当前位置:文档之家› 哈夫曼编码算法实现完整版讲课讲稿

哈夫曼编码算法实现完整版讲课讲稿

哈夫曼编码算法实现完整版讲课讲稿
哈夫曼编码算法实现完整版讲课讲稿

哈夫曼编码算法实现

完整版

实验三树的应用

一.实验题目:

树的应用——哈夫曼编码

二.实验内容:

利用哈夫曼编码进行通信可以大大提高信道的利用率,缩短信息传输的时间,降低传输成本。根据哈夫曼编码的原理,编写一个程序,在用户输入结点权值的基础上求哈夫曼编码。

要求:从键盘输入若干字符及每个字符出现的频率,将字符出现的频率作为结点的权值,建立哈夫曼树,然后对各个字符进行哈夫曼编码,最后打印输出字符及对应的哈夫曼编码。

三、程序源代码:

#include

#include

#include

#include

typedef struct{

char data;

int weight;

int parent,lchild,rchild;

}HTNode,*HuffmanTree;

typedef char * * HuffmanCode;

void Select(HuffmanTree &HT,int n,int m)

{HuffmanTree p=HT;

int tmp;

for(int j=n+1;j<=m;j++)

{int tag1,tag2,s1,s2;

tag1=tag2=32767;

for(int x=1;x<=j-1;x++)

{ if(p[x].parent==0&&p[x].weight

{ tag1=p[x].weight;s1=x;}

}

for(int y=1;y<=j-1;y++)

{ if(p[y].parent==0&&y!=s1&&p[y].weight

{ tag2=p[y].weight;s2=y;}

}

if(s1>s2) //将选出的两个节点中的序号较小的始终赋给s1 { tmp=s1; s1=s2; s2=tmp;}

p[s1].parent=j;

p[s2].parent=j;

p[j].lchild=s1;

p[j].rchild=s2;

p[j].weight=p[s1].weight+p[s2].weight;

}

}

void HuffmanCoding(HuffmanTree &HT,int n,char *w1,int*w2) {

int m=2*n-1;

if(n<=1) return;

HT=(HuffmanTree)malloc((m+1)*sizeof(HTNode));

HuffmanTree p=HT;

for(int i=1;i<=n;i++)

{ p[i].data=w1[i-1];

p[i].weight=w2[i];

p[i].parent=p[i].lchild=p[i].rchild=0;

}

for(;i<=m;i++)

{ p[i].weight=p[i].parent=p[i].lchild=p[i].rchild=0; }

Select(HT,n,m);

ofstream outfile; //生成hfmTree文件

outfile.open("hfmTree.txt",ios::out);

for (i=1;i<=m;i++)

{outfile<

}

outfile.close();

cout<<"初始化结果已保存在hfmTree文件中\n";

}

void ToBeTree() //将正文写入文件ToBeTree中

{

ofstream outfile;

outfile.open("ToBeTree.txt",ios::out);

outfile<<"THIS PROGRAM IS MYFAVORITE";

outfile.close();

}

void Encoding(HuffmanTree &HT,int n) //编码

{

HuffmanCode HC;

HC=(HuffmanCode)malloc((n+1)*sizeof(char *));

char *cd;

cd=(char *)malloc(n*sizeof(char));

cd[n-1]='\0';

for(int k=1;k<=n;k++)

{ int start=n-1;

for(int c=k,f=HT[k].parent;f!=0;c=f,f=HT[f].parent) { if(HT[f].lchild==c) cd[--start]='0';

else cd[--start]='1';

}

HC[k]=(char *)malloc((n-start)*sizeof(char));

strcpy(HC[k],&cd[start]);

}

cout<<"输出哈夫曼编码:"<

for(int h=1;h<=n;h++) //输出编码

{ cout<

cout<

cout<<" ";

if (h%8==0) cout<

}

cout<

ToBeTree();

//读取TOBETREE文件里的正文,并进行编码

fstream infile;

infile.open("ToBeTree.txt",ios::in);

char s[80];

while(!infile.eof())

{infile.getline(s,sizeof(s));}

infile.close();

fstream outfile;

outfile.open("CodeFile.txt",ios::out);

int count=0;

for (h=0;s[h]!='\0';h++)

{ for(k=1;k<=n;k++)

if (s[h]==HT[k].data)

{ cout<

cout<<" ";

count++;

outfile<

break;

}

if (count%9==0) cout<

}

outfile.close();

cout<<"\n编码结果已保存在文件CodeFile中.";

cout<

}

void Decoding(HuffmanTree &HT,int n) //译码

{

int f=2*n-1;

fstream infile;

infile.open("CodeFile.txt",ios::in);

char s[1000];

while(!infile.eof())

{infile.getline(s,sizeof(s));}

infile.close();

int i=0;

int j=0;

fstream outfile;

outfile.open("TextFile.txt",ios::out);

while(s[i]!='\0')

{ f=2*n-1;

while(HT[f].lchild!=0)//以f对应的节点的左孩子的值==0作为结束

{if (s[j]=='0') f=HT[f].lchild;

else f=HT[f].rchild;

j++;

}

i=j;

cout<

outfile<

}

outfile.close();

cout<<"\n译码结果已保存在文件TextFile中.";

cout<

}

数据结构哈夫曼编码译码器课程设计报告

JAVA语言实验报告 学院计算机工程学院班级计算1013 姓名佐伊伦学号 201081xxxx 成绩指导老师 xxxx 2012年09月03日

目录 目录 (1) 1 课程设计的目的和意义 (2) 2 需求分析 (3) 3 系统(项目)设计 (5) ①设计思路及方案 (5) ②模块的设计及介绍 (5) ③主要模块程序流程图 (8) 4 系统实现 (11) ①主调函数 (12) ②建立HuffmanTree (12) ③生成Huffman编码并写入文件 (15) ④电文译码 (16) 5 系统调试 (17) 参考文献 (21) 附录源程序 (22)

1 课程设计的目的和意义 在当今信息爆炸时代,如何采用有效的数据压缩技术来节省数据文件的存储空间和计算机网络的传送时间已越来越引起人们的重视。哈夫曼编码正是一种应用广泛且非常有效的数据压缩技术。 哈夫曼编码的应用很广泛,利用哈夫曼树求得的用于通信的二进制编码称为哈夫曼编码。树中从根到每个叶子都有一条路径,对路径上的各分支约定:指向左子树的分支表示“0”码,指向右子树的分支表示“1”码,取每条路径上的“0”或“1”的序列作为和各个对应的字符的编码,这就是哈夫曼编码。 通常我们把数据压缩的过程称为编码,解压缩的过程称为解码。电报通信是传递文字的二进制码形式的字符串。但在信息传递时,总希望总长度尽可能最短,即采用最短码。 作为信息管理专业的学生,我们应该很好的掌握这门技术。在课堂上,我们能过学到许多的理论知识,但我们很少有过自己动手实践的机会!课程设计就是为解决这个问题提供了一个平台。 在课程设计过程中,我们每个人选择一个课题,认真研究,根据课堂讲授内容,借助书本,自己动手实践。这样不但有助于我们消化课堂所讲解的内容,还可以增强我们的独立思考能力和动手能力;通过编写实验代码和调试运行,我们可以逐步积累调试C程序的经验并逐渐培养我们的编程能力、用计算机解决实际问题的能力。 在课程设计过程中,我们不但有自己的独立思考,还借助各种参考文献来帮助我们完成系统。更为重要的是,我们同学之间加强了交流,在对问题的认识方面可以交换不同的意见。同时,师生之间的互动也随之改善,我们可以通过具体的实例来从老师那学到更多的实用的知识。 数据结构课程具有比较强的理论性,同时也具有较强的可应用性和实践性。课程设计是一个重要的教学环节。我们在一般情况下都能够重视实验环节,但是容易忽略实验的总结,忽略实验报告的撰写。通过这次实验让我们明白:作为一名大学生必须严格训练分析总结能力、书面表达能力。需要逐步培养书写科学实验报告以及科技论文的能力。只有这样,我们的综合素质才会有好的提高。

中衡算法分析与【设计明细】-实验二-哈夫曼编码

昆明理工大学信息工程与自动化学院学生实验报告 (201 —201 学年第一学期) 课程名称:算法设计与分析开课实验室:年月日 一、上机目的及内容 1.上机内容 设需要编码的字符集为{d1, d2, …, dn},它们出现的频率为{w1, w2, …, wn},应用哈夫曼树构造最短的不等长编码方案。 2.上机目的 (1)了解前缀编码的概念,理解数据压缩的基本方法; (2)掌握最优子结构性质的证明方法; (3)掌握贪心法的设计思想并能熟练运用。 二、实验原理及基本技术路线图(方框原理图或程序流程图) (1)证明哈夫曼树满足最优子结构性质; (2)设计贪心算法求解哈夫曼编码方案; (3)设计测试数据,写出程序文档。 数据结构与算法: typedef char *HuffmanCode; //动态分配数组,存储哈夫曼编码 typedef struct { unsigned int weight; //用来存放各个结点的权值 unsigned int parent,LChild,RChild; //指向双亲、孩子结点的指针 } HTNode, *HuffmanTree; //动态分配数组,存储哈夫曼树 程序流程图:

三、所用仪器、材料(设备名称、型号、规格等或使用软件) 1台PC及VISUAL C++6.0软件

四、实验方法、步骤(或:程序代码或操作过程) 程序代码: #include #include #include typedef struct { unsigned int weight; unsigned int parent,LChild,RChild; } HTNode, *HuffmanTree; //动态分配数组,存储哈夫曼树 typedef char *HuffmanCode; //动态分配数组,存储哈夫曼编码 void Select(HuffmanTree *ht,int n,int *s1,int *s2) { int i,min; for(i=1; i<=n; i++) { if((*ht)[i].parent==0) { min=i; break; } } for(i=1; i<=n; i++) { if((*ht)[i].parent==0) { if((*ht)[i].weight<(*ht)[min].weight) min=i; } } *s1=min; for(i=1; i<=n; i++) { if((*ht)[i].parent==0 && i!=(*s1)) { min=i; break; } } for(i=1; i<=n; i++) { if((*ht)[i].parent==0 && i!=(*s1)) { if((*ht)[i].weight<(*ht)[min].weight)

实验三.哈夫曼编码的贪心算法设计

实验四 哈夫曼编码的贪心算法设计(4学时) [实验目的] 1. 根据算法设计需要,掌握哈夫曼编码的二叉树结构表示方法; 2. 编程实现哈夫曼编译码器; 3. 掌握贪心算法的一般设计方法。 实验目的和要求 (1)了解前缀编码的概念,理解数据压缩的基本方法; (2)掌握最优子结构性质的证明方法; (3)掌握贪心法的设计思想并能熟练运用 (4)证明哈夫曼树满足最优子结构性质; (5)设计贪心算法求解哈夫曼编码方案; (6)设计测试数据,写出程序文档。 实验内容 设需要编码的字符集为{d 1, d 2, …, dn },它们出现的频率为 {w 1, w 2, …, wn },应用哈夫曼树构造最短的不等长编码方案。 核心源代码 #include #include #include typedef struct { unsigned int weight; //用来存放各个结点的权值 unsigned int parent,LChild,RChild; //指向双亲、孩子结点的指针 } HTNode, *HuffmanTree; //动态分配数组,存储哈夫曼树 typedef char *HuffmanCode; //动态分配数组,存储哈夫曼编码 ∑=j i k k a

//选择两个parent为0,且weight最小的结点s1和s2 void Select(HuffmanTree *ht,int n,int *s1,int *s2) { int i,min; for(i=1; i<=n; i++) { if((*ht)[i].parent==0) { min=i; break; } } for(i=1; i<=n; i++) { if((*ht)[i].parent==0) { if((*ht)[i].weight<(*ht)[min].weight) min=i; } } *s1=min; for(i=1; i<=n; i++)

哈夫曼编码译码系统实验报告,数据结构课程设计报告

v .. . .. 安徽大学 数据结构课程设计报告项目名称:哈弗曼编/译码系统的设计 与实现 姓名:鉏飞祥 学号:E21414018 专业:软件工程 完成日期 2016/7/4 计算机科学与技术学院

1 .需求分析 1.1问题描述 ?问题描述:利用哈夫曼编码进行通信可以大大提高信道利用率,缩短信息传输时间,降低传输成本。但是,这要求在发送端通过一个编码系统对待传数据预先编码,在接收端将传来的数据进行译码(解码)。对于双工信道(即可以双向传输信息的信道),每端都需要一个完整的编/译码系统。试为这样的信息收发站设计一个哈夫曼编译码系统。 1.2基本要求 (1)输入的形式和输入值的范围; (2)输出的形式; (3)程序所能达到的功能。 1.基本要求 (1)初始化(Initialzation)。从数据文件DataFile.data中读入字符及每个字符的权值,建立哈夫曼树HuffTree; (2)编码(EnCoding)。用已建好的哈夫曼树,对文件ToBeTran.data中的文本进行编码形成报文,将报文写在文件Code.txt中; (3)译码(Decoding)。利用已建好的哈夫曼树,对文件CodeFile.data中的代码进行解码形成原文,结果存入文件Textfile.txt中; (4)输出(Output)。输出DataFile.data中出现的字符以及各字符出现的频度(或概率);输出ToBeTran.data及其报文Code.txt;输出CodeFile.data

及其原文Textfile.txt; 2. 概要设计 说明本程序中用到的所有抽象数据类型的定义。主程序的流程以及各程序模块之间的层次(调用)关系。 (1)数据结构 哈夫曼树的节点 struct huff { int weight; int parent; int l; int r; }; 哈夫曼编码的存储 struct huff *hufftree; (2)程序模块 选择1到i-1中parent为0且权值最小的两个下标 void Select(struct huff *HT, int n, int &s1, int &s2) 构建哈夫曼树: void huffmancoding(struct huff *ht,int *w,int n)

C++实现哈夫曼编码完整代码

C++实现哈夫曼编码完整代码 #include #include #include #include #include using namespace std; class Node { public: char c; //表示字符 int frequency; //表示该字符出现的次数或频率 Node *left; Node *right; Node(char _c, int f, Node *l = NULL, Node *r = NULL) :c(_c), frequency(f), left(l), right(r) { } bool operator<(const Node &node) const { //重载<运算法以至于在加入优先队列的时候决定如何处理结点位置 return frequency > node.frequency; } }; void initNode(priority_queue &q, int nodeNum) { char c; int frequency; for (int i = 0; i < nodeNum; i++) { cout << "输入字符和结点出现的次数: "; cin >> c >> frequency; Node node(c, frequency); q.push(node); } } void showNode(priority_queue q) { while (!q.empty()) { Node node = q.top(); q.pop(); cout << node.c << ", " << node.frequency << endl; } }

huffman编码译码实现文件的压缩与解压.

数据结构 课程设计 题目名称:huffman编码与解码实现文件的压缩与解压专业年级: 组长: 小组成员: 指导教师: 二〇一二年十二月二十六日

目录 一、目标任务与问题分析 (2) 1.1目标任务 (2) 1.2问题分析 (2) 二、算法分析 (2) 2.1构造huffman树 (2) 2.1.1 字符的统计 (2) 2.1.2 huffman树节点的设计 (2) 2.2构造huffman编码 (3) 2.2.1 huffman编码的设计 (3) 2.3 压缩文件与解压文件的实现 (3) 三、执行效果 (4) 3.1界面 (4) 3.2每个字符的编码 (4) 3.3操作部分 (5) 3.4文件效果 (6) 四、源程序 (7) 五、参考文献 (16)

huffman编码与解码实现文件的压缩与解压 一、目标任务与问题分析 1.1目标任务 采用huffman编码思想实现文件的压缩和解压功能,可以将任意文件压缩,压缩后也可以解压出来。这样即节约了存储空间,也不会破坏文件的完整性。 1.2问题分析 本问题首先应该是利用哈夫曼思想,对需要压缩的文件中的个字符进行频率统计,为了能对任意的文件进行处理,应该所有的文件以二进制的方式进行处理,即对文件(不管包含的是字母还是汉字)采取一个个的字节处理,然后根据统计的频率结果构造哈夫曼树,然后对每个字符进行哈夫曼编码,然后逐一对被压缩的文件的每个字符构建的新的哈夫曼编码存入新的文件中即得到的压缩文件。解压过程则利用相应的哈夫曼树及压缩文件中的二进制码将编码序列译码,对文件进行解压,得到解压文件。 二、算法分析 2.1构造huffman树 要利用哈夫曼编码对文本文件进行压缩,首先必须知道期字符相应的哈夫曼编码。为了得到文件中字符的频率,一般的做法是扫描整个文本进行统计,编写程序统计文件中各个字符出现的频率。由于一个字符的范围在[0-255]之间,即共256个状态,所以可以直接用256个哈夫曼树节点即数组(后面有节点的定义)空间来存储整个文件的信息,节点中包括对应字符信息,其中包括频率。 2.1.1 字符的统计 用结构体huffchar来存放文件字符的信息。其中有文件中不同字符出现的种类Count、字符data。 struct huffchar{ //存放读入字符的类; int Count;//字符出现的个数; char data;//字符; }; 函数实现: bool char_judge(char c)//判断字符出现的函数; void char_add(char c)//添加新出现的字符; void read_file_count() //文件的读取 2.1.2 huffman树节点的设计 用结构体huff_tree来存储结点信息,其中有成员频率weight、父亲节点parent、左儿子节点lchild、右儿子节点rchild。

哈夫曼编码算法实现完整版

实验三树的应用 一.实验题目: 树的应用——哈夫曼编码 二.实验内容: 利用哈夫曼编码进行通信可以大大提高信道的利用率,缩短信息传输的时间,降低传输成本。根据哈夫曼编码的原理,编写一个程序,在用户输入结点权值的基础上求哈夫曼编码。 要求:从键盘输入若干字符及每个字符出现的频率,将字符出现的频率作为结点的权值,建立哈夫曼树,然后对各个字符进行哈夫曼编码,最后打印输出字符及对应的哈夫曼编码。 三、程序源代码: #include #include #include #include typedef struct{ char data; int weight; int parent,lchild,rchild; }HTNode,*HuffmanTree; typedef char * * HuffmanCode; void Select(HuffmanTree &HT,int n,int m) {HuffmanTree p=HT; int tmp; for(int j=n+1;j<=m;j++) {int tag1,tag2,s1,s2; tag1=tag2=32767; for(int x=1;x<=j-1;x++) { if(p[x].parent==0&&p[x].weights2) //将选出的两个节点中的序号较小的始终赋给s1 { tmp=s1; s1=s2; s2=tmp;} p[s1].parent=j;

哈夫曼编码步骤

哈夫曼编码步骤: 一、对给定的n个权值{W1,W2,W3,...,Wi,...,Wn}构成n棵二叉树的初始集合F= {T1,T2,T3,...,Ti,...,Tn},其中每棵二叉树Ti中只有一个权值为Wi的根结点,它的左右子树均为空。(为方便在计算机上实现算法,一般还要求以Ti的权值Wi的升序排列。) 二、在F中选取两棵根结点权值最小的树作为新构造的二叉树的左右子树,新二叉树的根结点的权值为其左右子树的根结点的权值之和。 三、从F中删除这两棵树,并把这棵新的二叉树同样以升序排列加入到集合F中。 四、重复二和三两步,直到集合F中只有一棵二叉树为止。 /*------------------------------------------------------------------------- * Name: 哈夫曼编码源代码。 * Date: 2011.04.16 * Author: Jeffrey Hill+Jezze(解码部分) * 在Win-TC 下测试通过 * 实现过程:着先通过HuffmanTree() 函数构造哈夫曼树,然后在主函数main()中 * 自底向上开始(也就是从数组序号为零的结点开始)向上层层判断,若在 * 父结点左侧,则置码为0,若在右侧,则置码为1。最后输出生成的编码。*------------------------------------------------------------------------*/ #include #include #define MAXBIT 100 #define MAXVALUE 10000 #define MAXLEAF 30 #define MAXNODE MAXLEAF*2 -1 typedef struct { int bit[MAXBIT]; int start;} HCodeType; /* 编码结构体*/ typedef struct{ int weight; int parent; int lchild; int rchild; int value;} HNodeType; /* 结点结构体*/ /* 构造一颗哈夫曼树*/ void HuffmanTree (HNodeType HuffNode[MAXNODE], int n){ /* i、j:循环变量,m1、m2:构造哈夫曼树不同过程中两个最小权值结点的权值,x1、x2:构造哈夫曼树不同过程中两个最小权值结点在数组中的序号。*/ int i, j, m1, m2, x1, x2; /* 初始化存放哈夫曼树数组HuffNode[] 中的结点*/ for (i=0; i<2*n-1; i++)

哈夫曼编码译码的设计与实现数据结构课程设计

《数据结构》课程设计题目--哈夫曼编码/译码的设计与实现 班级:13数据库一班 学号:1315925280 姓名:吴松 指导教师:王超

目录 目录 (1) 一、需求分析 (2) 二、设计要求 (2) 三、概要设计 (2) 1、流程图 (2) 2、设计包含的几个部分 (4) 四、详细设计 (2) 五、显示结果………………………………………………9. 六、心得体会 (10) 七、参考文献 (11) 哈夫曼编码译码 一、需求分析

在当今信息爆炸时代,如何采用有效的数据压缩技术节省数据文件的存储空间和计算机网络的传送时间已越来越引起人们的重视,赫夫曼编码正是一种应用广泛且非常有效的数据压缩技术。哈夫曼编码是一种编码方式,以哈夫曼树—即最优二叉树,带权路径长度最小的二叉树,经常应用于数据压缩。哈弗曼编码使用一张特殊的编码表将源字符(例如某文件中的一个符号)进行编码。这张编码表的特殊之处在于,它是根据每一个源字符出现的估算概率而建立起来的(出现概率高的字符使用较短的编码,反之出现概率低的则使用较长的编码,这便使编码之后的字符串的平均期望长度降低,从而达到无损压缩数据的目的)。赫夫曼编码的应用很广泛,利用赫夫曼树求得的用于通信的二进制编码称为赫夫曼编码。树中从根到每个叶子都有一条路径,对路径上的各分支约定:指向左子树的分支表示“0”码,指向右子树的分支表示“1”码,取每条路径上的“0”或“1”的序列作为和各个叶子对应的字符的编码,这就是赫夫曼编码。哈弗曼译码输入字符串可以把它编译成二进制代码,输入二进制代码时可以编译成字符串。 二、设计要求 对输入的一串电文字符实现赫夫曼编码,再对赫夫曼编码生成的代码串进行译码,输出电文字符串。通常我们把数据压缩的过程称为编码,解压缩的过程称为解码。电报通信是传递文字的二进制码形式的字符串。但在信息传递时,总希望总长度能尽可能短,即采用最短码。假设每种字符在电文中出现的次数为Wi,编码长度为Li,电文中有n种字符,则电文编码总长度为∑WiLi。若将此对应到二叉树上,Wi为叶结点的权,Li为根结点到叶结点的路径长度。那么,∑WiLi 恰好为二叉树上带权路径长度。因此,设计电文总长最短的二进制前缀编码,就是以n种字符出现的频率作权,构造一棵赫夫曼树,此构造过程称为赫夫曼编码。设计实现的功能: (1) 赫夫曼树的建立; (2) 赫夫曼编码的生成; (3) 编码文件的译码。 三、概要设计 哈夫曼编\译码器的主要功能是先建立哈夫曼树,然后利用建好的哈夫曼树生成哈夫曼编码后进行译码。 在数据通信中,经常需要将传送的文字转换成由二进制字符0、1组成的二进制串,称之为编码。构造一棵哈夫曼树,规定哈夫曼树中的左分之代表0,右分支代表1,则从根节点到每个叶子节点所经过的路径分支组成的0和1的序列便为该节点对应字符的编码,称之为哈夫曼编码。 最简单的二进制编码方式是等长编码。若采用不等长编码,让出现频率高的字符具有较短的编码,让出现频率低的字符具有较长的编码,这样可能缩短传送电文的总长度。哈夫曼树课用于构造使电文的编码总长最短的编码方案。 (1)其主要流程图如图1-1所示。

哈夫曼树建立、哈夫曼编码算法的实现

#include /*2009.10.25白鹿原*/ #include /*哈夫曼树建立、哈夫曼编码算法的实现*/ #include typedef char* HuffmanCode;/*动态分配数组,存储哈夫曼编码*/ typedef struct { unsigned int weight ; /* 用来存放各个结点的权值*/ unsigned int parent, LChild,RChild ; /*指向双亲、孩子结点的指针*/ }HTNode, * HuffmanTree; /*动态分配数组,存储哈夫曼树*/ void select(HuffmanTree *ht,int n, int *s1, int *s2) { int i; int min; for(i=1; i<=n; i++) { if((*ht)[i].parent == 0) { min = i; i = n+1; } } for(i=1; i<=n; i++) { if((*ht)[i].parent == 0) { if((*ht)[i].weight < (*ht)[min].weight) min = i; } } *s1 = min; for(i=1; i<=n; i++) { if((*ht)[i].parent == 0 && i!=(*s1)) { min = i; i = n+1; } } for(i=1; i<=n; i++) { if((*ht)[i].parent == 0 && i!=(*s1)) {

if((*ht)[i].weight < (*ht)[min].weight) min = i; } } *s2 = min; } void CrtHuffmanTree(HuffmanTree *ht , int *w, int n) { /* w存放已知的n个权值,构造哈夫曼树ht */ int m,i; int s1,s2; m=2*n-1; *ht=(HuffmanTree)malloc((m+1)*sizeof(HTNode)); /*0号单元未使用*/ for(i=1;i<=n;i++) {/*1-n号放叶子结点,初始化*/ (*ht)[i].weight = w[i]; (*ht)[i].LChild = 0; (*ht)[i].parent = 0; (*ht)[i].RChild = 0; } for(i=n+1;i<=m;i++) { (*ht)[i].weight = 0; (*ht)[i].LChild = 0; (*ht)[i].parent = 0; (*ht)[i].RChild = 0; } /*非叶子结点初始化*/ /* ------------初始化完毕!对应算法步骤1---------*/ for(i=n+1;i<=m;i++) /*创建非叶子结点,建哈夫曼树*/ { /*在(*ht)[1]~(*ht)[i-1]的范围内选择两个parent为0且weight最小的结点,其序号分别赋值给s1、s2返回*/ select(ht,i-1,&s1,&s2); (*ht)[s1].parent=i; (*ht)[s2].parent=i; (*ht)[i].LChild=s1; (*ht)[i].RChild=s2; (*ht)[i].weight=(*ht)[s1].weight+(*ht)[s2].weight; } }/*哈夫曼树建立完毕*/ void outputHuffman(HuffmanTree HT, int m) { if(m!=0) {

哈夫曼编码和译码系统

通达学院 算法与数据结构程序设计 题目:哈夫曼编码和译码系统 专业 学生姓名 班级学号 指导教师 指导单位 日期

教师评语 同学出勤率(满勤、较高、一般,较低),学习态度(端正、较端正、一般、较差),程序设计基础(好、较好、一般、较差),演示程序(已经、没有)达到了基本要求,算法设计(好、较好、一般),界面友好程度(好、较好、一般),答辩过程中回答问题(准确、较准确、错误率较高),撰写报告格式(规范、一般)、内容(丰满、简单)、表述(清晰、一般、不清楚),(圆满、较好、基本)完成了课题任务。 教师签名: 年月日 成绩评定 备注

一、题目要求: 题 目 :哈夫曼编码和译码系统 基本要求: (1) 能输入字符集和各字符频度建立哈夫曼树; (2) 产生各字符的哈夫曼编码,并进行解码。 提高要求: (1) 能设计出简捷易操作的窗口界面; (2) 编码和译码存储在文件中。 二、需求分析: 2.1基本思想 根据,哈夫曼的定义,一棵二叉树要使其带权路径长度最小,必须使权值越大的叶子结点越靠近根结点,而权值越小的叶子结点越远离根结点.依据这个特点便提出了哈夫曼算法,其基本思想是: (1) 初始化:由给定的n 个权值{w 1, w 2,…, w n }构造n 棵只有一个根结点的二叉树,从而得到一个二叉树集合F={ T 1,T 2,…,T n }; (2) 选取与合并:在F 中选取根结点的权值最小的两棵二叉树分别作为左、右子树构造一颗新的二叉树,这棵新二叉树的根结点的权值为其左、右子树根结点的权值之和; (3) 删除与加入:在F 中删除作为左、右子树的两棵二叉树,并将新建立的二叉树加入到F 中; (4) 重复(2)、(3)两步,当集合F 中只剩下一棵二叉树时,这棵二叉树便是哈夫曼树. 2.2存储结构 在由哈夫曼算法构造的哈夫曼树中,非叶子结点的度均为2,根据二叉树的性质可知,具有n 个叶子结点的哈夫曼树共有2n-1个结点,其中有n-1个非叶子结点,它们是在n-1次的合并过程中生成的.为了便于选取根结点权值最小的二叉树以及合并操作,设置一个数组HuffmanNode[2n-1]保存哈夫曼树中各结点的信息,数组元素的结点结构如图所示. 图 哈夫曼树的结点结构 其中: weight parent lchild rchild i nf

0023算法笔记——【贪心算法】哈夫曼编码问题

0023算法笔记——【贪心算法】哈夫曼编码问题 1、问题描述 哈夫曼编码是广泛地用于数据文件压缩的十分有效的编码方法。其压缩率通常在20%~90%之间。哈夫曼编码算法用字符在文件中出现的频率表来建立一个用0,1串表示各字符的最优表示方式。一个包含100,000个字符的文件,各字符出现频率不同,如下表所示。 有多种方式表示文件中的信息,若用0,1码表示字符的方法,即每个字符用唯一的一个0,1串表示。若采用定长编码表示,则需要3位表示一个字符,整个文件编码需要300,000位;若采用变长编码表示,给频率高的字符较短的编码;频率低的字符较长的编码,达到整体编码减少的目的,则整个文件编码需要(45×1+13×3+12×3+16×3+9×4+5×4)×1000=224,000位,由此可见,变长码比定长码方案好,总码长减小约25%。 前缀码:对每一个字符规定一个0,1串作为其代码,并要求任一字符的代码都不是其他字符代码的前缀。这种编码称为前缀码。编码的前缀性质可以使译码方法非常简单;例如001011101可以唯一的分解为0,0,101,1101,因而其译码为aabe。

译码过程需要方便的取出编码的前缀,因此需要表示前缀码的合适的数据结构。为此,可以用二叉树作为前缀码的数据结构:树叶表示给定字符;从树根到树叶的路径当作该字符的前缀码;代码中每一位的0或1分别作为指示某节点到左儿子或右儿子的“路标”。 从上图可以看出,表示最优前缀码的二叉树总是一棵完全二叉树,即树中任意节点都有2个儿子。图a表示定长编码方案不是最优的,其编码的二叉树不是一棵完全二叉树。在一般情况下,若C是编码字符集,表示其最优前缀码的二叉树中恰有|C|个叶子。每个叶子对应于字符集中的一个字符,该二叉树有|C|-1个内部节点。 给定编码字符集C及频率分布f,即C中任一字符c以频率f(c)在数据文件中出现。C的一个前缀码编码方案对应于一棵二叉树T。字符c在树T中的深度记为d T(c)。d T(c)也是字符c的前缀码长。则平均码长定义为:

哈夫曼编码_贪心算法

淮海工学院计算机工程学院实验报告书 课程名:《算法分析与设计》 题目:实验3 贪心算法 哈夫曼编码 班级:软件102班 学号:11003215 姓名:鹿迅

实验3 贪心算法 实验目的和要求 (1)了解前缀编码的概念,理解数据压缩的基本方法; (2)掌握最优子结构性质的证明方法; (3)掌握贪心法的设计思想并能熟练运用 (4)证明哈夫曼树满足最优子结构性质; (5)设计贪心算法求解哈夫曼编码方案; (6)设计测试数据,写出程序文档。 实验内容 设需要编码的字符集为{d 1, d 2, …, dn },它们出现的频率为 {w 1, w 2, …, wn },应用哈夫曼树构造最短的不等长编码方案。 实验环境 Turbo C 或VC++ 实验学时 2学时,必做实验 数据结构与算法 struct huffman { double weight; //用来存放各个结点的权值 int lchild,rchild,parent; //指向双亲、孩子结点的指针 }; 核心源代码 #include #include using namespace std; struct huffman { double weight; int lchild,rchild,parent; }; static int i1=0,i2=0; int Select(huffman huff[],int i) { ∑=j i k k a

int min=11000; int min1; for(int k=0;k

数据结构课程设计哈夫曼编码译码器

题目一:哈夫曼编码与译码 一、任务 设计一个利用哈夫曼算法的编码和译码系统,重复地显示并处理以下项目,直到选择退出为止。 要求: 1) 将权值数据存放在数据文件(文件名为data.txt,位于执行程序的当前目录中) ; 2) 初始化:键盘输入字符集统计字符权值、自定义26个字符和26个权值、统计文件中一篇英文文章中26个字母,建立哈夫曼树; 3) 编码:利用建好的哈夫曼树生成哈夫曼编码; 4) 输出编码(首先实现屏幕输出,然后实现文件输出); 5)译码(键盘接收编码进行译码、文件读入编码进行译码); 6) 界面优化设计。 二、流程图 主菜单 1.建立字符权值 2.建立并输出 哈夫曼树 3.建立并查看 哈弗曼编码 4.编码与译码0.退出系统 1.从键盘输入字符集统计 2.从文件读入字 符集统计权值 3.自定义字符及 权值 0.返回上级菜单输出哈夫曼树并保存 至文件“哈夫曼树。t xt” 输出哈夫曼编码并保存至文 件“哈夫曼编码。txt 1.编码 2.译码0.返回上级 菜单 1.从键盘输入字 符集进行编码 2.从文件读入字 符集进行编码 1.从键盘输入编 码进行译码 2.从文件读入编 码进行译码 0.返回上级菜单0.返回上级菜单

三、代码分解 //头文件 #include #include #include #include #define N 1000 #define M 2*N-1 #define MAXcode 6000 //函数声明 void count(CHar &ch,HTNode ht[]); void editHCode(HTNode ht[],HCode hcd[],CHar &ch,int n,char bianma[]); //编码函数 void printyima(HTNode ht[],HCode hcd[],int n,char bianma[]); //译码函数void creatHT(HTNode ht[],int n); void CreateHCode (HTNode ht[],HCode hcd[],int n); void DispHCode(HTNode ht[],HCode hcd[],int n); void input_key(CHar &ch); void input_ &ch); void input_cw(HTNode ht[]); void bianma1(HTNode ht[],HCode hcd[],CHar &ch,int n,char bianma[]); void bianma2(HTNode ht[],HCode hcd[],CHar &ch,int n,char bianma[]); void yima1(HTNode ht[],HCode hcd[],int n,char bianma[]); void yima2(HTNode ht[],HCode hcd[],int n,char bianma[]); void creat_cw(); void bianmacaidan(); void yimacaidan(); void bianmayima(); int caidan(); //结构体 typedef struct {

数字图像实验 哈夫曼编码的方法和实现1234

实验八哈夫曼编码的方法和实现 一、实验目的 1.掌握哈夫曼编码的基本理论和算法流程; 2. 用VC++6.0编程实现图像的哈夫曼编码。 二、实验内容 1.画出哈夫曼编码的算法流程; 2.用VC++6.0编程实现哈夫曼编码。 三、实验步骤 (1)启动VC++6.0,打开Dip工程。 (2)在菜单栏→insert→resouce→dialog→new,在对话框模版的非控制区点击鼠标右键,在弹出的对话框中选properties,设置为ID:IDD_DLG_Huffman,C标题:哈夫曼编码表。 (3)在弹出的对话框中,添加如下的按钮等控件: (4)在ResourceView栏中→Menu→选IDR_DIPTYPE ,如图 在图像编码菜单栏下空的一栏中,右键鼠标,

在弹出的对话框中选属性properties,在弹出的对话框中,进行如下的设置 (5)右击哈夫曼编码表菜单栏,在建立的类向导中进行如下设置 (6)在DipDoc.cpp中找到void CDipDoc::OnCodeHuffman()添加如下代码void CDipDoc::OnCodeHuffman() { int imgSize; imgSize = m_pDibObject->GetWidth()*m_pDibObject->GetHeight(); //在点处理CPointPro类中创建用来绘制直方图的数据 CPointPro PointOperation(m_pDibObject ); int *pHistogram = PointOperation.GetHistogram(); //生成一个对话框CHistDlg类的实例 CDlgHuffman HuffmanDlg;

哈夫曼编码的JAVA实现课程设计

哈夫曼编码的JAVA实现课程设计 目录 摘要 (2) 一、问题综述 (2) 二、求解方法介绍 (3) 三、实验步骤及结果分析 (4) 四、程序设计源代码 (5) 参考文献 (8)

摘要 利用哈夫曼编码进行通信可以大大提高信道利用率,缩短信息传输时间,降低传输成本,试用java语言设计一个哈夫曼编码系统。通过本课程设计,应使学生掌握哈夫曼编码的特点、储存方法和基本原理,培养学生利用java语言正确编写程序及调试程序的能力,运用数据结构知识解决实际问题的能力。 关键字:哈夫曼编码JA V A语言类方法 一、问题综述 1 哈夫曼编码的算法思想 哈夫曼编码也称前缀编码,它是根据每个字符出现的频率而进行编码的,要求任一字符的编码都不是其它任意字符编码的前缀且字符编码的总长度为最短。它主要应用于通信及数据的传送以及对信息的压缩处理等方面。哈夫曼编码的基础是依据字符出现的频率值而构造一棵哈夫曼树,从而实现最短的编码表示最常用的数据块或出现频率最高的数据,具体的方法是: 1.1 建立哈夫曼树 把N 个字符出现的频率值作为字符的权值,然后依据下列步骤建立哈夫曼树。 1.1.1 由N 个权值分别作N 棵树的根结点而形成一个森林。 1.1.2 从中选择两棵根值最小的树T1 和T2 组成一棵以结点T 为根结点的增长树,根结点T = T1 + T2 ,即新树的根值为原来两棵树的根值之和,而T1 和T2 分别为增长树的左右子树。 1.1.3 把这棵新树T 加入到森林中,把原来的两棵树T1 和T2 从森林中删除。 1.1.4 重复1.1.2~1.1.3 步,直到合并成一棵树为止。 1.2 生成各字符的哈夫曼编码 在上面形成的哈夫曼树中,各个字符的权值结点都是叶子结点,从叶子结点开始向根搜索,如果是双亲的左分支,则用“0”标记,右分支用“1”标记,从叶子结点到根结点所经过的分支编码“0”、“1”的组合序列就是各字符的哈夫曼编码。 2 构造哈夫曼树的算法 1)对给定的n个权值{W1,W2,W3,...,Wi,...,Wn}构成n棵二叉树的初始集合F={T1,T2,T3,...,Ti,..., Tn},其中每棵二叉树Ti中只有一个权值为Wi的根结点,它的左右子树均为空。 2)在F中选取两棵根结点权值最小的树作为新构造的二叉树的左右子树,新二叉树的根结点的权值为其左右子树的根结点的权值之和。 3)从F中删除这两棵树,并把这棵新的二叉树同样以升序排列加入到集合F 中。

(完整word版)哈夫曼编码和译码的设计与实现

算法与数据结构课程设计 哈夫曼编码和译码的设计与实现 1.问题描述 利用哈夫曼编码进行通信可以大大提高信道的利用率,缩短信息传输时间,降低传输成本。但是,这要求在发送端通过一个编码系统对待传数据预先编码,在接收端将传来的数据进行译码(复原)。对于双工信道(即可以双向传输信息的信道),每端都需要一个完整的编/译码系统。试为这样的信息收发站设计一个哈夫曼码的编/译码系统。

2.基本要求 a.编/译码系统应具有以下功能: (1)I:初始化(Initialization)。从终端读入字符集大小n,以及n个字符和n个权值,建立哈夫曼树,并将它存于文件hfmTree中。 (2)E:编码(Encoding)。利用已建好的哈夫曼树(如不在内存,则从文件hfmTree中读入),对文件ToBeTran中的正文进行编码,然后将 结果存入文件CodeFile中。 (3)D:译码(Decoding)。利用已建好的哈夫曼树将文件CodeFile中的代码进行译码,结果存入文件TextFile中。 (4)P:印代码文件(Print)。将文件CodeFile以紧凑格式显示在终端上,每行50个代码。同时将此字符形式的编码文件写入文件CodePrin 中。 (5)T:印哈夫曼树(Tree printing)。将已在内存中的哈夫曼树以直观的方式(树或凹入表形式或广义表)显示在终端上,同时将此字符形 式的哈夫曼树写入文件TreePrint中。 b.测试数据 (1)利用下面这道题中的数据调试程序。 某系统在通信联络中只可能出现八种字符,其概率分别为0.25,0.29,0.07,0.08,0.14,0.23,0.03,0.11,试设计哈夫曼编码。 (2)用下表给出的字符集和频度的实际统计数据建立哈夫曼树,并实现以下报文的编码和译码:“THIS PROGRAM IS MY FAVORITE”。 字符空格 A B C D E F G H I J K L M 频度 186 64 13 22 32 103 21 15 47 57 1 5 32 20 字符 N O P Q R S T U V W X Y Z 频度57 63 15 1 48 51 80 23 8 18 1 16 1 3.需求分析 3.1程序的基本功能 本程序可以对任何大小的字符型文件进行Huffman编码,生成一个编码文件。并可以在程序运行结束后的任意时间对它解码还原生成字符文件。即:先对一条电文进行输入,并实现Huffman编码,然后对Huffman编码生成的代码串进行译码,最后输出电文数字

相关主题
文本预览
相关文档 最新文档