当前位置:文档之家› 数据加密的工作原理详解

数据加密的工作原理详解

数据加密的工作原理详解

开关电源入门必读:开关电源工作原理超详细解析

开关电源入门必读:开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Sw itching Mode P ow er Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(sw itching)。线性电源的工作原理是首先将127 V或者220V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/W ii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的“开关电源”其实是“高频开关电源”的缩写形式,和电源本身的关闭和开启式没有任何关系的。 事实上,终端用户的PC的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)——负责控制开关管的电路,从电源的输出获得反馈信号,然后根据PC的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作PW M,Pulse W idth Modulation,脉冲宽度调制)。所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。 反观线性电源,它的设计理念就是功率至上,即便负载电路并不需要很大电流。这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。 第2页:看图说话:图解开关电源 下图3和4描述的是开关电源的PW M反馈机制。图3描述的是没有PFC(P ow er Factor Correction,功率因素校正)电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。 图3:没有PFC电路的电源 图4:有PFC电路的电源 通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,前者没有110/220V转换器,而且也没有电压倍压电路。下文我们的重点将会是主动式PFC电源的讲解。

三极管开关电路工作原理解析

三极管开关电路工作原理解析 图一所示是NPN三极管的共射极电路,图二所示是它的特性曲线图,图中它有3 种工作区域:截止区(C utoff Region)、线性区(Active Region) 、饱和区(Saturation Region)。三极管是以B 极电流IB 作为输入,操控整个三极管的工作状态。若三极管是在截止区,IB 趋近于0 (VBE 亦趋近于0),C 极与E 极间约呈断路状态,IC = 0,VCE = VCC。若三极管是在线性区,B-E 接面为顺向偏压,B-C 接面为逆向偏压,I B 的值适中(VBE = 0.7 V),I C =h F E I B 呈比例放大,Vce = Vcc -Rc I c = V cc - Rc hFE I B可被IB 操控。若三极管在饱和区,IB 很大,VBE = 0.8 V,VCE = 0.2 V,VBC = 0.6 V,B-C 与B -E 两接面均为正向偏压,C-E间等同于一个带有0.2 V 电位落差的通路,可得I c=( Vcc - 0.2 )/ Rc ,I c 与IB 无关了,因此时的IB大过线性放大区的IB 值,Ic

图3、截止态如同断路线图图4、饱和态如同通路 实验:三极管的开关作用 简单三极管开关:电路如图5,电阻RC是LED限流用电阻,以防止电压过高烧坏LED(发光二极管),将输入信号VIN 从0 调到最大(等分为约20 个间隔),观察并记录对的VOUT 以及LED 的亮度。当三极管开关为断路时,VOUT =VCC =12 V,LED 不亮。当三极管开关通路时,VOUT = 0.2V ,LED 会亮。改良三极管开关:因为三极管由截止区过度到饱和区需经过线性区,开关的效果不会有明确的界线。为使三极管开关的效果明确,可串接两三极管,电路如图六。同样将输入信号VIN 从0 调到最大(等分为约20 个间隔),观察并记录对应的VOUT 以及LED 的亮度。

gcms的工作原理详解

GC-MS工作原理 GC气相色谱MS 质谱 GC 把化合物分离开然后用质谱把分子打碎成碎片来测定该分子的分子量 一、气相色谱的简要介绍 气相色谱法是二十世纪五十年代出现的一项重大科学技术成就。这是一种新的分离、分析技术,它在工业、农业、国防、建设、科学研究等都得到了广泛应用。气相色谱可分为气固色谱和气液色谱。气固色谱的“气”字指流动相是气体,“固”字指固定相是固体物质。例如活性炭、硅胶等。气液色谱的“气”字指流动相是气体,“液”字指固定相是液体。例如在惰性材料硅藻土涂上一层角鲨烷,可以分离、测定纯乙烯中的微量甲烷、乙炔、丙烯、丙烷等杂质。 二、气相色谱法的特点 气相色谱法是指用气体作为流动相的色谱法。由于样品在气相中传递速度快,因此样品组分在流动相和固定相之间可以瞬间地达到平衡。另外加上可选作固定相的物质很多,因此气相色谱法是一个分析速度快和分离效率高的分离分析方法。近年来采用高灵敏选择性检测器,使得它又具有分析灵敏度高、应用范围广等优点。 三、气相色谱法的应用 在石油化学工业中大部分的原料和产品都可采用气相色谱法来分析;在电力部门中可用来检查变压器的潜伏性故障;在环境保护工作中可用来监测城市大气和水的质量;在农业上可用来监测农作物中残留的农药;在商业部门可和来检验及鉴定食品质量的好坏;在医学上可用来研究人体新陈代谢、生理机能;在临床上用于鉴别药物中毒或疾病类型;在宇宙舴中可用来自动监测飞船密封仓内的气体等等。 四、气相色谱专业知识 1 气相色谱 气相色谱是一种以气体为流动相的柱色谱法,根据所用固定相状态的不同可分为气-固色谱(GSC)和气-液色谱(GLC)。 2 气相色谱原理 气相色谱的流动向为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸

行程开关解读

行程开关解读 基本简介 行程开关行程开关,位置开关(又称限位开关)的一种,是一种常用的小电流主令电器。利用生产机械运动部件的碰撞使其触头动作来实现接通或分断控制电路,达到一定的控制目的。通常,这类开关被用来限制机械运动的位置或行程,使运动机械按一定位置或行程自动停止、反向运动、变速运动或自动往返运动等。 在电气控制系统中,位置开关的作用是实现顺序控制、定位控制和位置状态的检测。用于控制机械设备的行程及限位保护。构造:由操作头、触点系统和外壳组成。 在实际生产中,将行程开关安装在预先安排的位置,当装于生产机械运动部件上的模块撞击行程开关时,行程开关的触点动作,实现电路的切换。因此,行程开关是一种根据运动部件的行程位置而切换电路的电器,它的作用原理与按钮类似。 行程开关广泛用于各类机床和起重机械,用以控制其行程、进行终端限位保护。在电梯的控制电路中,还利用行程开关来控制开关轿门的速度、自动开关门的限位,轿厢的上、下限位保护。 行程开关可以安装在相对静止的物体(如固定架、门框等,简称静物)上或者运动的物体(如行车、门等,简称动物)上。当动物接近静物时,开关的连杆驱动开关的接点引起闭合的接点分断或者断开的接点闭合。由开关接点开、合状态的改变去控制电路和机构的动作。 种类特点 常规国产行程开关: 常规行程开关中LX19系列中的LX19-001/111,LXK3系列中的LXK3-20S/T,JLXK1系列JLXK1-111/411/511最具代表力,这些产品有结构简单、功能实用、价格低廉的优势深受广 大使用者的青睐。 进口行程开关: 进口行程开关中WL系列、HL系列、D4V系列、SZL-WL系列最具代表力,此类产品做工精细、性能优越、在极端环境中的表现更为突出,赢得了大批的粉丝,但价格高昂也令不少用户咋舌

[工作]开关电源原理与维修开关电源原理图

[工作]开关电源原理与维修开关电源原理图开关电源原理与维修开关电源原理图 电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于开关电源内部关键元器件工作在高频开关状态,功耗小,转化率高,且体积和重量只有线性电源的20%—30%,故目前它已成为稳压电源的主流产品。电子设备电气故障的检修,本着从易到难的原则,基本上都是先从电源入手,在确定其电源正常后,再进行其他部位的检修,且电源故障占电子设备电气故障的大多数。故了解开头电源基本工作原理,熟悉其维修技巧和常见故障,有利于缩短电子设备故障维修时间,提高个人设备维护技能。 二(开关电源的组成 开关电源大至由主电路、控制电路、检测电路、辅助电源四大部份组成,见图1。 1( 主电路 冲击电流限幅:限制接通电源瞬间输入侧的冲击电流。输入滤波器:其作用是过滤电网存在的杂波及阻碍本机产生的杂波反馈回电网。 整流与滤波:将电网交流电源直接整流为较平滑的直流电。逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分。 输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。 2( 控制电路 一方面从输出端取样,与设定值进行比较,然后去控制逆变器,改变其脉宽或脉频,使输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对电源进行各种保护措施。 3( 检测电路 提供保护电路中正在运行中各种参数和各种仪表数据。 4( 辅助电源

实现电源的软件(远程)启动,为保护电路和控制电路(PWM等芯片)工作供电。 开关电源原理图 三(开关电源的工作原理 开关电源就是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开关元件的占空比来调整输出电压。开关元件以一定的时间间隔重复地接通和断开,在开关无件接通时输入电源Vi通过开关S和滤波电路向负载RL提供能量,当开关S断开时,电路中的储能装置(L1、C2、二极管D组成的电路)向负载RL释放在开关接通时所储存的能量,使负载得到连续而稳定的能量。 VO=TON/T*Vi VO 为负载两端的电压平均值 TON 为开关每次接通的时间 T 为开关通断的工作周期

三极管的工作原理

三极管的工作原理集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

项目一三极管的工作原理 三极管,全称应为半导体三极管,也称晶体管、晶体三极管,是一种电流控制电流的半导体器件其作用是把微弱信号放大成辐值较大的电信号,也用作无触点开关。晶体三极管,是半导体基本元器·件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN 和PNP两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。下图是各种常用三极管的实物图和符号。 一、三极管的电流放大作用 下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流 Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式 U=R*I 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 二、三极管的偏置电路 三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取)。当基极与发射极之间的电压小于时,基极电流就可以认为是0。但实际中要放大的信号往往远比要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于时,基极电流都是0)。如果我们事先在三极管的基 极上加上一个 合适的电流 (叫做偏置电 流,上图中那 个电阻Rb就 是用来提供这 个电流的,所 以它被叫做基 极偏置电 阻),那么当 一个小信号跟 这个偏置电流 叠加在一起 时,小信号就

三极管工作原理介绍

三极管工作原理介绍,NPN和PNP型三极 管的原理图与各个引脚介绍 三极管,全称应为半导体三极管,也称双极型晶体管、晶体三极管,是一种电流控制电流的半导体器件·其作用是把微弱信号放大成幅度值较大的电信号,也用作无触点开关。晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。 PNP与NPN两种三极管各引脚的表示: 三极管引脚介绍

NPN三极管原理图: PNP三极管原理图:

常见的三极管为9012、s8550、9013、s8050.单片机应用电路中三极管主要的作用就是开关作用。 其中9012与8550为pnp型三极管,可以通用。 其中9013与8050为npn型三极管,可以通用。 区别引脚:三极管向着自己,引脚从左到右分别为ebc,原理图中有箭头的一端为e,与电阻相连的为b,另一个为c。箭头向里指为PNP(9012或8550),箭头向外指为NPN(9013或8050)。 如何辨别三极管类型,并辨别出e(发射极)、b(基极)、c (集电极)三个电极 ①用指针式万用表判断基极b 和三极管的类型:将万用表欧姆挡置“R &TI mes; 100”或“R&TI mes;lk”处,先假设三极管的某极为“基极”,并把黑表笔接在假设的基极上,将红表笔先后接在其余两个极上,如果两次测得的电阻值都很小(或约为几百欧至几千欧),则假设的基极是正确的,且被测三极管为NPN 型管;同上,如果两次测得的电阻值都很大(约为几千欧至几十千欧),则假设的基极是正确的,且被

压力开关工作原理

压力开关工作原理是:外机械力通过传动元件(按销、按钮、杠杆、滚轮等)将力作用于动作簧片上,并将能量积聚到临界点后,产生瞬时动作,使动作簧片末端的动触点与定触点快速接通或断开。当传动元件上的作用力移去后,动作簧片产生反向动作力,当传动元件反向行程达到簧片的动作临界点后,瞬时完成反向动作。微动开关的触点间距小、动作行程短、按动力小、通断迅速。其动触点的动作速度与传动元件动作速度无关。微动开关以按销式为基本型,可派生按钮短行程式、按钮大行程式、按钮特大行程式、滚轮按钮式、簧片滚轮式、杠杆滚轮式、短动臂式、长动臂式等等。微动开关在电子设备及其他设备中用于需频繁换接电路的自动控制及安全保护等装置中。微动开关分为大型、中型、小型,按不同的需要分有可以有防水型(放在液体环境中使用)和普通型,开关连接两个线路,为电器、机器等提供通断电控制,广泛应用在鼠标,家用电器,工业机械,摩托车等地方,开关虽小,但起着不可替代的作用。有的也称触点开关,就是一种由物体的位移来决定电路通断的开关,压力开关在日常生活中我们最易碰到的例子就是冰箱了。不知你注意到没有,当你打开冰箱时,冰箱里面的灯就会亮了起来,而关上门就又熄灭了,这是因为门框上有个开关,被门压紧时灯的电路断开,门一开就放松了,于是就自动把电路闭合使灯点亮。这个开关就是行程开关。 行程开关又称限位开关,可以安装在相对静止的物体上或者运动的物体(如行车、门等,简称动物)上。当动物接近静物时,开关的连杆驱动开关的接点引起闭合的接点分断或者断开的接点闭合。由开关接点开、合状态的改变去控制电路和机构的动作。 行程开关的应用方面很多,很多电器里面都有它的身影。那这么简单的开关能起什么作用呢?它主要是起连锁保护的作用。最常见的例子莫过于其在洗衣机和录音机中的应用了。 在洗衣机的脱水(甩干)过程中转速很高,如果此时有人由于疏忽打开洗衣机的门或盖后,再把手伸进去,很容易对人造成伤害,为了避免这种事故的发生,在洗衣机的门或盖上装了个电接点,一旦有人开启洗衣机的门或盖时,就自动把电机断电,甚至还要靠机械办法联动,使门或盖一打开就立刻“刹车”,强迫转动着的部件停下来,免得伤害人身。 行程开关真正的用武之地是在工业上,在那里它与其它设备配合,组成更复杂的自动化设备。机床上有很多这样的行程开关,用它控制工件运动或自动进刀的行程,避免发生碰撞事故。有时利用行程开关使被控物体在规定的两个位置之间自动换向,从而得到不断的往复运动。比如自动运料的小车到达终点碰着行程开关,接通了翻车机构,就把车里的物料翻倒出来,并且退回到起点。到达起点之后又碰着起点的行程开关,把装料机构的电路接通,开始自动装车。总是这样下去,就成了一套自动生产线,用不着人管,压力传感器日以继夜地工作,节省了人的体力劳动。空压机压力开关工作原理 压力开关用在空压机上面主要是来调节空压机的起停状态,通过调节储气罐内的压力来让空压机停机休息,对机器有保养作用.在空压机工厂调试的时候,根据客户需要调节到指定压力,然后设定一个压差.例如,压缩机开始启动,向储气罐打气,到压力10kg的时候,空压机停机或者卸载,当压力到7kg的时候空压机又开始启动,此间有一个压力差,这个过程就可以让压缩机休息一下,达到保护空压机的作用。由电动机直接驱动压缩机,使曲轴产生旋转运动,带动连杆使活塞产生往复运动,引起气缸容积变化。由於气缸内压力的变化,通过进气阀使空气经过空气滤清器(消声器)进入气缸,在压缩行程中,由於气缸容积的缩小,压缩空气经过排气阀的作用,经排气管,单向阀(止回阀)进入储气罐,当排气压力达到额定压力0.7MPa时由压力开关控制而自动停机。当储气罐压力降至0.5--0.6MPa时压力开关自动联接启动。温度开关的结构 对于不同的温度测量范围,应选用结构不同的温度开关,在0℃~100℃的温度范围内,通常采用固体膨胀式的温度开关,在100℃~250℃的温度范围内,大多采用气体膨胀式温度开关,对于250℃以上的温度范围,则只能采用热电偶或热电阻温度计,经过测量变送

开关电源工作原理详细解析

开关电源工作原理详细解析 个人PC所采用的电源都是基于一种名为―开关模式‖的技术,所以我们经常会将个人PC电源称之为——开关电源(Switching Mode Power Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(switching)。线性电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC 交流电转化为脉动电压(配图1和2中的―3‖);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的―4‖);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC 直流电输出了(配图1和2中的―5‖) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/Wii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60 KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的―开关电源‖其实是―高频开关电源‖的缩写形式,和电源本身的关闭和开启式没有任何关系的。

详解经典三极管基本放大电路

详解经典三极管基本放大电路 三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP 两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。 图1:三极管基本放大电路 下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。 下面说说三极管的饱和情况。像上面那样的图,因为受到电阻Rc的限制(Rc是固定值,那么最大电流为U/Rc,其中U为电源电压),集电极电流是不能无限增加下去的。当基极电流的增大,不能使集电极电流继续增大时,三极管就进入了饱和状态。一般判断三极管是否饱和的准则是:Ib*β〉Ic。进入饱和状态之后,三极管的集电极跟发射极之间的电压将很小,可以理解为一个开关闭合了。这样我们就可以拿三极管来当作开关使用:当基极电流为0时,三极管集电极电流为0(这叫做三极管截止),相当于开关断开;当基极电流很大,以至于三极管饱和时,相当于开关闭合。如果三极管主要工作在截止和饱和状态,那么这样的三极管我们一般把它叫做开关管。 如果我们在上面这个图中,将电阻Rc换成一个灯泡,那么当基极电流为0时,集电极电流为0,灯泡灭。如果基极电流比较大时(大于流过灯泡的电流除以三极管的放大倍数β),三极管就饱和,相当于开关闭合,灯泡就亮了。由于控制电流只需要比灯泡电流的β分之一大一点就行了,所以就可以用一个小电流来控制一个大电流的通断。如果基极电流从0慢慢增加,那么灯泡的亮度也会随着增加(在三极管未饱和之前)。

GC-MS工作原理

GC-MS工作原理 GC 气相色谱 MS 质谱 GC 把化合物分离开然后用质谱把分子打碎成碎片来测定该分子的分子量 一、气相色谱的简要介绍 气相色谱法是二十世纪五十年代出现的一项重大科学技术成就。这是一种新的分离、分析技术,它在工业、农业、国防、建设、科学研究中都得到了广泛应用。气相色谱可分为气固色谱和气液色谱。气固色谱的“气”字指流动相是气体,“固”字指固定相是固体物质。例如活性炭、硅胶等。气液色谱的“气”字指流动相是气体,“液”字指固定相是液体。例如在惰性材料硅藻土涂上一层角鲨烷,可以分离、测定纯乙烯中的微量甲烷、乙炔、丙烯、丙烷等杂质。 二、气相色谱法的特点 气相色谱法是指用气体作为流动相的色谱法。由于样品在气相中传递速度快,因此样品组分在流动相和固定相之间可以瞬间地达到平衡。另外加上可选作固定相的物质很多,因此气相色谱法是一个分析速度快和分离效率高的分离分析方法。近年来采用高灵敏选择性检测器,使得它又具有分析灵敏度高、应用范围广等优点。 三、气相色谱法的应用 在石油化学工业中大部分的原料和产品都可采用气相色谱法来分析;在电力部门中可用来检查变压器的潜伏性故障;在环境保护工作中可用来监测城市大气和水的质量;在农业上可用来监测农作物中残留的农药;在商业部门可和来检验及鉴定食品质量的好坏;在医学上可用来研究人体新陈代谢、生理机能;在临床上用于鉴别药物中毒或疾病类型;在宇宙舴中可用来自动监测飞船密封仓内的气体等等。 气相色谱专业知识 1 气相色谱 气相色谱是一种以气体为流动相的柱色谱法,根据所用固定相状态的不同可分为气-固色谱(GSC)和气-液色谱(GLC)。 2 气相色谱原理

正激式变压器开关电源工作原理

正激式变压器开关电源工作原理 正激式变压器开关电源输出电压的瞬态控制特性和输出电压负载特性,相对来说比较好,因此,工作比较稳定,输出电压不容易产生抖动,在一些对输出电压参数要求比较高的场合,经常使用。 1-6-1.正激式变压器开关电源工作原理 所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流电压激励时,变压器的次级线圈正好有功率输出。 图1-17是正激式变压器开关电源的简单工作原理图,图1-17中Ui是开关电源的输入电压,T是开关变压器,K是控制开关,L是储能滤波电感,C是储能滤波电容,D2是续流二极管,D3是削反峰二极管,R 是负载电阻。 在图1-17中,需要特别注意的是开关变压器初、次级线圈的同名端。如果把开关变压器初线圈或次级线圈的同名端弄反,图1-17就不再是正激式变压器开关电源了。 我们从(1-76)和(1-77)两式可知,改变控制开关K的占空比D,只能改变输出电压(图1-16-b中正半周)的平均值Ua ,而输出电压的幅值Up不变。因此,正激式变压器开关电源用于稳压电源,只能采用电压平均值输出方式。 图1-17中,储能滤波电感L和储能滤波电容C,还有续流二极管D2,就是电压平均值输出滤波电路。其工作原理与图1-2的串联式开关电源电压滤波输出电路完全相同,这里不再赘述。关于电压平均值输出滤波电路的详细工作原理,请参看“1-2.串联式开关电源”部分中的“串联式开关电源电压滤波输出电路”内容。 正激式变压器开关电源有一个最大的缺点,就是在控制开关K关断的瞬间开关电源变压器的初、次线圈绕组都会产生很高的反电动势,这个反电动势是由流过变压器初线圈绕组的励磁电流存储的磁能量产生的。因此,在图1-17中,为了防止在控制开关K关断瞬间产生反电动势击穿开关器件,在开关电源变压器中增加一个反电动势能量吸收反馈线圈N3绕组,以及增加了一个削反峰二极管D3。 反馈线圈N3绕组和削反峰二极管D3对于正激式变压器开关电源是十分必要的,一方面,反馈线圈N3绕组产生的感应电动势通过二极管D3可以对反电动势进行限幅,并把限幅能量返回给电源,对电源进行充

PNP三极管结构及工作原理解析

PNP三极管工作原理解密 对三极管放大作用的理解,切记一点:能量不会无缘无故的产生,所以,三极管一定不会产生能量,但三极管厉害的地方在于:它可以通过小电流控制大电流。放大的原理就在于:通过小的交流输入,控制大的静态直流。 假设三极管是个大坝,这个大坝奇怪的地方是,有两个阀门,一个大阀门,一个小阀门。小阀门可以用人力打开,大阀门很重,人力是打不开的,只能通过小阀门的水力打开。所以,平常的工作流程便是,每当放水的时候,人们就打开小阀门,很小的水流涓涓流出,这涓涓细流冲击大阀门的开关,大阀门随之打开,汹涌的江水滔滔流下。如果不停地改变小阀门开启的大小,那么大阀门也相应地不停改变,假若能严格地按比例改变,那么,完美的控制就完成了。 在这里,Ube就是小水流,Uce就是大水流,人就是输入信号。当然,如果把水流比为电流的话,会更确切,因为三极管毕竟是一个电流控制元件。 如果某一天,天气很旱,江水没有了,也就是大的水流那边是空的。管理员这时候打开了小阀门,尽管小阀门还是一如既往地冲击大阀门,并使之开启,但因为没有水流的存在,所以,并没有水流出来。这就是三极管中的截止区。 饱和区是一样的,因为此时江水达到了很大很大的程度,管理员开的阀门大小已经没用了。如果不开阀门江水就自己冲开了,这就是二极管的击穿。 在模拟电路中,一般阀门是半开的,通过控制其开启大小来决定输出水流的大小。没有信号的时候,水流也会流,所以,不工作的时候,也会有功耗。 而在数字电路中,阀门则处于开或是关两个状态。当不工作的时候,阀门是完全关闭的,没有功耗。 晶体三极管是一种电流控制元件。发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结。晶体三极管按材料分常见的有两种:锗管和硅管。而每一种又有NPN 和PNP两种结构形式,使用最多的是硅NPN和PNP两种,两者除了电源极性不同外,其工作原理都是相同的,三极管工作在放大区时,三极管发射结处于正偏而集电结处于反偏,集电极电流Ic受基极电流Ib的控 制,Ic的变化量与Ib变化量之比称作三极管的交流电流放大倍数β(β=ΔIc/ΔIb,Δ表示变化量。)在实际使用中常常利用三极管的电流放大作用,通过电阻转变为电压放大作用。 要判断三极管的工作状态必须了解三极管的输出特性曲线,输出特性曲线表示Ic随Uce的变化关系(以Ib为参数),从输出特性曲线可见,它分为三个区域:截止区、放大区和饱和区。 根据三极管发射结和集电结偏置情况,可以判别其工作状态: 对于NPN三极管,当Ube≤0时,三极管发射结处于反偏工作,则Ib≈0,三极管工作在截止区;当晶体三极管发射结处于正偏而集电结处于反偏工作时,三极管工作在放大区,Ic随Ib近似作

限位开关

行程限位开关又称限位开关,用于控制机械设备的行程及限位保护。在实际生产中,将行程限位开关安装在预先安排的位置,当装于生产机械运动部件上的模块撞击行程开关时, 行程限位开关的触点动作,实现电路的切换。因此, 行程限位开关是一种根据运动部件的行程位置而切换电路的电器,它的作用原理与按钮类似。行程开关广泛用于各类机床和起重机械,用以控制其行程、进行终端限位保护。在电梯的控制电路中,还利用行程限位开关来控制开关轿门的速度、自动开关门的限位,轿厢的上、下限位保护。 行程限位开关按其结构可分为直动式、滚轮式、微动式和组合式。 (1)直动式行程限位开关其结构原理如图1所示,其动作原理与按钮开关相同,但其触点的分合速度取决于生产机械的运行速度,不宜用于速度低于0.4m/min的场所。 直动式行程限位开关组成 1-推杆2-弹簧3-动断触点4-动合触点 (2)滚轮式行程限位开关其结构原理,当被控机械上的撞块撞击带有滚轮的撞杆时,撞杆转向右边,带动凸轮转动,顶下推杆,使微动开关中的触点迅速动作。当运动机械返回时,在复位弹簧的作用下,各部分动作部件复位。 滚轮式行程限位开关组成 1-滚轮2-上转臂3、5、11-弹簧4-套架6-滑轮7-压板8、9-触点10-横板 滚轮式行程限位开关又分为单滚轮自动复位和双滚轮(羊角式)非自动复位式,双滚轮行移开关具有两个稳态位置,有“记忆”作用,在某些情况下可以简化线路。 (3)微动开关式行程限位开关的组成:常用的有LXW-11系列产品 1.推杆 2.弹簧 3.压缩弹簧 4.动断触点 5.动合触点 限位开关 限位开关就是用以限定机械设备的运动极限位置的电气开关。这种开关有接触式的和非接触式的。接触式的比较直观,机械设备的运动部件上,安装上行程开关,与其相对运动的固定点上安装极限位置的挡块,或者是相反安装位置。当行程开关的机械触头碰上挡块时,切断了(或改变了)控制电路,机械就停止运行或改变运行。由于机械的惯性运动,这种行程开关有一定的“超行程”以保护开关不受损坏。非接触式的形式很多,常见的有干簧管、光电式、感应式等,这几种形式在电梯中都能够见到。当然还有更多的先进形式。 目录

GCMS的主要构造及基本原理

GC/MS的主要构造及基本原理&维护保养 了解气相色谱质谱联用仪的主要构造及基本原理 1.1 整体概述 气相色谱质谱联用仪可以分成两大部分GC&MS.简单的说GC是把混合物分离成单一物质,而MS就是对着单一物质经行检测。GC中主要包括气路系统,进样系统,温度控制系统,分离系统;MS中主要包括就是离子源,质量分析器,检测器。下面这幅就是一台气相色谱质谱联用仪主要组成部件。 1.2.GC部分 1.2.1 概述 气相色谱仪是气相色谱法为基础而设计的仪器,气相色谱是以气相色谱柱为分离基础,样品进入进样器后载气传送,到达色谱柱的分离,分离后样品由柱中流出后到达检测器,然后排空。气相色谱仪整体系统由以下方面组成:

1).载气供输系统(A) 2).进样系统(B) 3).柱分离系统(C) 整个GC中最重要的一个 4).控温系统(D) 1.2.2.载气供输系统 1.2.2.1 概述 参考下图,我们能够大致了解下载气供输系统的构造. a -压缩气体, 纯度>99.999%(这一点绝对重要,如果不纯将影响到仪器维护以及日常测试中多个方面建), 常用的气体有He Ar N2 H2; b -减压阀, GC/MS输出压力0.5~0.7MPa; c -开关; d -气体纯化管, 可去除少量O2、CO2、CxHy、卤代烃等.在这一块维护保养中,我们也一直米人去动过它,上次整机维护的时候厂商说我们这个还能用也就米换,个人建议一年换一次纯化管为好。 1.2.2.2载气的选择 在一个方法开发的时候,其中考虑的一个因素就是选择使用何种气体作为我们仪器运行的一个载气。在选择在载气的时候我们一般考虑以下几个方面

(完整word版)开关电源工作原理超详细解析

开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Switching Mode Power Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(switching)。线性电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC 直流电(配图1和2中的“4”);此时得到的低压直流电依

然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”)配图1:标准的线性电源设计图 配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/Wii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也

pnp三极管工作原理

pnp三极管工作原理 三极管这类商品是我们日常生活中比较常见的一种商品,虽然用的不多,但是它的作用是很大的。对于一些没接触过它的人来说不知道pnp三极管的作用是什么,以及它的工作原理是怎么的,接下来小编就给大家介绍一下关于pnp三极管工作原理及它的一些基本知识。 1、PNP三极管结构建模 晶体三极管是半导体的基本器件之一。它的主要功能是放大电流和电子电路的核心元件。它的功能是放大电流和开关。其主要结构是在半导体的基本芯片上做两个相似的PN结,然后将正半导体分成三部分。 2、PNP三极管工作原理 晶体三极管可以分为以下两种类型根据材料,即锗管和硅管,无论哪一个结构形式,和我们用的最多的是硅NPN三极管和锗PNP型两种,其工作原理是利用收集电力半导体之间的联系。 点击放大图片 要理解三极管的放大效应,请记住一件事:能量不会无缘无故产生,所以晶体管不会产生能量,三极管的强大之处在于它可以通过小电流来控制大电流。放大原理是:通过小的交流输入,控制大的静态直流。假设三极管是一个水坝,这个水坝的奇怪之处在于它有两个阀门,一个大的和一个小的。小阀门可以人工开启,大阀门非常重,人工无法开启,只有通过液压开启小阀门。因此,正常的工作流程是,当水被排放,人们打开小阀门,小的水涓滴而出。涓涓细流冲击着大阀门的开关,大阀门打开,湍流的河流就顺流而下。如果你不断地改变小阀

门的开启尺寸,那么大阀门也会随之改变。如果你能严格按比例改变它,完美的控制就会完成。 这里,Uber是小电流,uce是大电流,human是输入信号。当然,比较水流和电流会更准确,因为三极管毕竟是一个电流控制元件。如果有一天,天气很干燥,河里没有水,也就是说,在大水流的另一边没有水。这时管理员打开了小阀门。虽然小阀门仍然像往常一样冲击大阀门,使其打开,但是没有水流,因为没有水流。这是三极管的截止区域。 饱和区是一样的,因为河水已经达到了非常大的程度,管理员开启的阀门通径不再有用。如果你不打开阀门,河水就会自己打开。这是二极管的击穿。 在模拟电路中,一般阀门是半开启的,通过控制阀门的开启尺寸来确定输出水量。当没有信号的时候,水就会流动,所以当它不工作的时候,就会有电力消耗。 在数字电路中,阀门是开启或关闭的。不工作时,阀门全关,不耗电。一种 晶体三极管是一种电流控制元件。发射极与基极之间形成的PN结称为发射极结,集电极与基极之间形成的PN结称为集电极结。晶体三极管有两种:锗管和硅管。它们都有NPN和PNP结构。硅NPN和PNP是应用最广泛的。除了电源极性不同外,它们的工作原理是相同的。当三极管工作在放大区域时,三极管的发射极结处于正偏置,而集电极结处于反偏置。基极电流的控制集电极电流IC IB. IC IB变

Bernstein限位开关的工作原理

Bernstein限位开关的工作原理 限位开关又称行程开关,可以安装在相对静止的物体(如固定架、门框等,简称静物)上或者运动的物体(如行车、门等,简称运动中的物体)上。 Bernstein限位开关就是用以限定机械设备的运动极限位置的电气开关。Bernstein限位开关有接触式的和非接触式的。接触式的比较直观,机械设备的运动部件上,安装上行程开关,与其相对运动的固定点上安装极限位置的挡块,或者是相反安装位置。当行程开关的机械触头碰上挡块时,切断了(或改变了)控制电路,机械就停止运行或改变运行。由于机械的惯性运动,这种行程开关有一定的“超行程”以保护开关不受损坏。非接触式的形式很多,常见的有干簧管、光电式、感应式等,这几种形式在电梯中都能够见到。当然还有更多的先进形式。 Bernstein限位开关是一种常用的小电流主令电器。利用生产机械运动部件的碰撞使其触头动作来实现接通或分断控制电路,达到一定的控制目的。通常,这类开关被用来限制机械运动的位置或行程,使运动机械按一定位置或行程自动停止、反向运动、变速运动或自动往返运动等。 在电气控制系统中,Bernstein限位开关的作用是实现顺序控制、定位控制和位置状态的检测。用于控制机械设备的行程及限位保护。构造:由操作头、触点系统和外壳组成。 在实际生产中,将Bernstein限位开关安装在预先安排的位置,当装于生产机械运动部件上的模块撞击行程开关时,Bernstein限位开关的触点动作,实现电路的切换。因此,行程开关是一种根据运动部件的行程位置而切换电路的电器,它的作用原理与按钮类似。 Bernstein限位开关广泛用于各类机床和起重机械,用以控制其行程、进行终端限位保护。在电梯的控制电路中,还利用行程开关来控制开关轿门的速度、自动开关门的限位,轿厢的上、下限位保护。 Bernstein限位开关的应用方面很多,很多电器里面都有它的身影。那这么简单的开关能起什么作用呢?它主要是起连锁保护的作用。最常见的例子莫过于其在洗衣机和录音机(录像机)中的应用了。

相关主题
文本预览
相关文档 最新文档