当前位置:文档之家› 固_液萃取技术及应用

固_液萃取技术及应用

固_液萃取技术及应用
固_液萃取技术及应用

固—液萃取技术及应用Ξ

王春华

(兰州石化职业技术学院,内蒙古呼和浩特 010010)

摘 要:本文以甜菜中糖份的萃取为例,深入探讨了固—液萃取技术以及在制糖、油脂工业上的应用。

关键词:萃取;技术;应用

1 概述

固—液萃取在日常生活与工业中有着广泛地应用。如用酒精提取药物或香水(如玫瑰花)中的有效成份,制成药酒或香精;在制糖工业中,用水为萃取剂将甜菜中的糖份萃取出来;在油脂工业中,以酒精或汽油为萃取剂对大豆等油料作物中油类的萃取,还有许多风糜一时的保健品如麦饭石营养液,枣露等都是采用萃取方法取得的,可以说萃取技术与人们的生活休戚相关,在工业过程中起着举足轻重的作用。下面着重介绍固—液萃取技术与应用。

2 固—液萃取技术及应用

根据固体物料与萃取剂的接触方式,萃取操作流程有:单级萃取流程,多级萃取流程及带有洗涤系统的萃取流程等,以萃取甜菜糖份为例,分别介绍上述萃取流程。

211 单级固—液萃取流程

图1所示为一用水为萃取剂,萃取甜菜中糖份的单级固—液萃取流程。萃取时,将要处理的甜菜切碎放在萃取器内,加入一定量的水,经过一定时间后甜菜中的糖份进入水溶液。当水溶液中的糖份达到所需浓度之后,将含糖水溶液放出,重新加入水,进行第二次萃取。如此反复操作,直至甜菜中糖含量降到所需值为止。萃取结束后,将菜渣放出,加入新料,仍按上述过程操作。上述流程虽然简单,但只能在第一次萃取中得到浓溶液,后面的几次萃取中,由于甜菜中的糖份不断地减少,能被萃取出的糖份也就越来越少。为了尽可能地萃取出糖份就需要加入大量的水,并且萃取较长的时间,这显然是不经济的。为克服上述流程的缺点,故一般采用多级固—液萃取流程。

图1 单级固—液萃取流程

212 多级固—液萃取流程

多级固—液萃取流程如图2所示,图中所表示的是一个四级萃取流程。操作时先将要处置的固体物料加入各个萃取器中,萃取剂由第一级萃取器中加入,依次通过各级萃取器,与第一级的固体物料接触,浓度不断增加,从最后一级出来的萃取相浓度达到最高。当第一级萃取器中物料被萃取成份的含量达到残渣的排放要求时,将第一级自流程中切断,卸出残渣,装入新物料,并入流程中。此时,新装入物料的萃取器在流程中成为最后一级萃取器,原来的第

二级现在成为第一级,即萃取剂流动方向由原来1→2→3→4变为2→3→4→1。采用多级固—液萃取流程,可以用少量的萃取剂,达到较高的萃取率,获得浓度较高的萃取相。

图2 多级固—液萃取流程

52

 2007年第11期 内蒙古石油化工

Ξ收稿日期:2007-08-15

作者简介:王春华,女,出生于1964年3月,毕业于华南理工大学机械设计与制图专业,现系兰州石化职业技术学院机械系教师,曾任机械制图、化工制图、计算机绘图等课程,职称为讲师。

213 带有洗涤系统的固—液萃取流程

由萃取器出来的固体残渣中,由于固液两相不能完全分离总还留有一部分溶液,为回收这部分溶液,在萃取流程中常要装有洗涤器,图3为一带有洗涤系统的固—液萃取流程。在萃取时,新鲜的萃取剂先加入洗涤器内,与固体残渣互相接触,以回收残渣中夹带的溶液。经洗涤后的溶液,再加入萃取器中,与固体物料进行萃取。萃取器和洗涤器可以是单个或若干个设备串联而成

图3 带有洗涤系统的固—液萃取流程

3 固—液萃取设备

固—液萃取是利用萃取剂提取固体中的可溶组

分(溶质)。

因而溶质在固体中的分布情况直接影响到固—液萃取的速率。若溶质均匀地分布在固体物料中,则靠近表面的溶质将最先溶解,而使固体残渣变成多孔性的结构。因此,当萃取剂和较内层的溶质接触之前,必须先透过外层向内渗透,这样,萃取过程就逐渐地变得困难,萃取速度逐渐下降。若溶质在固体物料中含量很高,则此多孔性的结构会很快松散,成为很细的不溶解的残渣,这时更多的萃取剂将很容易地接近溶质,为使萃取能充分地进行,正确选择固—液萃取设备也是至关重要的,最常用的固—液萃取设备有以下几种。311 间歇式固—液萃取器

如图4所示为一间歇式固—液萃取器。它常用

于萃取大豆等固体物料中的油分。该装置为一直立的圆柱形容器,内部有一块斜隔板将其分为两层。上层装满被萃取的物料如大豆,新鲜萃取剂从一个分布器中流出,淋洒在固体物料上。萃取剂由上到下穿过固体层,两相接触进行传质后流到容器的下层,在底层利用蒸汽蛇管将萃取剂以及从大豆中萃取出来的水分连续地蒸发出去。将所得的蒸汽升入冷凝器中,由此,萃取剂被连续地送回萃取器中,这样不断地用纯萃取剂来处理大豆就可获得浓的油溶液。这样萃取器是属于间歇操作,而在萃取器中要经过加

料、萃取、卸料三个阶段后再开始重新操作。

图4 间歆式固—液萃取器

312 带有搅拌装置的固—液萃取器

粗粒固体物料的萃取,可以将萃取剂直接通过物料层,但对颗粒直径较小的固体物料,由于固体层中空隙小,萃取剂难以通过。故常用搅拌装置加以搅动,使物料保持悬浮状态。由于细粒物料的表面积比粗粒大,两相容易充分接触,所以在不太长的时间

内,就可以达到充分的萃取。搅拌方式可采用机械搅拌或压缩空气搅拌。图5所示为一带有机械搅拌装置的固—液萃取器。搅拌浆安置在中央管内,搅拌时由于搅拌桨的抽吸作用液体沿中央管上升,然后从管顶部溢流出来,并在管子的外面向下流去,形成上下的对流循环。

图5 带有机械搅拌的固—液萃取器

4 结束语

以上仅仅对固—液萃取技术及应用,萃取设备作了初步探讨,由此可见萃取操作是用适当的液体

(萃取剂)通过特定的设备处理固体物料,以提取其中某一种组分的操作,其更详尽的机理还有待于不断地在实践中总结,揭示出来。

[参考文献]

[1] 李已圭等.液—液萃取过程和设备(M )北京:

原子能出版社1981,P 25~28.

[2] 刘文斌,吴涛,邢立强.用萃取精馏法分离C 4

中的正丁烯(J ).石化技术与应用,1999,17

(3):P 163~164.

6

2内蒙古石油化工 2007年第11期 

脉冲塔萃取实验报告

课程名称: 过程工程原理实验 指导老师: 成绩:_________________ 实验名称: 脉冲塔萃取实验 实验类型 同组学生姓名: _ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1、了解转盘萃取塔的基本结构、操作方法及萃取的工艺流程。 2、观察转盘转速变化时,萃取塔内轻、重两相流动状况,了解萃取操作的主要影响因素,研究萃取操作条件对萃取过程的影响。 3、测量每米萃取高度的传质单元数、传质单元高度和体积传质系数KYV ,关联传质单元高度与脉冲萃取过程操作变量的关系。 4、计算萃取率η。 二、实验内容和原理 萃取是分离和提纯物质的重要单元操作之一,是利用混合物中各个组分在外加溶剂中的溶解度的差异而实现组分分离的单元操作。 1、萃取的物料衡算 萃取计算中各项组成可用操作线方程相关联,操作线方程的P (XR ,YS )h 和点Q (XF ,YE )与装置的上下部相对应。 在第一溶剂B 与萃取剂S 完全不互溶时,萃取过程的操作线在X~Y 坐标上时直线,其方程式如下形 式: R S R F S E X X Y Y X X Y Y --= -- (1) 由上式得:()S S X X m Y Y -=-,其中R F S E X X Y Y m --= 单位时间内从第一溶剂中萃取出的纯物质A 的量M ,可由物料衡算确定: ()()S E R F Y Y S X X B M -=-= (2) 2、萃取过程的质量传递 不平衡的萃取相与萃余相在塔的任一截面上接触,两相之间发生质量传递。物质A 以扩散的方式由萃余相进入萃取相,该过程的界限是达到相间平衡,相平衡的相间关系为: kX Y =* (3) 实验报告 专业: 姓名: 学号: 日期: 地点:

化工原理第十章-液-液萃取和液-固浸取

第十章 液-液萃取和液-固浸取 1. 25℃时醋酸(A )–庚醇-3(B )–水(S )的平衡数据如本题附表所示。 习题1附表1 溶解度曲线数据(质量分数/%) 试求:(1)在直角三角形相图上绘出溶解度曲线及辅助曲线,在直角坐标图上绘出分配曲线。(2)确定由200 kg 醋酸、200 kg 庚醇-3和400 kg 水组成的混合液的物系点位置。混合液经充分混合并静置分层后,确定两共轭相的组成和质量。(3)上述两液层的分配系数A k 及选择性系数β。(4)从上述混合液中蒸出多少千克水才能成为均相溶液? 解:(1)溶解度曲线如附图1中曲线SEPHRJ 所示。辅助曲线如附图1曲线SNP 所示。分配曲线如附图2 所示。 (2)和点醋酸的质量分率为 25.0400 200200200 A =++= x 水的质量分率为 50.0400 200200400 S =++=x 由此可确定和点M 的位置,如附图1所示。由辅助曲线通过试差作图可确定M 点的差点R 和E 。由杠杆规则可得 kg 260kg 80040 13 4013=?==M R ()kg 540kg 260800=-=-=R M E

由附图1可查得E 相的组成为 A S B 0.28, 0.71,0.01y y y === R 相的组成为 A S B 0.20, 0.06,0.74x x x === (3)分配系数 A A A 0.28 1.40.20y k x === B B B 0.010.01350.74 y k x = == 选择性系数 7.1030135 .04.1B A === k k β (4)随水分的蒸发,和点M 将沿直线SM 移动,当M 点到达H 点时,物系分层消失,即变为均相物系。由杠杆规则可得 kg 5.494kg 80055 34 5534=?== M H 需蒸发的水分量为 ()kg 5.305kg 5.494800=-=-H M 2. 在单级萃取装置中,以纯水为溶剂从含醋酸质量分数为30%的醋酸–庚醇-3混合液中提取醋酸。已知原料液的处理量为1 000 kg/h ,要求萃余相中醋酸的质量分数不大于10%。试(1)水的用量;(2)萃余相的量及醋酸的萃取率。操作条件下的平衡数据见习题1。 解:(1)物系的溶解度曲线及辅助曲线如附图所示。 由原料组成x F =0.3可确定原料的相点F ,由萃余相的组成x A =0.1可确定萃余相的相点R 。借助辅助曲线,由R 可确定萃取相的相点E 。联结RE 、FS ,则其交点M 即为萃取操作的物系点。由杠杆规则可得 习题1 附图1 习题1 附图2

(液)膜

(液)膜的分离技术及应用 溶剂萃取一般都对应反萃取。液膜分离(liquid membrane-baded separation) 过程对液体分离来讲是萃取(extraction)和反萃取(back-extraction or stripping) 的微观结合。 一、液膜分类 (液)膜是以液体为材料的膜。液膜分为乳状液膜和支撑液膜两种。有多种不同的液膜: ①沿固体壁面流动着的液膜。这种液膜与互相接触的气体或另一种与其不相溶的液体构成膜式两相流,出现在一些化工设备中,如垂直膜式冷凝器、膜式蒸发器、填充塔和膜式气液反应器等。 ②固体从能使其润湿的液体中取出时,表面上附着的液膜,称为滞留液膜。 ③在液膜分离操作中,用以分隔两个液相的液膜,此液膜是对溶质具有选择性透过能力的液体薄层。 ④气液两相相际传质系统中,假设存在于液相中界面附近的具有传递阻力的液膜。 二、液膜形成的过程及条件 液膜过程对气体分离来讲是吸收(absorption)和解吸(desorption or stripping) 的微观结合。液膜的构型有乳化液膜,疏水微孔膜支撑液膜,再生型的疏水微孔膜支撑液膜,无孔橡胶膜溶涨的液膜,和hollow fiber contained liquid membrane (不知中文如何翻译)。当然,也有人把膜萃取成为液膜萃取。但膜萃取实质上是有固定油-水接触

界面的萃取过程。萃取分离一般指通过混合物中介质相对于萃取剂的溶解度不同而进行分离,一般溶萃取剂只和其中一种介质互溶,如:水可以使甲醇汽油分离成汽油、甲醇水溶液两相。液膜萃取萃取剂和混合物不直接接触,中间有一层液膜,易溶物质通过液膜进入萃取剂。例如:用中油液膜萃取含酚废水中的酚,先在中油中加入氢氧化钠水溶液,形成油包水型萃取介质,废水中的酚通过油膜进入萃取介质内部,和氢氧化钠反应生成酚钠,酚钠不能通过油膜,被固定在油膜内部,使废水中的酚含量降低。这种工艺温度控制要求较高,操作难度较大,但其优势在于中油为煤化工过程副产氧气,消耗较低。具体步骤要看你分离目标和混合物成分来确定的。选择合适的分离膜,选择分离压力、温度等等。 三、特性降膜特性 1、降膜特性 当液膜沿固体壁面下降时,随着雷诺数增加,膜内运动可依次出现层流、波动层流和湍流。当周围气体静止,液膜自由流动时,当雷诺数Re=uδ/v(式中u为液膜平均速度;δ为液膜厚度;v为液体运动粘度)在20~30时的范围内,膜内运动呈层流状态。此时液膜厚度均匀,界面平静,液体沿垂直壁面下降时的速度分布根据理论分析可用下式计算:式中ux为液膜内与壁面距离为y处的点速度;g为重力加速度。这样在已知速度分布的基础上,结合对流扩散方程,可以计算出液膜中的浓度分布,从而确定传质分系数;这是连续接触传质设备设计的基础。结合蒸气冷凝液膜的热量衡算,可确定冷凝传热

萃取塔实验讲义

萃取塔实验讲义 一、 实验目的 1. 了解脉冲填料萃取塔的结构。 2. 掌握填料萃取塔的性能测定方法。 3. 掌握萃取塔传质效率的强化方法。 二、 实验原理 1.填料萃取塔是石油炼制、化学工业和环境保护部分广泛应用的一种萃取设备,具有结构简单、便于安装和制造等特点。塔内填料的作用可以使分散相液滴不断破碎和聚合,以使液滴表面不断更新,还可以减少连续相的轴相混合。本实验采用连续通入压缩空气向填料塔内提供外加能量,增加液体滞动,强化传质。在普通填料萃取塔内,两相依靠密度差而逆相流动,相对密度较小,界面湍动程度低,限制了传质速率的进一步提高。为了防止分散相液滴过多聚结,增加塔内流动的湍动,可采用连续通入或断续通入压缩空气(脉冲方式)向填料塔提供外加能量,增加液体湍动。当然湍动太厉害,会导致液液两相乳化,难以分离。 2.萃取塔的分离效率可以用传制单元高度HOE 和理论级当量高度he 来表示,影响脉冲填料萃取塔分离效率的因素主要有:填料的种类、轻重两相的流量以及脉冲强度等。对一定的实验设备,在两相流量固定条件下,脉冲强度增加,传制单元高度降低,塔的分离能力增加。 3.本实验以水为萃取剂,从煤油中萃取苯甲酸,苯甲酸在煤油中的浓度约为0.2%(质量)。水相为萃取相(用字母E 表示,在本实验中又称连续相、重相),煤油相为萃余相(用字母R 表示,在本实验中又称分散相)。在萃取过程中苯甲酸部分地从萃余相转移至萃取相。萃取相及萃余相的进出口浓度由容量分析法测定之。考虑水与煤油是完全不互溶的,且苯甲酸在两相中的浓度都很低,可认为在萃取过程中两相液体的体积流量不发生变化。 (1) 按萃取相计算的传质单元数OE N 计算公式为: ()?-= E b E t Y Y E E E OE Y Y dY N * 式中:Y Et ─苯甲酸在进入塔顶的萃取相中的质量比组成,kg 苯甲酸/kg 水; 本实验中Y Et =0。 Y Eb ─苯甲酸在离开塔底萃取相中的质量比组成,kg 苯甲酸/kg 水; Y E ─苯甲酸在塔内某一高度处萃取相中的质量比组成,kg 苯甲酸/kg 水;

桨叶式萃取塔实验报告

实验日期成绩 同组人×××(2)、×××(3)、×××(4)、×××(5)、×××(6) 闽南师范大学应用化学专业实验报告 题目:桨叶式萃取塔实验 12应化1 ×××× B1组 0 前言 实验目的:1、了解脉冲填料萃取塔的结构和特点;2、熟悉萃取操作的工艺流程,掌握液-液萃取装置操作方法;3、掌握脉冲填料萃取塔性能的测定方法;4、了解填料萃取塔传质效率的强化方法。[1] 实验原理:萃取是分离液体混合物的一种常用操作,其工作原理是在待分离的混合液中加入与之不互溶(或部分相溶)的萃取剂,形成共存的两个液相,并利用原溶剂与萃取剂对原混合液中各组分的溶解度的差异,使原溶液中的组分得到分离。 桨叶式旋转萃取塔也是一种外加能量的萃取设备。在塔内由环行隔板将塔分成若干段,每段的旋转轴上装设有桨叶。在萃取过程中由于桨叶的搅动,增加了分散相的分散程度,促进了相际接触表面积的更新与扩大。隔板的作用在一定程度上抑制了轴向返混,因而桨叶式旋转萃取塔的效率较高。桨叶转速若太高,也会导致两相乳化,难以分相。 本实验以水为萃取剂,从煤油中萃取苯甲酸?。水相为萃取相(?用字母E表示,本实验又称连续相、重相?)。煤油相为萃余相(?用字母?R?表示,本实验中又称分散相、轻相)。轻相入口处,苯甲酸在煤油中的浓度应保持在苯甲酸/kg煤油)之间为宜。轻相由塔底进入,

作为分散相向上流动,经塔顶分离段分离后由塔顶流出;重相由塔顶进入作为连续相向下流动至塔底经π形管流出;轻重两相在塔内呈逆向流动。在萃取过程中,苯甲酸部分地从萃余相转移至萃取相。萃取相及萃余相进出口浓度由容量分析法测定。考虑水与煤油是完全不互溶的,且苯甲酸在两相中的浓度都很低,可认为在萃取过程中两相液体的体积流量不发生变化。 B(油) S(水) X Rt Y Et X Rb Y Eb S为水流量B为油流量 Y为水浓度X为油浓度 下标E为萃取相下标t为塔顶 下标R为萃余相下标b为塔底 1、按萃取相计算传质单元数N OE的计算公式为: 式中:Y Et─苯甲酸在进入塔顶的萃取相中的质量比组成,kg苯甲酸/kg水;本实验中Y Et=0。 Y Eb─苯甲酸在离开塔底萃取相中的质量比组成,kg苯甲酸/kg水; Y E─苯甲酸在塔内某一高度处萃取相中的质量比组成,kg苯甲酸/kg水;

固液萃取

第十章固液浸取 第一节萃取原理 教学目标: 理解萃取过程和萃取原理。理解萃取分配定律的含义,掌握分配常数的计算公式。 掌握单级萃取、多级逆流萃取、多级错流萃取的物料流动过程。 教学重点: 萃取过程和萃取原理。理解萃取分配定律的含义,掌握分配常数的计算公式。 单级萃取、多级逆流萃取的物料流动过程。 教学难点: 萃取分配定律的含义,分配常数计算公式的具体应用。 教学内容: 一、萃取基本原理 1.萃取过程 如图10—1所示,假设一种溶液的溶剂A与另一个溶剂B互不相容,且溶质C在B中的溶解度大于在A中的溶解度,当将溶剂B加入到溶液中经振摇静臵后, 则会发生分层现象,且大部分溶质C转移到了溶剂B中。这种溶质从一种体系转移到另一个体系的过程称为萃取过程。

在萃取过程中起转移溶质作用的溶剂称为萃取剂,由萃取剂和溶质组成的溶液叫萃取液,原来的溶液在萃取后则称为萃余液。如果萃取前的体系是液态则称为液—液萃取,如果是固态则称为固——液萃取,又称固液浸取,如用石油醚萃取青蒿中的青蒿素就是典型的固液浸取实例。 2.萃取原理 物质的溶解能力是由构成物质分子的极性和溶剂分子的极性决定的,遵守“相似相溶”原则的,即分子极性大的物质溶于极性溶剂,分子极性小的物质溶解于弱极性或非极性溶剂中。例如,还原糖、蛋白质、氨基酸、维生素B 族等物质,其分子极性大,可溶于极性溶剂水中,而不溶解于非极性溶剂石油醚中。又如大多数萜类化合物的分子极性小,易溶于石油醚和氯仿等极性小的溶剂中,但不溶于水等极性强的溶剂。因此,同一种化合物在不同的溶剂中有不同的溶解能力。当一种溶质处于极性大小不相当的溶剂中时,其溶解能力小,有转移到相当极性的溶剂中去的趋势,假设这种极性相当的溶剂与原来的溶剂互不相溶,则绝大部分溶质就会从原来的相态扩散到新的溶剂中,形成新的溶液体系,即形成萃取液。 在萃取过程时,溶质转移到萃取剂中的程度遵守分配定律。指出,在其他条件不变的情况下,萃取过程达到平衡后,萃取液中溶质浓度与萃余液中溶质浓度的比值是常数,这个规律叫分配定律,常数0k 叫分配系数。如图10—2所示,在 进行第一次萃取时,设原料液中溶质的摩尔浓度为C,萃取相中溶质的摩尔浓度为X ,萃余相中溶质的摩尔浓度为Y ,则: 假设进行多次萃取才能将目的产物提取完,则进行第n 次萃取时,原料液中0 10--1X k Y ==萃取相()萃余相

脉冲萃取塔及其应用

长三角绿色制药协同创新中心《绿色制药技术》研讨报告 题目:脉冲萃取塔及其应用 姓名: 学号: 班级:绿色制药1301 研讨课主题:制药过程强化技术与设备研讨课时间:2015/12/23

目录 1研究背景 (1) 1.1液液萃取及其装置 (1) 1.2脉冲萃取塔 (2) 1.2.1原理 (2) 1.2.2分类 (2) 1.2.3脉冲装置 (3) 1.2.4脉冲萃取塔操作性能 (4) 2技术应用案列 (5) 2.1脉冲萃取塔回收废水中的二甲基甲酰胺 (5) 2.1.1背景 (5) 2.1.2流程 (5) 2.1.3总结 (9) 2.2脉冲筛板萃取塔在己内酰胺生产中的应用 (9) 2.3脉冲填料萃取塔在提取竹叶黄酮的应用 (11) 3总结与讨论 (12) 3.1脉冲萃取塔的优缺点 (12) 3.2脉冲萃取塔的展望 (12) 参考文献 (13)

1研究背景 1.1液液萃取及其装置 在医药工业中, 许多医药产品如抗生素、维生素及其中间体多为热敏性物质, 加热分离时容易分解破坏, 因而不能采用蒸馏等方法来处理。此时, 溶剂萃取就显出其独特的优点[1]。 溶剂萃取在医药方面的应用主要有:1)代替沉淀法进行产物的直接提取(柠檬酸萃取);2)代替蒸发用于产物的浓缩(赤霉素生产);3)代替水蒸汽蒸馏用于产物的纯化(纯化乙二醛);4)代替精馏方法用于相近产物的精细分离(羟基苯甲醚的分离);5)用于产物的介质转换;6)用于废水处理进行综合回收(废水中回收咖啡因等)[2]。 溶剂萃取所用设备有混和澄清器、填料塔、筛板塔等一类较简单的萃取器。后又相继发展了各种新型多级连续萃取器, 如脉冲塔、机械搅拌塔等, 这些新型萃取器都是利用外加的机械能, 使之达到较高的分离效率。表1简述了各种萃取器的特性和工业应用范围可供选型时参考。

固相萃取技术及其应用

固相萃取技术及其应用 Solid-phase Extraction and its Applications 华运有限公司市场销售部 陈小华博士

目录 再版序 (4) 一. 引言 (5) 一. 固相萃取的基本原理 (8) 吸附剂和分析物之间作用力 (8) 非极性作用力 (8) 极性作用力 (9) 离子作用力 (10) 多种作用力 (14) 三. 固相萃取的基本程序 (15) 萃取柱的预处理 (15) 样品的添加 (15) 萃取柱的洗涤 (15) 萃取柱的干燥 (15) 分析物的洗脱 (15) 极性指数 (15) 溶剂强度 (15) 溶剂选择性 (15) 固相萃取中应当考虑的几种作用力 (20) 建立固相萃取方法 (20) 评估萃取问题 (20) 评估分析的要求..................... . (22) 评估样品的特性 (22) 建立初步的萃取方法 (26) 建立SPE方法的实例 (30) 四. 新型固相萃取材料 (35) 混合型硅胶固相萃取柱 (35) 聚合树酯固定相 (35) 薄膜型固相萃取柱 (36) 固相萃取膜 (39)

超临界固相萃取 (39) 固相微萃取 (39) 五. 固相萃取柱的重复使用 (40) 六. 固相萃取中常见的问题及解决方法 (41) 七. 固相萃取的自动化 (44) 吉尔森自动化固相萃取系统 (45) 吉尔森固相萃取仪在方法优选中的应用................................. .50 八. 部分固相萃取应用方法 (52) 滥用药物的固相萃取 (52) 常见药物的固相萃取 (55) 自动在线SPE-GC/MS萃取分析马尿中的药物 (64) 有机磷杀虫剂的SPE固相萃取 (65) 有机氯杀虫剂的萃取 (65) 非脂肪海水鱼食品中有机氯杀虫剂残留的固相萃取 (66) 除草剂固相萃取 (67) 氨基甲酸酯杀虫剂的固相萃取 (68) 新鲜水果和蔬菜中90种杀虫剂残留的固相萃取 (71) 蜂蜜中杀虫剂的固相萃取-气相色谱分析 (75) 残留氯霉素 (Chloramphenicol) 的萃取 (77) 动物组织及蛋类中抗菌素的萃取 (81) 蜂蜜中磺胺类药物的萃取及分析 (81) 克喘速(盐酸克仑特罗)及舒喘宁(沙丁胺醇) 残留的检验 (82) 水溶液中蛋白质的萃取及浓缩 (84) 水溶液中免疫球蛋白G(IgG)的萃取 (84) 从血红细胞中萃取血色素 (85) 合成寡合苷酸的萃取及纯化 (86) 附录一 (87) 附录二 (93)

液膜萃取技术及其应用的研究

液膜萃取技术及其应用的研究 摘要:由于固体膜的选择性较低、通透量较小等缺点,使其在工业技术领域的应用效率不高,因此,人们试图用改变固体高分子膜的状态,使膜的扩散系数增大、厚度变小,从而增强膜的选择特性并提高物质的迁移效率。本文结合了液膜萃取技术的最新研究进展,对该技术的基本原理、类型、特点作一简单地介绍,同时就该技术在生物工程领域和其他领域的应用进行综述。 关键词:液膜萃取;分离;中空纤维支撑液膜 The Research of The Liquid Membrane Extraction Technology and Its Application Abstract: Due to the low selectivity and a small transportation of the solid membrane, It has been applied efficiency is relatively lower in the industrial field, therefore, some people attempted to change the stage of the solid molecular membrane, make membrane diffusion coefficient increase and thickness decrease, So select features of membrane was enhanced and the migration efficiency of substances was increased. In this paper, the basic principles, types and characteristics of the technique were simply presented, combined with the latest research progress of the liquid membrane extraction technology, at the same time, the application of the technology in the biological engineering field and other fields were summarized. Keywords:liquid membrane separation; extraction; hollow fiber supported liquid membrane 液膜萃取(Liquid membrane separation),又称液膜分离(Liquid membrane extraction),它是一种以液膜为分离介质、以浓度差为推动力的膜分离操作技术。液膜萃取技术实质上是一种液液分离的过程,它的研究开始于20世纪60年代中期,该技术的发展结合了固体膜分离技术和液液萃取技术的特点,是一种新型的膜分离技术。早期,Bloch等[1]采用支撑液膜对金属的提取过程进行了研究,使萃取与反萃可以在同一个单元设备内进行;随后,在1968年,美籍华人Li N N[2]提出了乳状液膜分离法后,各国科学家对液膜萃取技术的研究越来越关注,使该技术先后经历了不同程度的发展,支撑液膜、包容液膜、大块液膜、静电式准液膜、内耦合翠反交替过程等等,并应用于环境保护、石油化工、冶金工业、生物医药等各个领域[3]。随着该技术的发展和不断地改进,20世纪80年代后期,新的液膜构型不断提出,如液体薄膜渗透萃取技术、流动液膜技术、中空纤维包容液膜技术、支撑乳化液膜、中空纤维更新液膜等等,这些技术已经应于相关领域并获得了一定的发展[4]。 1 液膜萃取体系及其机理

液膜萃取法

液膜萃取法文献综述 液膜萃取技术结合了固体膜分离法和溶剂萃取法的特点,是一种新型的膜分离方法.液膜是乳状液滴分散在另一水相或油相中聚集成平均直径为1mm的聚集体时形成的(W/O)/W或(O/W)/O型复相乳液体系。在前一种情况,两种不同的水相(分别称为内相、外相)被一层油膜隔开,后一种情况是两种不同的油相被一层水膜隔开,液膜本身的厚度为1~10Lm。由于液膜的厚度只有人工固体薄膜的十分之一,所以物质穿过液膜的迁移速度更快。液膜萃取就是利用液膜的选择透过性,使料液中的某些组分透过液膜进入接受液,然后将三者各自分开,从而实现料液组分的分离。液膜萃取过程是由三个液相所形成的两个相界面上的传质分离过程,实质上是萃取与反萃取的结合。 应用领域:30多年来,液膜一直是一个十分活跃的研究课题。液膜传质速率高与选择性好的特点,使之成为分离、纯化与浓缩溶质的有效手段,

它与其它辅助设备、仪器、检测方法相结合,在石油化学、冶金工业、海水淡化、废水处理和综合回收、医学、生物学等方面的应用已日益受到人们的重视。 应用优点:一些物理化学性质相似的碳氢化合物很难分离,采用液膜技术可以成功分离碳氢化合物。利用液膜萃取技术可以有效地提取某些金属,提取率达99.5%。液膜萃取法处理废水,使废水达到了国家排放标准,有效的回收了可循环利用的成分,同时也减少了环境的污染。液膜萃取在生物学方面。青霉素是一种应用广泛的抗生素类药物,传统的提取方法采用溶媒萃取法。青霉素易分解损失。莫凤奎等使用青霉素G钠盐纯品溶液,模拟考察了乳状液膜法分离青霉素的条件,在最佳条件下青霉素的提取率可达92%。浓缩比可达9,且具有青霉素不易损失,工艺简单等优点。 废水处理中液膜萃取应用的优点:对含有机质废水的处理,大多采用有机溶剂萃取法,但处理后的废水中仍含有较高浓度的有机物质,采用液膜法则可使废水得到彻底的处理。 发展前景:经过多年的发展,液膜萃取在机理

萃取塔(转盘塔)操作及体积传质系数测定2

课程名称:过程工程原理实验(甲)指导老师:叶向群成绩:_______________ 实验名称: 萃取塔(转盘塔)操作及体积传质系数测定同组学生姓名: 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 萃取塔(转盘塔)操作及体积传质系数测定 1、实验目的: 1)了解转盘萃取塔和脉冲萃取塔的基本结构、操作方法及萃取的工艺流程。 2)观察转盘萃取塔转盘转速变化时或脉冲萃取塔的脉冲强度(脉冲幅度及脉冲频率)变化时,萃取 塔内轻、重两相流动状况,了解萃取操作的主要影响因素,研究萃取操作条件对萃取过程的影响。 3)测量每米萃取高度的传质单元数、传质单元高度和体积传质系数 K,关联传质单位高度与脉冲 YV 萃取过程操作变量的关系。 4)计算萃取率 2、实验装置流程: 2.1 转盘萃取塔 主要设备是转盘萃取塔,塔体是内径为50mm玻璃管,塔顶电机连接转轴,转轴上固定有圆盘,塔壁 固定有圆环,圆环与圆盘交错布置,转盘萃取流程图见下图1

1.原料贮槽(苯甲酸-煤油) 2.收集槽(萃余液) 3.电机 4.控制柜 5.转盘萃取塔 6.9.转子流量计 7.萃取剂贮罐(水)8.10. 输送泵11.排出液(萃取液)管12.转速测定仪A.B.C 取样口 图1 转盘萃取实验流程图 2.2 脉冲萃取塔 主要设备是脉冲萃取塔,塔体是内径为50mm玻璃管,内装不锈钢丝网填料,脉冲萃取流程图见下图 1.原料贮槽(苯甲酸-煤油) 2.收集槽(萃余液) 3.脉冲系统 4.控制柜 5.填料(脉冲)萃取塔 6.9.转子流量计 7.萃取剂贮罐(水) 8.10 输送泵11.排出液(萃取液)管 A.B.C 取样口 图2 脉冲萃取实验流程图 3、实验内容和原理: 萃取是分离和提纯物质的重要单元操作之一,是利用混合物中各个组分在外加溶剂中的溶解度的差异而实现组分分离的单元操作。进行液-液萃取操作时,两种液体在塔内作逆流流动,其中一液体作为分散相,以液滴的形式通过另一作为连续相的液体,两种液相浓度在设备内作微分式的连续变化,并依靠密度差在塔的两端实现两液相的间的分离。当轻相作为分散相时,相界面出现在塔的上部;反之相界面出现在塔的下端。本实验以轻相为分散相,相界面出现在塔的上部。 计算微分逆流萃取塔的塔高时,主要是采取传质单元法。即以传质单元数和传质单元高度来表征,传质单元数表示过程分离程度的难易,传质单元高度表示设备传质性能的好坏。 3.1 萃取的基本符号

固_液萃取技术及应用

固—液萃取技术及应用Ξ 王春华 (兰州石化职业技术学院,内蒙古呼和浩特 010010) 摘 要:本文以甜菜中糖份的萃取为例,深入探讨了固—液萃取技术以及在制糖、油脂工业上的应用。 关键词:萃取;技术;应用 1 概述 固—液萃取在日常生活与工业中有着广泛地应用。如用酒精提取药物或香水(如玫瑰花)中的有效成份,制成药酒或香精;在制糖工业中,用水为萃取剂将甜菜中的糖份萃取出来;在油脂工业中,以酒精或汽油为萃取剂对大豆等油料作物中油类的萃取,还有许多风糜一时的保健品如麦饭石营养液,枣露等都是采用萃取方法取得的,可以说萃取技术与人们的生活休戚相关,在工业过程中起着举足轻重的作用。下面着重介绍固—液萃取技术与应用。 2 固—液萃取技术及应用 根据固体物料与萃取剂的接触方式,萃取操作流程有:单级萃取流程,多级萃取流程及带有洗涤系统的萃取流程等,以萃取甜菜糖份为例,分别介绍上述萃取流程。 211 单级固—液萃取流程 图1所示为一用水为萃取剂,萃取甜菜中糖份的单级固—液萃取流程。萃取时,将要处理的甜菜切碎放在萃取器内,加入一定量的水,经过一定时间后甜菜中的糖份进入水溶液。当水溶液中的糖份达到所需浓度之后,将含糖水溶液放出,重新加入水,进行第二次萃取。如此反复操作,直至甜菜中糖含量降到所需值为止。萃取结束后,将菜渣放出,加入新料,仍按上述过程操作。上述流程虽然简单,但只能在第一次萃取中得到浓溶液,后面的几次萃取中,由于甜菜中的糖份不断地减少,能被萃取出的糖份也就越来越少。为了尽可能地萃取出糖份就需要加入大量的水,并且萃取较长的时间,这显然是不经济的。为克服上述流程的缺点,故一般采用多级固—液萃取流程。 图1 单级固—液萃取流程 212 多级固—液萃取流程 多级固—液萃取流程如图2所示,图中所表示的是一个四级萃取流程。操作时先将要处置的固体物料加入各个萃取器中,萃取剂由第一级萃取器中加入,依次通过各级萃取器,与第一级的固体物料接触,浓度不断增加,从最后一级出来的萃取相浓度达到最高。当第一级萃取器中物料被萃取成份的含量达到残渣的排放要求时,将第一级自流程中切断,卸出残渣,装入新物料,并入流程中。此时,新装入物料的萃取器在流程中成为最后一级萃取器,原来的第 二级现在成为第一级,即萃取剂流动方向由原来1→2→3→4变为2→3→4→1。采用多级固—液萃取流程,可以用少量的萃取剂,达到较高的萃取率,获得浓度较高的萃取相。 图2 多级固—液萃取流程 52  2007年第11期 内蒙古石油化工 Ξ收稿日期:2007-08-15 作者简介:王春华,女,出生于1964年3月,毕业于华南理工大学机械设计与制图专业,现系兰州石化职业技术学院机械系教师,曾任机械制图、化工制图、计算机绘图等课程,职称为讲师。

中药液膜分离技术的应用及发展

2 液膜分离技术在废水处理中的应用 2.1去除重金属离子 液膜分离技术可以有效地分离并回收废水中的重金属离子。奥地利Graz工业大学的Marr等人采用乳状液液膜分离技术,对去除粘胶废水中的Zn2+、Cu2+、Cd2+、Pb2-、C产、Ni2+等重金属离子作了大量试验。表I为试验结果。 表1从粘胶废水中去除各种剧金属离子的中试结果 重金厲离子废水涼矗 /(L*h-T) 初始厳度 /(mg ? L_ 11 处理肓浓度 /(mu-L-1) 2r严3045004 Z严30500 Zn I+701500,5 Cu i+20SOOO27 3*408003 Ni沖202200360 Cd"60[40 t01 Pb叶6080. 01 Cr3*4015004 从表I中可以看出,除Ni夕卜,其他金属离子的去除率均高于99%,以Zn的去除与回收为例,与溶剂萃取、化学沉淀、离子交换等方法比较,液膜分离法最经济。分离Zn的工艺采用逆流萃取塔和静电聚结破乳装置,内包相使用 DTPA[ ( 2-乙基己基)二硫代磷酸]。回收1 0 0 k g Zn的费用为54.4美元,而市售100 kg Zn为133美元采用液膜法从废水中回收zn具有一定的经济效益。美国Syracuse大学Jongheop Yi采用陶瓷支撑膜分离Cu他们认为,充满有机螫合酸的孔状陶瓷支撑膜,作为分离稀溶液中金属离子的无机支撑膜系统.其性能优于聚合物支撑膜,具有广阔的应用前景。因为聚合物支撑膜对温度、pH敏感,易变形老化,而陶瓷支撑膜正好弥补了聚合物支撑膜的缺点。在分离Cu 2+过程中,陶瓷支撑膜制成a铝/硅片型,其中注入2-羟基-5-壬基乙酰苯。 2 .2分离废水中的有机酸、无机酸 美国科罗拉多矿业大学的Wan gC.C研究了用液膜分离法去除水溶液中的多种

实验报告:脉冲塔萃取

实验报告 课程名称: 过程工程控制甲(Ⅱ)实验 同组实验者: 指导老师: 成绩 实验名称: 脉冲塔萃取操作及体积传质系数测定 一.实验目的和要求 1、了解脉冲萃取实验装置及萃取操作。 2、观察脉冲强度(脉冲幅度或脉冲频率)变化时,萃取塔内轻、重两相流动状况,了解萃取操作的主要影响因素,研究萃取操作条件对萃取过程的影响。 3、测量每米萃取高度的传质单元数、传质单元高度和体积传质系数K YV ,关联传质单元高度与脉冲萃取过程操作变量的关系。 4、计算萃取率η。 二、实验内容和原理 萃取是分离和提纯物质的重要单元操作之一,是利用混合物中各个组分在外加溶剂中的溶解度的差异而实现组分分离的单元操作。进行液-液萃取时,两种液体在塔内作逆流流动,其中一种液体作为分散相,以液滴形式通过另一作为连续相的液体,两种液相的浓度则在设备内作微分式的连续变化,并依靠密度差在塔的两端实现两夜相间的分离。当轻相作为分散相时,相界面出现在塔的上端;反之,当重相作为分散相时,则相界面在塔的下端。 1.萃取的基本符号 名称 符号 流量单位 组成符号 原料液 F Kg/S x F 或X F 萃余相 R Kg/S x R 或X R 萃取剂 S Kg/S y s 或Y s 萃取相 E Kg/S y E 或Y E 2.萃取的物料衡算 萃取计算中各项组成可用操作线方程相关联,操作线方程的P (X R ,Y S )h 和点Q (X F ,Y E ) 装 订 线装 订 线

与装置的上下部相对应。 在第一溶剂B 与萃取剂S 完全不互溶时,萃取过程的操作线在X-Y 坐标上时直线,其方程式如下形式: R S R F S E X X Y Y X X Y Y --= -- ————————————————(1) 由上式得: ()S S X X m Y Y -=- 其中: R F S E X X Y Y m --= 单位时间内从第一溶剂中萃取出的纯物质A 的量M ,可由物料衡算确定: ()()S E R F Y Y S X X B M -=-= ——————————————(2) 3、萃取过程的质量传递 不平衡的萃取相与萃余相在塔的任一截面上接触,两相之间发生质量传递。物质A 以扩散的方式由萃余相进入萃取相,该过程的界限是达到相间平衡,相平衡的相间关系为: kX Y =* ————————————————————(3) k 为分配系数,只有在较简单体系中,k 才是常数,一般情况下均为变数。本实验已给出平衡数据,见附表。 与平衡组成的偏差程度是传质过程的推动力,可用操作线与平衡线之间的线段来表示,在装置的顶部,推动力是: S R R Y Y Y -=?* —————————————————(4) 在塔的下部是: E F F Y Y Y -=?* —————————————————(5) 传质过程的平均推动力,在操作线和平衡线为直线的条件下为: R F R F m Y Y Y Y Y ???-?=?ln ———————————————(6) 物质A 由萃余相进入萃取相的过程的传质动力学方程式为: m Y Y A K M ?= ———————————————————(7) 式中:Y K ——单位相接触面积的传质系数,()kg kg s m kg //2?;

萃取塔(转盘塔)操作及体积传质系数测定2

实验报告 课程名称: 过程工程原理实验(甲)指导老师: 叶向群 成绩:_______________ 实验名称: 萃取塔(转盘塔)操作及体积传质系数测定 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 萃取塔(转盘塔)操作及体积传质系数测定 1、实验目的: 1) 了解转盘萃取塔和脉冲萃取塔的基本结构、操作方法及萃取的工艺流程。 2) 观察转盘萃取塔转盘转速变化时或脉冲萃取塔的脉冲强度(脉冲幅度及脉冲频率)变化时,萃取 塔内轻、重两相流动状况,了解萃取操作的主要影响因素,研究萃取操作条件对萃取过程的影响。 3) 测量每米萃取高度的传质单元数、传质单元高度和体积传质系数YV K ,关联传质单位高度与脉冲 萃取过程操作变量的关系。 4) 计算萃取率 2、实验装置流程: 2.1 转盘萃取塔 主要设备是转盘萃取塔,塔体是内径为50mm 玻璃管,塔顶电机连接转轴,转轴上固定有圆盘,塔壁固定有圆环,圆环与圆盘交错布置,转盘萃取流程图见下图1 专业: 姓名: 学号: 日期:__ ___ 地点:

1.原料贮槽(苯甲酸-煤油) 2.收集槽(萃余液) 3.电机 4.控制柜 5.转盘萃取塔 6.9.转子流量计 7.萃取剂贮罐(水)8.10. 输送泵11.排出液(萃取液)管12.转速测定仪A.B.C 取样口 图1 转盘萃取实验流程图 2.2 脉冲萃取塔 主要设备是脉冲萃取塔,塔体是内径为50mm玻璃管,内装不锈钢丝网填料,脉冲萃取流程图见下图 1.原料贮槽(苯甲酸-煤油) 2.收集槽(萃余液) 3.脉冲系统 4.控制柜 5.填料(脉冲)萃取塔 6.9.转子流量计 7.萃取剂贮罐(水) 8.10 输送泵11.排出液(萃取液)管 A.B.C 取样口 图2 脉冲萃取实验流程图 3、实验内容和原理: 萃取是分离和提纯物质的重要单元操作之一,是利用混合物中各个组分在外加溶剂中的溶解度的差异而实现组分分离的单元操作。进行液-液萃取操作时,两种液体在塔内作逆流流动,其中一液体作为分散相,以液滴的形式通过另一作为连续相的液体,两种液相浓度在设备内作微分式的连续变化,并依靠密度差在塔的两端实现两液相的间的分离。当轻相作为分散相时,相界面出现在塔的上部;反之相界面出现在塔的下端。本实验以轻相为分散相,相界面出现在塔的上部。 计算微分逆流萃取塔的塔高时,主要是采取传质单元法。即以传质单元数和传质单元高度来表征,传质单元数表示过程分离程度的难易,传质单元高度表示设备传质性能的好坏。 3.1 萃取的基本符号 名称符号流量单位组成符号 原料液 F kg/s X F或x F 萃余相R kg/s X R或x R 萃取剂S kg/s Y S或y S 萃取相 E kg/s Y E或y E

萃取塔(脉冲塔)操作及体积传质系数测定

实验报告 课程名称:过程工程原理实验(甲)Ⅱ成绩:_________________ 实验名称:萃取塔(脉冲塔)操作及体积传质系数测定同组学生姓名: 一、实验目的和要求 1.了解转盘萃取塔和脉冲萃取塔的基本结构、操作方法及萃取的工艺流程。 2.观察转盘萃取塔转盘转速变化时或脉冲萃取塔的脉冲强度(脉冲幅度及脉冲频率)变化时,萃取塔内轻、重两相流动状况,了解萃取操作的主要影响因素,研究萃取操作条件对萃取过程的影响。 3.测量每米萃取高度的传质单元数、传质单元高度和体积传质系数K YV,关联传质单位高度与脉冲萃取过程操作变量的关系。 4.计算萃取率 二、实验装置 2.1 转盘萃取塔 主要设备是转盘萃取塔,塔体是内径为50mm玻璃管,塔顶电机连接转轴,转轴上固定有圆盘,塔壁固定有圆环,圆环与圆盘交错布置,转盘萃取流程图见下图1 1.原料贮槽(苯甲酸-煤油) 2.收集槽(萃余液) 3.电机 4.控制柜 5.转盘萃取塔 6.9.转子流量计 7.萃取剂贮罐(水)8.10. 输送泵11.排出液(萃取液)管12.转速测定仪A.B.C 取样口 图1 转盘萃取实验流程图 2.2 脉冲萃取塔 主要设备是脉冲萃取塔,塔体是内径为50mm玻璃管,内装不锈钢丝网填料,脉冲萃取流程图见下图2

1.原料贮槽(苯甲酸-煤油) 2.收集槽(萃余液) 3.脉冲系统 4.控制柜 5.填料(脉冲)萃取塔 6.9.转子流量计 7.萃取剂贮罐(水) 8.10 输送泵 11.排出液(萃取液)管 A.B.C 取样口 图2 脉冲萃取实验流程图 三、实验内容和原理 萃取是分离和提纯物质的重要单元操作之一,是利用混合物中各个组分在外加溶剂中的溶解度的差异而实现组分分离的单元操作。进行液-液萃取操作时,两种液体在塔内作逆流流动,其中一液体作为分散相,以液滴的形式通过另一作为连续相的液体,两种液相浓度在设备内作微分式的连续变化,并依靠密度差在塔的两端实现两液相的间的分离。当轻相作为分散相时,相界面出现在塔的上部;反之相界面出现在塔的下端。本实验以轻相为分散相,相界面出现在塔的上部。 计算微分逆流萃取塔的塔高时,主要是采取传质单元法。即以传质单元数和传质单元高度来表征,传质单元数表示过程分离程度的难易,传质单元高度表示设备传质性能的好坏。 3.1 萃取的基本符号 3.2 萃取的物料衡算

化工原理液液萃取概念题

化工原理液液萃取概念 题 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

化工原理《液-液萃取》概念题 一、单项选择题 1、单级萃取中,若增加纯溶剂S的加入量,则萃取液的浓度y A 将。 A.不变 B.减小 C.增大 D.不确定 2、单级萃取操作时,若降低操作温度,其他条件不变,则溶剂的选择性 将。 A.变差 B.变好 C.不变 D.不确定 3、选用溶剂进行萃取操作时,其必要条件为。 A.分配系数k A <1 B.萃取相含量y A ≤萃余相含量x A C.选择性系数β>1 D.分配系数k B =1 4、单级萃取中,若升高操作温度,则萃取液中溶质的浓度y A 将。 A.不变 B.减小 C.增大 D.不确定 5、对于萃取过程,若溶剂的选择性好,则溶剂的溶解度也将。 A.变大 B.变小 C.不变 D.不确定 6、当萃取过程溶剂比S/F减小时,萃取液中溶质A的浓度,所需理论级数。 A.不变,减小 B.减小,减小 C.增大,减小 D.减小,增大 7、萃取过程的能耗主要集中在。 A.萃取操作时溶剂的输送 B.萃取操作时原溶液的输送 C.萃取操作时溶剂的回收 D.萃取操作时温度的升高 8、以下说法错误的是。

A.临界混溶点位于溶解度曲线最高点 B.临界混溶点左方曲线表达式为:)(A S x x ψ= C.临界混溶点右方曲线表达式为:)(A S y y ?= D.溶解度曲线内的平衡联结线两端的表达式为:)(A A x f y = 9、一般情况下,稀释剂B 组分的分配系数k B 值 。 A.大于1 B.小于1 C.等于1 D.难以判断,都有可能 10、单级(理论)萃取中,在维持进料组成和萃取相浓度不变的条件下,若用含有 少量溶质的萃取剂代替纯溶剂所得萃余相浓度将 。 A. 增加 B.减少 C.不变 D.不一定 11、单级(理论)萃取操作中,在维持相同萃余相浓度下,用含有少量溶质的萃取 剂代替纯溶剂,则萃取相量与萃余相量之比将 。 A.增加 B.不变 C.降低 D.不定 12、单级(理论)萃取操作中,在维持相同萃余相浓度下,用含有少量溶质的萃取 剂代替纯溶剂,萃取液的浓度(指溶质)将 。 A.增加 B.不变 C.降低 D.不定 13、萃取剂加入量应使原料和萃取剂的和点M 位于 。 A.溶解度曲线之上方区 B.溶解度曲线上 C.溶解度曲线之下方区 D.座标线上 14、萃取是利用各组分间的 差异来分离液体混合物的。 A.挥发度 B.离散度 C.溶解度 D.密度 15、采用多级逆流萃取与单级萃取相比较,如果溶剂比、萃取相浓度一样,则多 级逆流萃取可使萃余相分率 。

桨叶式萃取塔实验报告汇总

实验日期 2015.6.19 成绩 同组人×××(2)、×××(3)、×××(4)、×××(5)、×××(6)闽南师范大学应用化学专业实验报告 题目:桨叶式萃取塔实验 12应化1 ××12060001××B1组 0 前言 实验目的:1、了解脉冲填料萃取塔的结构和特点;2、熟悉萃取操作的工艺流程,掌握液-液萃取装置操作方法;3、掌握脉冲填料萃取塔性能的测定方法;4、了解填料萃取塔传质效率的强化方法。[1] 实验原理:萃取是分离液体混合物的一种常用操作,其工作原理是在待分离的混合液中加入与之不互溶(或部分相溶)的萃取剂,形成共存的两个液相,并利用原溶剂与萃取剂对原混合液中各组分的溶解度的差异,使原溶液中的组分得到分离。 桨叶式旋转萃取塔也是一种外加能量的萃取设备。在塔内由环行隔板将塔分成若干段,每段的旋转轴上装设有桨叶。在萃取过程中由于桨叶的搅动,增加了分散相的分散程度,促进了相际接触表面积的更新与扩大。隔板的作用在一定程度上抑制了轴向返混,因而桨叶式旋转萃取塔的效率较高。桨叶转速若太高,也会导致两相乳化,难以分相。 本实验以水为萃取剂,从煤油中萃取苯甲酸。水相为萃取相(用字母E表示,本实验又称连续相、重相)。煤油相为萃余相(用字母R表示,本实验中又称分散相、轻相)。轻相入口处,苯甲酸在煤油中的浓度应保持在0.0015-0.0020(kg苯甲酸/kg煤油)之间为宜。轻相由塔底进入,作为分散相向上流动,经塔顶分离段分离后由塔顶流出;重相由塔顶进入作为连续相向下流动至塔底经π形管流出;轻重两相在塔内呈逆向流动。在萃取过程中,苯甲酸部分地从萃余相转移至萃取相。萃取相及萃余相进出口浓度由容量分析法测定。考虑水与煤油是完全不互溶的,且苯甲酸在两相中的浓度都很低,可认为在萃取过程中两相液体的体积流量不发生变化。 B(油) S(水) X Rt

相关主题
文本预览
相关文档 最新文档