当前位置:文档之家› 弹性力学12-极坐标中的应力函数与相容方程

弹性力学12-极坐标中的应力函数与相容方程

温度应力计算

第四节 温度应力计算 一、温度对结构的影响 1 温度影响 (1)年温差影响 指气温随季节发生周期性变化时对结构物所引起的作用。 假定温度沿结构截面高度方向以均值变化。则 12t t t -=? 12t t t -=?该温差对结构的影响表现为: 对无水平约束的结构,只引起结构纵向均匀伸缩; 对有水平约束的结构,不仅引起结构纵向均匀伸缩,还将引起结构内温度次内力; (2)局部温差影响 指日照温差或混凝土水化热等影响。 A :混凝土水化热主要在施工过程中发生的。 混凝土水化热处理不好,易导致混凝土早期裂缝。 在大体积混凝土施工时,混凝土水化热的问题很突出,必须采取措施控制过高的温度。如埋入水管散热等。 B :日照温差是在结构运营期间发生的。 日照温差是通过各种不同的传热方式在结构内部形成瞬时的温度场。 桥梁结构为空间结构,所以温度场是三维方向和时间的函数,即: ),,,(t z y x f T i = 该类三维温度场问题较为复杂。在桥梁分析计算中常采用简化近似方法解决。 假定桥梁沿长度方向的温度变化为一致,则简化为二维温度场,即: ),,(t z x f T i = 进一步假定截面沿横向或竖向的温度变化也为一致,则可简化为一维温度场。如只考虑竖向温度变化的一维温度场为: ),(t z f T i = 我国桥梁设计规范对结构沿梁高方向的温度场规定了有如下几种型式:

2 温度梯度f(z,t) (1)线性温度变化 梁截面变形服从平截面假定。 对静定结构,只引起结构变形,不产生温度次内力; 对超静定结构,不但引起结构变形,而且产生温度次内力; (2)非线性温度变化 梁在挠曲变形时,截面上的纵向纤维因温差的伸缩受到约束,从而产 。 生约束温度应力,称为温度自应力σ0 s 对静定结构,只产生截面的温度自应力; 对超静定结构,不但产生截面的温度自应力,而且产生温度次应力; 二、基本结构上温度自应力计算 1 计算简图 2 3 ε 和χ的计算 三、连续梁温度次内力及温度次应力计算 采用结构力学中的力法求解。

弹性力学教学大纲

课程编号:05z8514 弹性力学Theory of Elasticity 学分学时:3/48 先修课程: 高等数学;线性代数;理论力学;材料力学 一、课程教学目标 《弹性力学》是航空、航天结构强度和力学专业的重要专业基础课程,是固体力学的一个分支。主要研究弹性体受外力作用或温度改变等原因而产生的应力、位移和变形。弹性力学的任务是分析各种结构或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。本课程的主要研究对象为非杆状结构,如板、壳以及其它实体结构。通过本课程的学习可为进一步学习力学类和相关工程类的后续课程打下坚实的力学基础。 二、教学内容及基本要求 1. 绪论(2学时) 弹性力学的发展史;研究内容;基本假设;矢量、张量基本知识。 2. 应力理论(4学时) 内力和应力;斜面应力公式;应力分量转换公式;主应力、应力不变量;最大剪应力;应力偏量;平衡微分方程。 3. 应变理论(4学时) 位移和变形;几何方程;转动张量;主应变和应变不变量;变形协调方程;位移场的单值条件;由应变求位移。 4. 本构关系(2学时) 热力学定律与应变能;本构关系;具有弹性对称面的弹性材料的本构关系;各向同性弹性材料的弹性常数;各向同性弹性材料的应变能密度 5. 弹性理论的建立与一般原理(4学时) 弹性力学基本方程和边界条件;位移解法和拉梅方程;应力解法与变形协调方程;叠加原理;解的唯一性原理;圣维南原理。 6.柱形杆问题(4学时) 圣维南问题;柱形扭转问题的基本解法;反逆法与半逆法,扭转问题解例;薄膜比拟;*柱形杆的一般弯曲。 7.平面问题(12学时) 平面问题及其分类;平面问题的基本解法;应力函数的性质;直角坐标解例(矩形梁的纯弯曲、简支梁受均布载荷和任意分布载荷);极坐标中的平面问题基本方程;轴对称问题(均匀圆筒或圆环、纯弯的曲梁、压力隧洞);非轴对称问题(小圆孔应力集中、楔体问题);关于解和解法的讨论。 8. 空间问题(2学时) 基本方程及求解方法;空间轴对称和球对称问题的基本方程;半空间体受重力及均布压力;半空间体在边界上受法向集中力;空心球受内压作用问题。 9.能量原理与变分法(6学时) 弹性体的变形比能与形变势能;变分法;位移变分方程;位移变分法;位移变分法应用于平面问题;应力变分方程与极小余能原理;应力变分法;应力变分法应用于平面问题;应力变分法应用于扭转问题。 10.复变函数解法或薄板弯曲(4学时)

《弹性力学》、《岩体力学》复习大纲2015

第一章绪论 1-1弹性力学的内容 1-2弹性力学中的几个基本概念 1-3弹性力学中的基本假定 习题 第二章平面问题的基本理论 2-1平面应力问题与平面应变问题 2-2平衡微分方程 2-3平面问题中一点的应力状态 2-4几何方程刚体位移 2-5物理方程 2-6边界条件 2-7圣维南原理及其应用 2-8按位移求解平面问题 2-9按应力求解平面问题相容方程 2-10常体力情况下的简化应力函数 习题 第三章平面问题的直角坐标解答 3-1逆解法与半逆解法多项式解答 .3-2矩形梁的纯弯曲 3-3位移分量的求出 3-4简支梁受均布荷载 3-5楔形体受重力和液体压力 习题 第四章平面问题的极坐标解答 4-1极坐标中的平衡微分方程 4-2极坐标中的几何方程及物理方程 4-3极坐标中的应力函数与相容方程 4-4应力分量的坐标变换式 4-5轴对称应力和相应的位移 4-6圆环或圆筒受均布压力 4-7压力隧洞 4-8圆孔的孔口应力集中 4-9半平面体在边界上受集中力 4-10半平面体在边界上受分布力 习题 要求:了解弹性力学的基本概念,发展历史与基本假设,理解两类平面问题的解法,掌握三大方程的建立,边界的确定,有限单元法在解弹性力学问题的应用,了解空间问题的求解的方法。

第1章绪论 1.1 岩石与岩体(二者的区别) 1.2 岩体力学的研究任务与内容(岩体的力学特征) 1.3 岩体力学的研究方法 1.4 岩体力学在其他学科中的地位 1.5 岩体力学的发展简史 基本要求:了解岩石力学、岩体力学定义及其它们的联系和区别;理解岩石力学的发展、研究对象和研究方法;了解岩石力学研究现状及热点问题。 重点与难点:岩石力学的定义、任务、研究方法。 第2章岩石的基本物理力学性质 2.1 岩石的基本物理力学性质 2.2 岩石的强度特性 2.3 岩石的变形特性 2.4 岩石的强度理论 基本要求:掌握岩石的成分、结构及其力学性质;了解岩石的变形特征和流变性;理解岩石的各种强度及其测定方法。 重点与难点:岩石的物理指标、强度与变形特征。 第3章岩石动力学基础 3.1 岩石的波动特性 3.2 影响岩体波速的因素 3.3 岩体的其他动力学特性 基本要求:理解岩石的波动特性,了解影响岩体波速的因素,了解岩体的其他动力学特性。重点与难点:岩石的动力学特性。 第4章岩体的基本力学性能 4.1 岩体结构面的分析 4.2 结构面的变形特性 4.3 结构面的力学效应 4.4 碎块岩体的破坏 4.5岩体的应力-应变分析 基本要求:理解岩石和岩体的区别,了解结构面的相关性质,了解岩体的变形特征和强度测定方法,理解岩体的破坏条件及应力-应变分析。 重点与难点:理解岩体的相关特性。

第二章弹性力学基础

第二章弹性力学基础 弹性力学又称弹性理论,它是固体力学的一个分支。弹性力学任务是确定结构或机械零件在外载荷作用或温度改变等原因而发生的应力、位移和应变。 弹性力学与材料力学总的任务是相同的,但弹性力学研究的问题比材料力学要更加深刻和精确,并研究材料力学所不能解决的一些问题。 材料力学-----研究杆状构件(长度>>高度和宽度)在拉压、剪切、弯曲、扭转作用下的应力和位移。 弹性力学-----研究板壳、挡土墙、堤坝、地基等实体结构。对杆状构件作较精确的分析,也需用弹性力学。 结构力学-----研究杆状构件所组成的结构。例如桁架、刚架。

第一节弹性力学假设 在弹性力学中,所研究的问题主要是理想弹性体的线性问题,所谓理想弹性体的线性问题,是指符合以下假定的物体。 1. 假设物体是线弹性的 假定物体服从虎克定律,即应变与引起该应变的应力成正比,反映这一比例关系的常数,就是弹性常数。即该比例关系不随应力、应变的大小和符号而变。 由材料力学已知: 脆性材料的物体:在应力?比例极限以前,可作为近似的完全弹性体; 韧性(塑性)材料的物体:在应力<屈服极限以前,可作为近似的完全弹性体。 这个假定,使得物体在任意瞬时的应变将完全取决于该瞬时物体所受到的外力或温度变化等因素,而与加载的历史和加载顺序无关。 2. 假设物体是连续性的 假设整个物体的体积都被该物体介质完全充满,不留下任何空隙。有了这一假定决定了应力、应变、位移是连续的,可用坐标的连续函数来表示他们的变化规律。 注:实际上,一切物体都是由微粒组成的,都不能符合该假定。但是由于物体粒子的尺寸以及相邻粒子间的距离,

都比物体自己本身的尺寸小得很多,因此连续性假设不会引起显着的误差。 3. 假设物体是均匀性、各向同性的 整个物体是由同一材料组成的。这样整个物体的所有各部分才具有相同的弹性,因而物体的弹性常数不随坐标而变化,可以取出该物体的任意一小部分来加以分析,然后把分析所得结果应用于整个物体。 各向同性是指物体内一点的弹性在所的各个方向上都是相同的,故物体的弹性常数不随方向而变化。 对于非晶体材料,是完全符合这一假定。而由木材,竹材等做成的构件,就不能作为各向同性体来研究;钢材构件基本上是各向同性的。 弹性常数? 凡是符合以上三个假定的物体,就称为理想弹性体。 4. 假设物体的位移和应变是微小的 假定物体在载荷或温度变化等外界因素的作用下所产生的位移远小于物体原来的尺寸,应变分量和转角都远小于1。 因此 ①在建立物体变形以后的平衡方程时,可用变形前的尺寸代替变形后的尺寸,而不至于引起显著的误差。

基于弹性力学理论和有限元法分析应力集中问题的讨论

基于弹性力学理论和有限元法分析应力集中问题的讨论 材料在外形急剧变化的部位,局部应力可以超出名义应力的数倍,对于脆性材料局部过早开始破坏,从而,削弱了构件的强度,降低了构件的承载能力。因此在工程實际中,为了确保构件的安全使用,必须科学合理的分析计算应力集中现象,以便找寻到更好的避免措施。本文首先基于弹性力学理论分析带孔无限宽板的应力分布情况,将对象的受力转化成数学表达,结论应证了应力集中的几个特性。 标签:应力集中系数;有限元分析;无限宽板;弹性力学;Inventor运用;ANSYS 1、应力集中 1.1弹性力学中概念,指物体形状、材料性质不均匀导致的局部应力急剧增高的现象。 1.2应力集中系数 最大局部应力与名义应力的比值称为理论应力集中系数ɑ。可以明确地反应应力集中的程度。 最大局部应力σmax可根据弹性力学理论、有限元法计算得到,也可由实验方法测得;名义应力σn是假设构件的应力集中因素(如孔、缺口、沟槽等)不存在,构件截面上的应力。 2、孔周应力在理想状态下的弹性力学理论分析 2.1定义受单向均匀拉伸荷载的无限宽平板,孔径2α圆孔,建立如图一理想模型。 由于结构的对称性,仅分析图一上半段1/4部分x轴正向的状态: 1)圆孔右顶点单元,即当θ=0,r=α时,代入式(2)解算得σy=3σ; 2)距孔0.2倍孔半径外,即当θ=0,r=1.2α时,代入式(2)解算得σy=2.071σ; 3)距孔1倍孔半径外,即当θ=0,r=2α时,代入式(2)解算得σy=1.221σ; 4)距孔1.5倍孔半径外,即当θ=0,r=2.5α时,代入式(2)解算得σy=1.122σ; 5)距孔2倍孔半径外,即当θ=0,r=3α时,代入式(2)解算得σy=1.074σ;

弹性力学教材习题及解答

1-1. 选择题 a. 下列材料中,D属于各向同性材料。 A. 竹材; B. 纤维增强复合材料; C. 玻璃钢; D. 沥青。 b. 关于弹性力学的正确认识是A。 A. 计算力学在工程结构设计的中作用日益重要; B. 弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设; C. 任何弹性变形材料都是弹性力学的研究对象; D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。 c. 弹性力学与材料力学的主要不同之处在于B。 A. 任务; B. 研究对象; C. 研究方法; D. 基本假设。 d. 所谓“完全弹性体”是指B。 A. 材料应力应变关系满足胡克定律; B. 材料的应力应变关系与加载时间历史无关; C. 本构关系为非线性弹性关系; D. 应力应变关系满足线性弹性关系。 2-1. 选择题 a. 所谓“应力状态”是指B。 A. 斜截面应力矢量与横截面应力矢量不同; B. 一点不同截面的应力随着截面方位变化而改变; C. 3个主应力作用平面相互垂直; D. 不同截面的应力不同,因此应力矢量是不可确定的。 2-2. 梯形横截面墙体完全置于水中,如图所示。已知水的比重为 ,试写出墙体横截面边界AA',AB,BB’的面力边界条件。 2-3. 作用均匀分布载荷q的矩形横截面简支梁,如图所示。根据材料力学分析结果,该梁 横截面的应力分量为 试检验上述分析结果是否满足平衡微分方程和面力边界条件。

2-4. 单位厚度的楔形体,材料比重为γ,楔形体左侧作用比重为γ1的液体,如图所示。试写出楔形体的边界条件。 2-5. 已知球体的半径为r,材料的密度为ρ1,球体在密度为ρ1(ρ1>ρ1)的液体中漂浮,如图所示。试写出球体的面力边界条件。

弹性力学题

一、单项选择题 1.弹性力学建立的基本方程多是偏微分方程,还必须结合( C )求解这些微分方程,以求得具体问题的应力、应变、位移。 A.相容方程 B.近似方法 C.边界条件 D.附加假定 2.根据圣维南原理,作用在物体一小部分边界上的力系可以用( B )的力系代替,则仅在近处应力分布有改变,而在远处所受的影响可以不计。 A.几何上等效 B.静力上等效 C.平衡 D.任意 3.弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程不完全相同,其比较关系为( B )。 A.平衡方程、几何方程、物理方程完全相同 B.平衡方程、几何方程相同,物理方程不同 C.平衡方程、物理方程相同,几何方程不同 D.平衡方程相同,物理方程、几何方程不同 4.不计体力,在极坐标中按应力求解平面问题时,应力函数必须满足( A ) ①区域内的相容方程;②边界上的应力边界条件;③满足变分方程; ④如果为多连体,考虑多连体中的位移单值条件。 A.①②④ B. ②③④ C. ①②③ D. ①②③④ 5.如下图1所示三角形薄板,按三结点三角形单元划分后,对于与局部编码ijm对应的整体编码,以下叙述正确的是( D )。

① I 单元的整体编码为162 ② II 单元的整体编码为426 ③ II 单元的整体编码为246 ④ III 单元的整体编码为243 ⑤ IV 单元的整体编码为564 图1 A. ①③ B. ②④ C. ①④ D. ③⑤ 6.平面应变问题的微元体处于( C ) A.单向应力状态 B.双向应力状态 C.三向应力状态,且z σ是一主应力 D.纯剪切应力状态 7.圆弧曲梁纯弯时,( C ) A.应力分量和位移分量都是轴对称的 B.应力分量和位移分量都不是轴对称的 C.应力分量是轴对称的,位移分量不是轴对称的 D.位移分量是轴对称的,应力分量不是轴对称的 8.下左图2中所示密度为ρ的矩形截面柱,应力分量为:0,,0=+==xy y x B Ay τσσ对图(a )和图(b)两种情况由边界条件确定的常数A 及B 的关系是( C ) 相同,B 也相同 不相同,B 也不相同 相同,B 不相同 不相同,B 相同

重力坝稳定及应力计算

坝体强度承载能力极限状态计算及坝体稳定承载能力极限状态计算 (一)、基本资料 坝顶高程:1107.0 m 校核洪水位(P = 0.5 %)上游:1105.67 m 下游:1095.18 m 正常蓄水位上游:1105.5 m 下游:1094.89 m 死水位:1100.0 m 混凝土容重:24 KN/m3 坝前淤沙高程:1098.3 m 泥沙浮容重:5 KN/m3 混凝土与基岩间抗剪断参数值:f `= 0.5 c `= 0.2 Mpa 坝基基岩承载力:[f]= 400 Kpa 坝基垫层混凝土:C15 坝体混凝土:C10 50年一遇最大风速:v 0 = 19.44 m/s 多年平均最大风速为:v 0 `= 12.9 m/s 吹程D = 1000 m (二)、坝体断面 1、非溢流坝段标准剖面

荷载作用的 标准值计算(以单宽计算) A 、正常蓄水位情况(上游水位1105.5m ,下游水位1094.89m ) ① 竖向力(自重) W 1 = 24×5×17 = 2040 KN W 2 = 24×10.75×8.6 /2 = 1109.4 KN W 3 = 9.81×(1094.5-1090)2×0.8 /2 = 79.46 KN ∑W = 3228.86 KN W 1作用点至O 点的力臂为: (13.6-5) /2 = 4.3 m W 2作用点至O 点的力臂为: m 067.16.83 2 26.13=?- W 3作用点至O 点的力臂为: m 6.58.0)10905.1094(3 1 26.13=?-?- 竖向力对O 点的弯矩(顺时针为“-”,逆时针为“+”): M OW1 = 2040×4.3 = 8772 KN ·m M OW2 = -1109.4×1.067 = -1183.7 KN ·m

弹性力学 第四章 应力和应变关系

第四章应力和应变关系知识点 应变能原理 应力应变关系的一般表达式完全各向异性弹性体 正交各向异性弹性体本构关系弹性常数 各向同性弹性体应变能格林公式 广义胡克定理 一个弹性对称面的弹性体本构关系各向同性弹性体的应力和应变关系应变表示的各向同性本构关系 一、内容介绍 前两章分别从静力学和运动学的角度推导了静力平衡方程,几何方程和变形协调方程。由于弹性体的静力平衡和几何变形是通过具体物体的材料性质相联系的,因此,必须建立了材料的应力和应变的内在联系。应力和应变是相辅相成的,有应力就有应变;反之,有应变则必有应力。对于每一种材料,在一定的温度下,应力和应变之间有着完全确定的关系。这是材料的固有特性,因此称为物理方程或者本构关系。 对于复杂应力状态,应力应变关系的实验测试是有困难的,因此本章首先通过能量法讨论本构关系的一般形式。分别讨论广义胡克定理;具有一个和两个弹性对称面的本构关系一般表达式;各向同性材料的本构关系等。 本章的任务就是建立弹性变形阶段的应力应变关系。 二、重点 1、应变能函数和格林公式; 2、广义胡克定律的一般表达式; 3、具 有一个和两个弹性对称面的本构关系;4、各向同性材料的本构关系; 5、材料的弹性常数。 §4.1 弹性体的应变能原理 学习思路: 弹性体在外力作用下产生变形,因此外力在变形过程中作功。同时,弹性体内部的能量也要相应的发生变化。借助于能量关系,可以使得弹性力学问题的求

解方法和思路简化,因此能量原理是一个有效的分析工具。 本节根据热力学概念推导弹性体的应变能函数表达式,并且建立应变能函数表达的材料本构方程。 根据能量关系,容易得到由于变形而存储于物体内的单位体积的弹性势能,即应变能函数。 探讨应变能的全微分,可以得到格林公式,格林公式是以能量形式表达的本构关系。 如果材料的应力应变关系是线性弹性的,则单位体积的应变能必为应变分量的齐二次函数。因此由齐次函数的欧拉定理,可以得到用应变或者应力表示的应变能函数。 学习要点:1、应变能;2、格林公式;3、应变能原理。 1、应变能 弹性体发生变形时,外力将要做功,内部的能量也要相应的发生变化。本节通过热力学的观点,分析弹性体的功能变化规律。 根据热力学的观点,外力在变形过程中所做的功,一部分将转化为内能,一部分将转化为动能;另外变形过程中,弹性体的温度将发生变化,它必须向外界吸收或释放热量。设弹性体变形时,外力所做的功为d W,则 d W=d W1+d W2 其中,d W1为表面力F s所做的功,d W2为体积力F b所做的功。变形过程中,由外界输入热量为d Q,弹性体的内能增量为d E,根据热力学第一定律, d W1+d W2=d E - d Q 因为 将上式代入功能关系公式,则

弹性力学边值问题

第五章弹性力学边值问题 本章任务 总结对弹性力学基本方程 讨论求解弹性力学问题的方法

目录 §5.1弹性力学基本方程 §5.2问题的提法 §5.3弹性力学问题的基本解法 解的唯一性 §5.4圣维南局部影响原理 §5.5叠加原理

§5.1弹性力学基本方程 ?总结弹性力学基本理论; ?讨论已知物理量、基本未知量;以及物理量之间的关系——基本方程和边界条件。

弹性力学基本方程 1.平衡微分方程 000=+??+??+??=+??+??+??=+??+??+??bz z yz z by zy y xy bx zx yx x F z y x F z y x F z y x στττστττσ0 ,=+bj i ij F σ2.几何方程 x w z u z v y w y u x v z w y v x u zx yz xy z y x ??+??=??+??=??+??=??=??=??=γγγεεε,,,,,),,(2 1i j j i ij u u +=ε

3.变形协调方程 y x z y x z z x z y x y z y z y x x z x x z z y z y y x y x z xy xz yz y xy xz yz x xy xz yz xz z x yz y z xy x y ???=??-??+???????=??+??-???????=??+??+??-?????=??+?????=??+?????=??+??εγγγεγγγεγγγγεεγεεγεε2222222222222222222)(2)(2)(位移作为基本未知量时,变形协调方程自然满足。

弹性力学期末考试卷A答案

一、名词解释(共10分,每小题5分) 1.弹性力学:研究弹性体由于受外力作用或温度改变等原因而发生的应力、应变和位移。 2. 圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计。 一.填空(共20分,每空1分) 1.边界条件表示在边界上位移与约束,或应力与面力之间的关系式,它可以分为位移 边界条件、应力边界条件和混合边界条件。 2.体力是作用于物体体积内的力,以单位体积力来度量,体力分量的量纲为L-2MT-2;面力是作用于物体表面 上力,以单位表面面积上的力度量,面力的量纲为L-1MT-2;体力和面力符号的规定为以沿坐标轴正向为正,属外力;应力是作用于截面单位面积的力,属内力,应力的量纲为L-1MT-2,应力符号的规定为:正面正向、负面负向为正,反之为负。 3.小孔口应力集中现象中有两个特点:一是孔附近的应力高度集中,即孔附近的应力远大于远处的应力,或 远大于无孔时的应力。二是应力集中的局部性,由于孔口存在而引起的应力扰动范围主要集中在距孔边1.5倍孔口尺寸的范围内。 4. 弹性力学中,正面是指外法向方向沿坐标轴正向的面,负面是指外法向方向沿坐标轴负向的面。 5. 利用有限单元法求解弹性力学问题时,简单来说包含结构离散化、单元分析、 整体分析三个主要步骤。 二.绘图题(共10分,每小题5分) 分别绘出图3-1六面体上下左右四个面的正的应力分量和图3-2极坐标下扇面正的应力分量。 图3-1

图3-2 三. 简答题(24分) 1. (8分)弹性力学中引用了哪五个基本假定?五个基本假定在建立弹性力学基本方程时有什么用途? 答:弹性力学中主要引用的五个基本假定及各假定用途为:(答出标注的内容即可给满分) 1)连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 2)完全弹性假定:这一假定包含应力与应变成正比的含义,亦即二者呈线性关系,复合胡克定律,从而使物理方程成为线性的方程。 3)均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此,反应这些物理性质的弹性常数(如弹性模量E 和泊松比μ等)就不随位置坐标而变化。 4)各向同性假定:各向同性是指物体的物理性质在各个方向上都是相同的,也就是说,物体的弹性常数也不随方向变化。 5)小变形假定:研究物体受力后的平衡问题时,不用考虑物体尺寸的改变,而仍然按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将它们的二次幂或乘积略去不计,使得弹性力学的微分方程都简化为线性微分方程。 2. (8分)弹性力学平面问题包括哪两类问题?分别对应哪类弹性体?两类平面问题各有哪些特征? 答:弹性力学平面问题包括平面应力问题和平面应变问题两类,两类问题分别对应的弹性体和特征分别为: 平面应力问题:所对应的弹性体主要为等厚薄板,其特征是:面力、体力的作用面平行于xy 平面,外力沿板厚均匀分布,只有平面应力分量x σ,y σ,xy τ存在,且仅为x,y 的函数。 平面应变问题:所对应的弹性体主要为长截面柱体,其特征为:面力、体力的作用面平行于xy 平面,外力沿z 轴无变化,只有平面应变分量x ε,y ε,xy γ存在,且仅为x,y 的函数。 3. (8分)常体力情况下,按应力求解平面问题可进一步简化为按应力函数Φ求解,应力函数Φ必须满足哪些条件? 答:(1)相容方程:04 =Φ? (2)应力边界条件(假定全部为应力边界条件,σs s =):()()()上在στστσs s f l m f m l y s xy y x s yx x =???? ?=+=+ (3)若为多连体,还须满足位移单值条件。 四. 问答题(36)

机械可靠性结构度计算

脆断体(高、低周疲劳)的剩余寿命计 算 课程名称:机械结构强度与可靠性设计 专业:机械设计及理论 年级:2013级 完成时间:2014-05-02

文章是对脆断体(高周疲劳和低周疲劳)的剩余寿命计算的一个综述。对于机械零件的寿命计算,尤其是对于断裂件(含裂纹体)的剩余寿命计算,正确估算裂纹体的剩余疲劳寿命估算,能够有效的保证重要零件的合理检修要求,能够很好的创造好经济条件。一般对于高周疲劳,无裂纹寿命N1是主要的,它占了总寿命N(N=N1+N c)中的主要部分,而裂纹扩展寿命N c短,因此高周疲劳中往往只按初始裂纹尺寸来估算N e值。但对于低周疲劳中总寿命中N c占主要部分,N1 很小。与疲劳裂纹扩展速度相关的物理量有应力强度因子幅值ΔK I和其他量。疲劳裂纹的扩展速度:疲劳条件下的亚临界裂纹扩展速率是决定零部件疲劳破坏寿命的特性指标之一。 剩余寿命的时间是指初始裂纹a0到临界裂纹尺寸a c的时间。零件在变应力作用下,初始裂纹a0会缓慢产生亚临界扩展,当它达到临界裂纹尺寸a c 时,就会发生失稳破坏。裂纹体在变应力作用下的裂纹扩展速率与应力场裂纹尺寸和材料特性的关系。ΔK I—控制疲劳裂纹扩展速度的主要力学参量,实验指出控制盘疲劳裂纹扩展速度的主要力学参量是应力强度因子幅值ΔK I。da/dN与ΔK I的关系曲线表明了材料在无害环境中疲劳裂纹的扩展速度与应力强度因子幅值的关系。 ①区间I: da/dN=0处,有ΔKth,称为界限应力强度因子幅值。 当ΔK I≤ΔKth时,裂纹不扩展,稳定状态

当ΔK I ≥ΔKth 时,裂纹开始扩展,ΔKth 是判断构件是否会发生裂纹亚临界扩展的指标. ② 区间II 为裂纹的亚临界扩展区;由亚临界裂纹扩展速度da/dN 与ΔK I 存在的指数规律得出的Paris 公式 da/dN=c(ΔK I )m 。 da/dN —裂纹亚临界扩展速率,a 为裂纹半长,N 为循环次数;ΔK I —在每一循环中I 型应力强度因子变化幅值; c —与平均应力、应力变化、频率、材料机械性能G 有关的常数; m —与材料有关的常数 由max min max min (I K K K F F σσ?=-=-=? 得I I K F ?=? 式中Δσ为应力变化幅度,一般 max min σσσ?=- 实验数据:da/dN 主要决定于ΔK I ,而且与试件和裂纹的特征和加载方式无关。实验室数据可以直接用于实际零件的裂纹亚临界扩展速率和裂纹体剩余寿命的计算。 ③区间IIIda/dN 剧增,裂纹迅速作临界失稳扩展,引起断裂。 由于考虑到Paris 公式只适用于低应力、高疲劳强度问题,未考虑第二位因素的影响,如平均应力、介质条件、温度、过载峰、加载方式、加载频率等。 (1)对于平均应力的影响,对裂纹扩展速率由显著影响,平均应力越大,da/dN 越大。Forman 提出了修正公式,考虑了K Ⅰ趋近临界值K C 时裂纹的加速扩展效应和平均应力的影响: 10()m I C I c K da dN K K ??=?-? 其中: min max (1);; C c C K r K F r K F σσσ?=-=??==? 式中c 、m —材料常数; K C —平面应力断裂韧性;考虑到零件的表面残余压应力可以提高疲劳强度,其

【精品版】弹性力学在工程中的应用

弹性力学在土木工程中的应用 摘要:弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产的应力、弹性力学,应变和位移,从而解决结构或设计中所提生出的强度和刚度问题。在土木工程方面,建筑物能够通过有效的弹性可以抵消部分晃动,从而减少在地震中房屋倒塌的现象;对于水坝结构来说,弹性变化同样具有曲线性,适合不断变化的水坝内部的压力,还有大型跨顶建筑、斜拉桥等等。弹性力学在土木工程中还有一些重要应用实例,如:地基应力与沉降计算原理、混凝土板的计算方法、混凝土材料受拉劈裂试验的力学原理、混凝土结构温度裂缝分析、工程应变分析、结构中的剪力滞后问题等。 关键词:弹性力学、力学、弹性变形、有限元法、强度、土木工程

正文: 弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。 弹性力学弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中许多定理、公式和结论等,都可以从三大基本规律推导出来。连续变形规律是指弹性力学在考虑物体的变形时,只考虑经过连续变形后仍为连续的物体,如果物体中本来就有裂纹,则只考虑裂纹不扩展的情况。 对于物体弹性变形,变形的机理,应从材料内部原子间里的作用来分析。实际上,固体材料之所以能保持其内部结构的稳定性是由于组成该固体材料(如金属)的原子间存在着相互平衡的力,吸力使原子间密切联系在一起,而短程排斥力则使各原子间保持一定的距离在正常情况下,这两种力保持平衡,原子间的相对位置处于规则排列的稳定状态。受外力作用时,这种平衡被打破,为了恢复平衡,原子便需产生移动和调整,使得吸力、斥力和外力之间取得平衡。因此,如果知道了原子之间的力相互之间的定律,原则上就能算出晶体在一定弹性力作用下的反应。实际上,固体结构的内部是多样的、复杂的。例如:夹杂、微孔、晶

第6章结构件及连接的疲劳强度计算原理

148 第6章 结构件及连接的疲劳强度 随着社会生产力的发展,起重机械的应用越来越频繁,对起重机械的工作级别要求越来越高。《起重机设计规范》GB/T 3811-2008规定,应计算构件及连接的抗疲劳强度。对于结构疲劳强度计算,常采用应力比法和应力幅法,本章仅介绍起重机械常用的应力比法。 6.1 循环作用的载荷和应力 起重机的作业是循环往复的,其钢结构或连接必然承受循环交变作用的载荷,在结构或连接中产生的应力是变幅循环应力,如图6-1所示。 起重机的一个工作循环中,结构或连接中某点的循环应力也是变幅循环应力。起重机工作过程中每个工作循环中应力的变化都是随机的,难以用实验的方法确定其构件或连接的抗疲劳强度。然而,其结构或连接在等应力比的变幅循环或等幅应力循环作用下的疲劳强度是可以用实验的方法确定的,对于起重机构件或连接的疲劳强度可以用循环记数法计算出整个 循环应力中的各应力循环参数,将其转化为等应力比的变幅循环应力或转化为等平均应力的等幅循环应力。最后,采用累积损伤理论来计算构件或连接的抗疲劳强度。 6.1.1 循环应力的特征参数 (1) 最大应力 一个循环中峰值和谷值两极值应力中绝对值最大的应力,用max σ表示。 (2) 最小应力 一个循环中峰值和谷值两极值应力中绝对值最小的应力,用min σ表示。 (3) 整个工作循环中最大应力值 构件或连接整个工作循环中最大应力的数值,用max ?σ 表示。 (4) 应力循环特性值 一个循环中最小应力与最大应力的比值,用min max r σσ=表示。 (5) 循环应力的应力幅 一个循环中最大的应力与最小的应力的差的绝对值,用σ?表示。

弹性力学 第二章 应力状态分析

第二章应力状态分析 一、内容介绍 弹性力学的研究对象为三维弹性体,因此分析从微分单元体入手,本章的任务就是从静力学观点出发,讨论一点的应力状态,建立平衡微分方程和面力边界条件。 应力状态是本章讨论的首要问题。由于应力矢量与内力和作用截面方位均有关。因此,一点各个截面的应力是不同的。确定一点不同截面的应力变化规律称为应力状态分析。首先是确定应力状态的描述方法,这包括应力矢量定义,及其分解为主应力、切应力和应力分量;其次是任意截面的应力分量的确定—转轴公式;最后是一点的特殊应力确定,主应力和主平面、最大切应力和应力圆等。应力状态分析表明应力分量为二阶对称张量。本课程分析中使用张量符号描述物理量和基本方程,如果你没有学习过张量概念,请进入附录一,或者查阅参考资料。 本章的另一个任务是讨论弹性体内一点-微分单元体的平衡。弹性体内部单元体的平衡条件为平衡微分方程和切应力互等定理;边界单元体的平衡条件为面力边界条件。 二、重点 1、应力状态的定义:应力矢量;正应力与切应力;应力分量; 2、平衡微分方程与切应力互等定理; 3、面力边界条件; 4、应力分量的转轴公式; 5、应力状态特征方程和应力不变量; 知识点: 体力;面力;应力矢量;正应力与切应力;应力分量;应力矢量与应力 分量;平衡微分方程;面力边界条件;主平面与主应力;主应力性质; 截面正应力与切应力;三向应力圆;八面体单元;偏应力张量不变量; 切应力互等定理;应力分量转轴公式;平面问题的转轴公式;应力状态 特征方程;应力不变量;最大切应力;球应力张量和偏应力张量 §2.1 体力和面力 学习思路:

本节介绍弹性力学的基本概念——体力和面力,体力F b和面力F s的概念均不难理解。 应该注意的问题是,在弹性力学中,虽然体力和面力都是矢量,但是它们均为作用于一点的力,而且体力是指单位体积的力;面力为单位面积的作用力。 体力矢量用F b表示,其沿三个坐标轴的分量用F b i(i=1,2,3)或者F b x、F b y和F b z表示,称为体力分量。 面力矢量用F s表示,其分量用F s i(i=1,2,3)或者F s x、F s y和F s z表示。 体力和面力分量的方向均规定与坐标轴方向一致为正,反之为负。 学习要点: 1、体力; 2、面力。 1、体力 作用于物体的外力可以分为两种类型:体力和面力。 所谓体力就是分布在物体整个体积内部各个质点上的力,又称为质量力。例如物体的重力,惯性力,电磁力等等。 面力是分布在物体表面上的力,例如风力,静水压力,物体之间的接触力等。为了表明物体在xyz坐标系内任意一点P 所受体力的大小和方向,在P点的邻域取一微小体积元素△V,如图所示 设△V 的体力合力为△F,则P点的体力定义为 令微小体积元素△V趋近于0,则可以定义一点P的体力为

弹性力学基本概念和考点..

基本概念: (1) 面力、体力与应力、应变、位移的概念及正负号规定 (2) 切应力互等定理: 作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。 (3) 弹性力学的基本假定: 连续性、完全弹性、均匀性、各向同性和小变形。 (4) 平面应力与平面应变; 设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。同时,体力也平行与板面并且不沿厚度方向变化。这时, 0,0,0z zx zy σττ===,由切应力互等,0,0,0z xz yz σττ===,这样只剩下平行于 xy 面的三个平面应力分量,即,,x y xy yx σσττ=,所以这种问题称为平面应力问题。 设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面且不沿长度变化的面力或约束,同时,体力也平行于横截面且不沿长度变化,由对称性可知,0,0zx zy ττ==,根据切应力互等,0,0xz yz ττ==。由胡克定律, 0,0zx zy γγ==,又由于z 方向的位移w 处处为零,即0z ε=。因此,只剩下平行 于xy 面的三个应变分量,即,,x y xy εεγ,所以这种问题习惯上称为平面应变问题。 (5) 一点的应力状态; 过一个点所有平面上应力情况的集合,称为一点的应力状态。 (6) 圣维南原理;(提边界条件) 如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。 (7) 轴对称; 在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。 一、 平衡微分方程:

(完整版)弹性力学第十一章弹性力学的变分原理

第十一章弹性力学的变分原理知识点 静力可能的应力 弹性体的功能关系 功的互等定理 弹性体的总势能 虚应力 应变余能函数 应力变分方程 最小余能原理的近似解法扭转问题最小余能近似解有限元原理与变分原理有限元原理的基本概念有限元整体分析几何可能的位移 虚位移 虚功原理 最小势能原理 瑞利-里茨(Rayleigh-Ritz)法 伽辽金(Гапёркин)法 最小余能原理 平面问题最小余能近似解 基于最小势能原理的近似计算方法基于最小余能原理的近似计算方法有限元单元分析 一、内容介绍 由于偏微分方程边值问题的求解在数学上的困难,因此对于弹性力学问题,只能采用半逆解方法得到个别问题解答。一般问题的求解是十分困难的,甚至是不可能的。因此,开发弹性力学的数值或者近似解法就具有极为重要的作用。 变分原理就是一种最有成效的近似解法,就其本质而言,是把弹性力学的基本方程的定解问题,转换为求解泛函的极值或者驻值问题,这样就将基本方程由偏微分方程的边值问题转换为线性代数方程组。变分原理不仅是弹性力学近似解法的基础,而且也是数值计算方法,例如有限元方法等的理论基础。 本章将系统地介绍最小势能原理和最小余能原理,并且应用变分原理求解弹

性力学问题。最后,将介绍有限元方法的基本概念。 本章内容要求学习变分法数学基础知识,如果你没有学过上述课程,请学习附录3或者查阅参考资料。 二、重点 1、几何可能的位移和静力可能的应力; 2、弹性体的虚功原理; 3、 最小势能原理及其应用;4、最小余能原理及其应用;5、有限元原理 的基本概念。 §11.1 弹性变形体的功能原理 学习思路: 本节讨论弹性体的功能原理。能量原理为弹性力学开拓了新的求解思路,使得基本方程由数学上求解困难的偏微分方程边值问题转化为代数方程组。而功能关系是能量原理的基础。 首先建立静力可能的应力和几何可能的位移概念;静力可能的应力 和几何可能的位移可以是同一弹性体中的两种不同的受力状态和变形状态,二者彼此独立而且无任何关系。 建立弹性体的功能关系。功能关系可以描述为:对于弹性体,外力在任意一组几何可能的位移上所做的功,等于任意一组静力可能的应力在与上述几何可能的位移对应的应变分量上所做的功。 学习要点: 1、静力可能的应力; 2、几何可能的位移; 3、弹性体的功能关系; 4、真实应力和位移分量表达的功能关系。 1、静力可能的应力 假设弹性变形体的体积为V,包围此体积的表面积为S。表面积为S可以分为两部分所组成:一部分是表面积的位移给定,称为S u;另外一部分是表面积的面力给定,称为Sσ 。如图所示

弹性力学基础知识归纳知识讲解

弹性力学基础知识归 纳

一.填空题 1.最小势能原理等价于平衡微分方程和应力边界条件 2.一组可能的应力分量应满足平衡微分方程和相容方程。二.简答题 1.简述圣维南原理并说明它在弹性力学中的作用。 如果把物体一小部分边界上的面力变换为分布不同但是静力等效的面力(主矢和主矩相同),则近处的应力分布将有显著改变,远处所受的影响则忽略不计。 作用;(1)将次要边界上复杂的集中力或者力偶变换成为简单的分布的面力。 (2)将次要的位移边界条件做应力边界条件处理。 2.写出弹性力学的平面问题的基本方程。应用这些方程时,应注意什么问题? (1).平衡微分方程:决定应力分量的问题是超静定的。 (2).物理方程:平面应力问题和应变问题的物理方程是不一样的,注意转换。 (3).几何方程:注意物体的位移分量完全确定时,形变分量也完全确定。但是形变分量完全确定时,位移分量不完全确定。 3.按照边界条件的不同,弹性力学分为哪几类边界问题?应力边界条件,位移边界条件和混合边界条件。

4.弹性体任意一点的应力状态由几个分量决定?如何确定他们的正负号? 由六个分量决定。在确定方向的时候,正面上的应力沿正方向为正,负方向为负。负面上的应力沿负方向为正,正方向为负。 5.什么叫平面应力问题和平面应变问题?举出工程实例。平面应力问题是指很薄的等厚度薄板只在板边上受平行于板面并且不沿厚度变化的面力,同时体力也平行于板面并且不沿厚度变化。例如工程中的深梁和平板坝的平板支墩。 平面应变问题是指很长的柱形体,它的横截面在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也不沿长度变化。例如 6.弹性力学中的基本假定有哪几个?什么是理想弹性体?举例说明。 (1)完全弹性假定。 (2)均匀性假定。 (3)连续性假定。 (4)各向同性假定。 (5)小变形假定。

弹性力学重点(适合入门)

1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。 圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。 作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。 (2)将次要的位移边界条件转化为应力边界条件处理 2 (8分)弹性力学中引用了哪五个基本假定五个基本假定在建立弹性力学基本方程时有什么用途 答:弹性力学中主要引用的五个基本假定及各假定用途为:(答出标注的内容即可给满分)1)连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 2)完全弹性假定:这一假定包含应力与应变成正比的含义,亦即二者呈线性关系,复合胡克定律,从而使物理方程成为线性的方程。 3)均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此,反应这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化。 4)各向同性假定:各向同性是指物体的物理性质在各个方向上都是相同的,也就是说,物体的弹性常数也不随方向变化。 5)小变形假定:研究物体受力后的平衡问题时,不用考虑物体尺寸的改变,而仍然按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将它们的二次幂或乘积略去不计,使得弹性力学的微分方程都简化为线性微分方程。 3 (8分)弹性力学平面问题包括哪两类问题分别对应哪类弹性体两类平面问题各有哪些特答:弹性力学平面问题包括平面应力问题和平面应变问题两类,两类问题分别对应的弹性体和特征分别为: 平面应力问题:所对应的弹性体主要为等厚薄板,其特征是:面力、体力的作用面平行于xy平面,外力沿板厚均匀分布,只有平面应力分量xσ,yσ,xyτ存在,且仅为x,y的函数。平面应变问题:所对应的弹性体主要为长截面柱体,其特征为:面力、体力的作用面平行于xy平面,外力沿z轴无变化,只有平面应变分量xε,yε,xyγ存在,且仅为x,y的函数。 4简述按应力求解平面问题时的逆解法。 所谓逆解法,就是先设定各种形式的、满足相容方程的应力函数;并由应力分量与应力函数之间的关系求得应力分量;然后再根据应力边界条件和弹性体的边界形状,看这些应力分量对应于边界上什么样的面力,从而可以得知所选取的应力函数可以解决的问题。 5有限元分析的解题步骤。 答:(1)力学模型的确定;(2)结构的离散化;(3)计算载荷的等效节点力;(4)计算各单元的刚度矩阵;(5)组集整体刚度矩阵;(6)施加便捷约束条件;(7)求解降阶的有限元基本方程;(8)求解单元应力;(9)计算结果的输出 7逆解法: 设定各种形式的、满足相容方程的应力函数, 求出应力分量后,根据应力边界条件判断该应力函数能解决什么问题。 8半逆解法: 针对所求问题,假定部分或全部应力分量的函数形式、从而推出应力函数的形式。然后代入相容方程,求出应力函数的具体表达式。最后求出应力分量,并考虑这些应力分量是否满足全部应力边界条件及多连体中的位移单值条件 9圣维南(Saint Venant)原理: 作用于物体某一局部区域内的外力系,可以用一个与之

相关主题
文本预览
相关文档 最新文档