当前位置:文档之家› 数字图像处理期末复习总结提纲.doc

数字图像处理期末复习总结提纲.doc

数字图像处理期末复习总结提纲.doc
数字图像处理期末复习总结提纲.doc

考试题型:

一、单选题(每题2分〉

例:计算机显示器主要采用哪一种彩色模型()

A、RGB

B、CMY 或CMYK

C、HIS

D、HSV

答案为A

二、判断题(每题2分,正确的打“V”,错误的打“X”)

例:在连通域中的点,按照其是否与背景相邻接,可以分为内部点和外部点。()答案X

三、填空题(每空格2分)

例:数字图像是用一个数字阵列来表示的图像。数字阵列屮的每个数字,表示数字图像的一个最小单位,称为【1。

答案:像素

在木课程中,Matlab语句imwrite(A/tire.tif)的作用是【2】。

答案:将图像矩阵A写入图像文件tire.tif

分)

例:(20分)设图像为:

使用3X3的模板对其进行中值滤波处理,写出处理过程和结果。

书上重难点:

第一章数字图像处理绪论

*模拟图像

空间坐标和明暗程度都是连续变化的、计算机无法直接处理的图像 *数字图像

空间坐标和灰度均不连续的、用离散的数字(一般整数)表示的图像(计算机能处理)。是图像的数字表示,像素是其最小的单位。

*数字图像处理(Digital Image Processing)

利用计算机对数字图像进行(去除噪声、增强、复原、分割、特征提取、识别等)系列操作,从而获得某种预期的结果的技术。(计算机图像处理)

*数字图像处理的优势

(1)处理精度高,再现性好。(2)易于控制处理效果。(3)处理的多样性。(4) 图像数据量庞大。(5)图像处理技术综合性强。

*数字图像处理的目的

(1)提高图像的视感质量,以达到赏心悦目的目的

a.去除图像中的噪声;

b.改变图像的亮度、颜色;

c?增强图像屮的某些成份、抑制某些成份;

d?对图像进行几何变换等,达到艺术效果;

(2)提取图像中所包含的某些特征或特殊信息。

a?模式识别、计算机视觉的预处理

(3)对图像数据进行变换、编码和压缩,以便于图像的存储和传输。

**数字图像处理的主要研究内容

(1)图像的数字化

a.如何将一幅光学图像表示成一组数字,既不失真又便于计算机分析处理

b.主要包括的是图像的采样与量化

(2*)图像的增强

a.加强图像的有用信息,消弱干扰和噪声

(3)图像的恢复

乩把退化、模糊了的图像复原。模糊的原因有许多种,最常见的有运动模糊,散焦模糊等

(4*)图像的编码

3 ?简化图像的表示,压缩表示图像的数据,以便于存储和传输。

(5)图像的重建

a.由二维图像重建三维图像(如CT)

(6)图像的分析

乩对图像屮的不同对彖进行分割、分类、识别和描述、解释。

(7)图像分割与特征提取

a.图像分割是指将一幅图像的区域根据分析对象进行分割。

b.图像的特征提取包括了形状特征、纹理特征、颜色特征等。

(8)图像隐藏

乩是指媒体信息的相互隐藏。b?数字水印。c?图像的信息伪装。

(9)图像通信

军事:军事目标侦察,制导系统,警戒系统,自动火器控制,反伪装等。公安:现场照片,指纹,手迹,卬章,人像等处理和鉴别。

档案:过期的文字、图片档案的修复和处理。

机器人视觉

*数字图像处理的应用领域:

通信:图像传输,电视电话等。

宇宙探测:星体图片处理。

遥感:地形、地质、矿藏探查,森林、水利、海洋、农业等资源调查,自然灾害预测,环境污染的监测,气象云图。

牛物医学:CT, X射线成象,B超,红外图像,显微图像。

工业生产:产品质量检测,生产过程控制,CAD, CAMo

娱乐:电影特技,动画,广告,MTV等

*数字图像处理的发展动向

(1)提高精度,提高处理速度(2)加强软件研究,开发新方法(3)加强边缘学科的研究工作(4)加强理论研究(5)图像处理领域的标准化问题

第二、三章图像处理基本知识、数字化与显示

*电磁辐射波:

(1)在实际的图像处理应用中,最主要的图像来源于电磁辐射成像。

(2)电磁辐射波包括无线电波(lm- 100km)、微波(lmm-lm)、红外线(700nm-lmm)、可见光(400nm-700nm) > 紫外线(10nm-400nm) > X 射线(lnm-10nm) > 丫射线

(0.001nm-lnm)。

(3)电磁辐射波的波谱范围很广,波长最长的是无线电波为3X102m,其波长是可见光波长的几十亿倍;波长最短的是Y射线,波长为3X10-17m,其波长比可见光小几百万倍。

*太阳的电磁辐射波

(1)太阳的电磁辐射波恰好主要占据整个可见光谱范围。

(2)可见光随波长的不同依次呈现岀紫、蓝、绿、黄、橙(橘红)、红六种颜色,口光是由不同颜色的可见光线混合而成的。

(3)人从一个物体感受到的颜色是由物体反射的可见光的特性决定的,若一个物体反射的光在所有可见光波长范围内是平衡的,则对观察者来说显示的是白色; 若一个物体只反射可见光谱中有限范围的光,则物体就呈现某种颜色。

*简单的图像成像模型

一幅图像可定义成一个二维函数f(x, y)。由于幅值f实质上反映了图像源的辐射能量,所以f(x,y) —定是非零且有限的,也即有:0

设i (x, y)表示照射到观察景物表面(x, y)处的白光强度,r(x, y)表示观察景物表面(x,y)处的平均反射(或透射)系数,则有:

f (x, y)二i (x, y) r (x, y)

其中:0 < i (x, y) < Al (2.4)

0 W r (x, y) W 1

把连续图像转换成计算机可以接受的数字形式,必须先对连续的图像进行空间和幅值的离散化处理。

(1)图像的采样:对图像的连续空间坐标X和y的离散化。

(2)图像灰度级的量化:对图像函数的幅值f的离散化。

*均匀采样:

对一幅二维连续图像f(x, y)的连续空间坐标x和y的均匀采样,实质上就是

把二维图像平面在x方向和y方向分别进行等间距划分,从而把二维图像平面划分成MXN个网格,并使各网格中心点的位置与用一对实整数表示的笛卡尔坐标(i, j)相对应。二维图像平面上所有网格屮心点位置对应的有序实整数对的笛卡尔坐标的全体就构成了该幅图像的采样结果。

对一幅二维连续图像f(x, y)的幅值f的均匀量化,实质上就是将图像的灰度取值范围[0, 255]划分成L个等级(L为正整数,255=L-1),并将二维图像平面上MXN个网格的中心点的灰度值分别量化成与L个等级中最接近的那个等级的值。

*数字图像的表示:为了描述上的方便,本书仍用f(x, y)表示数字图像。设xe[0, M-l], ye[0, N-l], fe[0, L-l],则数字图像可表示成一个MXN的二维数字阵列。

每个(x, y)对应数字图像中的一个基本单元,称其为图像元素(picture element), 简称为像素(pixel);且一般取M、N、图像灰度级L为2的整次幕,即:

M 二m

N二2、

L=2^k 这里,0)、n和k为正整数。

存储一幅MXN的数字图像,需要的存储位数为:

b = M X N X k

字节数为:B二b/8

**灰度分辨率

灰度级分辨率是指在灰度级别中可分辨的最小变化,通常把灰度级级数L 称为图像的灰度级分辨率。

**灰度分辨率变化对图像视觉效果的影响:

随着灰度分辨率的降低,图像的细节信息在逐渐损失,伪轮廓信息在逐渐增加。图中由于伪轮廓信息的积累,图像已显现出了木刻画的效果。由此也说明:灰度分辨率越低,图像的视觉效果越差。

**灰度直方图

图像的灰度直方图,是一种表示数字图像中各级灰度值及其出现频数的关系的函数。

设一幅数字图像的灰度级范围为[o, L-1],则该图像的灰度直方图可定义为:h (r k) =n k(r=0, 1, 2, ???, L-1) (2. 19)

其中,rk表示第k级灰度值,h(rk)和nk表示图像中灰度值为rk的像素个数。

**灰度直方图具有如下一些特征:

(1)直方图仅能描述图像中每个灰度级具有的像素个数,不能表示图像中每个像素的位置(空间)信息;

(2)任一特定的图像都有惟一的直方图,不同的图像可以具有相同的肓方图;

(3)如果一幅图像由两个不连接的区域组成,则整幅图像的直方图等于两个不

连接的区域的直方图之和。

*显示分辨率是指显示屏上能够显示的数字图像的最大像素行数和最大像素列数, 取决于显示器上所能够显示的像素点之间的距离。

*图像分辨率反映了数字化图像屮可分辨的最小细节,也即图像的空间分辨率。在这里将图像分辨率看成是图像阵列的大小。

同一显示器(或显示分辨率相同的不同显示器)显示的图像大小只与被显示的图像(阵列)的空间分辨率大小有关,与显示器的显示分辨率无关。

换句话说,具有不同空间分辨率的数字图像在同一显示器上的显示分辨率相同。

当同一幅图像(或图像分辨率相同的不同图像)显示在两个不同显示分辨率的显示器上吋,显示的图像的外观尺寸与显示器的显示分辨率有关:显示分辨率越高,显示出的图像的外观尺寸越小;显示分辨率越低,显示出的图像的外观尺寸越大。

人眼的视觉过程是一个复杂的过程,可用亮度(灰度)、色调和饱和度这三个基本特征量来区分颜色。

*亮度与物体的反射率成正比;

*色调与混合光谱中主要光的波长相联系;

*饱和度与色调的纯度有关。

*常用的图像文件格式有:

BMP、GIF、TIFF、PCX、JPEG 等。

*BMP文件(Bitmap File)是一种Windows采用的点阵式图像文件格式。**BMP图像文件的组成:

(1)位图文件头(Bitmap File Header)标识名称:(BITMAPFILEHEADER):说明文件的类型和位图数据的起始位置等,共14个字节。

(2)位图信息头(Bitmap Information Header) (BITMAP INFORMAT ION):说明位图文件的大小、位图的高度和宽度、位图的颜色格式和压缩类型等信息。共40个字节。

(3)位图调色板(Bitmap Palette) (RGBOUAD):由位图的颜色格式字段所确定的调色板数组,数组中的每个元素是一个RGBQUAD结构,占4个字节。

(4) 位图数据(Bitmap Data) (BYTE):位图数据,位图的压缩格式确定了 该数据阵列是压缩数据或是非压缩数据。

*图像的位图数据表示的图像共有biWidthXbiHeight 个像素。

*图像的位图数据是按行存储的,每一行的字节数按照4字节边界对齐,也即每 一行的字节数是4的倍数,不足的字节用0补齐。

*图像的位图数据是按行从下到上、从左到右排列的。也就是说,从图像的位图 面一行的最右边的一个像素。

第四章图像变换与二维数字滤波

**图像变换是将图像从空域变换到其它域如频域的数学变换。

*图像变换的目的:

(1) 使图像处理问题简化(2)有利于图像特征提取(3)有助于从概念上增强 对图像信息的理解

**傅立叶变换对(傅立叶变换和逆变换)一定存在的条件:

当一个一维信号f(x)满足狄里赫利条件,即f(x): (1)具有有限个间断点;(2) 具有有限个极值点;(3)绝对可积;

则其傅立叶变换对(傅立叶变换和逆变换)一定存在。

**傅立叶(Fourier)变换的好处:

(1) 可以得出信号在各个频率点上的强度。

(2) 可以将卷积运算化为乘积运算。

*二维连续傅里叶变换

r 8 「8 y) = J J J — OO , —8 *二维离散傅里叶变换 /(F) = £W )

”=0 v=0

**二维离散余弦变换

数据中最先读到的是图像】 F 面一行的最左边的像素,最后读到的是图像最上 F(W ,v)e j2n(,a+vv)di/dv

(1)典型应用是对静止图像和运动图像进行性能优良的有损数据压缩。

(2)在静止图像编码标准JPEG、运动图像编码标准MJPEG和MPEG等标准中都使用了8X8块的离散余弦变换,并将结果进行量化之后进行爛编码。

(3)DCT具有很强的能量集中在频谱的低频部分的特性,而且当信号具有接近马尔可夫过程的统计特性时,DCT的去相关性接近于具有最优去相关性的K-L变换的性能。

**二维离散沃尔什-哈达玛变换

(1)基底函数选用方波信号或者它的变形。

(2)沃尔什函数是一组矩形波,其取值为1和-1,便于计算机运算。

(3)函数有三种排列或编号方式:列率排列、佩利(Paley)排列和哈达玛(Hadamard)排列。

(4)采用哈达玛排列的沃尔什函数进行的变换称为沃尔什-哈达玛变换,简称WIIT 或直称哈达玛变换。

**二维哈达玛正、逆变换具有相同形式

(1)正反变换都可通过两个一维变换实现。

_ 1 H 阳2

A/^V~H N[2一H N/2

(2)高阶哈达玛矩阵可以通过如下方法求得:

*卡胡南-列夫变换(K-L变换)是在均方意义下的最佳变换。

**小波变换具有对时间(二维信号为空间)-频率的双重分析和多分辨率分析能力。*窗口傅里叶变换是一种大小及形状均固定的时频化分析。

**正交变换可以显著地减少图像数据的相关性,可以实现用较少的数据量表示原始图像及其特征。

第五章图像压缩编码

*图像编码与压缩的内容(是什么)

(1)图像压缩在信息论中称为信源编码

(2)图像编码和压缩就是对图像数据按照一定的规则进行变换和组合,从而以尽可能少的代码表示尽可能多的信息。

(3)研究内容包括数据压缩的数据的表示、传输、变换和编码方法,目的是减少存储数据所需的空间和传输所用的时间。

**图像编码的基本原理

(1)图像数据压缩是可能的

(2)一般原始图像屮存在很大的冗余度。

(3)空间冗余、时间冗余、视觉冗余、信息爛冗余、结构冗余、知识冗余

(4)用户对原始图像的信号不全都感兴趣,可用特征提取和图像识别的方法, 丢掉大量无用的信息。提取有用的信息,使必须传输和存储的图像数据大大减少。

从信息论观点看,描述图像信源的数据由有用数据和冗余数据两部分组成。

**冗余数据有:编码冗余、像素间冗余、心理视觉冗余3种。

如果能减少或消除其中的1种或多种兀余,就能取得数据压缩的效果。因此图像信息的压缩是可能的。

但到底能压缩多少,除了和图像本身存在的冗余度人小有关外,很人程度取决于对图像质量的要求。

原始图像越有规则,各象素之间的相关性越强,它可能压缩的数据就越多。

**图像编码压缩分类

(1)根据解压重建后的图像和原始图像Z间是否具有误差,图像编码压缩分为无误差(亦称无失真、无损、信息保持)编码和有误差(有失真或有损)编码两大类。【无损编码分为:霍夫曼编码、行程编码、算术编码;有损编码分为:预测编码、变换编码、其它编码。】

(2)根据编码作用域划分,图像编码为空间域编码和变换域编码两大类。

*图像保真度

描述解码图像相对原始图像偏离程度的测度一般称为保真度。

*最常用的客观保真度准则:

(1)原图像和解码图像Z间的均方根误差(2)原图像和解码图像Z间的均方根信噪比

**常见图像压缩技术指标(公式和计算方法见课本)

(1)图像爛与平均码长

(2)图像冗余度与编码效率

(3)编码压缩比

(4)SNR

(5)主观评价

*爛与相关性、冗余度的关系:

根据Shannon无干扰信息保持编码定理,若对原始图像数据的信息进行信源的无失真图像编码,压缩后平均码率存在一个下限为信源信息嫡Ho理论上最佳信息保持编码的平均码长可以无限接近信源信息爛Ho

**霍夫曼编码:

(1)这种编码方法根据源数据符号发生的概率进行编码。

(2)在源数据中出现概率越大的符号,相应的码越短;出现概率越小的符号,其码长越长,从而达到用尽可能少的码符号表示源数据。它在变长编码方法中是最佳的。

**霍(哈)夫曼Huffman编码方法

(1)将信源符号按出现概率从大到小排成一列,然后把最末两个符号的概率相加, 合成个概率。

(2)把这个符号的概率与其余符号的概率按从大到小排列,然后再把最末两个符号的概率加起来,合成一个概率。

(3)重复上述做法,直到最后剩下两个概率为止。

(4)从最后一步剩下的两个概率开始逐步向前进行编码。每步只需对两个分支各赋予一个二进制码,如对概率大的赋予码元0,对概率小的赋予码元1,如果相等,则从屮任选一个赋0,另一个赋1。

(5)读出时由符号开始一直走到最后的概率和1,将路线上所遇到的0和1反向排序

好就是该符号的霍夫曼编码。

***例:设一幅灰度级为8 (分别用SO、SI、...S7表示)的图像中,各灰度级所对应的概率分别为0.40、0. 18、0. 10、0. 10、0.07、0.06、0.05、0.04。现对其进行霍夫曼编码。得:

S0=l,Sl=001,S2=011,S3=0000, S4=0100, S5=0101, S6=00010, S7=00011o

*平均码长R为:R二所有(对应霍夫曼码位数?对应概率)的和

二1*0. 40+3*0. 18+3*0. 10+ . +5*0. 04=2. 61

*数字图像的爛为:II二负的所有(对应概率*log底为2的对应概率)的和

=-(0. 4*lb0? 4+0. 18*lb0? 18+0. l*lb0? 1+0. 04*lb0? 04) =2. 55

*霍夫曼编码效率为:H二嫡除以平均码长*100%二(2. 55/2.61) *100%二97. 8%

**算术编码

(1)算术编码有两种模式:基于信源概率统计特性的固定编码模式和针对未知信源概率模型的自适应模式。

(2)自适应模式中各个符号的概率初始值都相同,它们依据出现的符号而相应地改变。只要编码器和解码器都使用相同的初始值和相同的改变值的方法,那么它们的概率模型将保持一致。

(3)有关实验数据表明,在未知信源概率分布的情况下,算术编码一般要优于Huffman编码。在JPEG扩展系统中,就用算术编码取代了哈夫曼编码

**算术编码公式:

(1)StartN=StartB (即前一项的区间开始值)+LeftC (即该项的区间开始值)紅(即前一项的区间长度)

(2)EndN=StartB (即前一项的区间开始值)+RightC (即该项的区间右端值)札(即前一项的区间长度)

(3)将最后的区间化为二进制,去0,把相同部分取出再在末尾加1,即为该数据序列的算术编码。

(4)解码(例):字符串“dacab”的编码是0. 1101101,对应的十进制数是0. 8516。从编码过程来看,只有当第一个字母为“d”时,相应的区间[0. 8,1.0)才包含编码0. llOllOlo接着,只有当第二个字母为a时,相应的区间[0. 8, 0. 88)才会包含编码0. 1101101;以此类推,编码器将唯一地解出字符串u dacab"

**正交变换编码:

通过正交变换把图像从空间域转换为能量比较集中的变换域系数,然后对变换系数进行编码,从而达到缩减比特率的目的。

解压图像 *正交变换的性质

?典型的变换编码系统框图:

(写在箭头上:输入图像)一一构造子图像一一正变换一一量化一一符号编码——(写在箭头上:压缩图像)一一符号编码一一反变换一一合并子图像----

(1)正交变换是爛保持的,说明正交变换前后不丢失信息。

(2)正交变换是能量保持的。

(3)正交变换重新分配能量。如傅立叶变换,能量集中于低频区域。可用爛编码中不等长码来分配码长,能量大的系数分配较小的比特,达到压缩的目的。

(4)去除相关性。把空间域中高度相关的像素灰度值变为相关很弱或不相关的频域系数,能去掉存在于相关性中的冗余度。

**K-L正交变换:

(1)运算量:求[Cx]及其特征值、特征矢量,矩阵运算要矿2次实数加法和N~2 次实数乘法。

(2)对视频图像实吋处理极难做到。

第六章图像增强

*图像增强的应用及其分类图像处理最基本的目的之一?是改善图像,而改善图像最常用的技术就是图像增强 *图像增强有两大类应用

改善图像的视觉效果,提高图像清晰度突出图像的特征,便于计算机处理。

*图像增强按作用域分为两类,即空域处理和频域处理。

*频域处理则是在图像的某个变换域内,对图像的变换系数进行运算,然后通过逆变换获得图像增强效果。

*频域处理与空域处理的异同:同:都是一种图像处理方法;异:空域处理是根据图像的空间函数对图像的不同空间特性进行处理,而频域处理是针对图像的频谱。

*图像增强的点运算

对一副输入图像,经点运算将产生一副输出图像,后者的每个像素的灰度值仅由输入像素的值决定。

(1)对比度增强(2)对比度拉伸(3)灰度变换

*灰度变换法

*线性灰度变换

(1)变换使得图像灰度范围增大,即对比度增大,图像会变得清晰;

(2)变换使得图像灰度范围缩小,即对比度减小。

**非线性灰度变换

(1)对数变换g 二 a + c-lg(f + 1)

对数变换可以增强低灰度级的像素,压制高灰度级的像素,使灰度分布与视觉特性相匹配。

**直方图(Equalization)

表示数字图像中的每一灰度级与其出现的频率(该灰度级的象素数目)间的统计关

系,用横坐标表示灰度级,纵坐标表示频数(也可用概率表示)

**灰度直方图

图像的灰度直方图,是一种表示数字图像中各级灰度值及其岀现频数的关系的函数。

**直方图均衡化

是将原图像的直方图通过变换函数修正为均匀的直方图,然后按均衡直方图修正原图像。

*图像均衡化处理后,图像的直方图是平直的,即各灰度级具有相同的出现频数,那么由于灰度级具有均匀的概率分布,图像看起来就更清晰了。

*直方图均衡化实质上是减少图像的灰度级以换取对比度的加大。

*在均衡过程中,原来的直方图上频数较小的灰度级被归入很少几个或一个灰度级内,故得不到增强。

*若这些灰度级所构成的图像细节比较重要,则需采用局部区域直方图均衡。

***均衡化表格:(示例中从r0"r7)

(1)r 小k,从rO 开始,rO二0, rl二1/7;

(2)n小k,题目给岀;

(3)p (r小k),题目给出;

(4)s小(k计算),求出前一列累加;

(5)s小(k舍入),计算前一列与(几/7)最接近,写出(几/7);

(6)r (小k)箭头到s (小k),根据前一列出现的不同的分数,依次写出几个新灰度级(肯定比原來少)记为s (小k)的值,相同的合并单元格写到一个里面,并用箭头标出s (小k)的值与第一列的对应关系(箭头从第一列的值(几/7,可能是多个)指向s (小k)的值(JL/7));

(7)p小s (s小k),参考前一列还剩的(“几” /7)决定哪“几”行有值(第一横条算0),有值的那几行根据“几”反看前一列,该值所在的第“几”行(第一横条算0)与上一列的“几” /7对应,再反看箭头左端对应的[小k的值,根据该值反看其对应的概率(即第3列),如果只有一个则直接赋值给最后一列,如果对应有多个则相加后赋值给对后一列。

(8)作图:输入图像的直方图(横坐标:r小乩纵坐标:第3列;原点为00);输岀图像的直方图(横坐标:s小k;纵坐标:最后一列;原点00)

**均值滤波(邻域平均法):

(1)优点:把每个像素都用周围的8个像素做均值操作,平滑图像速度快、算法简单。

(2)缺点:1、在降低噪声的同时,使图像产生模糊,特别是边缘和细节处,而且模糊尺寸越大,图像模糊程度越大。2、对椒盐噪声的平滑处理效果不理想。

**中值滤波法

用局部中值代替局部平均值

令[f (x, y)]—原始图像阵列,

[g (x, y)] --屮值滤波后图像阵列,

f(X, y) --灰度级,

g(x, y)—以f(x, y)为中心的窗口内各象素的灰度中间值o

*中值滤波的特性

(1)对离散阶跃信号、斜升信号不产生影响(2)连续个数小于窗口长度一半的离散脉冲将被平滑(3)三角函数的顶部平坦化(4)中值滤波后,信号频率谱基本不变

(2)优点:1、在平滑脉冲噪声方面非常灵敏,同时可以保护图像尖锐的边缘。

2、不影响阶跃信号、斜坡信号,连续个数小于窗口长度一半的脉冲受到抑制,三角波信号顶部变平。

(3)缺点:1、对于高斯噪声不如均值滤波。2、图像中点、线、尖角等细节较多,则不宜采用中值滤波。

**图像的锐化

*目的

(1)图像平滑使图像变得模糊(2)图像识别中常常需要突出边缘和轮廓信息。 *方法(1)平均、积分的逆运算,如微分、梯度(2)频谱的角度,高频分量被衰减, 加强图像高频分量

*常用的梯度算子

(1)Roberts各向同性;对噪声敏感;模板尺寸为偶数,中心位置不明显。

(2)Prewitt引入了平均因素,对噪声有抑制作用;操作简便。

(3)Sobel引入了平均因素,增强了最近像素的影响,噪声抑制效果比Prewitt 好。

(4)Krisch噪声抑制作用较好;需求岀8个方向的响应(这里只给出2个模板)

(5)Isotropic Sobel权值反比于邻点与中心店的距离,检测沿不用方向边缘时梯度幅度一致,即具有各向同性。

**图像增强的内容:

(1)消除噪声,改善图像的视觉效果(2)突出边缘,有利于识别和处理

**频域平滑原理:

噪声主要集中在高频部分,为除去噪声改善图像质量,釆用低通滤波器抑制高频部分,然后再进行逆变换获得滤波图像,达到平滑图像的目的.

采用低通滤波

**同态滤波

(1)灰度级动态范围很大,即黑的部分很黑,白的部分很而我们感兴趣的图屮的某一部分灰度级范围又很小,分不清物体的灰度层次和细节。

(2)采用一般的灰度线形变换是不行的,因为扩展灰度级虽可以提高物理图像的反差,但会使动态范围更大。

(3)而压缩灰度级,虽可以减少动态范围,但物理灰度层次和细节就会更看不清。

**(4)同态滤波是一种在频域中将图像亮度范围进行压缩和将图像对比度进行增强的方法。

*同态滤波目的:消除不均匀照度的影响而乂不损失图像细节。

第七章图像复原

**图像退化(为什么要恢复)

(1)图像的退化是指图像在形成、传输和记录过程中,由于成像系统、传输介质和设备的不完善,使图像的质量变坏。

(2)图像复原就是要尽可能恢复退化图像的本來面口,它是沿图像退化的逆过程进行处理。

(3)图像退化的数学模型为:g(x, y) =f (x, y)?h(x, y) +n(x, y)

?采用线性位移不变系统模型的原由:

(1)由于许多种退化都可以用线性位移不变模型来近似,这样线性系统中的许多数学工具如线性代数,能用于求解图像复原问题,从而使运算方法简捷和快速。

(2)当退化不太严重时,一般用线性位移不变系统模型來复原图像,在很多应用中有较好的复原结果,且计算大为简化。

(3)尽管实际非线性和位移可变的情况能更加准确而普遍地反映图像复原问题的木质,但在数学上求解困难。只有在要求很精确的情况下才用位移可变的模型去求解,

**典型的图像复原定义:

是根据图像退化的先验知识建立一个退化模型,以此模型为基础,采用各种逆退化处理方法进行恢复,得到质量改善的图像。

**图像复原过程如下:找退化原因一建立退化模型一反向推演一恢复图像 **图像增强与图像复原的联系与区别?

(1)二者的目的都是为了改善图像的质量。

(2)图像增强不考虑图像是如何退化的,而是试图采用各种技术来增强图像的视觉效果。因此,图像增强可以不顾增强后的图像是否失真,只要看得舒服就行。

(3)而图像复原就完全不同,需知道图像退化的机制和过程等先验知识,据此找岀一种相应的逆处理方法,从而得到复原的图像。

(4)如果图像已退化,应先作复原处理,再作增强处理。

**点源的概念

?幅图像可以看成由无穷多极小的像素所组成,每一个像索都可以看作为一个点源成像,因此,一幅图像也可以看成由无穷多点源形成的。

**白噪声:图像平面上不同点的噪声是不和关的,其谱密度为常数。

(1)实用上,只要噪声带宽远大于图像带宽,就可把它当作白噪声。虽不精确,确是一个很方便的模型。

(2)当噪声与图像不相关时,噪声是加性的。

**逆滤波复原过程:

(1)对退化图像g(x, y)作二维离散傅立叶变换,得到G(u, V);

(2)计算系统点扩散函数h(x, y)的二维傅立叶变换,得到H(u, v);

(3)逆滤波计算 F (u, v) =G (u,v)/Il(u,v)

(4)计算F (u, v)的逆傅立叶变换,求得f (x, y)

*逆滤波的病态性:

如果考虑噪声项N(x, y),则岀现零点吋,噪声项将被放大,零点的影响将会更大,对复原的结果起主导地位,这就是逆滤波的病态性质

**图像的几何校正

(1)图像在获取过程中,由于成像系统木身具有非线性、拍摄角度等因素的影响,会使获得的图像产生几何失真。

(2)当对图像作定量分析时,就要对失真的图像先进行精确的几何校正(即将存在几何失真的图像校正成无几何失真的图像§ **),以免影响定量分析的精度。

其求解也常以位移不变的解法为基础加以修改而成。

§几何校正方法:

图像几何校正的基本方法是先建立几何校正的数学模型;其次利用己知条件确定模型参数;最后根据模型对图像进行几何校正。通常分两步:

(1)图像空间坐标变换;首先建立图像像点坐标(行、列号)和物方(或参考图)对应点坐标间的映射关系,解求映射关系中的未知参数,然后根据映射关系对图像各个像素坐标进行校正;

(3)梯形失真;枕形失真;桶形失真(2)确定各像素的灰度值(灰度内插)。

*数字图像的表示

当一幅图像的x和y坐标及幅值f都为连续量时,称该图像为连续图像*。为了

数字图像处理课程心得

数字图像处理课程心得 本学期,我有幸学习了数字图像处理这门课程,这也是我大学学习中的最后一门课程,因此这门课有着特殊的意义。人类传递信息的主要媒介是语音和图像。据统计,在人类接受的信息中,听觉信息占20%,视觉信息占60%,其它如味觉、触觉、嗅觉信息总的加起来不过占20%。可见图像信息是十分重要的。通过十二周的努力学习,我深刻认识到数字图像处理对于我的专业能力提升有着比较重要的作用,我们可以运用Matlab对图像信息进行加工,从而满足了我们的心理、视觉或者应用的需求,达到所需图像效果。 数字图像处理起源于20世纪20年代,当时通过海底电缆从英国伦敦到美国纽约采用数字压缩技术传输了第一幅数字照片。此后,由于遥感等领域的应用,使得图像处理技术逐步受到关注并得到了相应的发展。第三代计算机问世后,数字图像处理便开始迅速发展并得到普遍应用。由于CT的发明、应用及获得了备受科技界瞩目的诺贝尔奖,使得数字图像处理技术大放异彩。目前数字图像处理科学已成为工程学、计算机科学、信息科学、统计学、物理、化学、生物学、医学甚至社会科学等领域中各学科之间学习和研究的对象。随着信息高速公路、数字地球概念的提出以及Internet的广泛应用,数字图像处理技术的需求与日俱增。其中,图像信息以其信息量大、传输速度快、作用距离远等一系列优点成为人类获取信息的重要来源及利用信息的重要手段,因此图像处理科学与技术逐步向其他学科领域渗透并为其它学科所利用是必然的。 数字图像处理是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。图像处理科学是一门与国计民生紧密相联的应用科学,它给人类带来了巨大的经济和社会效益,不久的将来它不仅在理论上会有更深入的发展,在应用上亦是科学研究、社会生产乃至人类生活中不可缺少的强有力的工具。它的发展及应用与我国的现代化建设联系之密切、影响之深远是不可估量的。在信息社会中,数字图象处理科学无论是在理论上还是在实践中都存在着巨大的潜力。近几十年,数字图像处理技术在数字信号处理技术和计算机技术发展的推动下得到了飞速的发展,正逐渐成为其他科学技术领域中不可缺少的一项重要工具。数字图像处理的应用领域越来越广泛,从空间探索到微观研究,从军事领域到工农业生产,从科学教育到娱乐游戏,越来越多的领域用到了数字图像处理技术。 虽然通过一学期的课程学习我们还没有完全掌握数字图像处理技术,但也收获了不少,对于数字图像处理方面的知识有了比较深入的了解,当然也更加理解了数字图像的本质,即是一些数字矩阵,但灰度图像和彩色图像的矩阵形式是不同的。对于一些耳熟能详的数字图像相关术语有了明确的认识,比如常见的:像素(衡量图像的大小)、分辨率(衡量图像的清晰程度)、位图(放大后会失真)、矢量图(经过放大不会失真)等大家都能叫上口却知识模糊的名词。也了解图像处理技术中一些常用处理技术的实质,比如锐化处理是使模糊的图像变清晰,增强图像的边缘等细节。而平滑处理是的目的是消除噪声,模糊图像,在提取大目标之前去除小的细节或弥合目标间的缝隙。对常提的RGB图像和灰度图像有了明确的理解,这对大家以后应用Photoshop等图像处理软件对图像进行处理打下了

数字图像处理 课程设计报告

数字图像处理 课程设计报告 姓名: 学号: 班级: 设计题目:图像处理 教师:赵哲老师 提交日期: 12月29日

一、设计内容: 主题:《图像处理》 详细说明:对图像进行处理(简单滤镜,模糊,锐化,高斯模糊等),对图像进行处理(上下对称,左右对称,单双色显示,亮暗程度调整等),对图像进行特效处理(反色,实色混合,色彩平衡,浮雕效果,素描效果,雾化效果等), 二、涉及知识内容: 1、二值化 2、各种滤波 3、算法等 三、设计流程图 四、实例分析及截图效果: 运行效果截图: 第一步:读取原图,并显示 close all;clear;clc; % 清楚工作窗口clc 清空变量clear 关闭打开的窗口close all I=imread(''); % 插入图片赋给I imshow(I);% 输出图I I1=rgb2gray(I);%图片变灰度图 figure%新建窗口 subplot(321);% 3行2列第一幅图 imhist(I1);%输出图片

title('原图直方图');%图片名称 一,图像处理模糊 H=fspecial('motion',40); %% 滤波算子模糊程度40 motion运动 q=imfilter(I,H,'replicate');%imfilter实现线性空间滤波函数,I图经过H滤波处理,replicate反复复制q1=rgb2gray(q); imhist(q1); title('模糊图直方图'); 二,图像处理锐化 H=fspecial('unsharp');%锐化滤波算子,unsharp不清晰的 qq=imfilter(I,H,'replicate'); qq1=rgb2gray(qq); imhist(qq1); title('锐化图直方图'); 三,图像处理浮雕(来源网络) %浮雕图 l=imread(''); f0=rgb2gray(l);%变灰度图 f1=imnoise(f0,'speckle',; %高斯噪声加入密度为的高斯乘性噪声 imnoise噪声污染图像函数 speckle斑点 f1=im2double(f1);%把图像数据类型转换为双精度浮点类型 h3=1/9.*[1 1 1;1 1 1;1 1 1]; %采用h3对图像f2进行卷积滤波 f4=conv2(f1,h3,'same'); %进行sobel滤波 h2=fspecial('sobel'); g3=filter2(h2,f1,'same');%卷积和多项式相乘 same相同的 k=mat2gray(g3);% 实现图像矩阵的归一化操作 四,图像处理素描(来源网络) f=imread(''); [VG,A,PPG] = colorgrad(f); ppg = im2uint8(PPG); ppgf = 255 - ppg; [M,N] = size(ppgf);T=200; ppgf1 = zeros(M,N); for ii = 1:M for jj = 1:N if ppgf(ii,jj)

数字图像处理期末复习题2教学总结

第六章图像的锐化处理 一.填空题 1. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。垂直方向的微分算子属于________________。(填“一阶微分算子”或“二阶微分算子”) 2. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。Roberts交叉微分算子属于________________。(填“一阶微分算子”或“二阶微分算子”) 3. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。Sobel 微分算子属于________________。(填“一阶微分算子”或“二阶微分算子”) 4. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。Priwitt微分算子属于________________。(填“一阶微分算子”或“二阶微分算子”) 5. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。Laplacian微分算子属于________________。(填“一阶微分算子”或“二阶微分算子”) 6. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。Wallis 微分算子属于________________。(填“一阶微分算子”或“二阶微分算子”) 7. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。水平方向的微分算子属于________________。(填“一阶微分算子”或“二阶微分算子”) 8. 图像微分______________了边缘和其他突变的信息。(填“增强”或“削弱”) 9. 图像微分______________了灰度变化缓慢的信息。(填“增强”或“削弱”) 10. 图像微分算子______________用在边缘检测中。(填“能”或“不能”) 四.简答题 1. 图像中的细节特征大致有哪些?一般细节反映在图像中的什么地方? 2. 一阶微分算子与二阶微分算子在提取图像的细节信息时,有什么异同? 3. 简述水平方向的微分算子的作用模板和处理过程。 4. 简述垂直方向的微分算子的作用模板和处理过程。 5. 已知Laplacian微分算子的作用模板为:,请写出两种变形的Laplacian算子。解答: 1. 图像的细节是指画面中的灰度变化情况,包含了图像的孤立点、细线、画面突变等。孤 立点大都是图像的噪声点,画面突变一般体现在目标物的边缘灰度部分。 2. 一阶微分算子获得的边界是比较粗略的边界,反映的边界信息较少,但是所反映的边界 比较清晰;二阶微分算子获得的边界是比较细致的边界。反映的边界信息包括了许多的细节 信息,但是所反映的边界不是太清晰。 五.应用题 1. 已知Roberts算子的作用模板为:,Sobel算子的作用模板为: 。 设图像为:

武汉科技大学 数字图像处理实验报告

二○一四~二○一五学年第一学期电子信息工程系 实验报告书 班级:电子信息工程(DB)1102班姓名 学号: 课程名称:数字图像处理 二○一四年十一月一日

实验一图像直方图处理及灰度变换(2学时) 实验目的: 1. 掌握读、写、显示图像的基本方法。 2. 掌握图像直方图的概念、计算方法以及直方图归一化、均衡化方法。 3. 掌握图像灰度变换的基本方法,理解灰度变换对图像外观的改善效果。 实验内容: 1. 读入一幅图像,判断其是否为灰度图像,如果不是灰度图像,将其转化为灰度图像。 2. 完成灰度图像的直方图计算、直方图归一化、直方图均衡化等操作。 3. 完成灰度图像的灰度变换操作,如线性变换、伽马变换、阈值变换(二值化)等,分别使用不同参数观察灰度变换效果(对灰度直方图的影响)。 实验步骤: 1. 将图片转换为灰度图片,进行直方图均衡,并统计图像的直方图: I1=imread('pic.jpg'); %读取图像 I2=rgb2gray(I1); %将彩色图变成灰度图 subplot(3,2,1); imshow(I1); title('原图'); subplot(3,2,3); imshow(I2); title('灰度图'); subplot(3,2,4); imhist(I2); %统计直方图 title('统计直方图'); subplot(3,2,5); J=histeq(I2); %直方图均衡 imshow(J); title('直方图均衡'); subplot(3,2,6); imhist(J); title('统计直方图');

原 图 灰度图 01000 2000 3000统计直方图 100200直方图均衡 0统计直方图 100200 仿真分析: 将灰度图直方图均衡后,从图形上反映出细节更加丰富,图像动态范围增大,深色的地方颜色更深,浅色的地方颜色更前,对比更鲜明。从直方图上反应,暗部到亮部像素分布更加均匀。 2. 将图片进行阈值变换和灰度调整,并统计图像的直方图: I1=imread('rice.png'); I2=im2bw(I1,0.5); %选取阈值为0.5 I3=imadjust(I1,[0.3 0.9],[]); %设置灰度为0.3-0.9 subplot(3,2,1); imshow(I1); title('原图'); subplot(3,2,3); imshow(I2); title('阈值变换'); subplot(3,2,5); imshow(I3); title('灰度调整'); subplot(3,2,2); imhist(I1); title('统计直方图'); subplot(3,2,4);

数字图像处理期末复习总结

第一节数字图像处理概述/第二节数字图像处理的获取、显示和表示(只有概念,无计算) 1、图像的数字化过程:将一幅图像从原来的形式转换为数字形式的处理过程。图像的数字化过程包括扫描、采样、量化。 ①扫描:对一幅图像内给定位置的寻址。(被寻址的最小单元:像素) ②采样:在一幅图像的每个像素位置上测量灰度值。(采样的两个重要参数:采样间隔和采样孔径) ③量化:将测量的灰度值用一个整数表示。 2、数字图像处理技术所涉及的图像类型:(1位)二值图像、(8位)灰度图像、(24位)彩色图像、索引图像。 (24位)彩色图像区别颜色特性的三个因素:色相(或色度)、饱和度、亮度。 ①色相(或色度):是从物体反射或透过物体传播的颜色。在0 到360 度的标准色轮上,色相是按位置度量的。在通常的使用中,色相是由颜色名称标识的,比如红、橙或绿色。 ②饱和度:有时也称色品,是指颜色的强度或纯度。饱和度表示色相中灰成分所占的比例,用从0%(灰色)到100%(完全饱和)的百分比来度量。在标准色轮上,从中心向边缘饱和度是递增的。 ③亮度:是颜色的相对明暗程度。通常用从 0%(黑)到 100%(白)的百分比来度量。 第三节灰度直方图 1、灰度直方图的定义:是灰度级的函数,描述的是图像中每种灰度级像素的个数,反映图像中每种灰度出现的频率。横坐标是灰度级,纵坐标是灰度级出现的频率(像素个数)。 2、灰度直方图的数学表达式:(一幅连续图像的直方图是其面积函数的导数的负值) 3、灰度直方图的性质:①不表示图像的空间信息;②任一特定图像都有唯一直方图,但反之并不成立(即一个直方图不只对应一个图像); ③归一化灰度直方图和面积函数可得到图像的概率密度函数PDF和累积分布函数CDF;④直方图的可相加性;⑤利用轮廓线可以求面积(灰度级D1定义的轮廓线) 4、直方图均衡化:利用点运算使一幅输入图像转换为在每一灰度级上都有相同像素点数的输出图像(即输出的直方图是平的) 直方图匹配:对一幅图像进行变换,使其直方图与另一幅图像的直

数字图像处理技术应用课程报告

集中稀疏表示的图像恢复 董伟胜中国西安电子科技大学电子工程学院wsdong@https://www.doczj.com/doc/8e17433266.html, 张磊香港理工大学计算机系cslzhang@https://www.doczj.com/doc/8e17433266.html,.hk 石光明中国西安电子科技大学电子工程学院gmshi@https://www.doczj.com/doc/8e17433266.html, 摘要 本文对于图像恢复任务提出了一种新的称为集中稀疏表示(CSR)的稀疏表示模型。为了重建高还原度的图像,通过给定的字典,退化图像的稀疏编码系数预计应该尽可能接近那些未知的原始图像。然而,由于可用的数据是原始图像的退化版本(如噪声、模糊和/或者低采样率),正如许多现有的稀疏表示模型一样,如果只考虑局部的稀疏图像,稀疏编码系数往往不够准确。为了使稀疏编码更加准确,通过利用非局部图像统计,引入一个集中的稀疏性约束。为了优化,局部稀疏和非局部稀疏统一到一个变化的框架内。大量的图像恢复实验验证了我们的CSR模型在以前最先进的方法之上取得了令人信服的改进。 1、介绍 图像恢复(IR)目的是为了从,比如说通过一个低端摄像头或者在有限条件下得到图像的图像退化版本(例如噪声、模糊和/或者低采样率),来恢复一副高质量的图像。对于观察的图像y,IR问题可以表示成: y = Hx + v (1) 其中H是一个退化矩阵,x是原始图像的矢量,v是噪声矢量。由于IR的病态特性,尝试把观察模型和所需解决方案的先验知识合并到一个变分公式的正则化技术,已经被广泛地研究。对于正则方法,对自然图像适当的先验知识进行寻找和建模是最重要的关注点之一,因此学习自然图像先验知识的各种方法已经被提出来了【25,5,6,12】。 近年来,对于图像恢复基于建模的稀疏表示已经被证明是一种很有前途的模型【9,5,13,20,16,21,27,15,14】。在人类视觉系统【23,24】的研究中,已经发现细胞感受区域使用少量的从一个超完备的编码集中稀疏选出的结构化基元来编码自然图像。在数学上,一个x ∈ R N的信号可以表示为一个字典Φ中的几个原子的线性组合,例如,X ≈Φα,用|0 最小化:

上数字图像处理技术的心得

上数字图像处理技术的心得我一直对PS挺感兴趣的,虽然我去图书馆借了许多书,可是有很多地方解释不清楚也没有素材,我都快崩溃了。单我发现这门课立即就报了它。我的最初目的不是要去学数字图像处理技术,而是冲着学photoshop去的。 刚开始上第一节课时,老师您并没有讲PS,而是讲一些关于数字图像处理技术的原理知识。我本以为我可能不会喜欢这种类型的课。但是出于一个理科生的本能反应,我挺喜欢这些内容。我发觉我的几个选修都正好符合我的兴趣爱好。我第一次接触数字图像处理技术,才知道图像的原理竟然一些数字矩阵。不愧叫数字图像处理技术。 但老师开始讲PS的时候,我自然是更加高兴了。因为这是我主要的学习目的。图像处理技术只是碰巧撞上。说实话,我对PS上的一些工具及使用方法还不是很了解。老师能从基本知识讲起正和我心意。虽然有很多我以前都会了。 我现在来讲讲我从在这门选修课中学到最主要的两项知识。 其一就是老师最希望我们了解的数字图像处理技术。我们现在都知道一张像数码相机照出来的照片(数字图像)是由一大堆数字矩阵组成。黑白与彩色图像的矩阵又有一些不同。老师用北京邮电大学的那个软件给我们演示一下PS里面的图像处理原理是怎样形成的。比如模糊,锐化等等。还有很多的图像处理通过PS来说明解释。后面主要就是介绍压缩技术。当然也涉及到一些视频音频的压缩。图像

压缩老师您也介绍了很多不同的方法。可我想不起来了,但是起码我们知道了它的压缩原理。知道原图像与压缩后所占存储量的巨大差异。我在这里也和老师一样用画图做一个。有一点失真,这就是有损压缩。 另外那个无损压缩从视觉上是抗不出来的,就不用做了。 其二,就是在photosop的操作上。老师您举了许许多多的操作例子来提高我们对数字图像处理技术的兴趣,尤其是在图层和滤镜的学习,我都学到很多在书上看不懂的方法技能。下面我也简简单单做一张,就当做是作业来完成吧! 如下三张图:通过第一张图中草地,山与第二张的天空合成第三张图。

数字图像处理心得体会

《数字图像处理》心得体会 图像处理是指对图像信息进行加工,从而满足人类的心理、视觉或者应用的需求的一种行为。图像处理方法一般有数字法和光学法两种,其中数字法的优势很明显,已经被应用到了很多领域中,相信随着科学技术的发展,其应用空间将会更加广泛。数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理是从20世纪60年代以来随着计算机技术和VLSL的发展而产生、发展和不断成熟起来的一个新兴技术领域。数字图像处理技术其实就是利用各种数字硬件与计算机,对图像信息通过转换而得到的电信号进行相应的数学运算,例如图像去噪、图像分割、提取特征、图像增强、图像复原等,以便提高图像的实用性。其特点是处理精度比较高,并且能够对处理软件进行改进来优化处理效果,操作比较方便,但是由于数字图像需要处理的数据量一般很大,因此处理速度有待提高。 由于数字图像处理的方便性和灵活性,因此数字图像处理技术已经成为了图像处理领域中的主流。数字图像处理技术主要涉及到的关键技术有:图像的采集与数字化、图像的编码、图像的增强、图像恢复、图像分割、图像分析等。? 图像的采集与数字化:就是通过量化和取样将一个自然图像转换为计算机能够处理的数字形式。? 图像编码:图像编码的目的主要是来压缩图像的信息量,以便能够满足存储和传输的要求。? 图像的增强:图像的增强其主要目的是使图像变得清晰或者将其变换为机器能够很容易分析的形式,图像增强方法一般有:直方图处理、灰度等级、伪彩色处理、边缘锐化、干扰抵制。?

图像的恢复:图像恢复的目的是减少或除去在获得图像的过程中因为各种原因而产生的退化,可能是由于光学系统的离焦或像差、被摄物与摄像系统两者之间的相对运动、光学或电子系统的噪声与介于被摄像物跟摄像系统之间的大气湍流等等。? 图像的分割:图像分割是将图像划分为一些互相不重叠的区域,其中每一个区域都是像素的一个连续集,通常采用区域法或者寻求区域边界的境界法。? 图像分析:图像分析是指从图像中抽取某些有用的信息、数据或度量,其目的主要是想得到某种数值结果。图像分析的内容跟人工智能、模式识别的研究领域有一定的交叉。? 数字图像处理的特点主要表现在以下几个方面:? 1)?数字图像处理的信息大多是二维信息,处理信息量很大。因此对计算机的计算速度、存储容量等要求较高。? 2)?数字图像处理占用的频带较宽。与语言信息相比,占用的频带要大几个数量级。所以在成像、传输、存储、处理、显示等各个环节的实现上技术难度较大,成本亦高。这就对频带压缩技术提出了更高的要求。? 3)?数字图像中各个像素不是独立的,其相关性大。在图像画面上,经常有很多像素有相同或接近的灰度。所以,图像处理中信息压缩的潜力很大。?图像受人的因素影响较大,因为图像一般是给人观察和评价的。? 数字图像处理的优点主要表现在4个方面。? 1)?再现性好。数字图像处理与模拟图像处理的根本不同在于它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。只要图像在数字化时准确地表现了原稿,那么数字图像处理过程始终能保持图像的再现。? 2)?处理精度高。将一幅模拟图像数字化为任意大小的二维数组,主要取决于

2013数字图像处理课程设计报告

数字图像处理 课程设计报告 课设题目:彩色图像增强软件学院:信息科学与工程学院专业:电子与信息工程 班级: 1002501 姓名:曾小路 学号: 100250131 指导教师:赵占峰 哈尔滨工业大学(威海) 2013 年12月27日

目录 目录 .......................................................................................................................... I 一. 课程设计任务 (1) 二. 课程设计原理及设计方案 (2) 2.1 彩色图像基础 (2) 2.2 彩色模型 (2) 三. 课程设计的步骤和结果 (6) 3.1 采集图像 (6) 3.2 图像增强 (7) 3.3 界面设计 (9) 四. 课程设计总结 (12) 五. 设计体会 (13) 六. 参考文献 (14)

哈尔滨工业大学(威海)课程设计报告 一. 课程设计任务 1.1设计内容及要求: (1)、独立设计方案,根据所学知识,对由于曝光过度、光圈过小或图像亮度不均匀等情况下的彩色图像进行增强,提高图像的清晰度(通俗地讲,就是图像看起来干净、对比度高、颜色鲜艳)。 (2)、参考photoshop 软件,设计软件界面,对处理前后的图像以及直方图等进行对比显示; (3)、将实验结果与处理前的图像进行比较、分析。总结设计过程所遇到的问题。 1.2参考方案 1、实现图像处理的基本操作 学习使用matlab 图像处理工具箱,利用imread()语句读入图像,例如image=imread(flower.jpg),利用彩色图像模型转换公式,将RGB 类型图像转换为HSI 类型图像,显示各分量图像(如imshow(image)),以及计算和显示各分量图像直方图。 2、彩色图像增强实现 对HSI彩色模型图像的I分量进行对比度拉伸或直方图均衡化等处理,提高亮度图像的对比度。对S分量图像进行适当调整,使图像色彩鲜艳或柔和。 H 分量保持不变。将处理后的图像转换成RGB 类型图像,并进行显示。分析处理图像过程和结果存在的问题。 3、参照“photoshop”软件,设计图像处理软件界面 可设计菜单式界面,在功能较少的情况下,也可以设计按键式界面,视 功能多少而定;参考matlab 软件中GUI 设计,学习软件界面的设计 - 1 -

数字图像处理期末考题

数字图像处理 一、填空题 1、数字图像的格式有很多种,除GIF格式外,还有jpg 格式、tif 格式。 2、图像数据中存在的有时间冗余、空间冗余、结构冗余、信息熵冗余、知识 冗余、视觉冗余。 3、在时域上采样相当于在频域上进行___延拓。 4、二维傅里叶变换的性质___分离性、线性、周期性与共轨对称性、__位 移性、尺度变换、旋转性、平均值、卷积。(不考) 5、图像中每个基本单元叫做图像元素;在早期用picture表示图像时就称为 像素。 6、在图象处理中认为线性平滑空间滤波器的模板越大,则对噪声的压制越 好 ;但使图像边缘和细节信息损失越多; 反之, 则对噪声的压制不好 ,但对图像的细节等信息保持好。模板越平,则对噪声的压制越好 ,但对图像细节的保持越差;反之,则对噪声的压制不好,但对图像细节和边缘保持较好。 7、哈达玛变换矩阵包括___+1 和___—1 两种矩阵元素。(不要) 8、对数变换的数学表达式是t = Clog ( 1 + | s | ) 。 9、傅里叶快速算法利用了核函数的___周期性和__对称性。(不要) 10、直方图均衡化的优点是能自动地增强整个图像的对比度。(不要) 二、选择题 ( d )1.一幅灰度级均匀分布的图象,其灰度范围在[0,255],则该图象的信息量为: a. 0 .255 c ( c )2.采用模板[-1 1]主要检测____方向的边缘。 a.水平 b.45 c.垂直 ( c )3. 下列算法中属于图象平滑处理的是: a.梯度锐化 b.直方图均衡 c. 中值滤波增强 ( b )4.图象与灰度直方图间的对应关系是: a.一一对应 b.多对一 c.一对多 d.都不对 ( a )5.对一幅图像采样后,512*512的数字图像与256*256的数字图像相比较具有的细节。 a.较多 b.较少 c.相同 d.都不对 ( b )6.下列算法中属于点处理的是: a.梯度锐化 b.二值化 c.傅立叶变换 d.中值滤波 ( d )7.二值图象中分支点的连接数为: .1 c ( a )8.对一幅100100像元的图象,若每像元用8bit表示其灰度值,经霍夫曼编码后压缩图象的数据量为40000bit,则图象的压缩比为: :1 :1 c.4:1 :2 ( d )9.下列算法中属于局部处理的是: a.灰度线性变换 b.二值化 c.傅立叶变换 d.中值滤波 ( b )10.下列图象边缘检测算子中抗噪性能最好的是: a.梯度算子算子算子d. Laplacian算子

武汉大学数字图像处理课程综合实习实习报告

数字图像处理课程综合实习 实习报告 学院 班级 学号 姓名 日期 指导教师

一、实习目的和意义 本实习内容旨在让同学们通过用VC等高级语言编写数字图像处理的一些基本算法程序,来巩固和掌握图像处理技术的基本技能,提高实际动手能力,并通过实际编程了解图像处理软件的实现的基本原理。为学生进一步学习数字摄影测量、遥感和地理信息系统等专业课程以及应用图像处理解决实际问题奠定基础。 二、实习原理和方法 实习一实现RAW->BMP格式的转换 RAW格式:文件按照数字图像组成的二维矩阵,将像素按行列号顺序存储在文件中。这种文件只含有图像像素数据,不含有信息头,因此,在读图像时,需要根据文件大小,计算图像所包含的行列号,或者需要事先知道图像大小(矩阵大小)。但这种文件读取和保存简单。 RAW文件按图像上行到下行、左列到右列顺序存储,而BMP文件数据区按图像上下行到上行、左列列到右列顺序存储到数据区。 实现RAW文件到BMP文件的转换,需要为BMP文件生成文件头、信息头、颜色表、数据区,将RAW文件数据区赋值到BMP文件数据区。 实习二灰度线性变换 点运算是指像素值(即像素点上的灰度值)通过运算改变之后,可以改善图象的显示效果。这是一种像素的逐点运算,是旧图象与新图象之间的映射关系,是一种简单但却十分有效的一种图象处理手段。常用方法有灰度线性变换、直方图均衡、对比度调整、直方图规定化、对数变换、指数变换、密度分割等方法。 灰度的线性变换就是指图像的中所有点的灰度按照线性灰度变换函数进行变换。灰度变换方程如下: D0=f(Di)=a*Di+b 该方程为线性方程。式中参数Di为输入图像的像素的灰度值,参数D0为输出图像的灰度,a和b由给定条件确定。 实习三图像局部处理:高通滤波和低通滤波

《数字图像处理》课程学习心得

《数字图像处理》课程学习心得 导读:本文《数字图像处理》课程学习心得,仅供参考,如果能帮助到您,欢迎点评和分享。 《数字图像处理》课程学习心得(一) 在这一学期,我选修了《数字图像处理基础》这门课程,同时,老师还讲授了一些视频处理的知识。在这里,梳理一下这学期学到的知识,并提出一些我对这门课程的建议。 图像处理是指对图像信息进行加工,从而满足人类的心理、视觉或者应用的需求的一种行为。图像处理方法一般有数字法和光学法两种,其中数字法的优势很明显,已经被应用到了很多领域中,相信随着科学技术的发展,其应用空间将会更加广泛。数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理是从20世纪60年代以来随着计算机技术和VLSL的发展而产生、发展和不断成熟起来的一个新兴技术领域。数字图像处理技术其实就是利用各种数字硬件与计算机,对图像信息通过转换而得到的电信号进行相应的数学运算,例如图像去噪、图像分割、提取特征、图像增强、图像复原等,以便提高图像的实用性。其特点是处理精度比较高,并且能够对处理软件进行改进来优化处理效果,操作比较方便,但是由于数字图像需要处理的数据量一般很大,因此处理速度有待提高。目前,随着计算机技术的不断发展,计算机的运算速度得到了很大程度的提高。在短短的历史中,它

却广泛应用于几乎所有与成像有关的领域,在理论上和实际应用上都取得了巨大的成就。 1、数字图像处理需用到的关键技术 由于数字图像处理的方便性和灵活性,因此数字图像处理技术已经成为了图像处理领域中的主流。数字图像处理技术主要涉及到的关键技术有:图像的采集与数字化、图像的编码、图像的增强、图像恢复、图像分割、图像分析等。 图像的采集与数字化:就是通过量化和取样将一个自然图像转换为计算机能够处理的数字形式。 图像编码:图像编码的目的主要是来压缩图像的信息量,以便能够满足存储和传输的要求。 图像的增强:图像的增强其主要目的是使图像变得清晰或者将其变换为机器能够很容易分析的形式,图像增强方法一般有:直方图处理、灰度等级、伪彩色处理、边缘锐化、干扰抵制。 图像的恢复:图像恢复的目的是减少或除去在获得图像的过程中因为各种原因而产生的退化,可能是由于光学系统的离焦或像差、被摄物与摄像系统两者之间的相对运动、光学或电子系统的噪声与介于被摄像物跟摄像系统之间的大气湍流等等。 图像的分割:图像分割是将图像划分为一些互相不重叠的区域,其中每一个区域都是像素的一个连续集,通常采用区域法或者寻求区域边界的境界法。 图像分析:图像分析是指从图像中抽取某些有用的信息、数据或

数字图像处理课程设计报告

课程设计报告书课程名称:数字图像处理 题目:数字图像处理的傅里叶变换 学生姓名: 专业:计算机科学与技术 班别:计科本101班 学号: 指导老师: 日期: 2013 年 06 月 20 日

数字图像处理的傅里叶变换 1.课程设计目的和意义 (1)了解图像变换的意义和手段 (2)熟悉傅里叶变换的基本性质 (3)热练掌握FFT的方法反应用 (4)通过本实验掌握利用MATLAB编程实现数字图像的傅里叶变换 通过本次课程设计,掌握如何学习一门语言,如何进行资料查阅搜集,如何自己解决问题等方法,养成良好的学习习惯。扩展理论知识,培养综合设计能力。 2.课程设计内容 (1)熟悉并掌握傅立叶变换 (2)了解傅立叶变换在图像处理中的应用 (3)通过实验了解二维频谱的分布特点 (4)用MATLAB实现傅立叶变换仿真 3.课程设计背景与基本原理 傅里叶变换是可分离和正交变换中的一个特例,对图像的傅里叶变换将图像从图像空间变换到频率空间,从而可利用傅里叶频谱特性进行图像处理。从20世纪60年代傅里叶变换的快速算法提出来以后,傅里叶变换在信号处理和图像处理中都得到了广泛的使用。 3.1课程设计背景 数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。 3.2 傅里叶变换 (1)应用傅里叶变换进行数字图像处理 数字图像处理(digital image processing)是用计算机对图像信息进行处理的一门技术,使利用计算机对图像进行各种处理的技术和方法。 20世纪20年代,图像处理首次得到应用。20世纪60年代中期,随电子计算机的发展得到普遍应用。60年代末,图像处理技术不断完善,逐渐成为一个新兴的学科。利用数字图像处理主要是为了修改图形,改善图像质量,或是从图像中提起有效信息,还有利用数字图像处理可以对图像进行体积压缩,便于传输和保存。数字图像处理主要研究以下内容:傅立叶变换、小波变换等各种图像变换;对图像进行编码和压缩;采用各种方法对图像进行复原和增强;对图像进行分割、描述和识别等。随着技术的发展,数字图像处理主要应用于通讯技术、宇宙探索遥感技术和生物工程等领域。

数字图像处理期末复习

遥感与数字图像处理基础知识 一、名词解释: 数字影像图像采样灰度量化像素 数字影像:数字影像又称数字图像,即数字化的影像。基本上是一个二维矩阵,每个点称为像元。像元空间坐标和灰度值均已离散化,且灰度值随其点位坐标而异。 图像采样:指将在空间上连续的图像转换成离散的采样点集的操作。 灰度量化:将各个像素所含的明暗信息离散化后,用数字来表示。 像素:像素是A/D转换中的取样点,是计算机图像处理的最小单元 二、填空题: 1、光学图像是一个连续的光密度函数。 2、数字图像是一个_离散的光密度_函数。 3、通过成像方式获取的图像是连续的,无法直接进行计算机处理。此外,有些遥感图像是通过摄影方式获取的,保存在胶片上。只有对这些获取的图像(或模拟图像)进行数字化后,才能产生数字图像。数字化包括两个过程:___采样___和__量化___。 4、一般来说,采样间距越大,图像数据量____小____,质量____低_____;反之亦然。 5、一幅数字图像为8位量化,量化后的像素灰度级取值范围是________的整数。设该数字图像为600行600列,则图像所需要的存储空间为________字节。 6、设有图像文件为200行,200列,8位量化,共7个波段,则该图像文件的大小为________。 三、不定项选择题:(单项或多项选择) 1、数字图像的________。 ①空间坐标是离散的,灰度是连续的②灰度是离散的,空间坐标是连续的 ③两者都是连续的④两者都是离散的 2、采样是对图像________。 ①取地类的样本②空间坐标离散化③灰度离散化 3、量化是对图像________。 ①空间坐标离散化②灰度离散化③以上两者。 4、图像灰度量化用6比特编码时,量化等级为________。 ①32个②64个③128个④256个 5、数字图像的优点包括________。 ①便于计算机处理与分析②不会因为保存、运输而造成图像信息的损失 ③空间坐标和灰度是连续的

数字图像处理期末复习试题3

1、数字图像:指由被称作像素的小块区域组成的二维矩阵。将物理图像行列划分后,每个小块区域称为像素(pixel)。 数字图像处理:指用数字计算机及其它有关数字技术,对图像施加某种运算和处理,从而达到某种预想目的的技术. 2、8-连通的定义:对于具有值V的像素p和q ,如果q在集合N8(p)中,则称这两个像素是8-连通的。 3、灰度直方图:指反映一幅图像各灰度级像元出现的频率。 4、中值滤波:指将当前像元的窗口(或领域)中所有像元灰度由小到大进行排序,中间值作为当前像元的输出值。 像素的邻域 邻域是指一个像元(x,y)的邻近(周围)形成的像元集合。即{(x=p,y=q)}p、q为任意整数。 像素的四邻域 像素p(x,y)的4-邻域是:(x+1,y),(x-1,y) ,(x,y+1), (x,y-1) 三、简答题( 每小题10分,本题共30 分 ): 1. 举例说明直方图均衡化的基本步骤。 直方图均衡化是通过灰度变换将一幅图象转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。 直方图均衡化变换:设灰度变换s=f(r)为斜率有限的非减连续可微函数,它将输入图象Ii(x,y)转换为输出图象Io(x,y),输入图象的直方图为Hi(r),输出图象的直方图为Ho(s),则根据直方图的含义,经过灰度变换后对应的小面积元相等:Ho(s)ds=Hi(r)dr 直方图修正的例子 假设有一幅图像,共有6 4(6 4个象素,8个灰度级,进行直方图均衡化处理。 根据公式可得:s2=0.19+0.25+0.2l=0.65,s3=0.19+0.25+0.2l+0.16=0.8l,s4=0.89,s5=0.95,s6=0.98,s7=1.00 由于这里只取8个等间距的灰度级,变换后的s值也只能选择最靠近的一个灰度级的值。因此,根据上述计算值可近似地选取: S0≈1/7,s 1≈3/7,s2≈5/7,s3≈6/7,s4≈6/7,s5≈1,s6≈l,s7≈1。 可见,新图像将只有5个不同的灰度等级,于是我们可以重新定义其符号: S0’=l/7,s1’=3/7,s2’=5/7,s3’=6/7,s4’=l。 因为由rO=0经变换映射到sO=1/7,所以有n0=790个象素取sO这个灰度值;由rl=3/7映射到sl=3/7,所以有1 02 3个象素取s 1这一灰度值;依次类推,有850个象素取s2=5/7这一灰度值;由于r3和r4均映射到s3=6/7这一灰度值,所以有656+329=98 5个象素都取这一灰度值;同理,有245+1 22+81=448个象素都取s4=1这一灰度值。上述值除以n=4096,便可以得到新的直方图。 2. 简述JPEG的压缩过程,并说明压缩的有关步骤中分别减少了哪种冗余? 答:分块->颜色空间转换->零偏置转换->DCT变换->量化->符号编码。颜色空间转换,减少了心理视觉冗余;零偏置转换,减少了编码冗余;量化减少了心理视觉冗余;符号编码由于是霍夫曼编码加行程编码,因此即减少了编码冗余(霍夫曼编码)又减少了像素冗余(行程编码)。 JPEG2000的过程:图像分片、直流电平(DC)位移,分量变换,离散小波变换、量化,熵编码。3、Canny边缘检测器 答:Canny边缘检测器是使用函数edge的最有效边缘检测器。该方法总结如下:1、图像使用带有指定标准偏差σ的高斯滤波器来平滑,从而可以减少噪声。2、在每一点处计算局部梯度g(x,y)=[G2x+G2y]1/2 和边缘方向α(x,y)=arctan(Gy/Gx)。边缘点定义为梯度方向上其强度局部最大的点。3、第2条中确定的边缘点会导致梯度幅度图像中出现脊。然后,算法追踪所有脊的顶部,并将所有不在脊的顶部的像素设为零,以便在输出中给出一条细线,这就是众所周知的非最大值抑制处理。脊像素使用两个阈值T1和T2做阈值处理,其中T1

数字图像处理总结

第一章引言 1.图像处理的目的: 【PPT】人的观察、图像分析和识别 【百度】 (1)提高图像的视感质量,如进行亮度、彩色变换等以改善图像质量; (2)提取图像中所包含的某些特征或特殊信息,这个过程是模式识别或计算机视觉的预处理; (3)图像数据的变换、编码和压缩,以便于图像的存储和传输。 2.图像分辨能力描述 3.数字图像的运算形式:全局/局部/点,串行/并行 全局:快速傅立叶变换 局部: 点运算:对于一幅输入图像,经过点运算产生一幅输出图像,后者的每个像素的灰度值仅由相应输入像素的值决定(对比度增强,对比度拉伸,灰度变换)串行:后一像素输出结果依赖于前面像素处理的结果,并且只能依次处理各像素而不能同时对各像素进行相同处理的一种处理形式。 并行:对图像内的各同时进行相同形式运算的一种处理形式。 4.图像工程中的层次

5.数字图像的噪声 主要分为平稳的噪声和非平稳的噪声 第二章数字图像处理的基本概念 1.消色效应与加色效应(理解): 加色效应:由两种或两种以上的色光相混合时,会同时或者在极短的时间内连续刺激人的视觉器官,使人产生一种新的色彩感觉。我们称这种色光混合为加色混合。这种由两种以上色光相混合,呈现另一种色光的方法,称为色光加色法。表达式:(R)+(G)+(B)=(W)【RGB=红绿蓝】 消色效应:“色料减色法”。色料的呈色是由于色料选择性地吸收了入射光中的补色成分,而将剩余的色光反射或透射到人眼中。减色法的实质是色料对复色光中的某一单色光的选择性吸收,而使入射光的能量减弱。由于色光能量下降,使混合色的明度降低。表达式:(Y)+(M)+(C)=(Bk)【YMC=黄、品红、青】加色法与减色法的关系: 加色法与减色法都是针对色光而言,加色法指的是色光相加,减色法指的是色光被减弱。加色法是色光混合呈色的方法。减色法是色料混合呈色的方法。 加色法是两种以上的色光同时刺激人的视神经而引起的色效应;而减色法是指从白光或其它复色光中减某些色光而得到另一种色光刺激的色效应。 从互补关系来看,有三对互补色:R-C;G-M;B-Y。在色光加色法中,互补色相加得到白色;在色料减色法中,互补色相加得到黑色。

数字图像处理课程设计(实验报告)

上海理工大学 计算机工程学院 实验报告 实验名称红细胞数目统计课程名称数字图像处理 姓名王磊学号0916020226 日期2012-11-27 地点图文信息中心成绩教师韩彦芳

一、设计内容: 主题:《红细胞数目检测》 详细说明:读入红细胞图片,通过中值滤波,开运算,闭运算,以及贴标签等方法获得细胞个数。 二、现实意义: 细胞数目检测在现实生活中的意义主要体现在医学上的作用,可通过细胞数目的检测来查看并估计病人或动物的血液中细胞数,如估测血液中红细胞、白细胞、血小板、淋巴细胞等细胞的数目,同时也可检测癌细胞的数目来查看医疗效果,根据这一系列的指标来对病人或动物进行治疗,是具有极其重要的现实作用的。 三、涉及知识内容: 1、中值滤波 2、开运算 3、闭运算 4、二值化 5、贴标签 四、实例分析及截图效果: (1)代码如下: 1、程序中定义图像变量说明 (1)Image--------------------------------------------------------------原图变量;

(2)Image_BW-------------------------------------------------------值化图象; (3)Image_BW_medfilt-------------------------中值滤波后的二值化图像; (4)Optimized_Image_BW---通过“初次二值化图像”与“中值滤波后的二值化图像”进行“或”运算优化图像效果; (5)Reverse_Image_BW--------------------------优化后二值化图象取反;(6)Filled_Image_BW----------------------已填充背景色的二进制图像;(7)Open_Image_BW--------------------------------------开运算后的图像; 2、实现代码: %-------图片前期处理------------------- %第一步:读取原图,并显示 A = imread('E:\红细胞3.png'); Image=rgb2gray(A); %RGB转化成灰度图 figure,imshow(Image); title('【原图】'); %第二步:进行二值化 Theshold = graythresh(Image); %取得图象的全局域值 Image_BW = im2bw(Image,Theshold); %二值化图象 figure,imshow(Image_BW); title('【初次二值化图像】'); %第三步二值化图像进行中值滤波 Image_BW_medfilt= medfilt2(Image_BW,[13 13]); figure,imshow(Image_BW_medfilt); title('【中值滤波后的二值化图像】'); %第四步:通过“初次二值化图像”与“中值滤波后的二值化图像”进行“或”运算优化图像效果 Optimized_Image_BW = Image_BW_medfilt|Image_BW; figure,imshow(Optimized_Image_BW); title('【进行“或”运算优化图像效果】'); %第五步:优化后二值化图象取反,保证:‘1’-〉‘白色’,‘0’-〉‘黑色’ %方便下面的操作 Reverse_Image_BW = ~Optimized_Image_BW; figure,imshow(Reverse_Image_BW); title('【优化后二值化图象取反】');

相关主题
文本预览
相关文档 最新文档