当前位置:文档之家› 超大规模集成电路设计-第二讲-设计指标

超大规模集成电路设计-第二讲-设计指标

超大规模集成电路设计-第二讲-设计指标
超大规模集成电路设计-第二讲-设计指标

数字集成电路设计_笔记归纳..

第三章、器件 一、超深亚微米工艺条件下MOS 管主要二阶效应: 1、速度饱和效应:主要出现在短沟道NMOS 管,PMOS 速度饱和效应不显著。主要原因是 TH G S V V -太大。在沟道电场强度不高时载流子速度正比于电场强度(μξν=) ,即载流子迁移率是常数。但在电场强度很高时载流子的速度将由于散射效应而趋于饱和,不再随电场 强度的增加而线性增加。此时近似表达式为:μξυ=(c ξξ<),c s a t μξυυ==(c ξξ≥) ,出现饱和速度时的漏源电压D SAT V 是一个常数。线性区的电流公式不变,但一旦达到DSAT V ,电流即可饱和,此时DS I 与GS V 成线性关系(不再是低压时的平方关系)。 2、Latch-up 效应:由于单阱工艺的NPNP 结构,可能会出现VDD 到VSS 的短路大电流。 正反馈机制:PNP 微正向导通,射集电流反馈入NPN 的基极,电流放大后又反馈到PNP 的基极,再次放大加剧导通。 克服的方法:1、减少阱/衬底的寄生电阻,从而减少馈入基极的电流,于是削弱了正反馈。 2、保护环。 3、短沟道效应:在沟道较长时,沟道耗尽区主要来自MOS 场效应,而当沟道较短时,漏衬结(反偏)、源衬结的耗尽区将不可忽略,即栅下的一部分区域已被耗尽,只需要一个较小的阈值电压就足以引起强反型。所以短沟时VT 随L 的减小而减小。 此外,提高漏源电压可以得到类似的效应,短沟时VT 随VDS 增加而减小,因为这增加了反偏漏衬结耗尽区的宽度。这一效应被称为漏端感应源端势垒降低。

4、漏端感应源端势垒降低(DIBL): VDS增加会使源端势垒下降,沟道长度缩短会使源端势垒下降。VDS很大时反偏漏衬结击穿,漏源穿通,将不受栅压控制。 5、亚阈值效应(弱反型导通):当电压低于阈值电压时MOS管已部分导通。不存在导电沟道时源(n+)体(p)漏(n+)三端实际上形成了一个寄生的双极性晶体管。一般希望该效应越小越好,尤其在依靠电荷在电容上存储的动态电路,因为其工作会受亚阈值漏电的严重影响。 绝缘体上硅(SOI) 6、沟长调制:长沟器件:沟道夹断饱和;短沟器件:载流子速度饱和。 7、热载流子效应:由于器件发展过程中,电压降低的幅度不及器件尺寸,导致电场强度提高,使得电子速度增加。漏端强电场一方面引起高能热电子与晶格碰撞产生电子空穴对,从而形成衬底电流,另一方面使电子隧穿到栅氧中,形成栅电流并改变阈值电压。 影响:1、使器件参数变差,引起长期的可靠性问题,可能导致器件失效。2、衬底电流会引入噪声、Latch-up、和动态节点漏电。 解决:LDD(轻掺杂漏):在漏源区和沟道间加一段电阻率较高的轻掺杂n-区。缺点是使器件跨导和IDS减小。 8、体效应:衬底偏置体效应、衬底电流感应体效应(衬底电流在衬底电阻上的压降造成衬偏电压)。 二、MOSFET器件模型 1、目的、意义:减少设计时间和制造成本。 2、要求:精确;有物理基础;可扩展性,能预测不同尺寸器件性能;高效率性,减少迭代次数和模拟时间 3、结构电阻:沟道等效电阻、寄生电阻 4、结构电容: 三、特征尺寸缩小 目的:1、尺寸更小;2、速度更快;3、功耗更低;4、成本更低、 方式: 1、恒场律(全比例缩小),理想模型,尺寸和电压按统一比例缩小。 优点:提高了集成密度 未改善:功率密度。 问题:1、电流密度增加;2、VTH小使得抗干扰能力差;3、电源电压标准改变带来不便;4、漏源耗尽层宽度不按比例缩小。 2、恒压律,目前最普遍,仅尺寸缩小,电压保持不变。 优点:1、电源电压不变;2、提高了集成密度 问题:1、电流密度、功率密度极大增加;2、功耗增加;3、沟道电场增加,将产生热载流子效应、速度饱和效应等负面效应;4、衬底浓度的增加使PN结寄生电容增加,速度下降。 3、一般化缩小,对今天最实用,尺寸和电压按不同比例缩小。 限制因素:长期使用的可靠性、载流子的极限速度、功耗。

大规模集成电路应用

《大规模集成电路应用》论文姓名:谭宇 学号: 20104665 学院: 计算机与信息工程学院 专业班级: 自动化3班

大规模集成电路的体会 摘要:信息飞速发展时代,半导体、晶体管等已广泛应用,大规模集成电路也 成为必要性的技术,集成电路诞生以来,经历了小规模(SSI)、中规模(MSI)、大规模(LSI)的发展过程,目前已进入超大规模(VLSI)和甚大规模集成电路(ULSI)阶段,进入片上系统(SOC)的时代。 关键字:大规模集成;必要性;体会; 1 大规模集成的重要性 集成电路产业是衡量一个国家综合实力的重要重要指标。而这个庞大的产业主要由集成电路的设计、芯片、封装和测试构成。在这个集成电路生产的整个过程中,集成电路测试是惟一一个贯穿集成电路生产和应用全过程的产业。如:集成电路设计原型的验证测试、晶圆片测试、封装成品测试,只有通过了全部测试合格的集成电路才可能作为合格产品出厂,测试是保证产品质量的重要环节。 集成电路测试是伴随着集成电路的发展而发展的,它为集成电路的进步做出了巨大贡献。我国的集成电路自动测试系统起步较晚,虽有一定的发展,但与国外的同类产品相比技术水平上还有很大的差距,特别是在一些关键技术上难以实现突破。国内使用的高端大型自动测试系统,几乎是被国外产品垄断。市场上各种型号国产集成电路测试,中小规模占到80%。大规模集成电路测试系统由于稳定性、实用性、价格等因素导致没有实用化。大规模/超大规模集成电路测试系统主要依靠进口满足国内的科研、生产与应用测试,我国急需自主创新的大规模集成电路测试技术,因此,本文对集成电路测试技术进行了总结和分析。 2 集成电路测试的必要性 随着集成电路应用领域扩大,大量用于各种整机系统中。在系统中集成电路往往作为关键器件使用,其质量和性能的好坏直接影响到了系统稳定性和可靠性。 如何检测故障剔除次品是芯片生产厂商不得不面对的一个问题,良好的测试流程,可以使不良品在投放市场之前就已经被淘汰,这对于提高产品质量,建立生产销售的良性循环,树立企业的良好形象都是至关重要的。次品的损失成本可以在合格产品的售价里得到相应的补偿,所以应寻求的是质量和经济的相互制衡,以最小的成本满足用户的需要。 作为一种电子产品,所有的芯片不可避免的出现各类故障,可能包括:1.固定型故障;2.跳变故障;3.时延故障;4.开路短路故障;5桥接故障,等等。测试的作用是检验芯片是否存在问题,测试工程师进行失效分析,提出修改建议,从工程角度来讲,测试包括了验证测试和生产测试两个主要的阶段。 一款新的集成电路芯片被设计并生产出来,首先必须接受验证测试。在这一阶段,将会进行功能测试、以及全面的交流(AC)参数和直流(DC)参数的测试等,也可能会探测芯片的内部结构。通常会得出一个完整的验证测试信息,如芯片的工艺特征描述、电气特征(DC参数、AC参数、电容、漏电、温度等测试条件)、时序关系图等等。通过验证测试中的参数测试、功能性测试、结构性测试,可以诊断和修改系统设计、逻辑设计和物理设计中的设计错误,为最终规范(产品手册)测量出芯片的各种电气参数,并开发出测试流程。 当芯片的设计方案通过了验证测试,进入生产阶段之后,将利用前一阶段设

大规模集成电路设计答案(1)

`CMOS反相器电路图、版图、剖面图

CMOS的广泛使用,是由于解决了latch-up效应 Latch-up效应解释、原理、解决方法(略) 避免栅锁效应方法:用金掺杂或中子辐射,降低少数载流子寿命;深阱结构或高能量注入形成倒退阱;将器件制作于高掺杂衬底上的低掺杂外延层中;沟槽隔离。 在基体(substrate)上改变金属的掺杂,降低BJT的增益 ?避免source和drain的正向偏压 ?增加一个轻掺杂的layer在重掺杂的基体上,阻止侧面电流从垂直BJT到低阻基体上的通路 ?使用Guard ring: P+ ring环绕nmos并接GND;N+ ring环绕pmos 并接VDD,一方面可以降低Rwell和Rsub的阻值,另一方面可阻止栽子到达BJT的基极。如果可能,可再增加两圈ring。 ? Substrate contact和well contact应尽量靠近source,以降低Rwell和Rsub的阻值。?使nmos尽量靠近GND,pmos尽量靠近VDD,保持足够的距离在pmos 和nmos之间以降低引发SCR的可能 ?除在I/O处需采取防Latch up的措施外,凡接I/O的内部mos 也应圈guard ring。? I/O处尽量不使用pmos(nwell) 门级电路图(AOI221) AOI221=(AB+CD+E)’

伪NMOS: 伪NMOS的下拉网络和静态门的下拉网络相似,上拉网络是用一个PMOS管,且此管输入接地,因此PMOS管总是导通的。 动态电路: 动态电路用一个时钟控制的PMOS管取代了总是导通的PMOS管,克服了有比电路的缺点。动态电路速度快,输入负载小,切换时不存在竞争电流,而且动态电路没有静态功耗。 动态电路存在的根本性问题就是对输入单调性的要求。 多米诺电路: 多米诺电路由一级动态门和一级静态CMOS反相器构成。典型结构: 下拉网络+上拉预充值网络+反相器构成 过程就是充值+求值的过程 在多米诺电路中,所有门的预充、求值都可以用一个时钟控制。求值期间,动态门的输出单调下降,所以静态反相器的输出单调上升。多米诺电路是同时进行预充,但求值是串行的。逻辑功效(logic effort) 逻辑功效定义为门的输入电容与能够提供相同输出电流的反相器的输入电容的比值。也就是说逻辑功效表示某个门在产生输出电流时相比反相器的糟糕程度。逻辑功效不仅使我们能容易计算时延,它也向我们展示了如何确定晶体管的尺寸以优化路径中的延时。

集成电路设计基础复习

1、解释基本概念:集成电路,集成度,特征尺寸 参考答案: A、集成电路(IC:integrated circuit)是指通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电阻、电容等无源器件,按照一定的电路互连,“集成”在一块半导体晶片(如硅或砷化镓)上,封装在一个外壳内,执行特定电路或系统功能的集成块。 B、集成度是指在每个芯片中包含的元器件的数目。 C、特征尺寸是代表工艺光刻条件所能达到的最小栅长(L)尺寸。 2、写出下列英文缩写的全称:IC,MOS,VLSI,SOC,DRC,ERC,LVS,LPE 参考答案: IC:integrated circuit;MOS:metal oxide semiconductor;VLSI:very large scale integration;SOC:system on chip;DRC:design rule check;ERC:electrical rule check;LVS:layout versus schematic;LPE:layout parameter extraction 3、试述集成电路的几种主要分类方法 参考答案: 集成电路的分类方法大致有五种:器件结构类型、集成规模、使用的基片材料、电路功能以及应用领域。根据器件的结构类型,通常将其分为双极集成电路、MOS集成电路和Bi-MOS 集成电路。按集成规模可分为:小规模集成电路、中规模集成电路、大规模集成电路、超大规模集成电路、特大规模集成电路和巨大规模集成电路。按基片结构形式,可分为单片集成电路和混合集成电路两大类。按电路的功能将其分为数字集成电路、模拟集成电路和数模混合集成电路。按应用领域划分,集成电路又可分为标准通用集成电路和专用集成电路。 4、试述“自顶向下”集成电路设计步骤。 参考答案: “自顶向下”的设计步骤中,设计者首先需要进行行为设计以确定芯片的功能;其次进行结构设计;接着是把各子单元转换成逻辑图或电路图;最后将电路图转换成版图,并经各种验证后以标准版图数据格式输出。 5、比较标准单元法和门阵列法的差异。 参考答案:

《超大规模集成电路设计》考试习题(含答案)完整版分析

1.集成电路的发展过程经历了哪些发展阶段?划分集成电路的标准是什么? 集成电路的发展过程: ?小规模集成电路(Small Scale IC,SSI) ?中规模集成电路(Medium Scale IC,MSI) ?大规模集成电路(Large Scale IC,LSI) ?超大规模集成电路(Very Large Scale IC,VLSI) ?特大规模集成电路(Ultra Large Scale IC,ULSI) ?巨大规模集成电路(Gigantic Scale IC,GSI) 划分集成电路规模的标准 2.超大规模集成电路有哪些优点? 1. 降低生产成本 VLSI减少了体积和重量等,可靠性成万倍提高,功耗成万倍减少. 2.提高工作速度 VLSI内部连线很短,缩短了延迟时间.加工的技术越来越精细.电路工作速度的提高,主要是依靠减少尺寸获得. 3. 降低功耗 芯片内部电路尺寸小,连线短,分布电容小,驱动电路所需的功率下降. 4. 简化逻辑电路 芯片内部电路受干扰小,电路可简化. 5.优越的可靠性 采用VLSI后,元件数目和外部的接触点都大为减少,可靠性得到很大提高。 6.体积小重量轻 7.缩短电子产品的设计和组装周期 一片VLSI组件可以代替大量的元器件,组装工作极大的节省,生产线被压缩,加快了生产速度. 3.简述双阱CMOS工艺制作CMOS反相器的工艺流程过程。 1、形成N阱 2、形成P阱 3、推阱 4、形成场隔离区 5、形成多晶硅栅 6、形成硅化物 7、形成N管源漏区 8、形成P管源漏区 9、形成接触孔10、形成第一层金属11、形成第一层金属12、形成穿通接触孔13、形成第二层金属14、合金15、形成钝化层16、测试、封装,完成集成电路的制造工艺 4.在VLSI设计中,对互连线的要求和可能的互连线材料是什么? 互连线的要求 低电阻值:产生的电压降最小;信号传输延时最小(RC时间常数最小化) 与器件之间的接触电阻低 长期可靠工作 可能的互连线材料 金属(低电阻率),多晶硅(中等电阻率),高掺杂区的硅(注入或扩散)(中等电阻率)

中南大学大规模集成电路考试及答案合集

中南大学大规模集成电路考试及答案合集

————————————————————————————————作者:————————————————————————————————日期:

---○---○ --- 学 院 专业班级 学 号 姓 名 ………… 评卷密封线 ……………… 密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按0分处理 ……………… 评卷密封 中南大学考试试卷 时间110分钟 题 号 一 二 三 合 计 得 分 评卷人 2013 ~2014 学年一学期大规模集成电路设计课程试题 32 学时,开卷,总分100分,占总评成绩70 % 一、填空题(本题40分,每个空格1分) 1. 所谓集成电路,是指采用 ,把一个电路中 所需的二极管、 、电阻、电容和电感等元件连同它们之间的电气连线在一块或几块很小的 或介质基片上一同制作出来,形成完整电路,然后 在一个管壳内,成为具有特定电路功能的微型结构。 2. 请写出以下与集成电路相关的专业术语缩写的英文全称: ASIC : ASSP : LSI : 3. 同时减小 、 与 ,可在保持漏源间电流不变的前提下减小器件面积,提高电路集成度。因此,缩短MOSFET 尺寸是VLSI 发展的趋势。 4. 大规模集成电路的设计流程包括:需求分析、 设计、体系结构设计、功能设计、 设计、可测性设计、 设计等。 5. 需求规格详细描述系统顾客或用户所关心的内容,包括 及必须满足的 。系统规格定义系统边界及系统与环境相互作用的信息,在这个规格中,系统以 的方式体现出来。 6. 根据硬件化的目的(高性能化、小型化、低功耗化、降低成本、知识产权保护等)、系统规模/性能、 、 、 等确定实现方法。 7. 体系结构设计的三要素为: 、 、 。 8. 高位综合是指从 描述自动生成 描述的过程。与人工设计相比,高位综合不仅可以尽可能地缩短 ,而且可以生成在面积、性能、功耗等方面表现出色的电路。 9. 逻辑综合就是将 变换为 ,根据 或 进行最优化,并进行特定工艺单元库 的过程。 10. 逻辑综合在推断RTL 部品时,将值的变化通过时钟触发的信号推断为 , 得 分 评卷人

数字集成电路知识点整理

Digital IC:数字集成电路是将元器件和连线集成于同一半导体芯片上而制成的数字逻辑电路或系统 第一章引论 1、数字IC芯片制造步骤 设计:前端设计(行为设计、体系结构设计、结构设计)、后端设计(逻辑设计、电路设计、版图设计) 制版:根据版图制作加工用的光刻版 制造:划片:将圆片切割成一个一个的管芯(划片槽) 封装:用金丝把管芯的压焊块(pad)与管壳的引脚相连 测试:测试芯片的工作情况 2、数字IC的设计方法 分层设计思想:每个层次都由下一个层次的若干个模块组成,自顶向下每个层次、每个模块分别进行建模与验证 SoC设计方法:IP模块(硬核(Hardcore)、软核(Softcore)、固核(Firmcore))与设计复用Foundry(代工)、Fabless(芯片设计)、Chipless(IP设计)“三足鼎立”——SoC发展的模式 3、数字IC的质量评价标准(重点:成本、延时、功耗,还有能量啦可靠性啦驱动能力啦之类的) NRE (Non-Recurrent Engineering) 成本 设计时间和投入,掩膜生产,样品生产 一次性成本 Recurrent 成本 工艺制造(silicon processing),封装(packaging),测试(test) 正比于产量 一阶RC网路传播延时:正比于此电路下拉电阻和负载电容所形成的时间常数 功耗:emmmm自己算 4、EDA设计流程 IP设计系统设计(SystemC)模块设计(verilog) 综合 版图设计(.ICC) 电路级设计(.v 基本不可读)综合过程中用到的文件类型(都是synopsys): 可以相互转化 .db(不可读).lib(可读) 加了功耗信息

集成电路设计基础 课后答案

班级:通信二班姓名:赵庆超学号:20071201297 7,版图设计中整体布局有哪些注意事项? 答:1版图设计最基本满足版图设计准则,以提高电路的匹配性能,抗干扰性能和高频工作性能。 2 整体力求层次化设计,即按功能将版图划分为若干子单元,每个子单元又可能包含若干子单元,从最小的子单元进行设计,这些子单元又被调用完成较大单元的设计,这种方法大大减少了设计和修改的工作量,且结构严谨,层次清晰。 3 图形应尽量简洁,避免不必要的多边形,对连接在一起的同一层应尽量合并,这不仅可减小版图的数据存储量,而且版图一模了然。 4 在构思版图结构时,除要考虑版图所占的面积,输入和输出的合理分布,较小不必要的寄生效应外,还应力求版图与电路原理框图保持一致(必要时修改框图画法),并力求版图美观大方。 8,版图设计中元件布局布线方面有哪些注意事项? 答:1 各不同布线层的性能各不相同,晶体管等效电阻应大大高于布线电阻。高速电路,电荷的分配效应会引起很多问题。 2 随器件尺寸的减小,线宽和线间距也在减小,多层布线层之间的介质层也在变薄,这将大大增加布线电阻和分布电阻。 3 电源线和地线应尽可能的避免用扩散区和多晶硅布线,特别是通过

较大电流的那部分电源线和地线。因此集成电路的版图设计电源线和地线多采用梳状布线,避免交叉,或者用多层金属工艺,提高设计布线的灵活性。 4 禁止在一条铝布线的长信号霞平行走过另一条用多晶硅或者扩散区布线的长信号线。因为长距离平行布线的两条信号线之间存在着较大的分布电容,一条信号线会在另一条信号线上产生较大的噪声,使电路不能正常工作。、 5 压点离开芯片内部图形的距离不应少于20um,以避免芯片键和时,因应力而造成电路损坏。

IC设计基础笔试集锦

IC设计基础(流程、工艺、版图、器件)笔试集锦 1、我们公司的产品是集成电路,请描述一下你对集成电路的认识,列举一些与集成电路 相关的内容(如讲清楚模拟、数字、双极型、CMOS、MCU、RISC、CISC、DSP、ASIC、FPGA 等的概念)。(仕兰微面试题目) 什么是MCU? MCU(Micro Controller Unit),又称单片微型计算机(Single Chip Microcomputer),简称单片机,是指随着大规模集成电路的出现及其发展,将计算机的CPU、RAM、ROM、定时数器和多种I/O接口集成在一片芯片上,形成芯片级的计算机。 MCU的分类 MCU按其存储器类型可分为MASK(掩模)ROM、OTP(一次性可编程)ROM、FLASH ROM等类型。MASK ROM的MCU价格便宜,但程序在出厂时已经固化,适合程序固定不变的应用场合;FALSH ROM的MCU程序可以反复擦写,灵活性很强,但价格较高,适合对价格不敏感的应用场合或做开发用途;OTP ROM的MCU价格介于前两者之间,同时又拥有一次性可编程能力,适合既要求一定灵活性,又要求低成本的应用场合,尤其是功能不断翻新、需要迅速量产的电子产品。 RISC为Reduced Instruction Set Computing的缩写,中文翻译为精简执令运算集,好处是CPU核心 很容易就能提升效能且消耗功率低,但程式撰写较为复杂;常见的RISC处理器如Mac的Power PC 系列。 CISC就是Complex Instruction Set Computing的缩写,中文翻译为复杂指令运算集,它只是CPU分类的一种,好处是CPU所提供能用的指令较多、程式撰写容易,常见80X86相容的CPU即是此类。 DSP有两个意思,既可以指数字信号处理这门理论,此时它是Digital Signal Processing的缩写;也可以是Digital Signal Processor的缩写,表示数字信号处理器,有时也缩写为DSPs,以示与理论的区别。 2、FPGA和ASIC的概念,他们的区别。(未知) 答案:FPGA是可编程ASIC。 ASIC:专用集成电路,它是面向专门用途的电路,专门为一个用户设计和制造的。根据一 个用户的特定要求,能以低研制成本,短、交货周期供货的全定制,半定制集成电路。与 门阵列等其它ASIC(Application Specific IC)相比,它们又具有设计开发周期短、设计 制造成本低、开发工具先进、标准产品无需测试、质量稳定以及可实时在线检验等优点 3、什么叫做OTP片、掩膜片,两者的区别何在?(仕兰微面试题目)otp是一次可编程(one time programme),掩膜就是mcu出厂的时候程序已经固化到里面去了,不能在写程序进去!( 4、你知道的集成电路设计的表达方式有哪几种?(仕兰微面试题目) 5、描述你对集成电路设计流程的认识。(仕兰微面试题目) 6、简述FPGA等可编程逻辑器件设计流程。(仕兰微面试题目) 7、IC设计前端到后端的流程和eda工具。(未知) 8、从RTL synthesis到tape out之间的设计flow,并列出其中各步使用的tool.(未知) 9、Asic的design flow。(威盛VIA 2003.11.06 上海笔试试题) 10、写出asic前期设计的流程和相应的工具。(威盛) 11、集成电路前段设计流程,写出相关的工具。(扬智电子笔试) 先介绍下IC开发流程: 1.)代码输入(design input) 用vhdl或者是verilog语言来完成器件的功能描述,生成hdl代码 语言输入工具:SUMMIT VISUALHDL MENTOR RENIOR 图形输入: composer(cadence); viewlogic (viewdraw) 2.)电路仿真(circuit simulation) 将vhd代码进行先前逻辑仿真,验证功能描述是否正确 数字电路仿真工具: Verolog:CADENCE Verolig-XL SYNOPSYS VCS MENTOR Modle-sim VHDL : CADENCE NC-vhdl SYNOPSYS VSS MENTOR Modle-sim 模拟电路仿真工具: AVANTI HSpice pspice,spectre micro microwave: eesoft : hp 3.)逻辑综合(synthesis tools) 逻辑综合工具可以将设计思想vhd代码转化成对应一定工艺手段的门级电路;将初级仿真 中所没有考虑的门沿(gates delay)反标到生成的门级网表中,返回电路仿真阶段进行再 仿真。最终仿真结果生成的网表称为物理网表。 12、请简述一下设计后端的整个流程?(仕兰微面试题目) 13、是否接触过自动布局布线?请说出一两种工具软件。自动布局布线需要哪些基本元 素?(仕兰微面试题目) 14、描述你对集成电路工艺的认识。(仕兰微面试题目)

超大规模集成电路发展趋势

超大规模集成电路的设计发展趋势;摘要:随着信息产品市场需求的增长,尤其通过通信、;关键字:超大规模集成电路发展趋势SOCIP复用技;1引言;集成电路是采用半导体制作工艺,在一块较小的单晶硅;2超大规模集成电路发展的概述;集成电路之所以获得如此迅速的发展,与数据处理系统;1.改进性能;在计算机中采用高密度的半导体集成电路是减少信号传;2.降低成本;用Lsl替换 超大规模集成电路的设计发展趋势 摘要:随着信息产品市场需求的增长,尤其通过通信、计算机与互联网、电子商务、数字视听等电子产品的需求增长,世界集成电路市场在其带动下高速增长。本文主要从半导体电子学与计算技术工程方面进行进行的诸多研究成果以及国际集成电路的发展现状和发展趋势反映其在国际上的重要地位。 关键字:超大规模集成电路发展趋势 SOC IP复用技术 1 引言 集成电路是采用半导体制作工艺,在一块较小的单晶硅片上制作许多晶体管及电阻器、电容器等元器件,并按照多层布线或隧道布线的方法将元器件组合成完整的电子电路,通常用IC(Integrated Circuit)表示。近廿多年来,半导体电子学的发展速度是十分惊人的。从分离元件发展为集成电路,从小规模集成电路发展为现代的超大规模集成电路。集成电路的性能差不多提高了3个数量级,而其成本却下降了同样的数量级。 2 超大规模集成电路发展的概述 集成电路之所以获得如此迅速的发展,与数据处理系统日益增长的各种要求是分不开的,也是半导体电子学与计算技术工程方面进行了许多研究工作的结果。这些工作可以概括为:(l)改进性能一尽可能减少信号处理的传递时间。(2)降低成本一从设计、制造、组装、冷却等各方而降低成本。(3)提高可靠性一减少失效率,增加检测与诊断的手段。(4)缩短研制/生产周期一加快从确定研制产品到产品可用之间的时间,使产品保持领先地位。(5)结构上的改进一半导体存储器的进展,推动了计算机体系的发展。 1.改进性能 在计算机中采用高密度的半导体集成电路是减少信号传递时间,提高机器性能的重要环节。因为在普通采用小规模集成电路(551)或中规模集成电路(MSI)的硬件结构中,信号传输与负载引起的延迟,与插件上的门的有效组装密度的平方根成正比,如图(1.1.1)。也就是说,组装延迟与每个门所需的有效面积的平方根成正比。因此将组装延迟减少一半的话,必须提高组装密度4倍。从 ssl/Msl发展为LSI/VLsl标志着芯片上元件的集成度得到了很大的提高。目

大规模集成电路一二章作业

郭小明2011060100010 大规模集成电路一二章作业 第一章作业 1、集成电路是哪一年有谁发明的? 答:1958年的Texas Instruments(美国德州仪器)公司的Jack Kilby 发明的,基于锗材料采用单管互连方法制作了一个简单的振荡器,可以使认为第一块雏形集成电路,1959年申请小型化电子电路的专利,并于2000年获得诺贝尔物理学奖。 2、诺伊斯对集成电路的主要贡献是什么? 答: 1959年提出的发明平面工艺技术和PN结隔离技术奠定了半导体集成电路的基础,美国仙童公司的Robert Noyce结合其同事Jean Hoerni发明的刻蚀氧化工艺,在电路上淀积金属薄层进行电路连接,使得复杂集成电路成为可能,并在1959年突出平面型晶体管之后,1961年推出用平面工艺制造出的第一块双极型集成电路,从此旋开了集成电路的新篇章。 1968年7月,Robert Noyce和Gordon Moore,离开Fairchild公司,建立Intel。 2000年,Jack Kilby,Robert Noyce获得Nobel物理奖。 3、MOS场效应管是哪年出现的? 1960年Jhon Atalla和Dawon Kahng发明了MOS场效应晶体管,1962年美国的RCA 公司研制出MOS场效应晶体管,并于1963年研制出第一块MOS集成电路。 4、集成电路的发展规律是由谁总结提出来的,具体规律是什么 摩尔定律是由英特尔(Intel)创始人之一戈登·摩尔(Gordon Moore)提出来的。其内容为:当价格不变时,集成电路上可容纳的晶体管数目,约每隔18个月便会增加一倍,性能也将提升一倍。换言之,每一美元所能买到的电脑性能,将每隔18个月翻两倍以上。这一定律揭示了信息技术进步的速度。 5、叙述集成电路的层次设计步骤 层次化设计是大规模集成电路设计中最广泛使用的方法,可以简化设计的复杂性。层次化设计分为自顶向下和自底向上两种方法。层次设计奖设计目标分为不同的层次级别,针对设计对象的不同,划分为不同的设计区域,如器件(版图级)、电路级、门级、模块(寄存器级)、系统级。设计域的划分时针对不同的设计描述方式确定的,相当于抽象设计表示方法,整个层次分为行为域、结构域和几何域。 对于一个复杂的数字IC来说,自顶向下的设计方法,可以分成如下几个步骤完成(1)系统描述(行为级设计):讲用户需求转换为胸膛呢设计说明的过程,给出电路系统的具体要求,如速度、功耗、可靠性、采用的工艺、开发费用和开发周期等,作为电路系统设计过程的约束条件。

集成电路设计基础复习要点

集成电路设计基础复习要点 第一章集成电路设计概述 1、哪一年在哪儿发明了晶体管?发明人哪一年获得了诺贝尔奖? 2、世界上第一片集成电路是哪一年在哪儿制造出来的?发明人哪一 年为此获得诺贝尔奖? 3、什么是晶圆?晶圆的材料是什么? 4、晶圆的度量单位是什么?当前主流晶圆尺寸是多少?目前最大晶 圆尺寸是多少? 5、摩尔是哪个公司的创始人?什么是摩尔定律? 6、什么是SoC?英文全拼是什么? 7、说出Foundry、Fabless和Chipless的中文含义。 8、什么是集成电路的一体化(IDM)实现模式? 9、什么是集成电路的无生产线(Fabless)设计模式? 10、目前集成电路技术发展的一个重要特征是什么? 11、一个工艺设计文件(PDK)包含哪些内容? 12、什么叫“流片”? 13、什么叫多项目晶圆(MPW) ?MPW英文全拼是什么? 14、集成电路设计需要哪些知识范围? 15、著名的集成电路分析程序是什么?有哪些著名公司开发了集成电 路设计工具?

16、SSI、MSI、LSI、VLSI、ULDI的中文含义是什么?英文全拼是 什么?每个对应产品芯片上大约有多少晶体管数目? 17、国内近几年成立的集成电路代工厂家或转向为代工的厂家主要有 哪些? 18、境外主要代工厂家和主导工艺有哪些? 第二章集成电路材料、结构与理论 1、电子系统特别是微电子系统应用的材料有哪些? 2、常用的半导体材料有哪些? 3、半导体材料得到广泛应用的原因是什么? 4、为什么市场上90%的IC产品都是基于Si工艺的? 5、砷化镓(GaAs) 和其它III/V族化合物器件的主要特点是什么? 6、GaAs晶体管最高工作频率f T可达多少?最快的Si晶体管能达到多 少? 7、GaAs集成电路主要有几种有源器件? 8、为什么说InP适合做发光器件和OEIC? 9、IC系统中常用的几种绝缘材料是什么? 10、什么是欧姆接触和肖特基接触? 11、多晶硅有什么特点? 12、什么是材料系统?

超大规模集成电路设计导论考试题及答案

1、MOS集成电路的加工包括哪些基本工艺?各有哪些方法和工序? 答:(1)热氧化工艺:包括干氧化法和湿氧化法; (2)扩散工艺:包括扩散法和离子注入法; (3)淀积工艺:化学淀积方法:1 外延生长法;2 热CVD法;3 等离子CVD法; 物理淀积方法:1 溅射法;2 真空蒸发法 (4)光刻工艺:工序包括:1 涂光刻胶;2 预烘干;3 掩膜对准;4 曝光;5 显影; 6 后烘干; 7 腐蚀; 8 去胶。 2、简述光刻工艺过程及作用。 答:(1)涂光刻胶:为了增加光刻胶和硅片之间的粘附性,防止显影时光刻胶的脱落,以及防止湿法腐蚀产生侧向腐蚀; (2)预烘干:以便除去光刻胶中的溶剂; (3)掩膜对准:以保证掩模板上的图形与硅片上已加工的各层图形套准; (4)曝光:使光刻胶获得与掩模图形相同的感光图片; (5)显影:将曝光后的硅片浸泡在显影液中,使正光刻胶的曝光部分和负光刻胶的未曝光部分被溶解掉; (6)后烘干:使残留在光刻胶中的有机溶剂完全挥发掉,提高光刻胶和硅片的粘接性及光刻胶的耐腐蚀性; (7)腐蚀:以复制在光刻胶上图形作为掩膜,对下层材料进行腐蚀,将图形复制到下层材料中; (8)去胶:除去光刻胶。 3、说明MOS晶体管的工作原理 答:MOS晶体管有四种工作状态: (1)截止状态:即源漏之间不加电压时,沟道各电场强度相等,沟道厚度均匀,S、D之间没有电流I ds=0; (2)线性工作状态:漏源之间加电压Vds时,漏端接正,源端接负,沟道厚度不再均匀,在D端电位升为V d,栅漏极电位差为

Vgs-Vtn,电场强度变弱,反型层变薄,并在沟道上产生由D到S的电场E ds,使得多数载 流子由S端流向D端形成电流I ds,它与V ds变化呈线性关 系:I ds=βn[(V gs-V tn)-V ds/2]V ds (3)饱和工作状态:Vs继续增大到V gs-V tn时,D端栅极与衬底不足以形成反型层,出现沟道夹断,电子运动到夹断点V gs-V ds=V tn时,便进入耗尽区,在漂移作用下, 电子被漏极高电位吸引过去,便形成饱和电流,沟道夹断后,(V gs-V tn)不变,I ds也不 变,即MOS工作进入饱和状态,I ds=V gs-V tn/R c (4)击穿状态:当Vds增加到一定极限时,由于电压过高,晶体管D端得PN结发生雪崩击穿,电流急剧增加,晶体管不能正常工作。 4、MOS反相器有哪些种类?说明每种反相器的特性。 答:(1)电阻负载反相器(E/R):该电路在集成电路中很少用,在分离原件中常用; (2)增强型负载反相器(E/E):这种反相器的漏端始终处于夹断状态; (3)耗尽型负载反相器(E/D):有较高的输出电平和较快的上升速度,其翻转时间短,电路工作速度快,是目前最常用的反相器;(4)CMOS反相器:1 静态功耗低;2 抗干扰能力强;3 电源利用率低;4 输入阻抗多,负载能力强。 5、简述Latch-up效应的产生原理及防治办法 答:产生原理:用CMOS晶体管的说明闸流效应 (1)在P阱内有一个纵向的NPN管,在P阱外有一个横向的NPN管,两个晶体管的集电极各驱动另一个晶体管的基极,构成正反馈回路; (2)P阱中纵向NPN管的电流放大倍数约为50到几百,P阱外的横向PNP管的电流放大倍数约为0.5到10; (3)R w和R s为基极的寄生电阻,阱电阻Rw的典型值为1K--10K欧姆,衬底电阻R s的典型值为500--700欧姆。 如果两个晶体管的电流放大倍数和基极寄生电阻Rw、Rs值太大,在外部噪声的影响下,很容易使输出端V o瞬间置于V ss之下约为0.7V,使得N+漏区(也有可能是N+]源区)向P

集成电路设计基础复习

1. 在P 衬底硅片上设计的PMOS 管可以分为n+层、SiO 2层、多晶硅层、金属层和N 井层。 2. 在集成电路设计中,制造厂商所给的工艺中有R □为它成为(方块电阻)。 3. MOS 管元件参数中的C ox 是栅极单位面积所具有的(电容值)。 4. 对于NMOS 而言,工作在饱和区中,其漏电流I D 等于(21()2D P ox GS TH W I C V V L μ= -),不能使用β或K 来表示。 5. 对于PMOS 而言,工作在饱和区中,其漏电流I D 等于 (21(||)2D P ox SG TH W I C V V L μ=--),不能使用β或K 来表示。 6. 对于工作在饱和区的NMOS 而言,其g m 等于(2D m GS TH I g V V =-),只能有I D 和过 驱动电压表示。 7. 对于工作在饱和区的NMOS 而言,其g m 等于(m g =),只能有I D 、W 、L 以及工艺参数表示。 8. 根据MOS 管特征曲线划分的四个工作区域,可以作为MOS 电阻的区域为(深度三极管区)。 9. 根据MOS 管特征曲线划分的四个工作区域中,可以作为电流源的区域为(饱和区)。 10. 对于NMOS 而言,导电沟道形成,但没有产生夹断的外部条件为(V DS 小于V GS -V TH )。 11. 差动信号的优点,能(有效抑制共模噪声),增大输出电压摆幅,偏置电路更简单和输出线性度更高。 12. 分析MOS 共栅放大电路,其电流增益约等于(1)。 13. 差动信号的优点,能有效抑制共模噪声,增大输出电压摆幅,偏置电路更简单和(输出线性度更高)。 14. 共源共栅电流镜如下图所示,当V X 电压源由大变小的过程中,M2和M3管,(M3)先退出饱和区。

中南大学大规模集成电路试卷及答案合集

---○---○ --- ………… 评卷密封线 ……………… 密封线不要答题,密封线外不准填写考生信息,违者考试成绩按0分处理 ……………… 评卷密封线 ………… 时间110分钟2013 ~2014 学年一学期大规模集成电路设计课程试题 32 学时,开卷,总分100分,占总评成绩70 % 一、填空题(本题40分,每个空格1分) 1. 所谓集成电路,是指采用 ,把一个电路中 所需的二极管、 、电阻、电容和电感等元件连同它们之间的电气连线在一块或几块很小的 或介质基片上一同制作出来,形成完整电路,然后 在一个管壳,成为具有特定电路功能的微型结构。 2. 请写出以下与集成电路相关的专业术语缩写的英文全称: ASIC : ASSP : LSI : 3. 同时减小 、 与 ,可在保持漏源间电流不变的前提下减小器件面积,提高电路集成度。因此,缩短MOSFET 尺寸是VLSI 发展的趋势。 4. 大规模集成电路的设计流程包括:需求分析、 设计、体系结构设计、 功能设计、 设计、可测性设计、 设计等。 5. 需求规格详细描述系统顾客或用户所关心的容,包括 及必须满足的 。系统规格定义系统边界及系统与环境相互作用的信息,在这个规格中,系统以 的方式体现出来。 6. 根据硬件化的目的(高性能化、小型化、低功耗化、降低成本、知识产权保护等)、系统规模/性能、 、 、 等确定实现方法。 7. 体系结构设计的三要素为: 、 、 。 8. 高位综合是指从 描述自动生成 描述的过程。与人工设计相比,高位综合不仅可以尽可能地缩短 ,而且可以生成在面积、性能、功耗等方面表现出色的电路。 9. 逻辑综合就是将 变换为 ,根据 或 进行最优化,并进行特定工艺单元库 的过程。 10. 逻辑综合在推断RTL 部品时,将值的变化通过时钟触发的信号推断为 ,

集成电路设计基础——发展史

集成电路设计系列第2章集成电路发展史

本章概要 2.1 集成电路的发明 2.2 微处理器的发展 2.3 摩尔定律 2 2.4 今天的IC

年德国科学家Ferdinand 1874年,德国科学家Ferdinand Braun 发现在一定的条件下,晶体能够单向传导电流并将这种现象能够单向传导电流,并将这种现象称为“整流(rectification )。 年意大利人G i l M i 3 1895年,意大利人Gugielmo Marconi 发明了利用电波传输信号的新技术,成为无线通信的开端晶体探测器首成为无线通信的开端。晶体探测器首次被用于无线电接收机中,用于从载波中提取有用信号称之为“检波”波中提取有用信号,称之为检波。

1904年,英国科学家John Ambrose Fleming,发明了第一只电子管,被称为 Fleming Valve。 “Fleming Valve” 4 这只电子管只有阴极和阳极两个电极。他通过研究 ,将个有用信号调制到从阴极到阳极的 Edison Effect,将一个有用信号调制到从阴极到阳极的 直流电流之上。

5 1906年,美国科学家Lee de Forest 给电子管加一个电极(称为栅极), 从而使电子管具有了放大的能力, 可以视作为晶体管的前身。

机械计算装置 英国剑桥大学教授 Charles Babbage于1932 Ch l B bb 年设想,1934年开发 被称为差动引擎 (Difference Engines) 采用十进制 6 可完成加、减、乘、除 有25000个机械部件,总 成本17470英镑

集成电路设计方法的发展历史

集成电路设计方法的发展历史 、发展现状、及未来主流设 计方法报告 集成电路是一种微型电子器件或部件,为杰克·基尔比发明,它采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。集成电路具有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。它不仅在工、民用电子设备如收录机、电视机、计算机等方面得到广泛的应用,同时在军事、通讯、遥控等方面也得到广泛的应用。用集成电路来装配电子设备,其装配密度比晶体管可提高几十倍至几千倍,设备的稳定工作时间也可大大提高。 一、集成电路的发展历史: 1947年:贝尔实验室肖克莱等人发明了晶体管,这是微电子技术发展中第一个里程碑; 1950年:结型晶体管诞生; 1950年: R Ohl和肖特莱发明了离子注入工艺; 1951

年:场效应晶体管发明; 1956年:C S Fuller发明了扩散工艺; 1958年:仙童公司Robert Noyce与德仪公司基尔比间隔数月分别发明了集成电路,开创了世界微电子学的历史; 1960年:H H Loor和E Castellani发明了光刻工艺;1962年:美国RCA公司研制出MOS场效应晶体管; 1963年:和首次提出CMOS技术,今天,95%以上的集成电路芯片都是基于CMOS工艺; 1964年:Intel摩尔提出摩尔定律,预测晶体管集成度将会每18个月增加1倍; 1966年:美国RCA公司研制出CMOS集成电路,并研制出第一块门阵列; 1967年:应用材料公司成立,现已成为全球最大的半导体设备制造公司; 1971年:Intel推出1kb动态随机存储器,标志着大规模集成电路出现; 1971年:全球第一个微处理器4004Intel公司推出,采用的是MOS工艺,这是一个里程碑式的发明; 1974年:RCA公司推出第一个CMOS微处理器1802; 1976年:16kb DRAM和4kb SRAM问世; 1978年:64kb动态随机存储器诞生,不足平方厘米的硅片上集成了14万个晶体管,标志着超大规模集成电路时

相关主题
文本预览
相关文档 最新文档