________一次,电流的方向就改变一次. (3)图象:用以描述交流电随时间变化的规律,如果线圈从中性面位置开始计时,其图象为__________曲线.如图1(a)所示. 思考:由正弦交流电的图象可以得出哪些物理量? 二、描述交变电流的物理量 [基础导引] 我们日常生活用电的交变电压是e =2202sin 100πt V ,它是由矩形线圈在匀强磁场中匀速转动产生的,则下列说法正确的是________. ①交流电的频率是50 Hz ②交流电压的有效值是220 V ③当t =0时,线圈平面恰好与中性面平行 ④当t =1 50 s 时,e 有最大值220 2 V ⑤电流每秒方向改变50次 [知识梳理] 1.周期和频率 (1)周期T :交变电流完成________________变化(线圈转一周)所需的时间,单位是秒 (s).公式:T =2π ω. (2)频率f :交变电流在1 s 内完成周期性变化的________,单位是赫兹(Hz). (3)周期和频率的关系:T =________或f =________. 2.交变电流的瞬时值、峰值、有效值和平均值 (1)瞬时值:交变电流某一________的值,是时间的函数. (2)峰值:交变电流的电流或电压所能达到的________. (3)有效值:让交流与恒定电流分别通过________的电阻,如果它们在交流的一个周期内产生的________相等,则这个恒定电流I 、恒定电压U 就是这个交流的__________. (4)正弦式交变电流的有效值与峰值之间的关系 I =____________,U =____________,E =____________. (5)平均值:是交变电流图象中波形与横轴所围面积跟时间的比值. 考点一 正弦交流电的变化规律 考点解读

第五章第一节交变电流

交变电流 第一节交变电流 [学习目标]1.会观察电流(或电压)的波形图,理解交变电流和直流的概念. 2.理解交 变电流的产生过程,会分析电动势和电流方向的变化规律. 3.知道交变电流的变化 规律及 表示方法,知道交变电流的瞬时值、峰值的物理含义. 侦习导学新知探究 [学生用书P 40] 一、交变电流和交变电流的产生 (阅读教材第31页第1段至第32页第3段) 1. 交变电流 (1) 交变电流的定义:大小和方向都随时间周期性变化的电流,简称交流 . (2) 直流:方向不随时间变化的电流. 2. 交变电流的产生 (1) 典型模型 在匀强磁场中,绕垂直于磁场方向的轴匀速转动的线圈里产生的是交变电流. 如图所示. (2)中性面:线圈在磁场中转动过程中,线圈平面与磁场垂直时所在的平面. I 拓展延伸? -------------------------------------- (解疑难) △① 1. 中性面的特点:磁通量 ①最大,磁通量的变化率 W = 0,瞬时感应电动势 时感应电流i= 0,电流的方向将发生改变. 2. 垂直中性面的垂面特点:磁通量 ①二0,磁通量的变化率 瞬时感应电流最大. 更抄1.(1)只要线圈在磁场中转动,就可以产生交变电流. (2) 当线圈中的磁通量最大时,产生的电流也最大. (3) 当线圈平面与磁场垂直时,线圈中没有电流. 提示:(1)X (2) X (3) V 二、交变电流的变化规律 (阅读教材第32页第4段至第33页第1段) 第五章交变电流 第五章 梳理基础释疑解难 实验装置 e= 0,瞬 晋最大,瞬时感应电动势、

1. 正弦式交变电流的定义: 按正弦规律变化的交变电流叫做正弦 式交变电流,简称正 弦式电流. 2. 正弦式交变电流的表达式 瞬时电动势:e= E m sin o t 瞬时电压:u = U m sin o t 瞬时电流:i = I m sin o t 式中E m 、U m 、I m 分别表示电动势、电压、电流的峰彳 _______ I 拓展延伸? -------------------------------------- (解疑难) 1?峰值表达式 E m = NBSo = N ① m O E m I m =RTr. 2. 从两个特殊位置开始计时瞬时值的表达式 亟‘抄2.(1)在匀强磁场中线圈绕垂直磁场的转轴匀速转动的过程中,某些特殊时段, 可能感应电动势和磁通量同时变大. ( ) ⑵表达式为e= E m Sin wt 勺交变电流为正弦式交变电流, 表达式为e= E m Sin o t 的交 变电流也是正弦式交变电流. ( ) (3)线圈绕垂直磁场的转轴匀速转动的过程中产生了正弦交变电流,峰值越大,则瞬时 值也越大.( ) 提示:(1)X (2) V (3) X 多维谦?准題细通羌 交变电流的产生过程 [学生用书P 41] 本类问题主要从中性面和它的垂直面两个位置的磁通量、 势大小和感应电流的方向等几个方面进行考查. (自选例题,启迪思维) 1. 矩形线框绕垂直于匀强磁场且在线框平面的轴匀速转动时产生了交变电流, 正确的是( ) 磁通量的变化率、感应电动 下列说法

第一节 交变电流

高中人教版物理 第一节 交变电流 教学目标: 1.理解交变电流的产生原理 2.掌握交变电流的变化规律及表示方法 3.理解交流电的瞬时值,最大值及中性面的概念 4.培养观察能力、空间想象能力以及立体图转化为平面图形的能力 教学重点:交变电流产生的物理过程分析 教学难点:交变电流的变化规律及应用 教学方法:启发 引导 讲授 教学用具:发动机模型 教学过程: (一)引入新课 (二)新课教学 1.交变电流 恒定电流:大小和方向都不随时间而改变的电流。 交变电流:方向随时间周期性变化的电流。与直流电相比,交流电有许多优点,如:可以利用变压器升高或降低电压,利于长途传输;可以驱动结构简单,运行可靠的感应电动机。 2.交变电流的产生 演示实验:手摇发电机使小灯泡发亮 课件观察交变电流的产生。

结论: (1).线圈转动过程中电流的大小做周期性变化,中性面位置(B ⊥S )最小,与中性面垂直的位置(B ∥S )最大。 (2).线圈每经中性面一次,感应电流方向改变一次,线圈转动一周,感应电流方向改变两次。 3.交变电流的变化规律 设线圈从中性面以角速度ω开始转动,经时间t ,线圈转过θ=ωt ,此时V 与B 夹角也为θ,令ab=dc=L ,ad=bc=L ′,则线圈面积S=LL ′。此时,ab 与dc 边产生的电动势大小均为BLVSin ωt ,整个线圈中产生的瞬时电动势大小为:e=2BLVSin ωt ,又V=2 L ω',有: 22L e BL sin t B Ssin t ωωωω'=?= 令E m =B ωS 有:sin m e E t ω=sin m e E t ω=(E m 为最大值) 若电路总电阻为R ,则瞬时电流为: m sin I sin m E e i t t R R ωω=== 同理可得电路的某段电压的瞬时值。 sin m u U t ω= 结论:线圈在匀强磁场中绕垂直于磁场方向的轴匀速转动,产生的感应电流是按正弦规律变化的,这种交变电流叫正弦交流电。 4.交变电流的图象 (1).正弦交流电图象(可用示波器观察到)

交变电流的产生和变化规律

教学内容:交变电流的产生和变化规律 【课前复习】 会做了,学习新课才能有保障 1.方向不随时间而改变的电流叫做________,方向和强弱都不随时间而改变的电流叫做________,方向随时间而改变的电流叫做________. 2.闭合电路的一部分导体切割磁感线时,电路中会产生________. 3.示波器是一种常用的电子仪器,是用来直接观察__________________情况的. 4.数学上正弦函数的表达式为________. 5.部分电路的欧姆定律的表达式为________. 答案:1.直流,恒定电流,交变电流 2.感应电流 3.电信号随时间变化 4.x=A sinθ U 5.I= R 先看书,再来做一做 1.________和________都随时间做________变化的电流叫交变电流,其中按________变化的交流电叫正弦交变电流. 2.矩形线圈在匀强磁场中,绕_____________的轴匀速转动时,线圈中就产生了交变电流. 3.正弦式电流瞬时值的表达式,电流:________;电压:________;电动势:________.4.交流发电机的基本组成部分是________和________.交流发电机分为________和________. 【学习目标】 1.理解交变电流的产生原理,掌握交变电流的变化规律. 2.知道正弦式电流的图象. 3.知道交流发电机的构造和分类. 【基础知识精讲】 课文全解 一、交变电流 1.定义:大小和方向随时间作周期性变化的电流,叫做交变电流,简称交流. 说明:方向随时间周期性变化是交变电流的最重要的特征.如图17-1-1中A、B、C 均为交变电流,而D就不是交变电流,因为D中电流方向不随时间改变. 图17-1-1

交变电流的产生与描述

交变电流的产生与描述 一、交变电流的产生和变化规律 1、 交变电流:大小和方向都随时间作周期性变化的电流叫做交变电流,简称交流电。 2、 正弦式电流;随时间按正弦规律变化的电流叫做正弦式电流,正弦式电流的图象是正弦曲线,我国市用的交变电流都是正弦式电流 3、中性面:中性面的特点是,线圈位于中性面时,穿过线圈的磁通量最大,磁通量的变化率为零,感应电动势为零;线圈经过中性面时,内部的电流方向要发生改变。 4、正弦式交流电的产生和变化规律 (1)产生过程 (2)规律 函数形式:N 匝面积为S 的线圈以角速率ω转动,从某次经过中性面开始计时,则e=NBSωsinωt ,用Em 表示峰值NBSω,则t E e m ωsin =,电流t i R E R e m ωsin = = 。 二、 描述交变电流的物理量 1、周期和频率 交变电流的周期和频率都是描述交变电流变化快慢的物理量。 (1)周期T :交变电流完成一次周期性变化所需的时间,单位是秒(S ),周期越大,交变电流变化越慢,在一个周期内,交变电流的方向变化2次。 (2)频率f:交变电流在1s 内完成周期性变化的次数,单位是赫兹,符号为Hz ,频率越大,交变电流变化越快。 (3)关系: π ω 21= =T f 2、瞬时值、最大值、有效值和平均值 (1)感应电动势瞬时值表达式:(在计算通电导体或线圈所受的安培力时,应用瞬时值。) 若从中性面开始,感应电动势的瞬时值表达式:t e e m ωsin =(伏)。 感应电流瞬时值表达式: t I i m ωsin ·=(安) 若从线圈平面与磁力线平行开始计时,则感应电动势瞬时值表达式为:t e m ωεcos ·=(伏)。 感应电流瞬时值表达式: t I i m ωcos ·=(安)

交变电流的产生和描述

[高考命题解读]

第1讲 交变电流的产生和描述 一、正弦式交变电流 1.产生 线圈绕垂直于磁场方向的轴匀速转动. 2.两个特殊位置的特点 (1)线圈平面与中性面重合时,S ⊥B ,Φ最大,ΔΦ Δt =0,e =0,i =0,电流方向将发生改变. (2)线圈平面与中性面垂直时,S ∥B ,Φ=0,ΔΦ Δt 最大,e 最大,i 最大,电流方向不改变. 3.电流方向的改变 一个周期内线圈中电流的方向改变两次. 4.交变电动势的最大值 E m =nBSω,与转轴位置无关,与线圈形状无关. 5.交变电动势随时间的变化规律 e =nBSωsin ωt .

自测 1 (多选)关于中性面,下列说法正确的是 ( ) A.线圈在转动中经中性面位置时,穿过线圈的磁通量最大,磁通量的变化率为零 B.线圈在转动中经中性面位置时,穿过线圈的磁通量为零,磁通量的变化率最大 C.线圈每经过一次中性面,感应电流的方向就改变一次 D.线圈每转动一周经过中性面一次,所以线圈每转动一周,感应电流的方向就改变一次 答案 AC 二、描述交变电流的物理量 1.周期和频率 (1)周期T :交变电流完成1次周期性变化所需要的时间,单位是秒(s).表达式为T =2πω=1 n (n 为转速). (2)频率f :交变电流在1 s 内完成周期性变化的次数,单位是赫兹(Hz).

(3)周期和频率的关系:T =1f 或f =1 T . 2.交变电流的瞬时值、最大值、有效值和平均值 (1)瞬时值:交变电流某一时刻的值,是时间的函数. (2)最大值:交变电流或电压所能达到的最大的值. (3)有效值:让恒定电流和交变电流分别通过阻值相等的电阻,如果在交流的一个周期内它们产生的热量相等,就可以把恒定电流的数值规定为这个交变电流的有效值. (4)正弦式交变电流的有效值与最大值之间的关系 I = I m 2,U =U m 2,E =E m 2 . (5)交变电流的平均值: E =n ΔΦΔt ,I =n ΔΦ(R +r )Δt . 自测 2 (多选)图1甲为交流发电机的原理图,正

第五章交变电流1.交变电流导学案

交变电流导学案 教学目标: 1.会观察电流(或电压)的波形图,理解交变电流、直流的概念 2.分析线圈转动一周中电动势和电流方向的变化,能对交变电流的产生有比较清楚的了解,具有运用基本原理解决新情境下问题的能力。 3.知道交变电流的变化规律即表示方法,知道交变电流的峰值、瞬时值的物理意义。 教学重点: 交变电流的产生及表达式的推导 教学难点: 交变电流的产生及推导 学生自主学习: 1.交变电流的产生和变化规律 ________和________随时间做_________变化的电流叫做交变电流,简称交流 ________不随时间变化的电流称为直流。 大小和方向都不随时间变化的电流叫做_________电流 2.中性面:_______________________________ 磁通量______ ,磁通量的变化量______ 磁通量的变化率______特点 感应电动势 e=________,_______感应电流 感应电流方向________,线圈转动一周,感应电流方向改变______次 3.正弦式电流的产生和变化规律 (1)产生 考虑下面几个问题: 1.图中在线圈由甲转到乙的过程中,AB边中电流向哪个方向流动 2.在线圈由丙转到丁的过程中,AB边中电流向哪个方向流动 3.线圈转到什么位置时线圈中没有电流,转到什么位置时线圈中的电流最大 4.大致画出通过电流表的电流随时间变化的曲线,从E经负载流向F的电流为正,反之为负。在横坐标上标出线圈到达甲、乙、丙、丁几个位置时对应的时刻。

(2)变化规律 根据图回答下面几个问题: ①线圈与中性面的夹角是多少 ②ab 边速度多大 ③ab 边速度方向与磁场方向夹角多大 ④ab 边产生感应电动势多大 ⑤线圈中感应电动势多大 (1) 函数形式:N 匝面积为S 的线圈绕垂直磁场平行线圈平面的轴以角速度ω转动, 从中性面开始计时,则电压t NBS e ωωsin =,(m ε=ωNBS ) t e m ωεsin =, 电流t I t R R e i m m ωωεsin sin === 电压u=IR=I m Rsin wt 从与中性垂直位置开始计时:( 写出对应的表达式) (2)图象: 正弦式图像: 锯齿形扫描电压波形: 矩形脉冲波形: 例1 矩形线圈abcd 的边长ab=cd =40cm,bc =da =30cm,共有200匝,以300r/min 的转速在磁感强度为的匀强磁场中绕垂直于磁场方向的中心轴 OO ′匀速转动,在t =0时刻处于图所示位置.此线圈产生的感应电动势最大值E m = V,有效值为E =____V,再转过 °出现第一次中性面。 例2 如图所示的100匝矩形线框绕OO ′轴匀速转动,转速为120r/min 。ab=cd=0.2m ,ad=bc=0.1m ,磁感应强度B =1T ,试求:(1)线圈中产生的感应电动势的最大值是多少(2)感应电动势的瞬时表达式; 课后巩固练习 O ′ O c d b a B

10.1交变电流的产生和描述

课题1 交变电流的产生和描述 知识与技能目标: 1、熟悉交变电流产生的条件、特点以及其表达式; 2、掌握狡辩电流的峰值、瞬时值、有效值和平均值,及其应用特点。 〖导 学 过 程〗 知识点回顾 一、交变电流、交变电流的图像 1.交变电流 和 都随时间做周期性变化的电流。 2.正弦式交变电流的产生和图像 (1)产生:在匀强磁场里,线圈绕 磁场方向的轴匀速转动。 (2)两个特殊位置的特点 I.线圈平面与中性面重合时,S ⊥B ,Φ ,ΔΦ Δt = ,e = ,i = ,电流方向 . II.线圈平面与中性面垂直时,S ∥B ,Φ= ,ΔΦ Δt ,e ,i ,电流方向 . (3)电流方向的改变:一个周期内线圈中电流的方向改变 次. (4)交变电动势的最大值:E m = ,与转轴位置无关,与线圈形状无关. (5)交变电动势随时间的变化规律:e = .(从中性面位置开始计时) (6)图像:线圈从中性面位置开始计时,如图甲、乙、丙所示。 二、正弦式交变电流的函数表达式、峰值和有效值 1.周期和频率 (1)周期(T ):交变电流完成 变化(线圈转一周)所需的时间,单位是秒(s),公式T = 。 (2)频率(f ):交变电流在1 s 内完成周期性变化的 。单位是赫兹(Hz)。 (3)周期和频率的关系:T = 或f = 。 2.交变电流的瞬时值、峰值和有效值

新授: 一、正弦交变电流的产生及变化规律 1.交流电产生过程中的两个特殊位置 2.正弦式交变电流的变化规律 磁通量:Φ=Φm cos ωt ;电动势:e =E m sin ωt ;电流:i =I m sin ωt 。 【例1】如图所示,单匝矩形线圈在匀强磁场中匀速转动,其转动轴线OO ′与磁感线垂直。已知匀强磁场的磁感应强度B =1 T ,线圈所围面积S =0.1 m 2,转速12 r/min 。若从中性面开始计时,则线圈中产生的感应电动势的瞬时值表达式应为( ) A.e =12πsin 120t (V) B.e =24πsin 120πt (V) C.e =0.04πsin 0.4πt (V) D.e =0.4πcos 2πt (V)

高中物理《交变电流的产生及描述》教学设计

用评价促进学生的学习、教师的教学 ——以高三一轮复习《交变电流的产生及描述》为例 【教学目标】 1、能够用切割和磁通量的变化率的两种观点推导线圈在磁场中转动产生感应电动势的规律。 2、能够用函数、图像、物理量不同途径对交变电流进行描述。 3、从热效应的角度说出交变电流有效值的物理意义,并且能够加以运用求出给定交变电流的有效值。 【课堂实录】 创设情境,引发回忆:用手摇发电机演示交流电的产生过程。模型建立,提供平面图。 教师用PPT 给出例题 例1.一交流电的产生原理如图说示,匀强 磁场的磁场强度为B ,矩形线圈以角速度ω 逆时针转动。线圈AB 边长为L 1,线圈AD 边长为L 2。线圈从中性面面转动开始计时, t 时刻线圈中的感应电动势为多大?(你可以用两种方法进行推导) (给学生足够的审题时间,先全体思考后提问学生) T :t 时刻线圈的感应电动势选用哪个公式求解?还可以选用其他公式求解吗? 提示:切割的观点:经时间t ,线圈转过的角度?哪两根导线切割磁感线,导线在该时刻的速度及切割速度分别为多少?每根导线切割磁感线产生的电动势为?两根导线上的电动势是累加还是抵消? S :选用动生切割表达式,关注速度垂直磁感线的分量。 T 磁通量的变化率的观点:t 时刻,线圈磁通量的表达式?0 →???Φ t t 即()t Φ对t A B C D

的求导。 S:磁通量变化率即对磁通量变化的求导,经老师提示修改为对磁通量的求导两学生黑板板演 S:评价前两位学生的推导 T:用PPT向学生展示“拓展研究”:两条边所经过处的磁感应强度大小均为B、 方向始终与两边的运动方向垂直。 这种辐向磁场中线圈产生的感应电 动势和刚刚推导的感应电动势有什 么区别? S:速度始终和磁场垂直,速度不需要再分解。 T:电动势的大小变化吗? S:变化 教师纠正 继续对推导出的线圈的感应电动势的瞬时表达式进行研究。 T:如果线圈有N匝?如果以CD边为转轴?如果线圈是圆形?感应电动势瞬时表达式是什么形式呢? S:在原有感应电动势的瞬时表达式上在乘以N,以CD边为转轴、线圈是个圆形感应电动势的表达式不变。 T:很好,教师引导学生说出判断的理由。 T:我们可以有哪些途径、方法对这样的交变电流进行描述? S:函数、图像 T:用PPT打出下图函数图象 T:补充还可以用物理量进行描述,如最大值、频率、周期、有效值等 T:由图像说出感应电动势什么时候有最大值?

高中物理人教版选修3选修3-2第五章第1节交变电流D卷(练习)

高中物理人教版选修3选修3-2第五章第1节交变电流D卷(练习) 姓名:________ 班级:________ 成绩:________ 一、选择题 (共5题;共10分) 1. (2分) (2017高二上·大连期末) 如图所示,图甲和图乙分别表示正弦脉冲波和方法的交变电流与时间的变化关系,若使这两种电流分别通过两个完全相同的电阻,则经过1min的时间,两电阻消耗的电功之比W甲:W 乙为() A . 1: B . 1:3 C . 1:2 D . 1:6 2. (2分) (2018高二下·昌宁期中) 如图所示,为一正弦交流电通过一电子元件后的波形图,则下列说法正确的是() A . 这也是一种交流电 B . 电流的变化周期是0.01 s C . 电流的有效值是1 A D . 电流通过100 Ω的电阻时,1 s内产生的热量为200 J 3. (2分)电阻为10Ω的单匝矩形线圈绕垂直于匀强磁场的轴匀速转动,穿过线圈的磁通量随时间的变化规

律为φ=5sin10t(Wb),线圈中产生的电流随时间的变化规律为() A . i=50sin10t(A) B . i=50cos10t(A) C . i=5sin10t(A) D . i=5cos10t(A) 4. (2分) (2017高二下·莆田期中) 三个相同的电阻,分别通过如图甲、乙、丙所示的交变电流,三个图中的I0和周期T相同.下列说法中正确的是() A . 在相同时间内三个电阻发热量相等 B . 在相同时间内,甲、乙发热量相等,是丙发热量的2倍 C . 在相同时间内,甲、丙发热量相等,是乙发热量的 D . 在相同时间内,乙发热量最大,甲次之,丙的发热量最小 5. (2分)普通家庭在家用电器的选购上,基本上要考虑以下的原则 ①选购产品的功能 ②与家居适应的技术参数、外形结构、产品质量和售后服务以及品牌 ③选购产品越先进越好,价格越昂贵越好,设计越时尚越好 ④为了环保,冰箱应选无氟电冰箱,照明用具尽量选用发光效率高的节能光源 A . ①② B . ②④ C . ②③④

第二章第二节交变电流的描述

第二章交变电流 第二节交变电流的描述 A级抓基础 1.下列各物理量中,对线圈上产生的交流电动势不产生影响的是() A.匀强磁场的磁感应强度B.线圈的总电阻 C.线圈的转速D.线圈的匝数 解析:E m=NBSω,e=E m sin ωt,与B、S、ω、N有关. 答案:B 2.一矩形线圈在匀强磁场中绕垂直于磁场方向的轴匀速转动,穿过线圈的磁通量随时间变化的图象如图甲所示,则以下说法正确的是() 图甲图乙 A.t=0时刻,线圈平面与中性面垂直 B.t=0.01 s时刻,Φ的变化率最大 C.t=0.02 s时刻,感应电动势达到最大值 D.该线圈产生的感应电动势的图象如图乙所示 解析:由甲图知t=0时刻磁通量最大,线圈平面应在中性面位置,A错误;t=0.01 s时刻,磁通量等于零,但Φ的变化率最大,B 正确;t=0.02 s时刻,磁通量最大,但磁通量的变化率为零,感应电动势为零,C错误;由甲图知交流电动势的图象应为正弦图象,D错误. 答案:B 3.如图所示,处在匀强磁场中的矩形线圈abcd,以恒定的角速度

绕ab边转动,磁场方向平行于纸面并与ab垂直.在t=0时刻,线圈平面与纸面重合,线圈的cd边离开纸面向外运动.若规定a→b→c→d→a方向的感应电流为正方向,则下图能反映线圈感应电流I随时间t变化的图线是() 解析:在t=0时刻,线圈平面与纸面重合,即此时磁通量为零,磁通量变化率最大,所以产生的感应电动势最大,故感应电流最大,根据右手定则,可知电流方向为a→b→c→d→a,所以选C. 答案:C 4.(多选)线圈在磁场中匀速转动产生的交流电的瞬时电动势为e =102sin 20πt (V),则下列说法正确的是() A.t=0时,线圈平面位于中性面 B.t=0时,穿过线圈的磁通量最大 C.t=0时,导线切割磁感线的有效速度最大 D.t=0.4 s时,e达到峰值10 2 V 解析:根据交流电动势的瞬时值表达式可判断题目所给的交流电为正弦式交变电流,当t=0时,e=0,所以此时磁通量的变化率为零,导线切割磁感线的有效速度为零,但此时穿过线圈的磁通量最大,线圈平面位于中性面,所以A、B正确,C错误;当t=0.4 s时,e =102sin 20πt (V)=102sin 8π (V)=0,所以D错误. 答案:AB 5.(多选)如图所示,形状或转轴位置不同,但面积均为S的单匝线圈处在同一个磁感应强度为B的匀强磁场中,以相同的角速度ω匀速转动,从图示的位置开始计时,则下列说法正确的是() A.感应电动势最大值相同 B.感应电动势瞬时值不同

3-2期末复习-交变电流的产生和描述

基础课1交变电流的产生和描述 一、选择题(1~6题为单项选择题,7~11题为多项选择题) 1.某线圈在匀强磁场中绕垂直于磁场的轴匀速转动,产生的交变电流的图象如图1所示,由图中信息可以判断() 图1 A.在A、C时刻线圈处于中性面位置 B.在B、D时刻穿过线圈的磁通量为零 C.从A~D线圈转过的角度为2π D.若从O~D历时0.02 s,则在1 s内交变电流的方向改变了100次 解析由题中交变电流的图象可知,在A、C时刻产生的感应电流最大,对应的感应电动势最大,线圈处于垂直中性面的位置,选项A错误;在B、D 时刻感应电流为零,对应的感应电动势为零,即磁通量的变化率为零,此时 磁通量最大,选项B错误;从A~D,经历的时间为3 4周期,线圈转过的角度 为3 2π,选项C错误;若从O~D历时0.02 s,则交变电流的周期为0.02 s,而 一个周期内电流的方向改变两次,所以1 s内交变电流的方向改变了100次,选项D正确。 答案 D 2.(2017·山东潍坊市联考)现在的调光灯、调速电风扇是用可控硅电子元件来实现调控的。如图2所示为经过一个双向可控硅调节后加在电灯上的电压,即

在正弦交流电的每一个二分之一周期中,前面四分之一周期被截去。调节台灯上的旋钮可以控制截去的多少,从而改变电灯上的电压,那么现在电灯上的电压为( ) 图2 A .U m B.U m 2 C. 2U m 2 D.2U m 解析 由有效值的概念可得( U m 2)2 R ·T 2=U 2R T ,解得U =U m 2,选项B 正确。 答案 B 3.图3甲为小型旋转电枢式交流发电机的原理图,其矩形线圈在磁感应强度为B 的匀强磁场中,绕垂直于磁场方向的固定轴OO ′匀速转动,线圈的两端经集流环和电刷与电阻R =10 Ω连接,与电阻R 并联的交流电压表为理想电表,示数是10 V 。图乙是穿过矩形线圈磁通量Φ随时间t 变化的图象。则下列说法正确的是( ) 图3 A .电阻R 上的电功率为20 W B .0.02 s 时R 两端的电压瞬时值为零 C .R 两端的电压随时间变化的规律是u =14.1 cos 100πt (V) D .通过R 的电流随时间变化的规律是i =cos 50πt (A) 解析 电阻R 上的电功率为P =U 2 R =10 W ,选项A 错误;0.02 s 时穿过线圈的磁通量变化率最大,R 两端的电压瞬时值最大,选项B 错误;R 两端的电压u 随时间t 变化的规律是u =14.1cos 100πt (V),通过R 的电流随时间变化

第二章 正弦交流电路

第2章 正弦交流电路 判断题 2.1 正弦交流电的基本概念 1.若电路的电压为)30sin(?+=t U u m ω,电流为)45sin(?-=t I i m ω, 则u 超前i 的相位角为75°。 [ ] 答案:V 2.如有电流t i 100sin 261=A,)90100sin(282?+=t i A,则电流相量分别是 ?=0/61I A,?=90/82I A。所以二者的电流相量和为:2 1I I I += [ ] 答案:V 3.若电路的电压为u =I m sin(ωt+30°),电流为i =I m sin(ωt-45°),则u 超前i 的相位角为15°。 [ ] 答案:X 4.正弦量的三要素是指其最大值、角频率和相位。 [ ] 答案:X 5.正弦量可以用相量表示,因此可以说,相量等于正弦量。 [ ] 答案:X 6.任何交流电流的最大值都是有效值的2倍。 [ ] 答案:X 7.正弦电路中,相量不仅表示正弦量,而且等于正弦量。 [ ] 答案:X 2.2 正弦量的相量表示法 1.如有电流t i 100sin 261=A,)90200sin(282?+=t i A,则电流相量分别是 ?=0/61I A,?=90/82I A。所以二者的电流相量和为:2 1I I I += 。[ ] 答案:X 2.3 单一参数的正弦交流电路 1.电容元件的容抗是电容电压与电流的瞬时值之比。 [ ] 答案:X

2.在电感元件的电路中,电压相位超前于电流90o,所以电路中总是先有电压后有电流。[ ] 答案:X 3.电感元件的感抗是电感电压与电流的瞬时值之比。[ ] 答案:X 4.电感元件的感抗是电感电压与电流的有效值之比。[ ] 答案:V 5.直流电路中,电容元件的容抗为零,相当于短路。[ ] 答案:X 6.直流电路中,电感元件的感抗为无限大,相当于开路。[ ] 答案:X 7.直流电路中,电容元件的容抗为无限大,相当于开路。[ ] 答案:V 8.直流电路中,电感元件的感抗为零,相当于短路。[ ] 答案:V 9.在R、L、C串联电路中,当X L>X C时电路呈电容性,则电流与电压同相。[ ] 答案:X 10.电感元件电压相位超前于电流π/2 (rad),所以电路中总是先有电压后有电流。[ ] 答案:X 11.正弦交流电路中,电源频率越高,电路中的感抗越大,而电路中的容抗越小。[ ] 答案:V 12.正弦电流通过电感或电容元件时,当电流为零时,则电压的绝对值为最大,当电流为最大值时,则电压为零。[ ] 答案:V 13.正弦电流通过电感或电容元件时,当电流为零时,则电压的绝对值为最小。[ ] 答案:X 14.电容元件的容抗是电容电压与电流的瞬时值之比。[ ] 答案:X 15.电容元件的容抗是电容电压与电流的有效值之比。[ ] 答案:V 16.单一电感元件的正弦交流电路中,消耗的有功功率比较小。[ ] 答案:X 17.电容元件的交流电路中,电压比电流超前90°。[ ] 答案:X 18.电容元件的交流电路中,电流比电压超前90°。[ ] 答案:V 19.电感元件的有功功率为零。[ ] 答案:V 20.电容元件的有功功率为零。[ ] 答案:V 21.电压、电流的相量式,既能反映电压与电流间的大小关系,又能反映相互间的相位关系。[ ] 答案:V

交变电流第1节交变电流讲义-人教版高中物理选修3-2讲义练习

第1节交变电流 1.交变电流是指大小和方向都随时间周期性变化的 电流。 2.线圈在磁场中绕垂直于磁场的轴匀速转动时可产 生正弦式交变电流,与转轴的位置无关。 3.正弦式交变电流的瞬时值表达式为e=E m sin ωt, u=U m sin ωt, i=I m sin ωt, 式中的E m、U m、 I m是指交变电流的最大值,也叫峰值。 一、交变电流 1.交变电流 大小和方向都随时间做周期性变化的电流,简称交流。 2.直流 方向不随时间变化的电流。 二、交变电流的产生 1.过程分析 2.中性面 线圈在磁场中转动的过程中,线圈平面与磁场垂直时所在的平面。 三、交变电流的变化规律

1.从两个特殊位置开始计时的瞬时值表达式 2.交变电流的图像 (1)正弦式交变电流的图像 (2)其他几种不同类型的交变电流

1.自主思考——判一判 (1)方向周期性变化,大小不变的电流也是交变电流。(√) (2)在匀强磁场中线圈绕垂直磁场的转轴匀速转动通过中性面时,感应电流为零,但感应电流为零时,不一定在中性面位置。(×) (3)表达式为e =E m sin ωt 的交变电流为正弦式交变电流,表达式为e =E m sin ? ????ωt +π2的交变电流也是正弦式交变电流。(√) (4)线圈绕垂直磁场的转轴匀速转动的过程中产生了正弦交变电流,峰值越大,则瞬时值也越大。(×) (5)交变电流的图像均为正弦函数图像或余弦函数图像。(×) (6)线圈绕垂直磁场的转轴匀速转动的过程中产生了正弦交变电流,感应电动势的图像、感应电流的图像形状是完全一致的。(√) 2.合作探究——议一议 (1)中性面是任意规定的吗? 提示:不是。中性面是一个客观存在的平面,即与磁感线垂直的平面。 (2)如何理解线圈平面转到中性面时感应电动势为零,而线圈平面与中性面垂直时感应电动势最大呢? 提示:根据法拉第电磁感应定律E =n ΔΦ Δt 可知,感应电动势的大小不是与磁通量Φ直接 对应,而是与磁通量的变化率成正比。虽然线圈经过中性面时磁通量最大,但磁通量的变化率为零,所以感应电动势为零;虽然线圈平面与中性面垂直时磁通量为零,但磁通量的变化率最大,所以感应电动势最大。 (3)交流发电机输出的电流都可以表示为i =I m sin ωt 吗? 提示:不一定。如果线圈从中性面的垂面开始计时,则输出的电流表示为i =I m cos ωt 。 1.过程分析如图所示为线圈abcd 在磁场中绕轴OO ′转动时的截面 图,ab 和cd 两个边切割磁感线,产生电动势,线圈中就有了电流(或者说穿过线圈的磁通量发生变化而产生了感应电流)。 具体分析如图所示,当线圈转动到图甲位置时,导体不切割磁感线,线圈中无电流;当线圈转动到图乙位置时,导体垂直切割磁感线,线圈 中有电流,且电流从a 端流入;线圈在图丙位置同线圈在图甲位置;线圈在图丁位置时,电流从a 端流出,这说明电流方向发生了改变;线圈在图戊位置同在图甲位置。线圈这样转动

相关主题
文本预览
相关文档 最新文档