当前位置:文档之家› 统计模式识别上机实习报告

统计模式识别上机实习报告

统计模式识别上机实习报告
统计模式识别上机实习报告

《统计模式识别》实习报告

姓名:

学号:

专业:地球信息科学与技术

教师:

2017年11月

data=load("C:\Users\siyuan\Desktop\统计模式识别实习内容\实习数据及读入程序

\data.txt");

%统计方法和函数

set1={min(data)';max(data)';sort(data)';mean(data)';median(data)';std(data)';va r(data)';sum(data)';prod(data)';cumsum(data)';cumprod(data)'};

%概率密度函数

x=(-6:0.05:6);

n1=pdf('Normal',x,0,0.5);

n2=pdf('Normal',x,0,1);

n3=pdf('Normal',x,0,2);

n4=pdf('Normal',x,0,4);

figure

plot(x,n1,'s',x,n2,'.',x,n3,'*',x,n4,'+')

%距离

x = rand(4,3);

y = rand(1,3);

[pdist(x),pdist(x,'cityblock'),pdist(x,'minkowski'),pdist(x,'mahal')];

pdist2(x,y);

[linkage(x),linkage(x,'complete'),linkage(x,'centroid'),linkage(x,'average'),li nkage(x,'ward')];

Warning: Non-monotonic cluster tree -- the centroid linkage is probably not appropriate. %简单聚类

clusterdata(x,0.9);

%谱系图

tree = linkage(x,'average');

figure()

dendrogram(tree)

%动态聚类

load fisheriris

X = meas(:,3:4);

figure;

plot(X(:,1),X(:,2),'k*','MarkerSize',5); title 'Fisher''s Iris Data';

xlabel'Petal Lengths (cm)';

ylabel'Petal Widths (cm)';

rng(1); % For reproducibility

[idx,C] = kmeans(X,3);

x1 = min(X(:,1)):0.01:max(X(:,1));

x2 = min(X(:,2)):0.01:max(X(:,2));

[x1G,x2G] = meshgrid(x1,x2);

XGrid = [x1G(:),x2G(:)]; % Defines a fine grid on the plot

idx2Region = kmeans(XGrid,3,'MaxIter',1,'Start',C);

Warning: Failed to converge in 1 iterations.

% Assigns each node in the grid to the closest centroid

figure;

gscatter(XGrid(:,1),XGrid(:,2),idx2Region,...

[0,0.75,0.75;0.75,0,0.75;0.75,0.75,0],'..');

hold on;

plot(X(:,1),X(:,2),'k*','MarkerSize',5);

title 'Fisher''s Iris Data';

xlabel'Petal Lengths (cm)';

ylabel'Petal Widths (cm)';

legend('Region 1','Region 2','Region 3','Data','Location','SouthEast'); hold off;

%贝叶斯

load fisheriris

O1 = fitcnb(meas,species);

C1 = O1.predict(meas);

cMat1 = confusionmat(species,C1)

cMat1 =

50 0 0

0 47 3

0 3 47

O2 = fitcnb(meas,species,'dist',...

{'normal','kernel','normal','kernel'}); C2 = O2.predict(meas);

cMat2 = confusionmat(species,C2)

cMat2 =

50 0 0

0 47 3

0 3 47

%参数估计

data = normrnd(10,2,100,2);

[mu,sigma,muci,sigmaci] = normfit(data) mu =

9.8687 9.9183

sigma =

1.9954 1.9729

muci =

9.4728 9.5269

10.2647 10.3098

sigmaci =

1.7520 1.7322

2.3180 2.2918

%mle

load carbig

histogram(MPG)

phat = mle(MPG,'distribution','burr') phat =

34.6447 3.7898 3.5722

人工智能与模式识别

人工智能与模式识别 摘要:信息技术的飞速发展使得人工智能的应用范围变得越来越广,而模式识别作为其中的一个重要方面,一直是人工智能研究的重要方向。在介绍人工智能和模式识别的相关知识的同时,对人工智能在模式识别中的应用进行了一定的论述。模式识别是人类的一项基本智能,着20世纪40年代计算机的出现以及50年代人工智能的兴起,模式识别技术有了长足的发展。模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。模式识别的发展潜力巨大。 关键词:模式识别;数字识别;人脸识别中图分类号; Abstract:The rapid development of information technology makes the application of artificial intelligence become more and more widely. Pattern recognition, as one of the important aspects, has always been an important direction of artificial intelligence research. In the introduction of artificial intelligence and pattern recognition related knowledge at the same time, artificial intelligence in pattern recognition applications were discussed.Pattern recognition is a basic human intelligence, the emergence of the 20th century, 40 years of computer and the rise of artificial intelligence in the 1950s, pattern recognition technology has made great progress. Pattern recognition and statistics, psychology, linguistics, computer science, biology, cybernetics and so have a relationship. It has a cross-correlation with artificial intelligence and image processing. The potential of pattern recognition is huge. Key words:pattern recognition; digital recognition; face recognition; 1引言 随着计算机应用范围不断的拓宽,我们对于计算机具有更加有效的感知“能

数值分析实验报告1

实验一误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 其中ε(1.1)和(1.221,,,a a 的输出b ”和“poly ε。 (1(2 (3)写成展 关于α solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。 实验过程: 程序: a=poly(1:20); rr=roots(a); forn=2:21 n form=1:9 ess=10^(-6-m);

ve=zeros(1,21); ve(n)=ess; r=roots(a+ve); -6-m s=max(abs(r-rr)) end end 利用符号函数:(思考题一)a=poly(1:20); y=poly2sym(a); rr=solve(y) n

很容易的得出对一个多次的代数多项式的其中某一项进行很小的扰动,对其多项式的根会有一定的扰动的,所以对于这类病态问题可以借助于MATLAB来进行问题的分析。 学号:06450210 姓名:万轩 实验二插值法

模式识别第二次上机实验报告

北京科技大学计算机与通信工程学院 模式分类第二次上机实验报告 姓名:XXXXXX 学号:00000000 班级:电信11 时间:2014-04-16

一、实验目的 1.掌握支持向量机(SVM)的原理、核函数类型选择以及核参数选择原则等; 二、实验内容 2.准备好数据,首先要把数据转换成Libsvm软件包要求的数据格式为: label index1:value1 index2:value2 ... 其中对于分类来说label为类标识,指定数据的种类;对于回归来说label为目标值。(我主要要用到回归) Index是从1开始的自然数,value是每一维的特征值。 该过程可以自己使用excel或者编写程序来完成,也可以使用网络上的FormatDataLibsvm.xls来完成。FormatDataLibsvm.xls使用说明: 先将数据按照下列格式存放(注意label放最后面): value1 value2 label value1 value2 label 然后将以上数据粘贴到FormatDataLibsvm.xls中的最左上角单元格,接着工具->宏执行行FormatDataToLibsvm宏。就可以得到libsvm要求的数据格式。将该数据存放到文本文件中进行下一步的处理。 3.对数据进行归一化。 该过程要用到libsvm软件包中的svm-scale.exe Svm-scale用法: 用法:svmscale [-l lower] [-u upper] [-y y_lower y_upper] [-s save_filename] [-r restore_filename] filename (缺省值:lower = -1,upper = 1,没有对y进行缩放)其中,-l:数据下限标记;lower:缩放后数据下限;-u:数据上限标记;upper:缩放后数据上限;-y:是否对目标值同时进行缩放;y_lower为下限值,y_upper为上限值;(回归需要对目标进行缩放,因此该参数可以设定为–y -1 1 )-s save_filename:表示将缩放的规则保存为文件save_filename;-r restore_filename:表示将缩放规则文件restore_filename载入后按此缩放;filename:待缩放的数据文件(要求满足前面所述的格式)。缩放规则文件可以用文本浏览器打开,看到其格式为: y lower upper min max x lower upper index1 min1 max1 index2 min2 max2 其中的lower 与upper 与使用时所设置的lower 与upper 含义相同;index 表示特征序号;min 转换前该特征的最小值;max 转换前该特征的最大值。数据集的缩放结果在此情况下通过DOS窗口输出,当然也可以通过DOS的文件重定向符号“>”将结果另存为指定的文件。该文件中的参数可用于最后面对目标值的反归一化。反归一化的公式为: (Value-lower)*(max-min)/(upper - lower)+lower 其中value为归一化后的值,其他参数与前面介绍的相同。 建议将训练数据集与测试数据集放在同一个文本文件中一起归一化,然后再将归一化结果分成训练集和测试集。 4.训练数据,生成模型。 用法:svmtrain [options] training_set_file [model_file] 其中,options(操作参数):可用的选项即表示的涵义如下所示-s svm类型:设置SVM 类型,默

模式识别期末试题

一、填空与选择填空(本题答案写在此试卷上,30分) 1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择 和模式分类。 2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。 3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。 (1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法 4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。 (1)距离测度(2)模糊测度(3)相似测度(4)匹配测度 5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。 (1)(2) (3) (4) 6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。 (1)二维空间(2)一维空间(3)N-1维空间 7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。 (1)感知器算法(2)H-K算法(3)积累位势函数法 8、下列四元组中满足文法定义的有(1)(2)(4)。 (1)({A, B}, {0, 1}, {A→01, A→ 0A1 , A→ 1A0 , B→BA , B→ 0}, A) (2)({A}, {0, 1}, {A→0, A→ 0A}, A) (3)({S}, {a, b}, {S → 00S, S → 11S, S → 00, S → 11}, S) (4)({A}, {0, 1}, {A→01, A→ 0A1, A→ 1A0}, A) 9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的 类别数目))。 10、欧式距离具有( 1、2 );马式距离具有(1、2、3、4 )。 (1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性 11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的 正(负)半空间中;绝对值正比于样本点到判别界面的距离。)。 12、感知器算法1。 (1)只适用于线性可分的情况;(2)线性可分、不可分都适用。

模式识别实验报告

模式识别实验报告

————————————————————————————————作者:————————————————————————————————日期:

实验报告 实验课程名称:模式识别 姓名:王宇班级: 20110813 学号: 2011081325 实验名称规范程度原理叙述实验过程实验结果实验成绩 图像的贝叶斯分类 K均值聚类算法 神经网络模式识别 平均成绩 折合成绩 注:1、每个实验中各项成绩按照5分制评定,实验成绩为各项总和 2、平均成绩取各项实验平均成绩 3、折合成绩按照教学大纲要求的百分比进行折合 2014年 6月

实验一、 图像的贝叶斯分类 一、实验目的 将模式识别方法与图像处理技术相结合,掌握利用最小错分概率贝叶斯分类器进行图像分类的基本方法,通过实验加深对基本概念的理解。 二、实验仪器设备及软件 HP D538、MATLAB 三、实验原理 概念: 阈值化分割算法是计算机视觉中的常用算法,对灰度图象的阈值分割就是先确定一个处于图像灰度取值范围内的灰度阈值,然后将图像中每个像素的灰度值与这个阈值相比较。并根据比较的结果将对应的像素划分为两类,灰度值大于阈值的像素划分为一类,小于阈值的划分为另一类,等于阈值的可任意划分到两类中的任何一类。 最常用的模型可描述如下:假设图像由具有单峰灰度分布的目标和背景组成,处于目标和背景内部相邻像素间的灰度值是高度相关的,但处于目标和背景交界处两边的像素灰度值有较大差别,此时,图像的灰度直方图基本上可看作是由分别对应于目标和背景的两个单峰直方图混合构成。而且这两个分布应大小接近,且均值足够远,方差足够小,这种情况下直方图呈现较明显的双峰。类似地,如果图像中包含多个单峰灰度目标,则直方图可能呈现较明显的多峰。 上述图像模型只是理想情况,有时图像中目标和背景的灰度值有部分交错。这时如用全局阈值进行分割必然会产生一定的误差。分割误差包括将目标分为背景和将背景分为目标两大类。实际应用中应尽量减小错误分割的概率,常用的一种方法为选取最优阈值。这里所谓的最优阈值,就是指能使误分割概率最小的分割阈值。图像的直方图可以看成是对灰度值概率分布密度函数的一种近似。如一幅图像中只包含目标和背景两类灰度区域,那么直方图所代表的灰度值概率密度函数可以表示为目标和背景两类灰度值概率密度函数的加权和。如果概率密度函数形式已知,就有可能计算出使目标和背景两类误分割概率最小的最优阈值。 假设目标与背景两类像素值均服从正态分布且混有加性高斯噪声,上述分类问题可以使用模式识别中的最小错分概率贝叶斯分类器来解决。以1p 与2p 分别表示目标与背景的灰度分布概率密度函数,1P 与2P 分别表示两类的先验概率,则图像的混合概率密度函数可用下式表示为

数值分析上机实验报告

数值分析上机实验报告

《数值分析》上机实验报告 1.用Newton 法求方程 X 7-X 4+14=0 在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。 1.1 理论依据: 设函数在有限区间[a ,b]上二阶导数存在,且满足条件 {}α?上的惟一解在区间平方收敛于方程所生的迭代序列 迭代过程由则对任意初始近似值达到的一个中使是其中上不变号 在区间],[0)(3,2,1,0,) (') ()(],,[x |))(),((|,|,)(||)(|.4;0)(.3],[)(.20 )()(.110......b a x f x k x f x f x x x Newton b a b f a f mir b a c x f a b c f x f b a x f b f x f k k k k k k ==- ==∈≤-≠>+ 令 )9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3 2 2 5 333647>?''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f 故以1.9为起点 ?? ?? ? ='- =+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。当前后两个的差<=ε时,就认为求出了近似的根。本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。

1.2 C语言程序原代码: #include #include main() {double x2,f,f1; double x1=1.9; //取初值为1.9 do {x2=x1; f=pow(x2,7)-28*pow(x2,4)+14; f1=7*pow(x2,6)-4*28*pow(x2,3); x1=x2-f/f1;} while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数printf("计算结果:x=%f\n",x1);} 1.3 运行结果: 1.4 MATLAB上机程序 function y=Newton(f,df,x0,eps,M) d=0; for k=1:M if feval(df,x0)==0 d=2;break else x1=x0-feval(f,x0)/feval(df,x0); end e=abs(x1-x0); x0=x1; if e<=eps&&abs(feval(f,x1))<=eps d=1;break end end

2014模式识别练习题

2013模式识别练习题 一. 填空题 1、模式识别系统的基本构成单元包括:模式采集、特征的选择和提取和模式分类。 2、统计模式识别中描述模式的方法一般使用特征矢量;句法模式识别中模式描述方法一般有串、树、 网。 3、影响层次聚类算法结果的主要因素有计算模式距离的测度、聚类准则、类间距离阈值、预定的类别数目。 4、线性判别函数的正负和数值大小的几何意义是正负表示样本点位于判别界面法向量指向的正负半空间中, 绝对值正比于样本点与判别界面的距离。 5、感知器算法1 ,H-K算法 2 。 (1)只适用于线性可分的情况;(2)线性可分、不可分都适用。 6、在统计模式分类问题中,聂曼-皮尔逊判决准则主要用于某一种判别错误较另一种判别错误更为重要的情 况;最小最大判别准则主要用于先验概率未知的情况。 7、 。一般在可 8、散度J ij越大,说明ωi类模式与ωj类模式的分布差别越大; 当ωi类模式与ωj类模式的分布相同时,J ij= 0。 二、选择题 1、影响聚类算法结果的主要因素有(B、C、D )。 A.已知类别的样本质量; B.分类准则; C.特征选取; D.模式相似性测度 2、模式识别中,马式距离较之于欧式距离的优点是(C、D)。 A.平移不变性; B.旋转不变性;C尺度不变性;D.考虑了模式的分布 3、影响基本K-均值算法的主要因素有(ABD)。 A.样本输入顺序; B.模式相似性测度; C.聚类准则; D.初始类中心的选取 4、位势函数法的积累势函数K(x)的作用相当于Bayes判决中的(B D)。 A. 先验概率; B. 后验概率; C. 类概率密度; D. 类概率密度与先验概率的乘积 5、在统计模式分类问题中,当先验概率未知时,可以使用(BD)。 A. 最小损失准则; B. 最小最大损失准则; C. 最小误判概率准则; D. N-P判决 6、散度J D是根据(C )构造的可分性判据。 A. 先验概率; B. 后验概率; C. 类概率密度; D. 信息熵; E. 几何距离 7、似然函数的概型已知且为单峰,则可用(ABCDE)估计该似然函数。 A. 矩估计; B. 最大似然估计; C. Bayes估计; D. Bayes学习; E. Parzen窗法 8、KN近邻元法较之Parzen窗法的优点是(B)。 A. 所需样本数较少; B. 稳定性较好; C. 分辨率较高; D. 连续性较好 9、从分类的角度讲,用DKLT做特征提取主要利用了DKLT的性质:(A C )。 A.变换产生的新分量正交或不相关; B.以部分新的分量表示原矢量均方误差最小; C.使变换后的矢量能量 更集中 10、如果以特征向量的相关系数作为模式相似性测度,则影响聚类算法结果的主要因素有(BC)。 A. 已知类别样本质量; B. 分类准则; C. 特征选取; D. 量纲 11、欧式距离具有(A B );马式距离具有(A B C D )。 A. 平移不变性; B. 旋转不变性; C. 尺度缩放不变性; D. 不受量纲影响的特性 12、聚类分析算法属于(A );判别域代数界面方程法属于(C )。 A.无监督分类; B.有监督分类; C.统计模式识别方法; D.句法模式识别方法 13、若描述模式的特征量为0-1二值特征量,则一般采用(D)进行相似性度量。 A. 距离测度; B. 模糊测度; C. 相似测度; D. 匹配测度 14、下列函数可以作为聚类分析中的准则函数的有(ACD)。

数值分析拉格朗日插值法上机实验报告

课题一:拉格朗日插值法 1.实验目的 1.学习和掌握拉格朗日插值多项式。 2.运用拉格朗日插值多项式进行计算。 2.实验过程 作出插值点(1.00,0.00),(-1.00,-3.00),(2.00,4.00)二、算法步骤 已知:某些点的坐标以及点数。 输入:条件点数以及这些点的坐标。 输出:根据给定的点求出其对应的拉格朗日插值多项式的值。 3.程序流程: (1)输入已知点的个数; (2)分别输入已知点的X坐标; (3)分别输入已知点的Y坐标; 程序如下: #include #include #include float lagrange(float *x,float *y,float xx,int n) /*拉格朗日

插值算法*/ { int i,j; float *a,yy=0.0; /*a作为临时变量,记录拉格朗日插值多项*/ a=(float*)malloc(n*sizeof(float)); for(i=0;i<=n-1;i++) { a[i]=y[i]; for(j=0;j<=n-1;j++) if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]); yy+=a[i]; } free(a); return yy; } int main() { int i; int n; float x[20],y[20],xx,yy; printf("Input n:");

scanf("%d",&n); if(n<=0) { printf("Error! The value of n must in (0,20)."); getch();return 1; } for(i=0;i<=n-1;i++) { printf("x[%d]:",i); scanf("%f",&x[i]); } printf("\n"); for(i=0;i<=n-1;i++) { printf("y[%d]:",i);scanf("%f",&y[i]); } printf("\n"); printf("Input xx:"); scanf("%f",&xx); yy=lagrange(x,y,xx,n); printf("x=%f,y=%f\n",xx,yy); getch(); } 举例如下:已知当x=1,-1,2时f(x)=0,-3,4,求f(1.5)的值。

中科院-模式识别考题总结(详细答案)

1.简述模式的概念及其直观特性,模式识别的分类,有哪几种方法。(6’) 答(1):什么是模式?广义地说,存在于时间和空间中可观察的物体,如果我们可以区别它们是否相同或是否相似,都可以称之为模式。 模式所指的不是事物本身,而是从事物获得的信息,因此,模式往往表现为具有时间和空间分布的信息。 模式的直观特性:可观察性;可区分性;相似性。 答(2):模式识别的分类: 假说的两种获得方法(模式识别进行学习的两种方法): ●监督学习、概念驱动或归纳假说; ●非监督学习、数据驱动或演绎假说。 模式分类的主要方法: ●数据聚类:用某种相似性度量的方法将原始数据组织成有意义的和有用的各种数据 集。是一种非监督学习的方法,解决方案是数据驱动的。 ●统计分类:基于概率统计模型得到各类别的特征向量的分布,以取得分类的方法。 特征向量分布的获得是基于一个类别已知的训练样本集。是一种监督分类的方法, 分类器是概念驱动的。 ●结构模式识别:该方法通过考虑识别对象的各部分之间的联系来达到识别分类的目 的。(句法模式识别) ●神经网络:由一系列互相联系的、相同的单元(神经元)组成。相互间的联系可以 在不同的神经元之间传递增强或抑制信号。增强或抑制是通过调整神经元相互间联 系的权重系数来(weight)实现。神经网络可以实现监督和非监督学习条件下的分 类。 2.什么是神经网络?有什么主要特点?选择神经网络模式应该考虑什么因素? (8’) 答(1):所谓人工神经网络就是基于模仿生物大脑的结构和功能而构成的一种信息处 理系统(计算机)。由于我们建立的信息处理系统实际上是模仿生理神经网络,因此称它为人工神经网络。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。 人工神经网络的两种操作过程:训练学习、正常操作(回忆操作)。 答(2):人工神经网络的特点: ●固有的并行结构和并行处理; ●知识的分布存储; ●有较强的容错性; ●有一定的自适应性; 人工神经网络的局限性: ●人工神经网络不适于高精度的计算; ●人工神经网络不适于做类似顺序计数的工作; ●人工神经网络的学习和训练往往是一个艰难的过程; ●人工神经网络必须克服时间域顺序处理方面的困难; ●硬件限制; ●正确的训练数据的收集。 答(3):选取人工神经网络模型,要基于应用的要求和人工神经网络模型的能力间的 匹配,主要考虑因素包括:

数值分析实验报告1

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b =

的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots + 上述简单的Matlab 程序便得到()的全部根,程序中的“ess ”即是()中的ε。 实验要求: (1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。 如果扰动项的系数ε很小,我们自然感觉()和()的解应当相差很小。计算中你有什么出乎意料的发现表明有些解关于如此的扰动敏感性如何 (2)将方程()中的扰动项改成18x ε或其它形式,实验中又有怎样的现象 出现 (3)(选作部分)请从理论上分析产生这一问题的根源。注意我们可以将 方程()写成展开的形式, ) 3.1(0 ),(1920=+-= x x x p αα 同时将方程的解x 看成是系数α的函数,考察方程的某个解关于α的扰动是否敏感,与研究它关于α的导数的大小有何关系为什么你发现了什么现象,哪些根关于α的变化更敏感 思考题一:(上述实验的改进) 在上述实验中我们会发现用roots 函数求解多项式方程的精度不高,为此你可以考虑用符号函数solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。

图像模式识别的方法介绍

2.1图像模式识别的方法 图像模式识别的方法很多,从图像模式识别提取的特征对象来看,图像识别方法可分为以下几种:基于形状特征的识别技术、基于色彩特征的识别技术以及基于纹理特征的识别技术。其中,基于形状特征的识别方法,其关键是找到图像中对象形状及对此进行描述,形成可视特征矢量,以完成不同图像的分类,常用来表示形状的变量有形状的周长、面积、圆形度、离心率等。基于色彩特征的识别技术主要针对彩色图像,通过色彩直方图具有的简单且随图像的大小、旋转变换不敏感等特点进行分类识别。基于纹理特征的识别方法是通过对图像中非常具有结构规律的特征加以分析或者则是对图像中的色彩强度的分布信息进行统计来完成。 从模式特征选择及判别决策方法的不同可将图像模式识别方法大致归纳为两类:统计模式(决策理论)识别方法和句法(结构)模式识别方法。此外,近些年随着对模式识别技术研究的进一步深入,模糊模式识别方法和神经网络模式识别方法也开始得到广泛的应用。在此将这四种方法进行一下说明。 2.1.1句法模式识别 对于较复杂的模式,如采用统计模式识别的方法,所面临的一个困难就是特征提取的问题,它所要求的特征量十分巨大,要把某一个复杂模式准确分类很困难,从而很自然地就想到这样的一种设计,即努力地把一个复杂模式分化为若干

较简单子模式的组合,而子模式又分为若干基元,通过对基元的识别,进而识别子模式,最终识别该复杂模式。正如英文句子由一些短语,短语又由单词,单词又由字母构成一样。用一组模式基元和它们的组成来描述模式的结构的语言,称为模式描述语言。支配基元组成模式的规则称为文法。当每个基元被识别后,利用句法分析就可以作出整个的模式识别。即以这个句子是否符合某特定文法,以判别它是否属于某一类别。这就是句法模式识别的基本思想。 句法模式识别系统主要由预处理、基元提取、句法分析和文法推断等几部分组成。由预处理分割的模式,经基元提取形成描述模式的基元串(即字符串)。句法分析根据文法推理所推断的文法,判决有序字符串所描述的模式类别,得到判决结果。问题在于句法分析所依据的文法。不同的模式类对应着不同的文法,描述不同的目标。为了得到于模式类相适应的文法,类似于统计模式识别的训练过程,必须事先采集足够多的训练模式样本,经基元提取,把相应的文法推断出来。实际应用还有一定的困难。 2.1.2统计模式识别 统计模式识别是目前最成熟也是应用最广泛的方法,它主要利用贝叶斯决策规则解决最优分类器问题。统计决策理论的基本思想就是在不同的模式类中建立一个决策边界,利用决策函数把一个给定的模式归入相应的模式类中。统计模式识别的基本模型如图2,该模型主要包括两种操作模型:训练和分类,其中训练主要利用己有样本完成对决策边界的划分,并采取了一定的学习机制以保证基于样本的划分是最优的;而分类主要对输入的模式利用其特征和训练得来的决策函数而把模式划分到相应模式类中。 统计模式识别方法以数学上的决策理论为基础建立统计模式识别模型。其基本模型是:对被研究图像进行大量统计分析,找出规律性的认识,并选取出反映图像本质的特征进行分类识别。统计模式识别系统可分为两种运行模式:训练和分类。训练模式中,预处理模块负责将感兴趣的特征从背景中分割出来、去除噪声以及进行其它操作;特征选取模块主要负责找到合适的特征来表示输入模式;分类器负责训练分割特征空间。在分类模式中,被训练好的分类器将输入模式根据测量的特征分配到某个指定的类。统计模式识别组成如图2所示。

《模式识别》实验报告

《模式识别》实验报告 一、数据生成与绘图实验 1.高斯发生器。用均值为m,协方差矩阵为S 的高斯分布生成N个l 维向量。 设置均值 T m=-1,0 ?? ??,协方差为[1,1/2;1/2,1]; 代码: m=[-1;0]; S=[1,1/2;1/2,1]; mvnrnd(m,S,8) 结果显示: ans = -0.4623 3.3678 0.8339 3.3153 -3.2588 -2.2985 -0.1378 3.0594 -0.6812 0.7876 -2.3077 -0.7085 -1.4336 0.4022 -0.6574 -0.0062 2.高斯函数计算。编写一个计算已知向量x的高斯分布(m, s)值的Matlab函数。 均值与协方差与第一题相同,因此代码如下: x=[1;1]; z=1/((2*pi)^0.5*det(S)^0.5)*exp(-0.5*(x-m)'*inv(S)*(x-m)) 显示结果: z = 0.0623 3.由高斯分布类生成数据集。编写一个Matlab 函数,生成N 个l维向量数据集,它们是基于c个本体的高斯分布(mi , si ),对应先验概率Pi ,i= 1,……,c。 M文件如下: function [X,Y] = generate_gauss_classes(m,S,P,N) [r,c]=size(m); X=[]; Y=[]; for j=1:c t=mvnrnd(m(:,j),S(:,:,j),fix(P(j)*N)); X=[X t]; Y=[Y ones(1,fix(P(j)*N))*j]; end end

调用指令如下: m1=[1;1]; m2=[12;8]; m3=[16;1]; S1=[4,0;0,4]; S2=[4,0;0,4]; S3=[4,0;0,4]; m=[m1,m2,m3]; S(:,:,1)=S1; S(:,:,2)=S2; S(:,:,3)=S3; P=[1/3,1/3,1/3]; N=10; [X,Y] = generate_gauss_classes(m,S,P,N) 二、贝叶斯决策上机实验 1.(a)由均值向量m1=[1;1],m2=[7;7],m3=[15;1],方差矩阵S 的正态分布形成三个等(先验)概率的类,再基于这三个类,生成并绘制一个N=1000 的二维向量的数据集。 (b)当类的先验概率定义为向量P =[0.6,0.3,0.1],重复(a)。 (c)仔细分析每个类向量形成的聚类的形状、向量数量的特点及分布参数的影响。 M文件代码如下: function plotData(P) m1=[1;1]; S1=[12,0;0,1]; m2=[7;7]; S2=[8,3;3,2]; m3=[15;1]; S3=[2,0;0,2]; N=1000; r1=mvnrnd(m1,S1,fix(P(1)*N)); r2=mvnrnd(m2,S2,fix(P(2)*N)); r3=mvnrnd(m3,S3,fix(P(3)*N)); figure(1); plot(r1(:,1),r1(:,2),'r.'); hold on; plot(r2(:,1),r2(:,2),'g.'); hold on; plot(r3(:,1),r3(:,2),'b.'); end (a)调用指令: P=[1/3,1/3,1/3];

数值分析实验报告模板

数值分析实验报告模板 篇一:数值分析实验报告(一)(完整) 数值分析实验报告 1 2 3 4 5 篇二:数值分析实验报告 实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。利用二分法求解给定非线性方程的根,在给定的范围内,假设f(x,y)在[a,b]上连续,f(a)xf(b) 直接影响迭代的次数甚至迭代的收敛与发散。即若x0 偏离所求根较远,Newton法可能发散的结论。并且本实验中还利用利用改进的Newton法求解同样的方程,且将结果与Newton法的结果比较分析。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。掌握二分法的原理,验证二分法,在选对有根区间的前提下,必是收

敛,但精度不够。熟悉Matlab语言编程,学习编程要点。体会Newton使用时的优点,和局部收敛性,而在初值选取不当时,会发散。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b) Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式xk?1?xk?f(xk) f'(xk) 产生逼近解x*的迭代数列{xk},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 xk?1?xk?rf(xk) 'f(xk) 其中r为要求的方程的根的重数,这就是改进的Newton 法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x);

模式识别实验报告(一二)

信息与通信工程学院 模式识别实验报告 班级: 姓名: 学号: 日期:2011年12月

实验一、Bayes 分类器设计 一、实验目的: 1.对模式识别有一个初步的理解 2.能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识 3.理解二类分类器的设计原理 二、实验条件: matlab 软件 三、实验原理: 最小风险贝叶斯决策可按下列步骤进行: 1)在已知 ) (i P ω, ) (i X P ω,i=1,…,c 及给出待识别的X 的情况下,根据贝叶斯公式计 算出后验概率: ∑== c j i i i i i P X P P X P X P 1 ) ()() ()()(ωωωωω j=1,…,x 2)利用计算出的后验概率及决策表,按下面的公式计算出采取i a ,i=1,…,a 的条件风险 ∑== c j j j i i X P a X a R 1 )(),()(ωω λ,i=1,2,…,a 3)对(2)中得到的a 个条件风险值) (X a R i ,i=1,…,a 进行比较,找出使其条件风险最小的 决策k a ,即()() 1,min k i i a R a x R a x == 则 k a 就是最小风险贝叶斯决策。 四、实验内容 假定某个局部区域细胞识别中正常(1ω)和非正常(2ω)两类先验概率分别为 正常状态:P (1ω)=; 异常状态:P (2ω)=。 现有一系列待观察的细胞,其观察值为x : 已知先验概率是的曲线如下图:

)|(1ωx p )|(2ωx p 类条件概率分布正态分布分别为(-2,)(2,4)试对观察的结果 进行分类。 五、实验步骤: 1.用matlab 完成分类器的设计,说明文字程序相应语句,子程序有调用过程。 2.根据例子画出后验概率的分布曲线以及分类的结果示意图。 3.最小风险贝叶斯决策,决策表如下: 结果,并比较两个结果。 六、实验代码 1.最小错误率贝叶斯决策 x=[ ] pw1=; pw2=; e1=-2; a1=; e2=2;a2=2; m=numel(x); %得到待测细胞个数 pw1_x=zeros(1,m); %存放对w1的后验概率矩阵 pw2_x=zeros(1,m); %存放对w2的后验概率矩阵

模式识别方法简述

XXX大学 课程设计报告书 课题名称模式识别 姓名 学号 院、系、部 专业 指导教师 xxxx年 xx 月 xx日

模式识别方法简述 摘要:模式识别(Pattern Recognition)是指对表征事物或现象的各种形式的( 数值的、文字的和逻辑关系的) 信息进行处理和分析, 以对事物或现象进行描述、辨认、分类和解释的过程, 是信息科学和人工智能的重要组成部分。模式识别研究主要集中在两方面, 一是研究生物体( 包括人) 是如何感知对象的,属于认识科学的范畴, 二是在给定的任务下, 如何用计算机实现模式识别的理论和方法。前者是生理学家、心理学家、生物学家和神经生理学家的研究内容, 后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力, 已经取得了系统的研究成果。 关键词:模式识别; 模式识别方法; 统计模式识别; 模板匹配; 神经网络模式识别 模式识别(Pattern Recognition)是人类的一项基本智能,在日常生活中,人们经常在进行“模式识别”。随着2 0 世纪4 0 年代计算机的出现以及5 0 年代人工智能的兴起,人们当然也希望能用计算机来代替或扩展人类的部分脑力劳动。(计算机)模式识别在2 0 世纪6 0 年代初迅速发展并成为一门新学科。 模式识别研究主要集中在两方面, 一是研究生物体( 包括人) 是如何感知对象的,属于认识科学的范畴, 二是在给定的任务下, 如何用计算机实现模式识别的理论和方法。前者是生理学家、心理学家、生物学家和神经生理学家的研究内容, 后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力, 已经取得了系统的研究成果。模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。例如自适应或自组织的模式识别系统包含了人工智能的学习机制;人工智能研究的景物理解、自然语言理解也包含模式识别问题。又如模式识别中的预处理和特征抽取环节应用图像处理的技术;图像处理中的图像分析也应用模式识别的技术。 模式识别是一种借助计算机对信息进行处理、判别的分类过程。判决分类在

(完整版)哈工大-数值分析上机实验报告

实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b)<0,且f(x)在[a,b]内仅有一个实根x*,取区间中点c,若,则c恰为其根,否则根据f(a)f(c)<0是否成立判断根在区间[a,c]和[c,b]中的哪一个,从而得出新区间,仍称为[a,b]。重复运行计算,直至满足精度为止。这就是二分法的计算思想。

Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式 产生逼近解x*的迭代数列{x k},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 其中r为要求的方程的根的重数,这就是改进的Newton法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x); y=-x*x-sin(x); 写成如上形式即可,下面给出主程序。 二分法源程序: clear %%%给定求解区间 b=1.5; a=0;

%%%误差 R=1; k=0;%迭代次数初值 while (R>5e-6) ; c=(a+b)/2; if f12(a)*f12(c)>0; a=c; else b=c; end R=b-a;%求出误差 k=k+1; end x=c%给出解 Newton法及改进的Newton法源程序:clear %%%% 输入函数 f=input('请输入需要求解函数>>','s') %%%求解f(x)的导数 df=diff(f);

模式识别及其在图像处理中的应用

武汉理工大学 模式识别及其在图像处理中的应用 学院(系):自动化学院 课程名称:模式识别原理 专业班级:控制科学与工程1603班 任课教师:张素文 学生姓名:王红刚 2017年1月3日

模式识别及其在图像处理中的应用 摘要:随着计算机和人工智能技术的发展,模式识别在图像处理中的应用日益广泛。综述了模式识别在图像处理中特征提取、主要的识别方法(统计决策法、句法识别、模糊识别、神经网络)及其存在的问题, 并且对近年来模式识别的新进展———支持向量机与仿生模式识别做了分析和总结, 最后讨论了模式识别亟待解决的问题并对其发展进行了展望。 关键词:模式识别;图像处理;特征提取;识别方法 Pattern Recognition and Its Application in Image Processing Abstract:With the development of computer and artificial intelli-gence , pattern recognition is w idely used in the image processing in-creasingly .T he feature extraction and the main methods of pattern recognition in the image processing , w hich include statistical deci-sion, structural method , fuzzy method , artificial neural netw ork aresummarized.T he support vector and bionic pattern recognition w hich are the new developments of the pattern recognition are also analyzed .At last, the problems to be solved and development trends are discussed. Key words:pattern recognition ;image processing ;feature extrac-tion;recognition methods

相关主题
文本预览
相关文档 最新文档