当前位置:文档之家› 基于红外传感器阵列的智能温度传感器研究

基于红外传感器阵列的智能温度传感器研究

基于红外传感器阵列的智能温度传感器研究
基于红外传感器阵列的智能温度传感器研究

单线数字温度传感器DSB原理及其应用

单线数字温度传感器DS18B20原理及其应用 DALLAS最新单线数字温度传感器DS18B20简介新的"一线器件"体积更小、适用电压更宽、更经济Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持"一线总线"接口的温度传感器。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。DS18B20、DS1822 "一线总线"数字化温度传感器同DS1820一样,DS18B20也支持"一线总线"接口,测量温度范围为-55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。DS1822的精度较差为±2°C 。现场温度直接以"一线总线"的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。而且新一代产品更便宜,体积更小。DS18B2 0、DS1822 的特性DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C。可选更小的封装方式,更宽的电压适用范围。分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。DS18B20的性能是新一代产品中最好的!性能价格比也非常出色!DS1822与DS18B20软件兼容,是DS18B20的简化版本。省略了存储用户定义报警温度、分辨率参数的EEPROM,精度降低为±2°C,适用于对性能要求不高,成本控制严格的应用,是经济型产品。继"一线总线"的早期产品后,DS1820开辟了温度传感器技术的新概念。DS18B20和DS1822使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。 1. DS18B20的新性能 (1) 可用数据线供电,电压范围:3.0~5.5V; (2) 测温范围:-55~+125℃,在-10~+85℃时精度为±0.5℃; (3) 可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃; (4) 12位分辨率时最多在750ms内把温度值转换为数字; (5) 负压特性:电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。 2. DS18B20的外形和内部结构 DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如下: 图(1)DS18B20外形图 引脚定义: (1) DQ为数字信号输入/输出端; (2) GND为电源地;

红外测温方法的工作原理及测温..

红外测温方法的工作原理及测温仪 (北京化工大学信息科学与技术学院) 摘要:本文从黑体辐射原理出发分析了红外测温的工作原理,从发射率、距离系数、环境等几个方面,探讨和分析了测温误差的原因,以及基于红外测温技术的测温仪的简单的概述,并对红外测温仪的分类、性能、选择及应用简要的说明。 关键词:黑体辐射、红外测温仪、温度测量 Infrared Thermometer and the working principle of Infrared Temperature measurement (College of Science and Technology, Beijing University of Chemical Technology) Abstract: In this paper, the theory of infra-red temperature measurement was analyzed according to the principle of blackbody radiation. We discussed the main factors for measurement accuracy, such as reflectance, distance coefficient and environment.Based on infrared temperature measurement technology, we make a simple overview of infrared thermometer, and a brief description of its classification, performance, selection and application. Key words: Blackbody radiation; infrared thermometer; temperature measurement 0引言 在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断地向四周辐射电磁波,其中就包含了波段位于0. 75~100μm的红外线.红外测温仪就是利用这一原理制作而成的,温度是度量物体冷热程度的一个物理量,是工业生产中很普遍、很重要的一个热工参数,许多生产工艺过程均要求对温度进行监视和控制,特别是在化工、食品等行业生产过程中,温度的测量和控制直接影响到产品的质量和性能。传统的接触式测温仪表如热电偶、热电阻等,因要与被测物质进行充分的热交换,需经过一定的时间后才能达到热平衡,存在着测温的延迟现象,故在连续生产质量检验中存在一定的使用局限。目前,红外温度仪因具有使用方便,反应速度快,灵敏度高,测温范围广,可实现在线非接触连续测量等众多优点,正在逐步地得以推广应用。表1列出了常用的测温方法和特点,其中红外测温作为一种常用的测温技术显示出较明显的优势。 表1常用测温方法对比 测温方法温度传感器测温范围(°C)精度(%) 接触式热电偶-200~1800 0.2~1.0 热电阻-50~3000.1~0.5非接触式红外测温-50~33001其它示温材料-35~2000<1

红外温度传感器(BM43系列)应用指南

红外温度传感器(BM43系列)应用指南 Application Note for BM43 series 编号BM-SOP-T023 版本V1.0 发布日期2016.8.20 生效日期2016.8.20 1 目的 为更好的解答客户在BM43系列产品在设计和应用中遇到的问题,将之前客户反馈的问题整理解答,以便参照。 2 范围 适用于本公司红外温度传感器系列产品(BM43THA/BM43THD/BM43TNA/BM43TND)以及以BM43系列产品为主要测温单元生产的各种可穿戴式/手持式测温仪器的应用。 3 主要问题及应用指南 3.1. 基本使用 3.1.1 如何使用BM43系列产品测量人体温度 正常人体体温不是一个具体的温度点,而是一个温度范围。机体深部的体温较为恒定和均匀,称深部体温;而体表的温度受多种因素影响,变化和差异较大,称表层温度。临床上所指的体温是指平均深部温度。一般以口腔、直肠和腋窝的体温为代表,其中直肠体温最接近深部体温。正常值:口腔舌下温度为37℃(范围36.3-37.2℃),直肠温度37.5℃(比口腔温度高(0.3-0.5℃),腋下温度为36.5℃(范围 36.0℃-37.0℃)。 使用BM43系列产品测量人体体温时,额温枪建议测量位置为人体额头太阳穴动脉附近,这里的动脉血所辐射出的温度接近人体核心温度;耳温枪建议测量位置为耳道内部,枪头越深入越好,但不要造成不舒服,测儿童时最好将耳朵轻往后上方拉(将耳道拉直)。 3.1.2 穿戴设备戴在手腕上监测手腕皮肤温度的作用 穿戴设备戴在手腕上监测手腕皮肤温度不能代表人体核心温度,原因一:手腕皮肤表面的温度在医学上不能代表人体核心温度,四肢不是医学上认可的测温点;二,通过大数据分析,手腕的温度变化受外界环境影响较大,长时间监测显示温度为非线性变化。 但该测量温度可以作为一项生命体征数据,长时间监控体表温度的变化,超出设定温度的阈值则发出提醒信号。 3.1.3 如果靠近皮肤,每5s检测一次,连续24小时,会不会有问题?时间长了会不会因信号累计出现不准?如果放在腋下长时间使用有没问题?需要注意什么问题? 如果突然从低温发热源(冰)靠近高温发热源(火),会对传感器增加一个突发热源(骤热) ,会短时间内造成传感器热休克。这种情况与耳温枪类似,耳温枪的解决办法是在传感器外加上金属热阻,以缓冲热休克现象对测温造成不准的影响;另外一种方法是软件上指令ASIC忽略最开始的50-100个数据(大概

红外线测温仪器的种类和工作原理

1、红外测温仪器的种类 红外测温仪器主要有3种类型:红外热像仪、红外热电视、红外测温仪(点温仪)。60年代我国研制成功第一台红外测温仪,八十年代初期以后又陆续生产小目标、远距离、适合电业生产特点的测温仪器,如西光IRT-1200D型、HCW -Ⅲ型、HCW-Ⅴ型;YHCW-9400型;WHD4015型(双瞄准,目标D 40mm,可达15 m)、WFHX330型(光学瞄准,目标D 50 mm,可达30 m)。美国生产的PM-20、30、40、50、HAS-201测温仪;瑞典AGA公司TPT20、30、40、50等也有较广泛的应用。DL-500 E可以应用于110~500 kV变电设备上,图像清晰,温度准确。红外热像仪,主要有日本TVS-2000、TVS-100,美国PM-250,瑞典AGA-THV510、550、570。国产红外热像仪在昆明研制成功,实现了国产化。 2、红外测温仪工作原理 了解红外测温仪的工作原理、技术指标、环境工作条件及操作和维修等是用户正确地选择和使用红外测温仪的基础。光学系统汇集其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件以及位置决定。红外能量聚焦在光电探测仪上并转变为相应的电信号。该信号经过放大器和信号处理电路按照仪器内部的算法和目标发射率校正后转变为被测目标的温度值。除此之外,还应考虑目标和测温仪所在的环境条件,如温度、气氛、污染和干扰等因素对性能指标的影响及修正方法。 一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。物体的红外辐射能量的大小及其按波长的分布——与它的表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。 黑体辐射定律:黑体是一种理想化的辐射体,它吸收所有波长的辐射能量,没有能量的反射和透过,其表面的发射率为1。应该指出,自然界中并不存在真正的黑体,但是为了弄清和获得红外辐射分布规律,在理论研究中必须选择合适的模型,这就是普朗克提出的体腔辐射的量子化振子模型,从而导出了普朗克黑体辐射的定律,即以波长表示的黑体光谱辐射度,这是一切红外辐射理论的出发点,故称黑体辐射定律。 物体发射率对辐射测温的影响:自然界中存在的实际物体,几乎都不是黑体。所有实际物体的辐射量除依赖于辐射波长及物体的温度之外,还与构成物体的材料种类、制备方法、热过程以及表面状态和环境条件等因素有关。因此,为使黑体辐射定律适用于所有实际物体,必须引入一个与材料性质及表面状态有关的比例系数,即发射率。该系数表示实际物体的热辐射与黑体辐射的接近程度,其值在零和小于1的数值之间。根据辐射定律,只要知道了材料的发射率,就知道了任何物体的红外辐射特性。 影响发射率的主要因纱在:材料种类、表面粗糙度、理化结构和材料厚度等。

GWH400型本质安全性红外温度传感器

红外温度传感器|本质安全型红外测温传感器|GWH400型本安型 红外测温传感器 一、概述 1、产品特点及用途: GWH400本质安全型红外温度传感器(以下简称传感器)是一种非接触式高精度红外测温传感器,可就地显示,远距离信号传输,超限报警等功能,具有体积小、重量轻、测量精度高、防尘、防潮、使用安装方便等特点。 传感器主要用于存在可燃性气体混合物的易燃、易爆工作环境中与监控系统连接进行在线温度监测,可广泛应用于煤炭、石油、化工、铁路、医疗、电力、纺织等行业快速非接触测量物体表面的温度,以达到温度控制或设备安全检测的目的。 2、产品执行标准:Q/SD 005-2006《GWH400本质安全型红外温度传感器》 二、工作原理 传感器由光学系统、红外传感器、信号放大器及信号处理、显示等部分组成。光学系统汇聚 其视场内的目标红外辐射能量,红外能量聚焦在红外传感器上并转变为相应的电信号,通过 信号放大和调理电路放大并进行模拟/数字转换后,由8位单片机组成的中央处理器进行线 形化数据处理及辐射系数补偿,最后转换为被测目标的温度值由LED数码管显示,并将(0~400)℃转换成(200~1000)Hz频率信号输出。 传感器发出的点式激光仅用于瞄准被测目标。 三、主要技术参数 地址:西安市经济技术开发区草滩生态产业园尚苑路3699号 联系人:苏女士 固话:-859

手机: QQ:09 邮编:710018 传真: 免费电话:400-6260611 网址: 本公司主要产销: 仪器仪表: CD4型便携式多参数测定器,CJR100/5H型红外甲烷二氧化碳测定器,CYH25型氧气测定器,CLH100型硫化氢测定器,CJYB4/25型甲烷氧气两参数测定器,CJT4/1000,CTH1000C型一氧化碳测定器,JCB4(A)型甲烷检测报警仪,光干涉式甲烷测定器,气体检测器,气体采样器,皮托管,压差计,通风多参数检测仪,电子风表,粉尘采样器,测尘仪,激光指向仪,激光测距仪,红外测温仪,传感器,隔爆型摄像仪,信号灯,甲烷断电仪,稳压电源,变压器,充电架等。救护设备: 过滤式自救器,隔绝式化学氧自救器,隔绝式压缩氧自救器,矿井供水施救装置,矿井压风自救装置煤矿用自动苏生器,矿用可视化监测通信装置,隔绝式正压氧呼吸器,正压式消防空气呼吸器等。 防爆照明: LED矿灯,多功能矿灯,出口型LED矿灯,隔爆型LED巷道灯,LED矿灯充电器 检测装置: 发爆器参数测试仪,气体检测仪检定装置,自救器正压气密校验装置,自救器负压气密校验装置,矿用气体传感器检定装置,水柱式光瓦校

常用温度传感器解析,温度传感器的原理、分类及应用

常用温度传感器解析,温度传感器的原理、分类及应用 温度传感器(temperature transducer)是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。 温度传感器的分类接触式 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。 温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。在日常生活中人们也常常使用这些温度计。 随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸汽压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差电偶等。低温温度计要求感温元件体积小、准确度高、复现性和稳定性好。利用多孔高硅氧玻璃渗碳烧结而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量 1.6~300K范围内的温度。 非接触式 它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。 最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐

利用红外线传感器实现接近感应应用

利用红外线传感器实现接近感应应用 在消费电子产品中,接近感应作为一种探测用户身体或手部存在的方法,越来越为人们所接受。该技术也能够用于动作感应,如检测用户手势。用户手势作为一种输入,可以应用于许多设备,如手机、计算机和其他家用电子产品。 要理解动作感应系统设计的理论基础,需要了解红外线(IR)与可见光的差异,探讨接近和动作感应系统如何在单一LED 下运行,以及动作感应在使用多个LED 进行多接近测量时如何工作。当我们谈及“光”时,通常指的是来自太阳或灯具的可见光,然而,可见光仅占光谱范围中的一小部分。我们把可见光定义为人眼可以识别的所有光线,通常人眼可以识别的光线波长为380-750nm。那么,人眼无法识别的非可见光(如波长为850 nm 光)又如何呢? IR 辐射光的波长为750nm-1000μm,IR 光与可见光有着相同的特性,例如反射率,而且它可以通过特殊灯泡或发光二极管生成。因为人眼无法看到IR 光,所以我们可以用它来完成一些特殊的人机界面任务,例如接近检测,而无需用户与系统进行任何直接接触。 IR 接近传感系统能够检测附近物体的存在,并根据检测结果做出反应。IR 接近检测的应用无处不在。例如,手机可以使用接近传感技术检测通话时手机是否接近面部。当你把手机靠近耳边时,手机将检测到头的存在,从而自动关闭屏幕以节省电能。其他接近感应系统的例子包括皂液器和饮水机,你可以把手放在传感器附近(通常在皂液管或水龙头附近),以“非接触”而又卫生的方式获取皂液或水。在高端汽车上,外部防碰撞系统也使用接近检测,当汽车与其他汽车或者物体太靠近时,接近检测会提醒司机注意。有些车辆还可以使用车内接近感应系统检测乘客的存在,从而调整安全装置(如安全气囊)。接近检测通过专门设计的IR LED 实现。与IR LED 相对应的是光电二极管,它一般用来检测LED 发出的IR 光。当IR LED 和光电二极管同方向放置时,光电二极管将不会检测到任何IR 光,除非有物体在 LED 的前面,将光反射回光电二极管。反射回光电二极管的光强与物体到光电二极管的距离逆向相关。 图 1:一维空间动作检测 单一 LED 和光电二极管相结合可以检测一些动作,例如可以检测物体是否靠近或远离光电二极管,这仅仅是一维空间检测。假设一个系统,其布局,单一LED 系统仅使用LED1 与IR 传感器。图2 是三个手势动作过程中Silicon Labs Si1120 传感器感应IR LED 后的输出值,其中Y 轴是反射的 IR 光强,X 轴是时间。三个手势包括沿图1 X 轴从左到右的滑动,沿Y 轴从底部到顶部的滑动,以及沿Z 轴由远及近,然后由近及远的往复动作。图2 表明,单一LED 系统不能区分这些手势,使用单一 LED,系统只能检测到物体正在接近或远离传感器,而不能判别其方向。 图 2:单一LED 系统性能分析二维空间检测由位于不同位置的两个LED 和单个光电二极管组成。从LED1 得到一个测量值,然后快速从LED2 获得另一个测量值,两个测量值被用于计算二维空间上的物体位置。其中一维空间是接近 LED1(左)或接近LED2(右),而另一维空间是接近或远离光电二极管。图3 是与图2 相同的三个手势,其中白线代表从LED1 中读出的数据,红线代表从LED2 读出的数据。从左到右滑动过程中,白线上升,然后是红线。当手从左到右滑动时,LED1 反射IR 光到传感器,然后是LED2。 图 3:二维空间中手势性能分析三维空间动作检测由三个LED 和单个光电二极管组成。LED3 与LED1、LED2 不在同一直线上,,可以把LED1 和LED2 之间的连线看作X 轴,LED1 和LED3 之间的连线看作Y 轴,从光电二极管和LED 到被测物体之间的连线看作Z 轴。图4 显示了与图2 和图3 相同的测量过程,其中蓝线代表LED3 的测量数据。当手从左向右滑动

温度传感器的应用及原理

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC 的温度等等,下面介绍几种常用的温度传感器。温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。热敏电阻器用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。 表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为14.050K Ω。 虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏

触觉传感器

触觉传感器 触觉传感器是用于机器人中模仿触觉功能的传感器。按功能可分为接触觉传感器、力-力矩觉传感器、压觉传感器和滑觉传感器。 触觉传感器- 触觉传感器 触觉传感器- 正文 用于机器人中模仿触觉功能的传感器。触觉是人与外界环境直接接触时的重要感觉功能,研制满足要求的触觉传感器是机器人发展中的技术关键之一。随着微电子技术的发展和各种有机材料的出现,已经提出了多种多样的触觉传感器的研制方案,但目前大都属于实验室阶段,达到产品化的不多。触觉传感器按功能大致可分为接触觉传感器、力-力矩觉传感器、压觉传感器和滑觉传感器等。 接触觉传感器用以判断机器人(主要指四肢)是否接触到外界物体或测量被接触物体的特征的传感器。接触觉传感器有微动开关、导电橡胶、含碳海绵、碳素纤维、气动复位式装置等类型。①微动开关:由弹簧和触头构成。触头接触外界物体后离开基板,造成信号通路断开,从而测到与外界物体的接触。这种常闭式(未接触时一直接通)微动开关的优点是使用方便、结构简单,缺点是易产生机械振荡和触头易氧化。②导电橡胶式:它以导电橡胶为敏感元件。当触头接触外界物体受压后,压迫导电橡胶,使它的电阻发生改变,从而使流经导电橡胶的电流发生变化。这种传感器的缺点是由于导电橡胶的材料配方存在差异,出现的漂移和滞后特性也不一致,优点是具有柔性。③含碳海绵式:它在基板上装有海绵构成的弹性体,在海绵中按阵列布以含碳海绵。接触物体受压后,含碳海绵的电阻减小,测量流经含碳海绵电流的大小,可确定受压程度。这种传感器也可用作压力觉传感器。优点是结构简单、弹性好、使用方便。缺点是碳素分布均匀性直接影响测量结果和受压后恢复能力较差。④碳素纤维式:以碳素纤维为上表层,下表层为基板,中间装以氨基甲酸酯和金属电极。接触外界物体时碳素纤维受压与电极接触导电。优点是柔性好,可装于机械手臂曲面处,但滞后较大。⑤气动复位式:它有柔性绝缘表面,受压时变形,脱离接触时则由压缩空气作为复位的动力。与外界物体接触时其内部的弹性圆泡(铍铜箔)与下部触点接触而导电。优点是柔性好、可靠性高,但需要压缩空气源。

(完整版)红外测温传感器

红外光电传感器测温仪 1红外测温传感器结构 红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇聚其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件及其位置确定。红外能量聚焦在光电探测器上并转变为相应的电信号。该信号经过放大器和信号处理电路,并按照仪器内的算法和目标发射率校正后转变为被测目标的温度值。 2红外测温传感器工作原理 在自然界中,一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射量。根

据基尔霍夫定律、普朗克定律、维恩公式这三大辐射定律,物体的红外辐射能量的大小及其按波长的分布与其表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。 三大辐射定律均是以“黑体”作为研究对象分析得出的。但是,自然界中存在的实际物体都不是黑体,所有实际物体的辐射量除依赖于辐射波长及物体的温度之外,还与构成物体的材料种类、制备方法以及表面状态和环境条件等因素有关。因此,为了使黑体辐射定律适用于所有实际物体,必须引入一个与材料性质及表面状态有关的比例系数,即发射率。该系数表示实际物体的热辐射与黑体辐射的接近程度,其值在0-1之间。根据辐射定律,只要知道了材料的发射率,就知道了任何物体的红外辐射特性。物体表面发射率主要决定于材料性质和表面状态( 如表面氧化情况,涂层材料,粗糙程度及污秽状态等)。 当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断的向四周辐射电磁波,其中的红外线在给定的温度和波长下,物体发射的辐射能有一个最大值,这种物质成为黑体,其他的波段的最大值成为灰体。事实上,自然界中并不存在黑体,只是为了获得红外线的分布规律才提出的,从而导出了普朗克黑体辐射定律。 普朗克黑体辐射定律是用于描述在任意温度下从一个黑体中发射的电磁辐射的辐射率与电磁辐射的频率的关系公式。通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础用公式可表达为: E=δε(T-To ) E 是辐射出射度.单位是W /m3; δ是斯蒂芬一波尔兹曼常数,5.67x10-8W /(m2·K4); ε是物体的辐射率: T 是物体的温度(K ); To 是物体周围的环境温度(K )。 红外测温仪电路比较复杂, 包括前置放大, 选频放大, 温度补偿, 线性化, 发射率ε (比辐射率 )调节等。目前已有一种带单片机的智能红外测温仪, 利用单片机与软件的功能, 大大简化了硬件电路, 提高了仪表的稳定性、可靠性和准确性。 红外测温仪的光学系统可以是透射式, 也可以是反射式。 反射式光学系统多采用凹面玻璃反射镜, 并在镜的表面镀金、 铝、镍或铬等对红外辐射反射率很高的金属材料。 3红外测温理论基础 3.1红外辐射(红外线、红外光) 红外线是电磁波谱中,波长0.76μm -1000μm 范围的电磁辐射,位于红外光与无线电波之间。与可见光的反射、折射、干涉、衍射和偏振等特性相同。同时具有粒子性。对人的眼睛不敏感,要用对红外敏感的探测器才能接收到。红外辐射的本质是热辐射,热辐射包括紫外光、可见光辐射,但是在0.76μm -40μm 红外辐射热效应最大。 自然界中一切温度高于绝对零度的有生命和无生命的物体,时时刻刻都在不停地辐射红外线。辐射的量主要由物体的温度和材料本身的性质决定;特别热辐射的强度及光谱成份取决于辐射体的温度。 3.2黑体辐射规律 黑体红外辐射的基本规律揭示的是黑体发射的红外热辐射随温度及波长的定量关系。黑体一种理想物体,它们在相同的温度下都发出同样的电磁波谱,而与黑体的具体成分和形状特性无关。斯特藩和玻耳兹曼通过实验和计算得出黑体辐射定律: 4 0)(T T M σ=

红外温度传感器OTP-668D2

深圳永盟电子邬先生 152.2017.9727 The OTP-668D2 is a thermopile sensor in classic TO-46 housing. The sensor is composed of 116 elements of thermocouple in series on a floating micro-membrane having an active area of diameter 700 μm. The thermopile sensor provides nearly Johnson-noise-limited performance, which can be calculated by its ohmic series resistance. A thermistor with a lead connected to ground is also provided inside the TO package for ambient temperature reference. TO-46 metal housing with IR absorber coating inside Thermistor reference included Low temperature coefficient of sensitivity Ideally suited for ear thermometers, miniature pyrometer. Thermopile Sensor OTP-668D2 Revision Date: 2010/10/14

红外测温仪传感器的工作原理

红外测温仪传感器的工作原理 红外测温仪传感器是用红外线的物理性质来进行测量的传感器。红外线又称红外光,它具有反射、折射、散射、干涉、吸收等性质。它是一种不可见光,其光谱位于可见光中红色以外,所以称红外线。 工程上把红外线占据在电磁波谱中的位置(波段)分为:近红外、中红外、远红外、极远红外四个波段。任何物质,只要它本身具有一定的温度(高于零度),都能辐射红外线。 红外测温仪传感器的工作原理并不复杂,一个典型的传感器系统各部分的实体分别是: 1、待测目标:根据待测目标的红外辐射特性可进行红外系统的设定。 2、大气衰减:待测目标的红外辐射通过地球大气层时,由于气体分子和各种气体以及各种溶胶粒的散射和吸收,将使得红外源发出的红外辐射发生衰减。 3、光学接收器:它接收目标的部分红外辐射并传输给红外传感器。相当于雷达天线,常用是物镜。 4、辐射调制器:对来自待测目标的辐射调制成交变的辐射光,提供目标方位信息,并可滤除大面积的干扰信号。又称调制盘和斩波器,它具有多种结构。 5、红外探测器:这是红外系统的核心。它是利用红外辐射与物质相互作用所呈现出来的物理效应探测红外辐射的传感器,多数情况下是利用这种相互作用所呈现出来的电学效应。此类探测器可分为光子探测器和热敏感探测器两大类型。 6、探测器制冷器:由于某些探测器必须要在低温下工作,所以相应的系统必须有制冷设备。经过制冷,设备可以缩短响应时间,提高探测灵敏度。 7、信号处理系统:将探测的信号进行放大、滤波,并从这些信号中提取出信息。然后将此类信息转化成为所需要的格式,后输送到控制设备或者显示器中。 8、显示设备:这是红外设备的终端设备。常用的显示器有示波器、显像管、红外感光材料、指示仪器和记录仪等。 依照上面的流程,红外系统就可以完成相应的物理量的测量。红外系统的核心是红外探测器,按照探测的机理的不同,可以分为热探测器和光子探测器两大类。

完整版红外测温传感器

《传感器原理》课程读书报告 红外光电传感器测温仪红外测温传感器结构1 器目标制冷 前置红光学成像外

大放测探扫描系统路 同 放主处信显示号理步换录记转 红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。光学系统汇聚其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件及其位置确定。红外能量聚焦在光电探测器上并转变为相应的电信号。该信号经过放大器和信号处理电路,并按照仪器内的算法和目标发射率校正后转变 红外测温传感器工作原理2 在自然界中,一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射量。 根.

《传感器原理》课程读书报告 据基尔霍夫定律、普朗克定律、维恩公式这三大辐射定律,物体的红外辐射能量的大小及其按波长的分布与其表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。

三大辐射定律均是以“黑体”作为研究对象分析得出的。但是,自然界中存在的实际物体都不是黑体,所有实际物体的辐射量除依赖于辐射波长及物体的温度之外,还与构成物体的材料种类、制备方法以及表面状态和环境条件等因素有关。因此,为了使黑体辐射定律适用于所有实际物体,必须引入一个与材料性质及表面状态有关的比例系数,即发射率。该系数表示实际物体的热辐射与黑体辐射的接近程度,其值在0-1之间。根据辐射定律,只要知道了材料的发射率,就知道了任何物体的红外辐射特性。物体表面发射率主要决定于材料性质和表面状态(如表面氧化情况,涂层材料,粗糙程度及污秽状态等)。 当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断的向四周辐射电磁波,其中的红外线在给定的温度和波长下,物体发射的辐射能有一个最大值,这种物质成为黑体,其他的波段的最大值成为灰体。事实上,自然界中并不存在黑体,只是为了获得红外线的分布规律才提出的,从而导出了普朗克黑体辐射定律。 普朗克黑体辐射定律是用于描述在任意温度下从一个黑体中发射的电磁辐射的辐射率与电磁辐射的频率的关系公式。通过对物体自身辐射的红外能量的测量,便能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础用公式可表达为: E=δε(T-To) E是辐射出射度.单位是W/m3; δ是斯蒂芬一波尔兹曼常数,5.67x10-8W/(m2·K4); ε是物体的辐射率: T是物体的温度(K); To是物体周围的环境温度(K)。 红外测温仪电路比较复杂, 包括前置放大, 选频放大, 温度补偿, 线性化, 发射率ε (比辐射率)调节等。目前已有一种带单片机的智能红外测温仪, 利用单片机与软件的功能, 大大简化了硬件电路, 提高了仪表的稳定性、可靠性和准确性。 红外测温仪的光学系统可以是透射式, 也可以是反射式。反射式光学系统多采用凹面玻璃反射镜, 并在镜的表面镀金、铝、镍或铬等对红外辐射反射率很高的金属材料。 3红外测温理论基础 3.1红外辐射(红外线、红外光) 红外线是电磁波谱中,波长0.76μm-1000μm范围的电磁辐射,位于红外光与无线电波之间。与可见光的反射、折射、干涉、衍射和偏振等特性相同。同时具有粒子性。对人的眼睛不敏感,要用对红外敏感的探测器才能接收到。红外辐射的本质是热辐射,热辐射包括紫外光、可见光辐射,但是在0.76μm-40μm红外辐射热效应最大。 自然界中一切温度高于绝对零度的有生命和无生命的物体,时时刻刻都在不停地辐射红外线。辐射的量主要由物体的温度和材料本身的性质决定;特别热辐射的强度及光谱成份取决于辐射体的温度。 3.2黑体辐射规律 黑体红外辐射的基本规律揭示的是黑体发射的红外热辐射随温度及波长的定量

温度传感器在工业中的应用

红外温度传感器在工业中的应用 随着工业生产的发展,温度测量与控制十分重要,温度参数的准确测量对输出品质、生产效率和安全可靠的运行至关重要。目前,在热处理及热加工中已逐渐开始采用先进的红外温度计等非传统测温传感器,来代替传统的热电偶、热电阻类的热电式温度传感器,从而实现生产过程或者重要设备的温度监视和控制。 基本原理 温度传感器基本原理,最常用的非接触式温度传感器基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。如欲测定物体的真实温度,则必须进行材料表面发射率的修正。而材料表面发射率不仅取决于温度和波长,而且还与表面状态、涂膜和微观组织等有关,因此很难精确测量。在自动化生产中往往需要利用辐射测温法来测量或控制某些物体的表面温度,如冶金中的钢带轧制温度、轧辊温度、锻件温度和各种熔融金属在冶炼炉或坩埚中的温度。在这些具体情况下,物体表面发射率的测量是相当困难的。对于固体表面温度自动测量和控制,可以采用附加的反射镜使与被测表面一起组成黑体空腔。附加辐射的影响能提高被测表面的有效辐射和有效发射系数。利用有效发射系数通过仪表对实测温度进行相应的修正,最终可得到被测表面的真实温度。最为典型的附加反射镜是半球反射镜。球中心附近被测表面的漫射辐射能受半球镜反射回到表面而形成附加辐射,从而提高有效发射系数式中ε为材料表面发射率,ρ为反射镜的反射率。至于气体和液体介质真实温度的辐射测量,则可以用插入耐热材料管至一定深度以形成黑体空腔的方法。通过计算求出与介质达到热平衡后的圆筒空腔的有效发射系数。在自动测量和控制中就可以用此值对所测腔底温度(即介质温度)进行修正而得到介质的真实温度。 在水泥制造生产中的应用 红外温度传感器在水泥制造生产中有着广泛的应用。据调查目前我国每年因红窑事故造成的直接经济损失达2000万元,间接损失达3亿元。用常规的方法很难对非匀速旋转的水泥胴体进行测温,国际上先进的办法是在窑尾预热平台上安装一套红外扫描测温仪,系统的软件部分主要由数据采集滤波、同步扫描控制、数据通讯处理等,红外辐射测温仪按预定的扫描方式,实现对窑胴体轴向每一个测量段成的温度的测量,在一个扫描周期内,红外温度传感器将在扫描装置的驱动下,将每一个测量元表面的红外辐射转换成温度相关的电信号,送进数据采集装置作为数据采集,同步装置保证数据采集与回转窑的旋转保持严格同步,要让测量的温度值与测量元下确对应,测温仪由扫描起点扫描到终点后,即对窑胴体表面各测量元完成了一次逐元温度检测后,立即快速返回扫描起点,开始下一扫描周期的检测,数据经微机处理后,给出反映窑内状况的图像,文字信息,必要时可以发射声光报警。为保证测量的精度,定要考虑物体的发射率,周围环境影响。红外测温仪要垂直对准窑胴体的表面,因因水汽,尘埃,烟雾的影响,要采取加装水冷,风吹扫装置。意义:1.生产过程中对产品的质量监控与监视,只要温度控制在设定值内,产品质量会有保证,过低过高都浪费能源;2.在线安全的检测可以起到保护人以及设备安全;3.降低能耗,节约能源。 在热处理行业中的应用 红外温度传感器可以广泛的应用于钢铁生产过程中,对生产过程的温度进行监控,对于提高生产率和产品质量至重要。红外温度传感器可精确地监视每个阶段,使钢材在整个加工过程中保持正确的冶金性能。红外温度传感器可以帮助钢铁生产过程中提高产品质量和生产率、降低能耗、增强人员安全、减少停机时间等。 红外温度传感器在钢铁加工和制造过程中主要应用在连铸、热风炉、热轧、冷轧、棒材和线材轧制等过程中。 红外温度传感器传感头有数字和模拟输出两种,发射率可调。—这对于发射率变化金属材料尤其重要。要生产出优质的产品和提高生产率,在炼钢的全过程中,精确测温是关键。连铸将钢水变为扁坯、板坯或方坯时,有可能出现减产或停机,需精确的实时温度监测,配以水嘴和流量的调节,以提供合适的冷却,从而确保钢坯所要求的冶

关于红外传感器的报告要点

关于红外传感器的报告 摘要:本文主要介绍一些关于红外传感器的一些基本知识和工作原理,从而让我们能够从一定程度上了解红外传感器这一传感器的种类。对于红外传感器的认识,能够帮助我们更好的利用红外传感器,让我们的生活或者工作更加方便和愉快。 关键字:红外辐射、传感器、原理、用途 红外传感器(也称为红外探测器)是能将红外辐射能转换成电能的光敏器件,它是红外探测系统的关键部件,其性能好坏,将直接影响系统性能的优劣。因此,选择合适的、性能良好的红外传感器,对于红外探测系统是十分重要的。而作为红外传感器的重要组成部分,红外辐射是不得忽略的重中之重。下面我们先介绍红外辐射的相关知识和原理。 一、红外辐射的工作原理简介: 红外辐射是一种人眼不可见的光线,俗称红外线,因为它是介于可见光中红色光和微波之间的光线。红外线的波长范围大致在0.76-1000μm之间,对应的频率大致在4×104至3×1011Hz之间,工程上通常把红外线所占据的波段分成近红外、中红外、远红外和极远红外4 个部分。 下图是红外线的电磁波谱图: 红外分区:在红外技术中,一般将红外辐射分为4个区域 (1)近红外区: 770 nm~ 1.5 μm (2)中红外区: 1.5 μm ~ 6μm (3)远红外区: 6μm ~ 40μm (4)极远红外区: 40μm ~ 1000μm 注意:这里所说的远近是指红外辐射在电磁波谱中与可见光的距离。

红外辐射本质上是一种热辐射。任何物体,只要它的温度高于绝对零度( -273 ℃),就会向外部空间以红外线的方式辐射能量,一个物体向外辐射的能量大部分是通过红外线辐射这种形式来实现的。物体的温度越高,辐射出来的红外线越多,辐射的能量就越强。另一方面,红外线被物体吸收后可以转化成热能。 红外线作为电磁波的一种形式,红外辐射和所有的电磁波一样,是以波的形式在空间直线传播的,具有电磁波的一般特性,如反射、折射、散射、干涉和吸收等。红外线在真空中传播的速度等于波的频率与波长的乘积,即 c =λ f 。红外辐射的强度及波长与物体的温度和辐射率有关,能在任何温度下全部吸收投射到其表面的红外辐射的物体称为黑体,能全部反射红外辐射的物体称为镜体,能全部透过红外辐射的物体称为透明体,能部分反射或吸收红外辐射的物体称为灰体。自然界并不存在理想的黑体、镜体和透明体,绝大部分物体都属于灰体。 二、红外线的物理特性: ①热效应 ②穿透云雾的能力强 ①热效应及应用: 一切物体都在不停的辐射红外线。物体的温度越高,辐射的红外线就越多。红外线照射到物体上最明显的效果就是产生热。冬天烤火,就是因为有大量的红外线从炉子里射到人身上,才能让我们感觉到热乎乎的。 人体生病的时候,虽然外面看起来没有什么变化,但是由于局部皮肤的温度不正常,如果在照相机里装上对红外感光的胶片,给皮肤拍照再与正常人的照片对比,可以对疾病作出诊断。这种相机拍出来的照片叫热谱图。 根据红外线的热效应,人们还研究出了红外线夜视仪。红外线夜视仪在漆黑的夜晚也可以发现人的存在。夜间人的体温比周围草木或建筑的温度高,人体辐射出来的红外线就比他们强。可以帮助人们在夜间进行观察、搜索、瞄准和驾驶车辆等。 物体在辐射红外线的同时,也在吸收红外线。各种物体吸收了红外线以后温度就会升高。我们就可以利用红外线的热效应来加热物品。家庭用的红外线烤箱,浴室用的暖灯,也就是浴霸等等。物体加热可以利用红外线烘干汽车表面的喷漆,烘干稻谷等作物。 在医学上,还可以利用红外线的热效应进行理疗。在红外线照射下,组织温度升高,血流加快,物质代谢增强,组织细胞活力及再生能力提高。伤口就容易痊愈。 ②穿透能力强的应用: 穿透云雾的能力强(波长较长,易于衍射) ,由于一切物体,都在不停地辐射红外线,并且不同物体辐射红外线的强度不同,利用灵敏的红外线探测器接收物体发出的红外线,然后用电子仪器对接到的信号进行处理,就可以察知被测物体的形状和特征,这种技术叫做红外线遥感技术,可以用在卫星上勘测地热、寻找水源、监测森林火情、估计农作物的长势和收成。还有我们每天都要关注的天气预报,也是红外线遥感技术。 红外辐射在大气中传播时,由于大气中的气体分子、水蒸汽以及固体微粒、尘埃等物质的吸收和散射作用,使辐射能在传输过程中逐渐衰减。空气中对称的双原于分子,如N2、H2、O2不吸收红外辐射,因而不会造成红外辐射在传输过

相关主题
文本预览
相关文档 最新文档