当前位置:文档之家› 二维鼓泡床内气液流动特性实验与数值模拟

二维鼓泡床内气液流动特性实验与数值模拟

二维鼓泡床内气液流动特性实验与数值模拟
二维鼓泡床内气液流动特性实验与数值模拟

华师物化实验报告 液相平衡常数测定

华南师范大学实验报告 学生姓名学号 专业年级、班级 课程名称实验项目液相反应平衡常数的测定 实验类型□验证□设计■综合实验时间年月日 实验指导老师实验评分 一、实验目的 1、利用分光光度计测定低浓度下铁离子与硫氰酸根离子生成硫氰合铁离子液相反应的平衡常数。 2、通过实验了解热力学平衡常数的数值与反应物起始浓度无关。 二、实验原理 Fe3+离子与SCN-离子在溶液中可生成一系列的络离子,并共存于同一个平衡体系中。当SCN-离子的浓度增加时,Fe3+离子与SCN-离子生成的络合物的组成发生如下的改变: Fe3++SCN-→Fe(SCN)2+→Fe(SCN)2+→Fe(SCN)3 →Fe(SCN)4-→Fe(SCN)52- 而这些不同的络离子色调也不同。由图Ⅲ-11-2可知,当Fe3+离子与浓度很低的SCN-离子(一般应小于5×10-3mol·L)时,只进行如下反应: Fe3+ + SCN- ≒ FeSCN2+

即反应被控制在仅仅生成最简单的FeSCN3+络离子。其平衡常数表示为: 根据朗伯-比尔定律,可知光密度与溶液浓度成正比。因此,可借助于分光光度计测定其光密度,从而计算出平衡时FeSCN2+络离子的浓度以及Fe3+离子和SCN-离子的浓度,进而求出该反应的平衡常数K C。 实验分为4组,不同组的Fe3+浓度不同,其中第一组的浓度极大,使用分光 光度计时,根据朗伯-比尔定律E 1=K[FeCNS2+] 1,e (K为消光系数) 由于1号溶液中Fe3+浓度极大,平衡时CNS-与Fe3+完全络合,对于一号溶液 可认为[FeCNS2+] 1,e =[CNS-] 则E 1 =K[CNS-] 对于其它溶液,则E i =K[FeCNS2+] 1,e 两式 相除并整理得[FeCNS2+] 1,e =E 1 /E 1 [CNS-] 三、仪器与药品 1、仪器 722型分光光度计1台;50mL容量瓶8只;100mL烧杯4个; 刻度移液管10mL2支5mL1支;25移液管1支;50mL酸式滴定管1支; 洗耳球、洗瓶等 2、试剂 1×10-3mol·L KSCN(分析纯配置,需准确标定); 0.1mol·LFeNH 4(SO 4 ) 2 (需准确标定Fe3+浓度,并加HNO 3 使H+浓度0.1mol·L); 1mol·LHNO 3;1mol·LKNO 3 (试剂均用分析纯配制)

循环流化床锅炉技术(岳光溪)

循环流化床技术发展与应用 岳光溪清华大学热能工程系 摘要:循环流化床燃烧技术对我国燃煤污染控制具有举足轻重的意义。我国自上世纪八十年代后采取引进和自我开发两条路线,完全掌握了中小型循环流化床锅炉设计制造技术,在大型循环流化床燃烧技术上已经完成了首台135MWe超高压再热循环流化床锅炉的示范工程。引进的300MWe循环流化床锅炉进入示范实施阶段。燃煤循环流化床锅炉已在中国中小热电和发电厂得到大面积推广使用。中国积累的设计运行经验对世界上循环流化床燃烧技术的发展做出了重要贡献。超临界循环流化床锅炉是今后循环流化床燃烧技术发展极为重要的方向,是大型燃煤电站污染控制最具竞争力的技术。我国已经具备开发超临界循环流化床锅炉的能力,在政府支持下可以实现完全自主知识产权的超临界循环流化床锅炉,扭转过去反复引进的被动局面。 前言 能源与环境是当今社会发展的两大问题。我国是缺油,但煤炭资源相对丰富大国。石油天然气对我国是战略资源,要尽量减少直接燃用。目前一次能源消耗中煤炭占65%,在可预见的若干年内还会维持这个趋势。可见发展高效、低污染的清洁燃煤技术是当今亟待解决的问题。 循环流化床是近年来在国际上发展起来的新一代高效、低污染清洁燃烧技术,具有许多其它燃烧方式所没有的优点: 1)由于循环流化床属于低温燃烧,因此氮氧化物排放远低于煤粉炉,仅为120ppm左右。并可实现燃烧中直接脱硫,脱硫效率高且技术设备简单和经济,其脱硫的初投资及运行费用远低于煤粉炉加FGD,是目前我国在经济上可承受的燃煤污染控制技术; 2)燃料适应性广且燃烧效率高,特别适合于低热值劣质煤; 3)排出的灰渣活性好,易于实现综合利用。 4)负荷调节范围大,负荷可降到满负荷的30%左右。 因此,在我国目前环保要求日益严格,煤种变化较大和电厂负荷调节范围较大的情况下,循环流化床成为发电厂和热电厂优选的技术之一。我国的循环流化床燃烧技术的来自于自主开发、国外引进、引进技术的消化吸收三个主要来源。上世纪八十年代以来,我国循环流化床锅炉数量和单台容量逐年增加。据不完全统计,现有近千台35~460t/h 循环流化床蒸汽锅炉和热水锅炉在运行、安 106.78t/h,见图1;参数从中压、次高压、高压发 展到超高压,单台容量已经发展到670t/h,见图2。 截至2003年,投运台数已有700多台。单炉最大 容量为465t/h,发电量150MWE。近三年,我国 循环流化床锅炉发展迅速,100MWe以上循环流 化床锅炉订货量达到近80台,100MWe以下循环 流化床锅炉订货超过200台。今后,随着环保标 准的提高,供热及电力市场对循环流化床锅炉的 需求将会进一步扩大。

气相色谱法实验报告记录

气相色谱法实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

实验五—气相色谱法实验 姓名:张瑞芳 学号:2013E8003561147 班级:化院413班 培养单位:上海高等研究院 指导教师:李向军 组别:2013年12月30日第二组

气相色谱法实验 一、实验目的 1.了解气相色谱仪的各部件的功能。 2.加深理解气相色谱的原理和应用。 3.掌握气相色谱分析的一般实验方法。 4.学会使用FID气相色谱对未知物进行分析。 二、实验原理 1.气相色谱法基本原理 气相色谱的流动向为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸附剂作为固定相。当多组分的混合样品进入色谱柱后,由于吸附剂对每个组分的吸附力不同,经过一定时间后,各组分在色谱柱中的运行速度也就不同。吸附力弱的组分容易被解吸下来,最先离开色谱柱进入检测器,而吸附力最强的组分最不容易被解吸下来,因此最后离开色谱柱。如此,各组分得以在色谱柱中彼此分离,顺序进入检测器中被检测、记录下来。气相色谱仪器框图如图1所示: 图1.气相色谱仪器框图 仪器均由以下五个系统组成:气路、进样、分离、温度控制、检测和记录系统。 2.气相色谱法定性和定量分析原理 在这种吸附色谱中常用流出曲线来描述样品中各组分的浓度。也就是说,让

分离后的各组分谱带的浓度变化输入换能装置中,转变成电信号的变化。然后将电信号的变化输入记录器记录下来,便得到如图2的曲线。它表示组分进入检测器后,检测器所给出的信号随时间变化的规律。它是柱内组分分离结果的反映,是研究色谱分离过程机理的依据,也是定性和定量的依据。 图2.典型的色谱流动曲线 3.FID的原理 本次试验所用的为氢火焰离子化检测器(FID),它是以氢气和空气燃烧的火焰作为能源,利用含碳有机物在火焰中燃烧产生离子,在外加的电场作用下,使离子形成离子流,根据离子流产生的电信号强度,检测被色谱柱分离出的组分。 三.实验试剂和仪器 (1)试剂:甲醇、异丙醇、异丁醇 (2)仪器:气相色谱仪带氢火焰离子化检测器(GC-2014气相色谱仪); 氢-空发生器(SPH-300氢气发生器)、氮气钢瓶; 色谱柱; 微量注射器。 四.实验步骤 1.打开稳定电源。 2.打开N2钢瓶(减压阀),以N2为载气,开始通气,检漏;调整柱前压约为 0.12MPa。

气液平衡-实验报告解读

化工专业实验报告 实验名称:二元气液平衡数据的测定 实验人员: 同组人 实验地点:天大化工技术实验中心 606 室 实验时间: 2015年4月20日下午14:00 年级: 2014硕;专业:工业催化;组号: 10(装置2);学号:指导教师:______赵老师________ 实验成绩:_____________________

一.实验目的 (1)测定苯-正庚烷二元体系在常压下的气液平衡数据; (2)通过实验了解平衡釜的结构,掌握气液平衡数据的测定方法和技能; (3)应用 Wilson 方程关联实验数据。 二.实验原理 气液平衡数据是化学工业发展新产品、开发新工艺、减少能耗、进行三废处理的重要基础数据之一。化工生产中的蒸馏和吸收等分离过程设备的改造与设计、挖潜与革新以及对最佳工艺条件的选择,都需要精确可靠的气液平衡数据。这是因为化工生产过程都要涉及相间的物质传递,故这种数据的重要性是显而易见的。 平衡数据实验测定方法有两类,即间接法和直接法。直接法中又有静态法、流动法和循环法等。其中循环法应用最为广泛。若要测得准确的气液平衡数据,平衡釜是关键。现已采用的平衡釜形式有多种,而且各有特点,应根据待测物系的特征,选择适当的釜型。用常规的平衡釜测定平衡数据,需样品量多,测定时间长。所以,本实验用的小型平衡釜主要特点是釜外有真空夹套保温,釜内液体和气体分别形成循环系统,可观察釜内的实验现象,且样品用量少,达到平衡速度快,因而实验时间短。 以循环法测定气液平衡数据的平衡釜类型虽多,但基本原理相同,如图 1 所示。当体系达到平衡时,两个容器的组成不随时间变化,这时从 A 和 B 两容器中取样分析,即可得到一组平衡数据。 图1 平衡法测定气液平衡原理图 当达到平衡时,除了两相的压力和温度分别相等外,每一组分的化学位也相等,即逸度相等,其热力学基本关系为:

循环流化床锅炉的特点

循环流化床锅炉的特点 循环流化床锅炉的特点 循环流化床锅炉是近十几年发展起来的一项高效、低污染清洁燃烧技术。因其具有燃烧效率高、煤种适应性广、烟气中有害气体排放浓度低、负荷调节范围大、灰渣可综合利用等优点,在当今日益严峻的能源紧缺和环境保护要求下,在国内外得到了迅速的发展,并已商品化,正在向大型化发展。 1.1 独特的燃烧机理 固体粒子经与气体或液体接触而转变为类似流体状态的过程,称为流化过程。流化过程用于燃料燃烧,即为流化燃烧,其炉子称为流化床

锅炉。流化理论用于燃烧始于上世纪20年代,40年代以后主要用于石油化工和冶金工业。 流化燃烧是一种介于层状燃烧与悬浮燃烧之间的燃烧方式。煤预先经破碎加工成一定大小的颗粒(一般为<8mm)而置于布风板上,其厚度约在350~500mm左右,空气则通过布风板由下向上吹送。当空气以较低的气流速度通过料层时,煤粒在布风板上静止不动,料层厚度不变,这一阶段称为固定床。这正是煤在层燃炉中的状态,气流的推力小于煤粒重力,气流穿过煤粒间隙,煤粒之间无相对运动。当气流速度增大并达到某一较高值时,气流对煤粒的推力恰好等于煤粒的重力,煤粒开始飘浮移动,料层高度略有增长。如气流速度继续增大,煤粒间的空隙加大,料层膨胀增高,所有的煤粒、灰渣纷乱混杂,上下翻腾不已,颗粒和气流之间的相对运动十分强烈。这种处于沸腾状态的料床,称为流化床。这种燃烧方式即为流化燃烧。当风速继续增大并超过一定限度时,稳定的沸腾工况就被破坏,颗粒将全部随气流飞走。物料的这种运动形式叫做气力输送,这正是煤粉在煤粉炉中随气流悬浮燃烧的情景。

1.2 锅炉热效率较高 由于循环床内气—固间有强烈的炉内循环扰动,强化了炉内传热和传质过程,使刚进入床内的新鲜燃料颗粒在瞬间即被加热到炉膛温度(≈850℃),并且燃烧和传热过程沿炉膛高度基本可在恒温下进行,因而延长了燃烧反应时间。燃料通过分离器多次循环回到炉内,更延长了颗粒的停留和反应时间,减少了固体不完全燃烧损失,从而使循环床锅炉可以达到88~95%的燃烧效率,可与煤粉锅炉相媲美。 1.3 运行稳定,操作简单 循环流化床锅炉的给煤粒度一般小于10mm,因此与煤粉锅炉相比,燃料的制备破碎系统大为简化。循环流化床锅炉燃料系统的转动设备少,主要有给煤机、冷渣器和风机,较煤粉炉省去了复杂的制粉、送粉等系统设备,较链条炉省去了故障频繁的炉排部分,给燃烧系统稳定运行创造了条件。

循环流化床技术

循环流化床燃烧技术 循环流化床燃烧(CFBC)技术系指小颗粒的煤与空气在炉膛内处于沸腾状态下,即高速气流与所携带的稠密悬浮煤颗粒充分接触燃烧的技术。 循环流化床锅炉脱硫是一种炉内燃烧脱硫工艺,以石灰石为脱硫吸收剂,燃煤和石灰石自锅炉燃 烧室下部送入,一次风从布风板下部送入,二次风从燃烧室中部送入。石灰石受热分解为氧化钙和 二氧化碳。气流使燃煤、石灰颗粒在燃烧室内强烈扰动形成流化床,燃煤烟气中的SO2与氧化钙接 触发生化学反应被脱除。为了提高吸收剂的利用率,将未反应的氧化钙、脱硫产物及飞灰送回燃烧 室参与循环利用。钙硫比达到2~2.5左右时,脱硫率可达90%以上。流化床燃烧方式的特点是:1.清洁燃烧,脱硫率可达80%~95%,NO x排放可减少50%;2.燃料适应性强,特 别适合中、低硫煤;3.燃烧效率高,可达95%~99%;4.负荷适应性好。负荷调节范围30%~100%。 循环流化床锅炉主要由燃烧系统、气固分离循环系统、对流烟道三部分组成。其中燃烧系统包括风室、布风板、燃烧室、炉膛、给煤系统等几部分;气固分离循环系统包括物料分离装置和返料装置两部分;对流烟道包括过热器、省煤器、空气预热器等几部分。 循环流化床锅炉属低温燃烧。燃料由炉前给煤系统送入炉膛,送风一般设有一次风和二次风,有的生产厂加设三次风,一次风由布风板下部送入燃烧室,主要保证料层流化;二次风沿燃烧室高度分级多点送入,主要是增加燃烧室的氧量保证燃料燃烬;三次风进一步强化燃烧。燃烧室内的物料在一定的流化风速作用下,发生剧烈扰动,部分固体颗料在高速气流的携带下离开燃烧室进入炉膛,其中较大颗料因重力作用沿炉膛内壁向下流动,一些较小颗料随烟气飞出炉膛进入物料分离装置,炉膛内形成气固两相流,进入分离装置的烟气经过固气分离,被分离下来的颗料沿分离装置下部的返料装置送回到燃烧室,经过分离的烟气通过对流烟道内的受热面吸热后,离开锅炉。因为循环流化床锅炉设有高效率的分离装置,被分离下来的颗料经过返料器又被送回炉膛,使锅炉炉膛内有足够高的灰浓度,因此循环流化床锅炉不同于常规锅炉炉膛仅有的辐射传热方式,而且还有对流及热传等传热方式,大大提高了炉膛的传导热系数,确保锅炉达到额定出力。

液相色谱分析混合样品中的苯和甲苯

华南师范大学实验报告 课程名称仪器分析实验实验项目液相色谱分析混合样品中的苯和甲苯 实验类型□验证□设计□综合实验时间2010 年 3 月31 日 实验指导老师实验评分 一、实验目的 1.掌握高效液相色谱定性和定量分析的原理及方法; 2.了解高效液相色谱的构造、原理及操作技术。 二、实验原理 高效液相色谱由储液器,泵、进样器、色谱柱、检测器、记录仪等几部分组成。储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱内。由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动是,经过反复多次的吸附-解吸的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样品浓度被转换成电信号传送到记录仪,记录成数据。 液相色谱的定性依据是保留时间的相对性,通常相对误差不能大于5%。定量参数常常采用峰高、峰面积、相对峰高、相对峰面积等。定量方法通常采用外标法、内标法和面积归一化法。外标法为标准物质标准溶液制定标准曲线法;内标法为在标准溶液、样品溶液中加入内标物质,以相对峰高、相对面积对标准物质的浓度制定标准曲线;面积归一化法假定所有出峰物质的吸光系数相同,计算某物质的峰面积占所有峰面积的百分比。 三、仪器与试剂: 1.仪器:SCL-10A vp紫外可见双波长检测器;SPD-M10A vp柱温箱;LC-10AT高效液相

色谱仪;10μL微量注射器 2.试剂:2μL/mL苯标液;2μL/mL甲苯标液;0.2μL/mL、2μL/mL、4μL/mL、10μL/mL 的苯与甲苯的混合标准溶液;甲醇溶液;待测试样溶液 四、实验内容与步骤: 1.选择合适的流动相配比,优化色谱条件 设置有关参数:控制流速为1mL/min。柱温30℃,检测波长354nm。 设置流动相配比(甲醇:水=1:1),用10μL微量注射器注射5μL的10μL/mL苯与甲苯的混合标准溶液进行测定,观察其分离度和出峰时间。然后改变流动相配比,改进分离,调整出峰时间。从而得到最佳测定条件。 2.苯、甲苯定性分析: 在最佳的测定条件下,用10μL微量注射器,分别注射5μL2μL/mL苯的标准溶液和2μL/mL甲苯的标准溶液。观察记录保留时间,确定苯和甲苯的峰。 3.苯、甲苯定量分析: 在最佳的测定条件下,用10μL微量注射器,分别注射5μL 0.2μL/mL、2μL/mL、4μL/mL、10μL/mL苯与甲苯的混合标准溶液,再分别测定苯和甲苯的峰面积,以峰面积对浓度作图,做出工作曲线。 在最佳的测定条件下,用10μL微量注射器,注射5μL的试样,观察记录保留时间和峰面积。根据峰面积在工作曲线上查处苯和甲苯待侧溶液的浓度,并计算试样中苯和甲苯的含量。 五、数据记录及结果分析: 1. 优化色谱条件

液相平衡[硫氰酸铁(III)体系

华南师范大学实验报告 学生姓名招婉文学号 20172421075 专业化学师范年级、班级 17化教二班 课程名称物理化学实验实验项目液相平衡[硫氰酸铁(III)体系] 实验类型□验证□设计□综合试验时间 2019/4/23 实验指导老师林晓明老师实验评分 液相平衡常数的测定 【实验目的】 1.利用分光光度计测定低浓度下铁离子与硫氰酸根离子生成硫氰合铁络离子液 相反应的平衡常数。 2.通过实验了解热力学平衡常数的数值与反应物起始浓度无关。 【实验原理】 Fe3+与SCN-在溶液中可生成一系列的络离子,并共存于同一个平衡体系中。 当SCN-离子的浓度增加时,Fe3+离子与SCN-离子生成的络合物的组成发生如下的 改变,而这些不同的络合物的溶液颜色也不同: Fe3++SCN-→Fe(SCN)2+→Fe(SCN) 2+→Fe(SCN) 3 →Fe(SCN) 4 -→Fe(SCN) 5 2- 而这些不同的络离子色调也不同。由下图可知,当Fe3+离子与浓度很低的SCN-离子(一般应小于5×10-3mol·L)时,只进行如下反应: Fe3+ + SCN-≒ Fe[SCN]2+ 即反应被控制在仅仅生成最简单的FeSCN3+络 离子。其平衡常数表示为: (3-14)

由于Fe[SCN]2+是带有颜色的,根据朗伯-比尔定律,消光值与溶液浓度成正比。实验时,只要在一定温度下,借助于分光光度计测定平衡体系的消光值,从而计算出平衡时Fe3+和SCN-的浓度 [Fe]3+的浓度[SCN-] e ,根据式3-14一定温度下反应的平衡常数K C 可求之。 实验配置4组不同Fe3+起始浓度的反应溶液,其中第一组的Fe3+浓度是大量的,使用分光光度计时,根据朗伯-比尔定律: E 1=K[FeCNS2+] 1,e (K为消光系数) 由于1号溶液中Fe3+大量过量,平衡时CNS-与Fe3+完全络合,对于一号溶液可认为: [FeCNS2+] 1,e =[CNS-] 则:E 1=K[CNS-] (3-15) 对于其它溶液,则:E i =K[FeCNS2+] i,e (3-16) 两式相除并整理得[FeCNS2+] i,e =E i /E 1 [CNS-] 始 达到平衡时,在体系中: [Fe3+] i,e =[Fe3+] -[FeSCN2+] i,e (3-17) [CNS-] i,e =[CNS-] -[FeSCN2+] i,e (3-18) 将以上两式带入式3-14,可以计算出除第一组外各组(不同Fe3+起始浓度)反应溶液的在定问下的平衡常数K i,e值。 【仪器与试剂】 1.实验仪器 722分光光度计 1台容量瓶(50mL) 8个

循环流化床锅炉燃烧的调整

龙源期刊网 https://www.doczj.com/doc/8e16091061.html, 循环流化床锅炉燃烧的调整 作者:张峰 来源:《山东工业技术》2015年第22期 摘要:总结循环流化床锅炉燃烧工况,调整循环灰量和返料风对U型阀的影响这两方面,对循环流化床锅炉的燃烧调整进行探讨,提高燃烧效率。 关键词:循环流化床锅炉;循环灰系统;燃烧调整 DOI:10.16640/https://www.doczj.com/doc/8e16091061.html,ki.37-1222/t.2015.22.052 1 循环流化床锅炉结构的简单概述 我公司现运行的两台1060吨上海锅炉,系SG—1060/17.5—M802型,4台高温绝热分离器,4台U型返料器,4台外置床,炉膛采用双裤衩型结构,在这几年的运行情况来看,锅炉燃烧基本稳定,出力除了供热以外能满足汽轮机的负荷要求,飞灰含碳量也不算太高,炉渣含碳量可能稍微偏高,总之灾这几年的燃烧情况来看还是比较理想的,就我厂的锅炉有两大问题需要解决,那就是循环灰量大和返料器的浇注料问题的脱落,进而影响锅炉的稳定性。 我公司锅炉采用的是U型返料器,返料器合外置床的循环回路是一个整体部分,旋风分 离器分离的物料出口处的压力与锅炉物料入口处的压力相同,返料器的物料要想顺利的返回到炉膛就必须克服炉膛内正压的阻力,所有需要合适的返料风来送回循环灰,就是从压力低的返料器吹到压力高的炉膛。循环回路中那一部分出现问题都会影响到锅炉的正常运行,立管会根据炉膛物料的压力来自行调整差压,使得维持锅炉外循环灰量的压力平衡。返料器与立管连接,出料侧与炉膛和位置床的进灰管连接,左右下部由大约两米高的浇注料分隔开,上部相连通,返料风由返料器底部经过风帽通入,位置床通过锥阀的开度来控制进灰量进而控制主再热气温以及床温。 2 返料系统对其流化床锅炉燃烧的影响 回料器系统中储存的循环灰量,对循环流化床锅炉的运行有较大的影响,当负荷较高时烟气流速也相对较大,床中物料密度分布取决于立管中循环灰密相料层的厚度。因为较低物料层不足以产生高的压头将循环灰送进炉膛,以使炉内烟气所携带的物料达到饱和浓度,当炉内烟气流速较低时立管中的物料层高时循环流化床中的物料会以较快的速度被送入炉膛,所以炉内烟气量是否能达到饱和携带程度,由立管中物料的存量多少决定。 循环灰量可以说是循环流化床外循环中的物料,也就是旋风分离器收集下来的物量。燃料进入炉膛中大约有一半在密向区中燃烧二放出热量。而这些热量分别用来加热物料和空气外,其它的热量须让循环物料带走,对散热器进行加热,这样才能保持锅炉稳定运行。若循环物料

高效液相色谱实验报告

高效液相色谱实验报告 一、实验目的 1了解液相色谱的发展历史及最新进展 2 学习液相色谱的基本构造及原理 3 掌握液相色谱的操作方法和分析方法,能够通过HPLC分离测定来对目标化合物的分析鉴定。 二、实验原理 液相色谱法采用液体作为流动相,利用物质在两相中的吸附或分配系数的微小差异达到分离的目的。当两相做相对移动时,被测物质在两相之间进行反复多次的质量交换,使溶质间微小的性质差异产生放大的效果,达到分离分析和测定的目的。液相色谱与气相色谱相比,最大的优点是可以分离不可挥发而具有一定溶解性的物质或受热后不稳定的物质,这类物质在已知化合物中占有相当大的比例,这也确定了液相色谱在应用领域中的地位。 高效液相色谱可分析低分子量、低沸点的有机化合物,更多适用于分析中、高分子量、高沸点及热稳定性差的有机化合物。80%的有机化合物都可以用高效液相色谱分析,目前以已经广泛应用于生物工程、制药工程、食品工业、环境检测、石油化工等行业。 三、高效液相色谱的分类 吸附色谱法、分配色谱法、空间排阻色谱法、离子交换色谱法、亲和色谱法、化学键合相色谱法 四、高效液相色谱仪的基本构造 高效液相色谱至少包括输液系统、进样器、分离柱、检测器和数据处理系统等几部分。 1 输液系统: 包括贮液及脱气装置、高压输液泵和梯度洗脱装置。贮液装置用于存贮足够量、符合HPLC要求的流动相。高效液相色谱柱填料颗粒比较小,通过柱子的流动相受到的流动阻力很大,因此需要高压泵输送流动相。 2 进样系统: 将待测的样品引入到色谱柱的装置。液相色谱进样装置需要满足重复性好、死体积小、保证柱中心进样、进样时引起的流量波动小、便于实现自动化等多项要求。进样系统包括取样、进样两项功能。 3 分离柱: 色谱柱是色谱仪的心脏、柱效高、选择性好、分析速度快是对色谱柱的一般要求。商品化的HPLC微粒填料,如硅胶和以硅胶为基质的键合相、氧化铝、有机聚合物微球(包括离子交换树脂)等的粒度通常在3μm、5μm、7μm、以及10μm。采用的固定相粒度甚至可以达到1μm,而制备色谱所采用的固定相粒度通常大于10μm。HPLC填充柱效的理论值可以达到50000/m~160000/m理论板,一般采用100-300mm的柱长可满足大多数样品的分析的需要。由于柱效内、外多种因素的影响,因此为使色谱柱达到其应有的效率。应尽量的减小系统的死体积。 4 检测系统: HPLC检测器分为通用型检测器和专用型检测器两类。通用型检测器可连续测量色谱柱流出物(包括流动相和样品组分)的全部特性变化。这类检测仪器包括示差折光检测器、介

乙醇-环己烷气液平衡相图的绘制实验报告

环己烷一乙醇双液系气液平衡相图的绘制 姓名:学号:班级:同组:成绩 一、实验目的 1 ?测定常压下环己烷一乙醇二元系统的气液平衡数据,绘制沸点一组成相图。 2?掌握双组分沸点的测定方法,通过实验进一步理解分馏原理。 3 ?掌握阿贝折射仪的使用方法。 二、实验原理 恒定压力下,真实的完全互溶双液系的气-液平衡相图(T-x),根据体系对拉乌尔定律的偏差情况,可分为3类: (1)一般偏差:混合物的沸点介于两种纯组分之间,如甲苯一苯体系,如图1(a) 所示。 (2)最大负偏差:存在一个最小蒸汽压值,比两个纯液体的蒸汽压都小,混合物存在着最高沸点,如盐酸一水体系,如图2.7(b)所示。 (3)最大正偏差:存在一个最大蒸汽压值,比两个纯液体的蒸汽压都大,混合 本实验以环己烷一乙醇为体系,该体系属于上述第三种类型,在沸点仪(如图2.8 )中蒸馏不同组成的混合物,测定其沸点及相应的气、液二相的组成,即可作出T-x相图。 本实验中两相的成分分析均采用折光率法测定。 折光率是物质的一个特征数值,它与物质的浓度及温度有关,因此在测量物质的折光率时要求温度恒定。溶液的浓度不同、组成不同,折光率也不同。因此可先配制一系 (a) 物存在着最低沸点如图 图1二组分真实液态混合物气一液平衡相图( T-x图)

列已知组成的溶液,在恒定温度下测其折光率,作出折光率-组成工作曲线,便可通过测折光率的大小在工作曲线上找出未知溶液的组成。 三、仪器与试剂 沸点仪,阿贝折射仪,调压变压器,超级恒温水浴,温度测定仪,长短取样 管。环己烷物质的量分数X环己烷为0、0.2、0.4、0.6、0.8、1.0的环己烷一乙醇 标准溶液,已知101.325kPa下,纯环己烷的沸点为80.7 C,乙醇的沸点为78.4 C。 25C时,纯环己烷的折光率为1.4264,乙醇的折光率为1.3593。 四、实验步骤 1.环己烷-乙醇溶液折光率与组成工作曲线的测定(略) 2. 无水乙醇沸点的测定 将干燥的沸点仪安装好。从侧管加入约20mL无水乙醇于蒸馏瓶内,并使温度计浸入液体内。冷凝管接通冷凝水。将液体加热至缓慢沸腾。液体沸腾后,待测温温度计的读数稳定后应再维持3?5min以使体系达到平衡。在这过程中,不时将小球中凝聚的液体倾入烧瓶。记下温度计的读数,即为无水乙醇的沸点,同时记录大气压力。 3. 环己烷沸点的测定(略) 4. 测定系列浓度待测溶液的沸点和折光率 同2步操作,从侧管加入约20mL预先配制好的1号环己烷-乙醇溶液于蒸馏瓶内,将液体加热至缓慢沸腾。因最初在冷凝管下端内的液体不能代表平衡气相的组成,为加速达到平衡,须连同支架一起倾斜蒸馏瓶,使槽中气相冷凝液倾回蒸馏瓶内,重复三次(注意:加热时间不宜太长,以免物质挥发),待温度稳定后,记下温度计的读数,即为溶液的沸点。 切断电源,停止加热,分别用吸管从小槽中取出气相冷凝液、从侧管处吸出 少许液相混液,迅速测定各自的折光率。剩余溶液倒入回收瓶。 按1 号溶液的操作,依次测定2、3、4、5、6、7、8号溶液的沸点和气-液平衡时的气,液相折光率。 五、数据处理

HPLC实验高效液相色谱分析实验

仪器分析实验报告实验名称:高效液相色谱分析实验

一、实验目的 1. 了解HPLC的结构,了解仪器的开、关程序。 2. 了解流动相的制备和样品溶液的制备。 3. 知道仪器的运行程序和进行样品分析。 二、仪器和试剂 仪器:美国安捷伦1200型HPLC、10μL的微量注射器 试剂:磷酸乙腈溶液(PH=3)、重蒸水、邻氯苯甲酸 三、实验步骤 1.流动相的准备 流动相只有一组:PH=3的磷酸乙腈溶液,进过脱气,用蠕动泵输送。2.开机,色谱柱平衡 当1完成后,开机,待色谱柱平衡。 3.样品溶液的准备 配置好邻氯苯甲酸溶液,按要求选好滤纸的孔径大小。用低压过滤装置过滤,由于美国安捷伦1200型HPLC配有脱气装置,因此滤液无需事先脱气就可以进行分析。 4.基线的查看 由于仪器内部压力的变化可以引起基线的不断波动,因此,需等待压力稳定后,基线平稳才能进行进样。 5.样品进样分析

用10μL的微量注射器取5μL的邻氯苯甲酸,微量注射器中不能有气泡,将微量注射器的针头插入到注射的孔时,打开微量注射阀,将邻氯苯甲酸注射进去后,迅速关闭阀门,抽出针头,等待仪器的分析结果。 6.色谱柱的清洗 分析工作结束后,要清洗进样阀中的残留样品,也要用适当的液体来清洗色谱柱。 7.关机 实验完毕后,关闭仪器和电脑。 四、实验数据及处理 1.LC参数 2.色谱柱参数 3.四元泵状态 A:0.0%流速:1.000ml/min B:0.0%压力:91bar C:0.0% D:0.0%

5.色谱分析谱图见附页,经过注射5μL的邻氯苯甲酸,得到三组实验色谱图, 根据谱图列表数据如下: 色谱柱长(L)、理论塔板高度(H)与理论塔板数(n)三者的关系为: n = L / H 理论塔板数和色谱参数之间的关系为: n = 16 ( t R / W b ) 2 = 5.54 ( t R / Y1/2 ) 2 则取第五组数据计算得: t R=2.437 min = 146.22s Y1/2 = 2.354(0.1375min / 4 ) = 4.855125 s n = 5.54 ( t R / Y1/2 ) 2 =5025 (块)

01气液平衡实验报告

一、实验目的 1、了解和掌握用双循环汽液平衡器测定二元系统气液平衡数据的方法。 2、了解缔合系统汽—液平衡数据的关联方法,从实验测得的T-p-x-y 数据计算各组分的活度系数。 3、通过实验了解平衡釜的构造,掌握气液平衡数据的测定方法和技能。 4、掌握二元系统气液平衡相图的绘制。 二、实验原理 以循环法测定气液平衡数据的平衡釜类型虽多,但基本原理相同,如图1所示。当体系达到平衡时,两个容器的组成不随时间变化,这时从A和B两容器中取样分析,即可得到一组平衡数据。 图1、平衡法测定气液平衡原理图 当达到平衡时,除了两相的温度和压力分别相等外,每一组分化学位也相等,即逸度相等,其热力学基本关系为: L i f =V i f (1) 0i i i i i py f x ?γ= 常压下,气相可视为理想气体,再忽略压力对流体逸度的影响,0i i p f = 从而得出低压下气液平衡关系式为: i py =0i i i r p x (2) 式中,p ——体系压力(总压); 0i p ——纯组分i 在平衡温度下的饱和蒸汽压,可用Antoine 公式计算; i x 、i y ——分别为组分i 在液相和气相中的摩尔分率; i γ——组分i 的活度系数 由实验测得等压下气液平衡数据,则可用

i y = i i i py x p (3) 计算出不同组成下的活度系数。 本实验中活度系数和组成关系采用Wilson 方程关联。Wilson 方程为: ln γ1=-ln(x 1+Λ12x 2)+x 2( 212112x x Λ+Λ -121221 x x Λ+Λ) (4) ln γ2=-ln(x 2+Λ21x 1)+x 1( 121221x x Λ+Λ -2 12112 x x Λ+Λ) (5) Wilson 方程二元配偶函数Λ12和Λ21采用非线性最小二乘法,由二元气液平衡数据回归得到。 目标函数选为气相组成误差的平方和,即 F =2221211((j m j j y y y y ))计实计实-+-∑= (6) 三、实验装置和试剂 1、实验的装置:平衡釜一台、阿贝折射仪一台、超级恒温槽一台、50-100十分之一的标准温度计一支、0-50十分之一的标准温度计一支、1ml 注射器4支、5ml 注射器1支。 2 、实验的试剂:无水甲醇、异丙醇。 四、实验步骤 1、开启超级恒温槽,调温至测定折射率所需温度25℃或30℃。 2、测温套管中倒入甘油,将标准温度计插入套管中,并将其露出部分中间

液相色谱实验报告

华南师范大学实验报告 液相色谱分析混合样品中的苯和甲苯 一、实验目的 1、掌握高效液相色谱定性和定量分析的原理及方法; 2、了解高效液相色谱的构造、原理及操作技术。 二、实验原理 高效液相色谱由储液器,泵、进样器、色谱柱、检测器、记录仪等几部分组成,储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动,经过反复多次的吸附—解吸的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样品浓度被转换成电信号传送到记录仪。 三、主要仪器和试剂 主要仪器:岛津液相色谱仪(LC-10AT)[配有紫外检测器,Phenomenex ODS 柱]; 10μL微量注射器 试剂:苯标准溶液:10.0μL/mL; 甲苯标准溶液:10.0μL/mL; 苯、甲苯混合标准溶液:10.0μL/mL; 甲醇:80% ; 苯和甲苯混合待测溶液; 四、实验步骤 1、标准溶液的配制系列 用100μL的微量注射器分别量取10μL、20μL、50μL、100μL的苯和甲苯的混合标准溶液(10.0μL/mL),再分别加入90μL、80μL、50μL、0μL甲醇将其稀释,作为待测液,其浓度分别为1μL/mL、2μL/mL、5μL/mL、10μL/mL 2、色谱条件优化 ①按操作规程开机,并调好色谱条件,使仪器处于工作状态。控制流动相流速为甲醇: 0.8mL/min、水:0.2 mL/min;柱温30℃;检测波长254nm;观察记录保留时间,通过软件分析两峰分离效果。 ②改变色谱条件,控制流动相流速为甲醇:0.95mL/min、水:0.05 mL/min;柱温30℃;检测波长254nm;观察记录保留时间,通过软件分析两峰分离效果。

塔式鼓泡流化床内的涌渗流动特性

CIESC Journal, 2017, 68(11): 4112-4120 ·4112· 化工学报 2017年第68卷第11期| https://www.doczj.com/doc/8e16091061.html, DOI:10.11949/j.issn.0438-1157.20170364 塔式鼓泡流化床内的涌渗流动特性 朱晓,沈来宏 (东南大学能源与环境学院,能源热转换及其过程测控教育部重点实验室,江苏南京 210096)摘要:为强化气固接触,提出了一种新型塔式鼓泡循环床反应器,采用多个带有风帽的中间分布板、沿床层高度方向将反应器分隔成若干腔室,流化过程中形成一种特殊的涌渗(gushing)现象;依据连续拍照所得图像,基于快速傅里叶变换和小波包变换的方法,对床内压力脉动信号进行分析,研究涌渗产生和消亡条件,频率和能量大小,以期掌握涌渗的形成规律。结果表明,此反应器内流化数为3.47时涌渗产生明显,周期性寿命为1~2 s,频率分布于0.1~0.5 Hz区域;保持流化风速不变,改变反应器结构,加入一层中间分布板构成双腔室、调整下腔室高径比为3:1以及适当增大风帽开孔率时,涌渗主频明显,能量适中,涌渗效果得到优化。因此,塔式鼓泡流化床内的涌渗流动特性取决于流化风速以及塔式鼓泡床的几何结构。 关键词:鼓泡流化床;塔式反应器;涌渗;频谱分析;小波分析 中图分类号:TQ 053.5 文献标志码:A 文章编号:0438—1157(2017)11—4112—09 Characteristics on gushing in tower bubbling fluidized bed ZHU Xiao, SHEN Laihong (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu, China) Abstract: In order to enhance the solid-gas contact, a new bubbling fluidized bed with tower reactor is designed. The fuel reactor is divided into several chambers along the bed height direction by internal air distributor with caps. In the period of fluidization, a special phenomenon is caused by slugging, which could be named “gushing”. The forming and disappearing of gushing can be recorded on the basis of image with a digital video camera. By using fast Fourier transform (FFT) and wavelet packet transform methods, the pressure fluctuation signal is analyzed to investigate the characteristics on gushing, including fluidization conditions, dominant frequency and energy mode of gushing. The results showed that gushing fluidization appears under the fluidization number of 3.47 in this reactor. Its cycle period is lasting 1—2 s and dominant frequency is around 0.1—0.5 Hz. Changing of reactor structure, like adding one distributor to reach two chambers, adjusting the aspect ratio of lower chamber to be 3:1 and enlarging the valve opening on caps of distributors, is the better structures for gushing fluidization. Therefore, in order to obtain a satisfactory gushing property in the reactor, the inlet gas velocity and reactor structure must be kept in a suitable condition. Key words: bubbling fluidized bed; tower reactor; gushing; spectral analysis; wavelet analysis 2017-04-10收到初稿,2017-06-30收到修改稿。 联系人:沈来宏。第一作者:朱晓(1992—),女,博士研究生。基金项目:国家自然科学基金项目(51561125001)。 Received date: 2017-04-10. Corresponding author: SHEN Laihong, lhshen@https://www.doczj.com/doc/8e16091061.html, Foundation item: supported by the National Natural Science Foundation of China(51561125001). 万方数据

高效液相色谱法测定邻苯二甲酸酯实验报告记录

高效液相色谱法测定邻苯二甲酸酯实验报告记录

作者: 日期: 2

高效液相色谱法测定邻苯二甲酸酯 1553607胡艺蕾 实验时间:2017年4月1日实验温度:19.0 C 、实验目的 1、了解高效液相色谱仪的组成及其工作原理和基本操作。 2、对邻苯二甲酸酯进行分离和测定。 3、探究不同流动相及不同流动相比例对流速、柱压、保留时间及分离度的影响。 4、了解液相色谱法定量测定的原理。 二、实验原理 1、实验采用的反相液固吸附色谱法,其分离机理是:当流动相通过吸附剂时,在吸附剂(固体相)表面发生了溶质分子取代吸附剂上的溶剂分子的吸附作用。固体相为非极性分子,如十八烷基键合相,流动相为极性分子。 2、组分分子与吸附剂之间作用力的强弱决定它的保留时间。溶质分子官能团的性质和分子结构的空间效应都会影响其出峰的顺序。本次实验为邻苯二甲酸酯,其分子官能团都相同, 但由于DMP其官能团相邻的烷基较小,导致其保留值最小,因此出峰顺序为:DMP(邻苯二甲酸二甲酯)>DEP邻苯二甲酸二乙酯)>DBP(邻苯二甲酸二丁酯)。 3、在吸附色谱中,流动相的洗脱能力与溶剂的极性有关,极性越大,洗脱强度也越大。本次实验使用的三个流动相的极性大小为:水>乙腈>甲醇。通常选择二元混合溶剂作为流动相。 4、定量分析中,定量峰与其他峰之间的分离程度称为分离度 R: 通常用塔板数n来描述色谱的柱效: 三、实验仪器与试剂 1、仪器 Agilent1260高效液相色谱仪:

脱气机:真空室内半透膜管路,对流动相进行脱气四元泵:二元泵各控制一种溶剂可设置的流速范围:0.001 - 10 mL/min 0.001 mL/min 步进UV检测器:用于检测通过样品后的紫外光 类型:双光束光路设计 光源:氘灯波长范围:190 - 600 nm 手动进样器:进样20L 色谱柱:填料汁八烷(适合中性、弱酸碱) 4.6x 100mm, 3.5 1 m 2、试剂 流动相:纯水、甲醇、乙腈 样品:DMP、DEP DBP 四、实验步骤 1、开启电脑,开启脱气机、泵、检测器等的电源,启动软件。 2、预先脱气(直到导管中无气泡),设定波长:220nm。 3、设定流速、流动相比例等参数,选择合适的流动相。 4、进样阀柄置于“ LOAD',进样针用乙醇洗涤2-3次,取样,进样,将进样阀扳至 5、保存并处理数据。 五、实验结果 1、样品:DMP1:20水溶液201 L流动相的比例为:高纯水:30%乙腈:70%流速: “INJECT。 1.00ml/min 4

相关主题
文本预览
相关文档 最新文档