当前位置:文档之家› 可靠性定义

可靠性定义

可靠性定义

可靠性定义

根据GJB 451A的定义:可靠性指产品在规定的条件下和规定的时间内,完成规定功能的能力。

简单的说,狭义的可靠性是产品在使用期间没有发生故障的性质。广义可靠性是指使用者对产品的满意程度或对企业的信赖程度。而这种满意程度或信赖程度是从主观上来判定的。为了对产品可靠性做出具体和定量的判断,可将产品可靠性可以定义为在规定的条件下和规定的时间内,元器件(产品)、设备或者系统稳定完成功能的程度或性质。

这里的产品可以泛指任何系统、设备和元器件。指作为单独研究和分别试验对象的任何元件、设备或系统,可以是零件、部件,也可以是由它们装配而成的机器,或由许多机器组成的机组和成套设备,甚至还把人的作用也包括在内。在具体使用“产品”这一词时,其确切含义应加以说明。例如汽车板簧、汽车发动机、汽车整车等。产品可靠性定义的要素是:规定条件、规定时间、规定功能。

规定条件包括使用时的环境条件、使用条件维修条件。

规定时间是指产品规定了的任务时间;随着产品任务时间的增加,产品出现故障的概率将增加,而产品的可靠性将是下降的。因此,谈论产品的可靠性离不开规定的任务时间。例如,海底电缆系统要求几十年内可靠性工作。

规定功能是指产品规定了的必须具备的功能及其技术指标,也就是指产品的战术性指标。这里所指的完成规定功能是指完成所有功能。所要求产品功能的多少和其技术指标的高低,直接影响到产品可靠性指标的高低。产品规定功能的丧失称为失效,可修复产品的失效也称为故障。

可靠性工程每章基本概念及复习要点知识讲解

复习要点: ?可靠性 ?广义可靠性 ?失效率 ?MTTF(平均寿命) ?MTBF(平均事故间隔) ?维修性 ?有效性 ?修复度 ?最小路集及求解 ?最小割集及求解 ?可靠寿命 ?中位寿命 ?特征寿命 ?研究可靠性的意义 ?可靠性定义中各要素的实际含义 ?浴盆曲线 ?可靠性中常见的分布 ?简述串联系统特性 ?简述并联系统特性 ?简述旁联系统特性 ?简述r/n系统的优势 ?并-串联系统与串-并联系统的可靠性关系 ?马尔可夫过程 ?可靠性设计的重要性 ?建立可靠性模型的一般步骤 ?降额设计的基本原理 ?冗余(余度)设计的基本原理 ?故障树分析优缺点 广义可靠性:包括可靠性、维修性、耐久性、安全性。可靠性:产品在规定时期内规定条件规定的时间完成规定功能能力。耐久性:产品在规定的使用和维修条件下,达到某种技术或经济指标极限时,完成规定功能能力。安全性:产品在一定的功能、时间、成本等制约条件下,使人员和设备蒙受伤害和损失最小的能力 可靠度R(t):产品在规定条件下和规定时间内完成规定功能的概率 累积失效概率F(t):也称不可靠度,产品在规定条件下和规定时间内失效的概率 失效概率密度f(t):产品在包含t的单位时间内发生失效的概率 失效率λ(t):工作到t时刻尚未失效的产品,在该时刻t后的单位时间内发生失效的概率。基本:实验室条件下。应用:考虑到环境,利用,降额和其它因素的实际使用环境条件下。任务:元器件在执行任务期间,即工作条件下的基本 不可修产品平均寿命MTTF:指产品失效前的平均工作时间可修MTBF:指相邻两次故障间的平均工作时间,称为平均无故障工作时间或平均故障间隔时间维修性:在规定的条件下使用的可维修产品,在规定的时间内,按规定的程序和法进行维修时,保持或恢复到能完成规定功能的能力 维修度M(t):是指在规定的条件下使用的产品发生故障后,在规定的时间(0,t)内完成修复的概率。修复率μ(t):修理时间已达到某一时刻但尚未修复的产品在该时刻后的单位时间内完成修理的概率。平均修复时间MTTR:可修复的产品的平均修理时间,其估计值为修复

可靠性基本概念

可靠性理论是以产品寿命特征为主要研究对象的一门综合性和边缘性科学,它涉及到基础科学、技术科学和管理科学的许多领域。对于结构可靠性这一学科,从其诞生到现在已经有了长足的发展:从基于概率论的随机可靠性到基于模糊理论的模糊可靠性以及近年来提出的非概率可靠性,使得这一理论日臻丰富和完善,并深入渗透到各个学科和领域。它的应用完善了传统的设计理论,极大地提升了结构和产品的质量,因此一直受到国内外学者的关注。可靠性理论在其发展过程中主要经历了五个时期: (1)萌芽期 可靠性理论早在十九世纪30~40年代已发展起来了。十七世纪初期由伽利略、高斯、泊淞、拉普拉斯等人逐步建立了概率论,奠定了可靠性工程的主要理论基础。十九世纪初布尔尼可夫斯基主编出版了一本概率论教程,同时他的学生马尔可夫建立了随机过程理论和大数定律,成为了维修性的理论基础。1939年瑞典专家威布尔提出了描述材料疲劳强度的威布尔分布。可靠性研究萌芽于飞机失事事件,1939年美国航空委员会出版的《适航性统计学注释》中,提出飞机事故率不应超过105 /h。这里讲的事故率只是未能沿用可靠度的定义而已。 (2)摇篮期 50年代的电子管事件揭开了可靠性研究的序幕。50年代电子真空管的故障率增长迅速。使电子技术进步与失效间的矛盾十分突出。例如1941~1945年第二次世界大战期间,美国空军运往远东的机载电子设备在到达时就有60%已经失效,轰炸机的MTBF(无故障时间)不超过20小时。另外,1945年12月美国制成的第一台电子管计算机,整个计算机共有18000只电子管。但是,平均每33分钟就有一只失效。与此同时,1943年德国火箭专家R.Lusser第一次用概率乘法法则定量算出了V-2火箭诱导装置的可靠度R的值为0.75。第二次世界大战结束以后,美国国防部总结战争教训,提出了一个全新的问题——可靠性,并下令军队有关部门在今后的采购中只选择有可靠性指标的军需品。 (3)奠基期 60年代,美国成为可靠性发展最早的国家。1952年美国国防部成立AGREE 电子设备可靠性顾问团。同年,可靠性顾问团第一次提出了科学的可靠性定义。AGREE组织于1957年写出了一份较为系统的《电子设备可靠性报告》,较完整地

可靠性基本概念

可靠性基本概念 Ting Bao was revised on January 6, 20021

可靠性设计主要符号表

可靠性的概念 可靠性的经典定义:产品在规定条件下和规定时间内,完成规定功能的能力 产品:指作为单独研究和分别试验对象的任何元件、设备或系统,可以是零件、部件,也可以是由它们装配而成的机器,或由许多机器组成的机组和成套设备,甚至还把人的作用也包括在内。在具体使用“产品”这一词时,其确切含义应加以说明。例如汽车板簧、汽车发动机、汽车整车等。 规定条件:一般指的是使用条件,环境条件。包括应力温度、湿度、尘砂、腐蚀等,也包括操作技术、维修方法等条件。 规定时间:是可靠性区别于产品其他质量属性的重要特征,一般也可认为可靠性是产品功能在时间上的稳定程度。因此以数学形式表示的可靠性各特征量都是时间的函数。这里的时间概念不限于一般的年、月、日、分、秒,也可以是与时间成比例的次数、距离。例如应力循环次数、汽车行驶里程。 规定功能:道德要明确具体产品的功能是什么,怎样才算是完成规定功能。产品丧失规定功能称为失效,对可修复产品通常也称为故障。怎样才算是失效或故障,有时很容易判定,但更多情况则很难判定。当产品指的是某个螺丛,显然螺栓断裂就是失效;当产品指的是某个设备,对某个零件损坏而该设备仍能完成规定功能就不能算失效或故障,有时虽有某些零件损坏或松脱,但在规定的短时间内可容易地修复也可不算是失效或故障。若产品指的是某个具有性能指标要求的机器,当性能下降到规定的指标后,虽然仍能继续运转,但已应算是失效或故障。究竟怎样算是失效或故障,有时要涉及厂商与用户不同看法的协商,有时要涉及当时的技术水平和经济政策等而作出合理的规定。 能力:只是定性的理解是比较抽象的,为了衡量检验,后面将加以定量描述。产品的失效或故障均具有偶然性,一个产品在某段时间内的工作情况并不很好地反映该产品可靠性的高低,而应该观察大量该种产品的工作情况并进行合理的处理后才能正确的反映该产品的可靠性,因此对能力的定量需用概率和数理统计的方法。 按产品可靠性的形成,可靠性可分为固有可靠性和使用可靠性。固有可靠性是通过设计、制造赋予产品的可靠性;使用可靠性既受设计、制造的影响,又受使用条件的影响。一般使用可靠性总低于固有可靠性。

可靠性设计地基本概念与方法

一、结构可靠性设计概念 1.可靠性含义 可靠性是指一个产品在规定条件下和规定时间内完成规定功能的能力;而一个工业产品(包括像飞机这样的航空飞行器产品)由于内部元件中固有的不确定因素以及产品构成的复杂程度使得对所执行规定功能的完成情况及其产品的失效时间(寿命)往往具有很大的随机性,因此,可靠性的度量就具有明显的随机特征。一个产品在规定条件下和规定时间内规定功能的概率就称为该产品的可靠度。作为飞机结构的可靠性问题,从定义上讲可以理解为:“结构在规定的使用载荷/环境作用下及规定的时间内,为防止各种失效或有碍正常工作功能的损伤,应保持其必要的强刚度、抗疲劳断裂以及耐久性能力。”可靠度则应是这种能力的概率度量,当然具体的内容是相当广泛的。例如,结构元件或结构系统的静强度可靠性是指结构元件或结构系统的强度大于工作应力的概率,结构安全寿命的可靠性是指结构的裂纹形成寿命小于使用寿命的概率;结构的损伤容限可靠性则一方面指结构剩余强度大于工作应力的概率,另一方面指结构在规定的未修使用期间内,裂纹扩展小于裂纹容限的概率.可靠性的概率度量除可靠度外,还可有其他的度量方法或指标,如结构的失效概率F(c),指结构在‘时刻之前破坏的概率;失效率^(().指在‘时刻以前未发生破坏的条件下,在‘时刻的条件破坏概率密度;平均无故障时间MTTF(MeanTimeToFailure),指从开始使用到发生故障的工作时间的期望值。除此而外,还有可靠性指标、可靠寿命、中位寿命,对可修复结构还有维修度与有效度等许多可靠性度量方法。

设计一个具有规定可靠性水平的结构产品,其内容是相当丰富的,应当贯穿于产品的预研、分析、设计、制造、装配试验、使用和管理等整个过程和各个方面。从研究及学科划分上可大致分为三个方面。 (1)可靠性数学。主要研究可靠性的定量描述方法。概率论、数理统计,随机过程等是它的重要基础。 (2)可靠性物理。研究元件、系统失效的机理,物理成固和物理模型。不同研究对象的失效机理不同,因此不同学科领域内可靠性物理研究的方法和理论基础也不同. (3)可靠性工程。它包含了产品的可靠性分析、预测与评估、可靠性设计、可靠性管理、可靠性生产、可靠性维修、可靠性试验、可靠性数据的收集处理和交换等.从产品的设计到产品退役的整个过程中,每一步骤都可包含于可靠性工程之中。 由此我们可以看出,结构可靠性设计仅是可靠性工程的其中一个环节,当然也是重要的环节,从内容上讲,它包括了结构可靠性分析、结构可靠性设计和结构可靠性试验三大部分。结构可靠性分析的过程大致分为三个阶段。 一是搜集与结构有关的随机变量的观测或试验资料,并对这些资料用概率统计的方法进行分析,确定其分布概率及有关统计量,以作为可靠度和失效概率计算的依据。 二是用结构力学的方法计算构件的载荷效应,通过试验和统计获得结构的能力,从而建立结构的失效准则.

(整理)安全性可靠性性能评价

3.3 安全性、可靠性和性能评价 3.3.1主要知识点 了解计算机数据安全和保密、计算机故障诊断与容错技术、系统性能评价方面的知识,掌握数据加密的有关算法、系统可靠性指标和可靠性模型以及相关的计算方示。 3.3.1.1数据的安全与保密 (1)数据的安全与保密 数据加密是对明文(未经加密的数据)按照某种加密算法(数据的变换算法)进行处理,而形成难以理解的密文(经加密后的数据)。即使是密文被截获,截获方也无法或难以解码,从而阴谋诡计止泄露信息。数据加密和数据解密是一对可逆的过程。数据加密技术的关键在于密角的管理和加密/解密算法。加密和解密算法的设计通常需要满足3个条件:可逆性、密钥安全和数据安全。 (2)密钥体制 按照加密密钥K1和解密密钥K2的异同,有两种密钥体制。 ①秘密密钥加密体制(K1=K2) 加密和解密采用相同的密钥,因而又称为密码体制。因为其加密速度快,通常用来加密大批量的数据。典型的方法有日本的快速数据加密标准(FEAL)、瑞士的国际数据加密算法(IDEA)和美国的数据加密标准(DES)。 ②公开密钥加密体制(K1≠K2) 又称不对称密码体制,加密和解密使用不同的密钥,其中一个密钥是公开的,另一个密钥是保密的。由于加密速度较慢,所以往往用在少量数据的通信中,典型的公开密钥加密方法有RSA和ESIGN。 一般DES算法的密钥长度为56位,RSA算法的密钥长度为512位。 (3)数据完整性 数据完整性保护是在数据中加入一定的冗余信息,从而能发现对数据的修改、增加或删除。数字签名利用密码技术进行,其安全性取决于密码体制的安全程度。现在已经出现很多使用RSA和ESIGN算法实现的数字签名系统。数字签名的目的是保证在真实的发送方与真实的接收方之间传送真实的信息。 (4)密钥管理 数据加密的安全性在很大程度上取决于密钥的安全性。密钥的管理包括密钥体制的选择、密钥的分发、现场密钥保护以及密钥的销毁。 (5)磁介质上的数据加密

可靠性概念1

第一部分产品可靠性基本概念 编讲杨志飞 1 质量定义 为了某个目的而进行的单项具体工作叫“活动”。活动需要“资源”,资源包括人员、设施、设备、技术、资金和时间。 将输入转化为输出的一组关联的资源和活动称“过程”。 产品:ISO 9000定义为“活动或过程的结果”。产品可包括:硬件、流程性材料、软件、服务或它们的组合;产品可以是有形的(如组件或流程性材料),也可以是无形的(如知识或概念)或是它们的组合;产品可以是预期的(如提供给客户的)或非预期的(如污染物或不愿有的后果)。(国内曾经把产品定义为:是指任何元器件、零部件、组件、设备、分系统或系统,可以指硬件、软件或者两者的结合。) 硬件,是有形的、不连续的、具有特定形状的产品,通常由制造的、建造的和装配的零件、部件或(和)组件组成。 流程性材料,是由固体、气体、液体或由它们的组合所组成,经转换形成的产品(最终产品或中间产品),通常由管道、桶、袋、罐或以卷的形式交付。 软件,是通过支持媒体表达的信息所构成的一种智力创作。 服务,是为满足顾客的需要,供方和顾客之间接触的活动以及供方内部活动产生的结果。 整机:是指产品的部分内涵,即产品中设备以上的部分。 系统:能够完成某项工作任务的设备、人员及技术的组合。一个完整的系统应包括在规定的工作环境下,使系统的工作和保障可以达到自给所需的一切设备、有关的设施、器材、软件、服务和人员。 分系统:在系统中执行一种使用功能的组成部分。如数据处理分系统、制导分系统等。 请注意:组件多数可以看作整机,有时也当作元器件,在高度集成的器件中,往往包含了整机的模块,现代的部件往往也做成组件。因此很难划清它们的界线。 实体,是可以单独描述和考虑的事物,可以是某项活动和过程、某个产品、某个组织、体系或人或他们的任何组合。 特性,是帮助识别和区分各类实体的一种属性。属性包括物理、化学、外观功能或其它可识别的性质。其描述的量叫“特性参数”。 反映实体满足规定和潜在需要能力的特性之和叫“质量”。潜在需要是用户未在合同或定单中明确提出但实质上有的需要。质量是实体的一项最重要的特性,包括:性能、适用性、可信性、安全性、环境、经济性、美学。 可信性,是描述可用性和它的影响因素包括可靠性、维修性、维修保障性的集合性术语。 2故障定义 产品终止最终完成规定功能的能力的事件称“失效”。产品不能执行规定功能的状态叫“故障”。丧失功能的准则叫故障判据。 相对于给定的规定功能,有故障的产品的一种状态叫“故障模式”。形成故障的物理、化学(可能还有生物)变化等内在原因称为“故障机理”。 产品在规定的条件下使用,由于其本身固有的弱点而引起的失效,称为“本质故障”,不按规定条件使用产品而引起的失效称为“误用故障”。产品设计应包括减少误用故障的设计过程。 产品由于制造上的缺陷等原因而发生的故障称为“早期故障”;而由于偶然因素发生的故障称为“偶然故障”,一般在事前不能测试或监控,属于“突然故障”。产品由于老化、磨损、损耗或疲劳等原因引起的故障称为“耗损故障”。通过事前的测试或监控可以预测到的故障称为“渐变故障”。使产品不能完成规定任务或可能导致人或物重大损失的

关于通信网可靠性定义的探讨(精)

1997年 6月北京邮电大学学报 Jun . 1997第 20卷第 2期 Journal of Beijing U niversity of Po sts and T elecomm unicati ons V o l . 20N o . 2 关于通信网可靠性定义的探讨 3 张学渊梁雄健 (北京邮电大学管理工程系 , 北京 100088; 第一作者 26岁 , 男 , 博士生 摘要根据一般可靠性的定义和通信网的特点 , 在剖析几种已有定义的基础上提出了一个通信网可靠性的新定义 , 并对其变动特性进行了分析 . 进一步开展 . 关键词电信网 ; 可靠性 ; 定义 分类号 TN 913. 2 : 力 [1]. 、规定时间、规定功能和概率 (即测度等 5项要素 . , 可靠性的研究范围和研究内容都在不断扩展 . 在研究过程中 , 人 , 从研究任务出发提出了基本可靠性和任务可靠性 [2]; 从研究内容出发提出了固有可靠性和使用可靠性 , 二者共同组成工作可靠性 ; 从研究范围出发提出了狭义可靠性和广义可靠性 . 后来 , 人们又提出了人员可靠性和软件可靠性的定义 , 将可靠性的研究从硬件向软件延伸 . 详细内容可参见文献 [3~6]. 由于可靠性是一门综合性的边缘学科 , 它涉及到基础学科、技术学科和管理学科中的许多领域 . 因此 , 在应用可靠性理论解决某一具体问题时 , 就需要对其所属学科的某些理论问题和技术问题有一基本了解 , 这有助于明确问题的研究内容和研究方向 . 而一个概念的定义是对其内涵和外延的确切而简要的说明 , 是研究问题的依据 . 为了对通信网的可靠性进行深入研究 , 我们认为有必要首先在一般可靠性定义的基础上明确通信网可靠性的定义 .

可靠性设计的基本概念与方法

4.6 可靠性设计的基本概念与方法 一、结构可靠性设计概念 1.可靠性含义 可靠性是指一个产品在规定条件下和规定时间内完成规定功能的能力;而一个工业产品(包括像飞机这样的航空飞行器产品)由于内部元件中固有的不确定因素以及产品构成的复杂程度使得对所执行规定功能的完成情况及其产品的失效时间(寿命)往往具有很大的随机性,因此,可靠性的度量就具有明显的随机特征。一个产品在规定条件下和规定时间内规定功能的概率就称为该产品的可靠度。作为飞机结构的可靠性问题,从定义上讲可以理解为:“结构在规定的使用载荷/环境作用下及规定的时间内,为防止各种失效或有碍正常工作功能的损伤,应保持其必要的强刚度、抗疲劳断裂以及耐久性能力。”可靠度则应是这种能力的概率度量,当然具体的内容是相当广泛的。例如,结构元件或结构系统的静强度可靠性是指结构元件或结构系统的强度大于工作应力的概率,结构安全寿命的可靠性是指结构的裂纹形成寿命小于使用寿命的概率;结构的损伤容限可靠性则一方面指结构剩余强度大于工作应力的概率,另一方面指结构在规定的未修使用期间内,裂纹扩展小于裂纹容限的概率.可靠性的概率度量除可靠度外,还可有其他的度量方法或指标,如结构的失效概率F(c),指结构在‘时刻之前破坏的概率;失效率^(().指在‘时刻以前未发生破坏的条件下,在‘时刻的条件破坏概率密度;平均无故障时间MTTF(MeanTimeToFailure),指从开始使用到发生故障的工作时间的期望值。除此而外,还有可靠性指标、可靠寿命、中位寿命,对可修复结构还有维修度与有效度等许多可靠性度量方法。 2..结构可靠性设计的基本过程与特点 设计一个具有规定可靠性水平的结构产品,其内容是相当丰富的,应当贯穿于产品的预研、分析、设计、制造、装配试验、使用和管理等整个过程和各个方面。从研究及学科划分上可大致分为三个方面。 (1)可靠性数学。主要研究可靠性的定量描述方法。概率论、数理统计,随机过程等是它的重要基础。 (2)可靠性物理。研究元件、系统失效的机理,物理成固和物理模型。不同研究对象的失效机理不同,因此不同学科领域内可靠性物理研究的方法和理论基础也不同. (3)可靠性工程。它包含了产品的可靠性分析、预测与评估、可靠性设计、可靠性管理、可靠性生产、可靠性维修、可靠性试验、可靠性数据的收集处理和交换等.从产品的设计到产品退役的整个过程中,每一步骤都可包含于可靠性工程之中。 由此我们可以看出,结构可靠性设计仅是可靠性工程的其中一个环节,当然也是重要的环节,从内容上讲,它包括了结构可靠性分析、结构可靠性设计和结构可靠性试验三大部分。结构可靠性分析的过程大致分为三个阶段。 一是搜集与结构有关的随机变量的观测或试验资料,并对这些资料用概率统计的方法进行分析,确定其分布概率及有关统计量,以作为可靠度和失效概率计算的依据。

可靠性概率分布

关于可靠性分布函数 及其 工程应用的讨论 学号:071230320 姓名:喻浩文 ?目录 一、引言..................................................... 错误!未定义书签。 二、分布函数及其应用的讨论................................... 错误!未定义书签。 (一)、指数分布.......................................... 错误!未定义书签。 1.定义: ............................................. 错误!未定义书签。 2.指数分布的可靠度与不可靠度函数................... 错误!未定义书签。

3.图像分析.......................................... 错误!未定义书签。 4.应用?错误!未定义书签。 (二)、正态分布.......................................... 错误!未定义书签。 1.定义:?错误!未定义书签。 2.正态分布的可靠度与不可靠度函数.................... 错误!未定义书签。 3.失效率函数?错误!未定义书签。 4.图像分析........................................... 错误!未定义书签。 5.应用............................................... 错误!未定义书签。 (三)、对数正态分布?错误!未定义书签。 1.定义: .............................................. 错误!未定义书签。 2.对数正态分布的可靠度与不可靠度函数?错误!未定义书签。 3.对数正态分布失效率?错误!未定义书签。 4.图像分析........................................... 错误!未定义书签。 5应用............................................... 错误!未定义书签。 (四)、威布尔分布?错误!未定义书签。 1.三参数威布尔分布的定义:?错误!未定义书签。 2.可靠度与不可靠度函数?错误!未定义书签。 3.威布尔分布失效率?错误!未定义书签。 4.图像分析?错误!未定义书签。 5.应用.............................................. 错误!未定义书签。 三、小结..................................................... 错误!未定义书签。参考文献?错误!未定义书签。 附录?错误!未定义书签。

可靠性基本概念(doc 14页)

可靠性基本概念(doc 14页) 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑 可靠性设计主要符号表

可靠性的概念 可靠性的经典定义:产品在规定条件下和规定时间内,完成规定功能的能力 产品:指作为单独研究和分别试验对象的任何元件、设备或系统,可以是零件、部件,也可以是由它们装配而成的机器,或由许多机器组成的机组和成套设备,甚至还把人的作用也包括在内。在具体使用“产品”这一词时,其确切含义应加以说明。例如汽车板簧、汽车发动机、汽车整车等。 规定条件:一般指的是使用条件,环境条件。包括应力温度、湿度、尘砂、腐蚀等,也包括操作技术、维修方法等条件。 规定时间:是可靠性区别于产品其他质量属性的重要特征,一般也可认为可靠性是产品功能在时间上的稳定程度。因此以数学形式表示的可靠性各特征量都是时间的函数。这里的时间概念不限于一般的年、月、日、分、秒,也可以是与时间成比例的次数、距离。例如应力循环次数、汽车行驶里程。 规定功能:道德要明确具体产品的功能是什么,怎样才算是完成规定功能。产品丧失规定功能称为失效,对可修复产品通常也称为故障。怎样才算是失效或故障,有时很容易判定,但更多情况则很难判定。当产品指的是某个螺丛,显然螺栓断裂就是失效;当产品指的是某个设备,对某个零件损坏而该设备仍能完成规定功能就不能算失效或故障,有时虽有某些零件损坏或松脱,但在规定的短时间内可容易地修复也可不算是失效或故障。若产品指的是某个具有性能指标要求的机器,当性能下降到规定的指标后,虽然仍能继续运转,但已应算是失效或故障。究竟怎样算是失效或故障,有时要涉及厂商与用户不同看法的协商,有时要涉及当时的技术水平和经济政策等而作出合理的规定。 能力:只是定性的理解是比较抽象的,为了衡量检验,后面将加以定量描述。产品的失效或故障均具有偶然性,一个产品在某段时间内的工作情况并不很好地反映该产品可靠性的高低,而应该观察大量该种产品的工作情况并进行合理的处理后才能正确的反映该产品的可靠性,因此对能力的定量需用概率和数理统计的方法。 按产品可靠性的形成,可靠性可分为固有可靠性和使用可靠性。固有可靠性是通过设计、制造赋予产品的可靠性;使用可靠性既受设计、制造的影响,又受使用条件的影响。一般使用可靠性总低于固有可靠性。 可靠度 可靠度是产品在规定条件下和规定时间内,完成规定功能的概率,一般记为R。它是时间的函数,故也记为R(t),称为可靠度函数。

安全性可靠性性能评价

如对你有帮助,请购买下载打赏,谢谢! 3.3 安全性、可靠性和性能评价 3.3.1主要知识点 了解计算机数据安全和保密、计算机故障诊断与容错技术、系统性能评价方面的知识,掌握数据加密的有关算法、系统可靠性指标和可靠性模型以及相关的计算方示。 3.3.1.1数据的安全与保密 (1)数据的安全与保密 数据加密是对明文(未经加密的数据)按照某种加密算法(数据的变换算法)进行处理,而形成难以理解的密文(经加密后的数据)。即使是密文被截获,截获方也无法或难以解码,从而阴谋诡计止泄露信息。数据加密和数据解密是一对可逆的过程。数据加密技术的关键在于密角的管理和加密/解密算法。加密和解密算法的设计通常需要满足3个条件:可逆性、密钥安全和数据安全。 (2)密钥体制 按照加密密钥K1和解密密钥K2的异同,有两种密钥体制。 ①秘密密钥加密体制(K1=K2) 加密和解密采用相同的密钥,因而又称为密码体制。因为其加密速度快,通常用来加密大批量的数据。典型的方法有日本的快速数据加密标准(FEAL)、瑞士的国际数据加密算法(IDEA)和美国的数据加密标准(DES)。 ②公开密钥加密体制(K1≠K2) 又称不对称密码体制,加密和解密使用不同的密钥,其中一个密钥是公开的,另一个密钥是保密的。由于加密速度较慢,所以往往用在少量数据的通信中,典型的公开密钥加密方法有RSA和ESIGN。 一般DES算法的密钥长度为56位,RSA算法的密钥长度为512位。 (3)数据完整性 数据完整性保护是在数据中加入一定的冗余信息,从而能发现对数据的修改、增加或删除。数字签名利用密码技术进行,其安全性取决于密码体制的安全程度。现在已经出现很多使用RSA和ESIGN算法实现的数字签名系统。数字签名的目的是保证在真实的发送方与真实的接收方之间传送真实的信息。 (4)密钥管理 数据加密的安全性在很大程度上取决于密钥的安全性。密钥的管理包括密钥体制的选择、密钥的分发、现场密钥保护以及密钥的销毁。 (5)磁介质上的数据加密

可靠性定义

一、可靠性定义 产品的可靠性是指:产品在规定的条件下、在规定的时间内完成规定的功能的能力。从定义本身来说,它是产品的一种能力,这是一个很抽象的概念;我们可以用个例子(100个学生即将参加考试)来理解这个定义,可靠性就是指:100个学生的考分的平均是多少?对这个平均分的准确性有多大把握?分数越高、把握越大,可靠性就越高。 我国的可靠性工作起步较晚,20世纪70年代才开始在电子工业和航空工业中初步形成可靠性研究体系,并将其应用于军工产品。其他行业可靠性工作起步更晚,差距更大,与先进国家差距20~30年,虽然国家已制订可靠性标准,但尚未引起所有企业的足够重视。 对产品而言,可靠性越高就越好。可靠性高的产品,可以长时间正常工作(这正是所有消费者需要得到的);从专业术语上来说,就是产品的可靠性越高,产品可以无故障工作的时间就越长。 二、可靠性的重要性 调查结果显示(如某公司市场部2001年调查记录):“对可靠性的重视度,与地区的经济发达程度成正比”。例如,英国电讯(BT)关于可靠性管理/指标要求有产品寿命、MTBF报告、可靠性框图、失效树分析(FTA)、可靠性测试计划和测试报告等;泰国只有MTBF和MTTF的要求;而厄瓜多尔则未提到,只是提出环境适应性和安全性的要求。 产品的可靠性很重要,它不仅影响生产公司的前途,而且影响到使用者的安全(前苏联的“联盟11号”宇宙飞船返回时,因压力阀门提前打开而造成三名宇航员全部死亡)。可靠性好的产品,不但可以减少公司的维修费用,而且可以很快就打出品牌,大幅度提升公司形象,增加公司收入。 随着市场经济的发展,竞争日趋激烈,人们不仅要求产品物美价廉,而且十分重视产品的可靠性和安全性。日本的汽车、家用电器等产品,虽然在性能、价格方面与我国彼此相仿,却能占领美国以及国际市场。主要的原因就是日本的产品可靠性胜过我国一筹。美国的康明斯、卡勃彼特柴油机,大修期为12000小时,而我国柴油机不过1000小时,有的甚至几十小时、几百小时就出现故障。我国生产的电梯,平均使用寿命(指两次大修期的间隔时期)为3年左右,而国外的电梯平均寿命在10年以上,是我们的3倍;故障率,国外平均为0.05次,而我国为1次以上,高出20倍,这样的产品怎么有竞争力呢!因此要想在竞争中立于不败之地,就要狠抓产品质量,特别是产品可靠性,没有可靠性就没有质量,企业就无法在激烈的竞争中生存和发展。因此,可靠性问题必须引起政府和企业的高度重视,抓好可靠性工作,不仅是关系到企业生存和发展的大问题,也是关系到国家经济兴衰的大问题。(呵呵,这是唱高调的内容,可以不看的……) 三、可靠性指标 衡量产品可靠性水平有好几种标准,有定量的,也有定性的,有时要用几种标准(指标)去度量一种产品的可靠性,但最基本最常用的有以下几种标准。 1.可靠度R(t);它是产品在规定条件和规定时间内完成规定功能的概率。一批产品的 数量为N,从t = 0时开始使用,随着时间的推移,失效的产品件数逐渐增加,而正常工作的产品件数n(t)逐渐减少,用R(t)表示产品在任意时刻t的可靠度。 2.可靠寿命[CR(tr)];它与一般理解的寿命有不同含义,概念也不同,设产品的可靠度为 R(t),使可靠度等于规定值r时的时间tr的,即被定义为可靠寿命。 3.失效率(故障率)λ(t);它是指某产品(零部件)工作到时间t之后,在单位时间△t内 发生失效的概率。 4.有效寿命与平均寿命;有效寿命一般是指产品投入使用后至达到某规定失效率水平之前的 一段工作时间。而平均寿命MTTF对于不可修复产品,指从开始使用直到发生失效这一段工作时间的平均值;对于可修复的产品,是指在整个使用阶段和除维修时间之后的各段有效

可靠性中常用的概率分布

名 称记号概率分布及其定义域、参数 条件 均值 E(X) 方差 D(X) 图形 二 项 分 布 np npq 二项分布:当进行一种试验只有两种可能的结果时,叫成败型试验。在可靠性工程中,二项分布可用来计算部件相同并行工 作冗余系统的成功概率,也适用于计算一次使用系统的成功概率。 返回 可靠性中常用的概率分布 名称记号概率分布及其定义域、参 数条件 均值 E(X) 方差 D(X) 图形 泊松 分布 P(λ) λλ 泊松分布:一个系统,在运行过程中由于负载超出了它所能允许的范围造成失效,在一段运行时间内失效发生的次数X是一 随机变量,当这随机变量有如下特点时,X服从泊松分布。特点1:当时间间隔取得极短时,智能有0个或1个失效发生;特点2:出 现一次失效的概率大小与时间间隔大小成正比,而与从哪个时刻开 始算起无关;特点3:各段时间出现失效与否,是相互独立的。例 如:飞机被击中的炮弹数,大量螺钉中不合格品出现的次数,数字 通讯中传输数字中发生的误码个数等随机变数,就相当近似地服从 泊松分布。

名称记号概率分布及其定义域、参数条件均值 E(X) 方差D(X)图形 超几何分 布 H(n,M,N) 返回 可靠性中常用的概率分布名 称记号概率分布及其定义域、参数条件 均值 E(X) 方差 D(X) 图形 指 数 分 布 e(λ) 指数分布:许多电子产品的寿命分布一般服从指数分布。 有的系统的寿命分布也可用指数分布来近似。它在可靠性研究中是最常用的一种分布形式。指数分布是伽玛分布和威布尔分布的特殊情况,产品的失效是偶然失效时,其寿命服从指数分布。 可靠性中常用的概率分布 名称记号概率分布及其定义域、 参数条件 均值E(X)方差D(X)图形

可靠性的基本概念知识

可靠性的基本概念知识 一、可靠性 产品在规定的条件下和规定的时间内,完成规定功能的能力称为可靠性。可靠性的概率度量称为可靠度。这里的产品指的是新版ISO)9000中定义的硬件和流程性材料等有形产品以及软件等无形产品。它可以大到一个系统或设备,也可以小至一个零件。产品终止规定功能就称为失效,也称为故障。产品按从发生失效后是否可以通过维修恢复到规定功能状态,可分为可修复产品和不可修复产品。如汽车属于可修复产品,日光灯管属不可修复产品。习惯上,终止规定功能,对可修复产品称为故障,对不可修复产品称为失效。可靠性定义中的“三个规定”是理解可靠性概念的核心。“规定条件”包括使用时的环境条件和工作条件。产品的可靠性和它所处的条件关系极为密切,同一产品在不同条件下工作表现出不同的可靠性水平。一辆汽车在水泥路面上行驶和在砂石路上行驶同样里程,显然后者故障会多于前者,也就是说使用环境条件越恶劣,产品可靠性越低。“规定时间”和产品可靠性关系也极为密切。可靠性定义中的时间是广义的,除时间外,还可以是里程、次数等。同一辆汽车行驶1万公里时发生故障的可能性肯定比行驶1千公里时发生故障的可能性大。也就是说,工作时间越长,可靠性越低,产品的可靠性和时间的关系呈递减函数关系。“规定的功能”指的是产品规格书中给出的正常工作的性能指标。衡量一个产品可靠性水平时一定要给出故障(失效)判据,比如电视机图像的清晰度低于多少线就判为故障要明确定义,否则会引起争议。因此,在规定产品可靠性指标要求时一定要对规定条件、规定时间和规定功能给予详细具体的说明。如果这些规定不明确,仅给出产品可靠度要求是无法验证的。 产品的可靠性可分为固有可靠性和使用可靠性。固有可靠性是产品在设计、制造中赋予的,是产品的一种固有特性,也是产品的开发者可以控制的。而使用可靠性则是产品在实际使用过程中表现出的一种性能的保持能力的特性,它除了考虑固有可靠性的影响因素之外,还要考虑产品安装、操作使用和维修保障等方面因素的影响。 产品可靠性还可分为基本可靠性和任务可靠性。基本可靠性是产品在规定条件下无故障的持续时间或概率,它反映产品对维修人力的要求。因此在评定产品基本可靠性时应统计产品的所有寿命单位和所有故障,而不局限于发生在任务期间的故障,也不局限于是否危及任务成功的故障。任务可靠性是产品在

可靠性工程每章基本概念及复习要点

复习要点: 可靠性 广义可靠性 失效率 MTTF(平均寿命) MTBF(平均事故间隔) 维修性 有效性 修复度 最小路集及求解 最小割集及求解 可靠寿命 中位寿命 特征寿命 研究可靠性的意义 可靠性定义中各要素的实际含义 浴盆曲线 可靠性中常见的分布 简述串联系统特性 简述并联系统特性 简述旁联系统特性 简述r/n系统的优势 并-串联系统与串-并联系统的可靠性关系 马尔可夫过程 可靠性设计的重要性 建立可靠性模型的一般步骤 降额设计的基本原理 冗余(余度)设计的基本原理 故障树分析优缺点 广义可靠性:包括可靠性、维修性、耐久性、安全性。可靠性:产品在规定时期内规定条件规定的时间完成规定功能能力。耐久性:产品在规定的使用和维修条件下,达到某种技术或经济指标极限时,完成规定功能能力。安全性:产品在一定的功能、时间、成本等制约条件下,使人员和设备蒙受伤害和损失最小的能力 可靠度R(t):产品在规定条件下和规定时间内完成规定功能的概率 累积失效概率F(t):也称不可靠度,产品在规定条件下和规定时间内失效的概率 失效概率密度f(t):产品在包含t的单位时间内发生失效的概率 失效率λ(t):工作到t时刻尚未失效的产品,在该时刻t后的单位时间内发生失效的概率。基本:实验室条件下。应用:考虑到环境,利用,降额和其它因素的实际使用环境条件下。任务:元器件在执行任务期间,即工作条件下的基本 不可修产品平均寿命MTTF:指产品失效前的平均工作时间可修MTBF:指相邻两次故障间的平均工作时间,称为平均无故障工作时间或平均故障间隔时间维修性:在规定的条件下使用的可维修产品,在规定的时间内,按规定的程序和法进行维修时,保持或恢复到能完成规定功能的能力 维修度M(t):是指在规定的条件下使用的产品发生故障后,在规定的时间(0,t)内完成修复的概率。修复率μ(t):修理时间已达到某一时刻但尚未修复的产品在该时刻后的单位时间内完成修理的概率。平均修复时间MTTR:可修复的产品的平均修理时间,其估计值为修复

可靠性及系统性能评价

两个部件的可靠度R 均为0.8,由着两个部件串联构成的系统可 靠度为:0.64;由这两个部件并联构成的系统的可靠度为:0.96。 串联系统: 设系统各个子系统的可靠性分别用R1,R2,R3、、、、、,Rn 表 示,则系统的可靠度R=R1*R2*R3*、、、、、*Rn 。 如果系统的各个子系统的失效率分别用R1,R2,R3、、、、 Rn 表示,则系统的失效率为R=R1+R2+、、、、+Rn 。 并联系统: 系统的可靠性R=1-(1-R1)*(1-R2)*、、、、、*(1-Rn )。 系统的失效率R=∑=n j j R 1111 平均无故障时间(MTBF )与失效率的关系为:MTBF=1/R 。 内存按字节编址,地址从90000(H )到CFFFF (H ),可以通过 内存容量的计算公式:内存容量=终止地址-起始地址+1, 内存容量=CFFFF (H )-90000(H )+1=40000(H )=256KB 。 基于Windows 、Linux 和UNIX 等操作系统的服务器称为开放系 统。开放系统的数据存储方式分为内置存储和外挂存储两种,而外挂 存储又根据连接方式分为直连式存储和网络话存储,目前应用的网络

化存储方式有两种,即网络接入存储和存储区域网络。 开始系统的直连式存储(DAS) 网络接入存储(NAS)是将存储设备连接到现有的网络上,来提供数据存储和文件访问服务的设备。DAS服务器是在专用主机上安装简化了的瘦操作系统文件服务器。 存储区域网络(SAN)是一种连接存储设备和存储管理子系统的专用网络。 廉价磁盘冗余阵列RAID RAID分为0~7这8个不同的冗余级别,其中RAID0级无冗余校验功能;RAID1采用磁盘镜像功能,磁盘容量的利用率是50%;RAID3利用一台奇偶校验盘来完成容错功能。所以如果利用4个盘组成RAIDS阵列,可以用3个盘用于有效数据,磁盘容量的利用率为75%。RAID0的磁盘容量利用率是最高的。 P239 项目段式管理页式管理段页式管理划分方式 虚地址 虚实转换 主要优点简化了任意增长和收缩的 数据段管理,利于进程间共消除了页外碎片结合了段与页的有点 便于控制存取访问

可靠性基本概念

可靠性设计主要符号表

可靠性的概念 可靠性的经典定义:产品在规定条件下和规定时间内,完成规定功能的能力产品:指作为单独研究和分别试验对象的任何元件、设备或系统,可以是零件、部件,也可以是由它们装配而成的机器,或由许多机器组成的机组和成套设备,甚至还把人的作用也包括在内。在具体使用“产品”这一词时,其确切含义应加以说明。例如汽车板簧、汽车发动机、汽车整车等。 规定条件:一般指的是使用条件,环境条件。包括应力温度、湿度、尘砂、腐蚀等,也包括操作技术、维修方法等条件。 规定时间:是可靠性区别于产品其他质量属性的重要特征,一般也可认为可靠性是产品功能在时间上的稳定程度。因此以数学形式表示的可靠性各特征量都是时间的函数。这里的时间概念不限于一般的年、月、日、分、秒,也可以是与时间成比例的次数、距离。例如应力循环次数、汽车行驶里程。 规定功能:道德要明确具体产品的功能是什么,怎样才算是完成规定功能。产品丧失规定功能称为失效,对可修复产品通常也称为故障。怎样才算是失效或故障,有时很容易判定,但更多情况则很难判定。当产品指的是某个螺丛,显然螺栓断裂就是失效;当产品指的是某个设备,对某个零件损坏而该设备仍能完成规定功能就不能算失效或故障,有时虽有某些零件损坏或松脱,但在规定的短时间内可容易地修复也可不算是失效或故障。若产品指的是某个具有性能指标要求的机器,当性能下降到规定的指标后,虽然仍能继续运转,但已应算是失效或故障。究竟怎样算是失效或故障,有时要涉及厂商与用户不同看法的协商,有时要涉及当时的技术水平和经济政策等而作出合理的规定。 能力:只是定性的理解是比较抽象的,为了衡量检验,后面将加以定量描述。产品的失效或故障均具有偶然性,一个产品在某段时间内的工作情况并不很好地反映该产品可靠性的高低,而应该观察大量该种产品的工作情况并进行合理的处理后才能正确的反映该产品的可靠性,因此对能力的定量需用概率和数理统计的方法。 按产品可靠性的形成,可靠性可分为固有可靠性和使用可靠性。固有可靠性是通过设计、制造赋予产品的可靠性;使用可靠性既受设计、制造的影响,又受使用条件的影响。一般使用可靠性总低于固有可靠性。

可靠性、有效性 、可维护性和安全性(RAMS)

1 目的 为确保产品在使用寿命周期内的可靠性、有效性、可维护性和安全性(以下简称RAMS),建立执行可靠性分析的典型方法,更好地满足顾客要求,保证顾客满意,特制定本程序。 2 适用范围 适用于本集团产品的设计、开发、试验、使用全过程RAMS的策划和控制。 3 定义 RAMS:可靠性、有效性、可维护性和安全性。 R——Reliability可靠性:产品在规定的条件下和规定的时间内,完成规定功能的能力。可靠性的概率度量亦称可靠度。 A——Availability有效性:是指产品在特定条件下能够令人满意地发挥功能的概率。 M——Maintainability可维护性:是指产品在规定的条件下和规定的时间内,按规定的程序和方法进行维修时,保持或恢复到规定状态的能力。维修性的概率度量亦称维修度。 S——Safety安全性:是指保证产品能够可靠地完成其规定功能,同时保证操作和维护人员 的人身安全。 FME(C)A:Failure Mode and Effect(Criticality)Analysis 故障模式和影响(危险)分析。 MTBF平均故障间隔时间:指可修复产品(部件)的连续发生故障的平均时间。 MTTR平均修复时间:指检修员修理和测试机组,使之恢复到正常服务中的平均故障维修时间。 数据库:为解决特定的任务,以一定的组织方式存储在一起的相关的数据的集合。 4 职责 4.1 销售公司负责获取顾客RAMS要求并传递至相关部门;组织对顾客进行产品正确使用和维护的培训;负责产品交付后RAMS数据的收集和反馈。 4.2 技术研究院各技术职能部门负责确定RAMS目标,确定对所用元器件、材料、工艺的可靠性要求,进行可靠性分配和预测,负责建立RAMS数据库。 4.3 工程技术部负责确定能保证实现设计可靠性的工艺方法。 4.4 采购部负责将相关资料和外包(外协)配件的RAMS要求传递给供方,并督促供方实现这些要求。 4.5制造部负责严格按产品图样、工艺文件组织生产。 4.6动能保障部负责制定工装设备、计量测试设备的维修计划并实施,保证其处于完好状态。

相关主题
文本预览
相关文档 最新文档