当前位置:文档之家› 遥感图像处理实例分析05a(空间滤波、公式)

遥感图像处理实例分析05a(空间滤波、公式)

遥感图像处理实例分析05a(空间滤波、公式)
遥感图像处理实例分析05a(空间滤波、公式)

空间滤波(spatial filters)

空间滤波(又称local operation)

空间滤波是一种通用的光栅图像处理操作。是根据某像素周围像素的数值,修改图像中的该像素值。它能增强或抑制图像的空间细节信号,提高图像的可视化解释。如应用滤波增强图像的边界信息,去除或减少图像中的噪音图案。突出结构特征等。

空间频率(Spatial frequency)

空间频率是所有类型的光栅数据共有的特性,它的定义是指图像中的任何一特定部分,每单位距离内数据值的变化数量。对图像上数据变化小、或渐进变化的区域称为低频区域(如平滑的湖面),对图像上数据变化大、或迅速变化的区域称为高频区域(如布满密集公路网的城区)。

空间滤波分为三大类:

低通滤波(Low pass filters):强调的是低频信息,平滑了图像的噪音、减少了数据的菱角。因为它不在重视图像的细节部分,所以低通滤波有时又称为平滑或均值滤波。

高通滤波(High pass filters):强调的是高频信息,增强或锐化线性特征,象公路、断层、水陆边界。因为它没有图像的低频部分,增强了图像的细节信息,所以高通滤波有时又称为锐化滤波。

边界检测滤波(Edge detection filters):强调的是图像中目标或特征的边界,以便更容易分析。边界检测滤波通常建立一个灰色背景图和围绕图像目标或特征边界的黑白色线。

卷积核(convolution kernels)

卷积核是指二维矩形滤波距阵(或窗口),包含着与图像像素值有关的权值。滤波距阵(或窗口)在图像上从左向右,自上而下,进行平移滑动,窗口中心的像素值是根据其周围像素值与窗口中对应的每个像素的权值乘积就和而计算出来的。

ER Mapper滤波对话框如图1-1。包含着滤波文件名、滤波距阵和滤波编辑等项。

图1-1 ER Mapper滤波对话框

实习目的:

建立和删除滤波,应用不同的滤波距阵,查看结果。

实习步骤:

(一)增加滤波

1.打开和显示一个已存在的算法文件

①在标准工具条上,点击Open按钮,打开图像显示窗口和文件输入窗口。

②在文件输入窗口中,输入文件:\examples\Data_Types\SPOT_Panchromatic\Greyscale.alg。

图像显示窗口中显示出圣地亚哥灰色Spot全色卫星图像。

2.应用低通滤波

①在主菜单工具按钮上,点击Edit Filter (Kernel) 按钮,滤波窗口出现。

②在滤波窗口上,从File菜单中,选择Load项。滤波文件选择窗口出现。

③在滤波文件选择窗口中,输入滤波文件\kernel\filters_lowpass\avg3.ker。

低通滤波建立了模糊或均值化效果。通常情况下,低通滤波是将窗口中所有像素的平均值分配给中心像素,这样平滑掉数据中跳妖的菱角的数据。

低通滤波对于减少图像上周期性“胡椒面”噪音或斑点,是有用的,它使解释主要特征更容易了。

3.删除低通滤波

在滤波窗口上,从Edit菜单中,选择Delete this filter项。ER Mapper删除掉刚进行的低通滤波运算,图像恢复原样。

4.应用高通滤波

①在滤波窗口上,从File菜单中,选择Load项。滤波文件选择窗口出现。

②在滤波文件选择窗口中,输入滤波文件\kernel\filters_high_pass\Sharpen2.ker。

通常情况下,高通滤波是增强了图像边界特征周围的局部对比度,这样图像显得锐化或清新。象公路、城区与植被区的边界特征更清楚的定义了。

5.删除高通滤波

在滤波窗口上,从Edit菜单中,选择Delete this filter项。ER Mapper删除掉刚进行的高通滤波运算,图像恢复原样。

6.应用方向梯度边缘检测滤波

①在滤波窗口上,从File菜单中,选择Load项。滤波文件选择窗口出现。

②在滤波文件选择窗口中,输入滤波文件\kernel\filters_sunangle\North_West.ker。

North_West滤波是一种非线性滤波。对于图像中特征变化呈从东北向西南方向延伸的信息,具有离析和提升边界的效果。

7.调整滤波图像对比度

①在普通功能工具条上,单击“Edit Transform Limits”按钮,“变换”对话框出现。

②在“变换”对话框中,从Limits菜单中选择Limits to Actual项。

图像对比度增强,大多数像素被分配给中灰度色彩。

③在“变换”对话框中,单击“Create autoclip transform”按钮。

ER Mapper通过对比度增强,重新显示了图像。边缘特征通过黑白色被突出,没有锐化的特征区域如海洋,以灰色显示。

这种滤波突出了图像的边缘特性,好象从图像的西北处(左上方)照射,所以面向西北方向的边缘特性被增强,显亮。背向的显暗。

边缘增强滤波通常用于地质应用,如断层、线性轮廓的突出等。

注意:方向梯度边缘检测滤波会产生不同的数据范围,图像对比度较差,需要进行对比度变换,而上面的其它两种滤波不需要进行对比度变换。

8.应用东北方向的梯度边缘检测滤波

①在滤波窗口上,从File菜单中,选择Load项。滤波文件选择窗口出现。

③在滤波文件选择窗口中,输入滤波文件\kernel\filters_sunangle\North_East.ker。

这次面向东北方向的边缘特性被增强,显亮。图像中特征变化呈从西北向东南方向延伸的信息。

②关闭所有窗口。

(二)建立斜坡和方位图像

1.打开一个灰度DEM(digital elevation model)算法

①在主菜单上,点击Open按钮。

②输入文件\examples \Data_Types\Digital_Elevation\Greyscale.alg。

ER Mapper显示了圣地亚哥数字高程(DEM)图像。以灰色模型显示,低值区显示暗,高值区显示亮。如图1-10

图1-10 圣地亚哥数字高程(DEM)图像图1-11ER Mapper显示的坡度图像2.装入滤波,建立斜坡度图像

①在主菜单上,点击“Edit Filter (Kernel)”按钮。

②在滤波窗口中,打开文件夹按钮。

③输入滤波文件名:\kernel\filters_DEM\slope_degrees.ker。

④在主菜单上,点击“99% Contrast enhancement”按钮。

经过内部计算,ER Mapper显示出了坡度图像,陡坡的斜面以亮灰色显示,平缓的斜面以暗灰色显示,如图1-11。

斜坡是地面陡度的一个测量尺度。是地形表面给定区域附近高程的变化率。

这个滤波产生的斜坡值是斜面与水平面的角度值,变化范围从0度(平坦地形)到90度(垂直地形)。

ER Mapper也提高了一种百分率计算的斜坡,滤波文件为slope_percent.ker。

3.装入不同滤波文件,产生方位图像

①在滤波窗口中,打开文件夹按钮。

③输入滤波文件名:\kernel\filters_DEM\aspect.ker。

④关闭滤波窗口。

⑤在主菜单上,点击“99% Contrast enhancement”按钮。

ER Mapper以不同的灰度阴影,显示出高程数据的不同方位角图像,如图1-12。

方位角(Aspect)是用罗盘测量地形表面特定点方向的尺度。从正北0度开始,变化范围为0-360度。朝东的斜坡,方位角为90度。朝南的斜坡,方位角为180度。朝西的斜坡,方位角为270度。

图1-12 高程数据方位角灰度图像图1-13 高程数据方位角假彩色图像

4.改变显示模式

①打开算法窗口,选择Surface标签。

②从Color Table列表栏中,选择azimuth项。

图像以4种颜色重新显示,每种代表着一个罗盘方向,主要面向北的区域显示黑色,东的显黄色,南的显白色,西的显兰色。

(三)为多层添加滤波

1.打开和显示一个RGB图像

①在主菜单上,点击Open按钮。

②输入文件\examples\Data_Types\SPOT_XS\SPOT_XS_rgb_321.alg。

图像为SPOT XS卫星RGB(321)彩色合成图像,如图1-14。

图1-14 RGB(321)彩色合成图像图1-15 RGB高通滤波图像

2.打开算法窗口和滤波对话框

①点击“算法”按钮,打开算法窗口。

②点击“公式”按钮后面的“滤波”按钮,打开了滤波对话框。

3.应用高通滤波对RGB三层运算

①在“滤波”对话框中,点击“Move to next Red layer in surface”按钮,系统对R层进行滤波。

②在滤波窗口中,打开文件夹按钮。

③输入滤波文件名:\kernel\ filters_high_pass\Sharpen2.ker。

同样的方法对G和B层进行高通滤波。图像效果图为图1-15。

(四)使用多个有序滤波

1.显示一个灰度图像

①在标准工具条上,点击Open按钮。

②输入文件\examples\Data_Types\SPOT_ Panchromatic\Greyscale.alg。

图像为SPOT Panchromatic卫星图像,如图1-16。

2.添加一个方向边缘检测滤波

①点击“算法”按钮,打开算法窗口。

②点击“公式”按钮后面的“滤波”按钮,打开了“滤波”对话框。

③在“滤波“对话框中,打开“文件选择器”按钮。

③输入滤波文件名:\kernel\ filters_ sunangle\North_West.ker。滤波窗口如图1-17

滤波后图像如图1-18。

ER Mapper运用西北向滤波,突出了东北向西南方向伸张的边缘特性。

图1-16 SPOT Panchromatic卫星图像

图1-17 滤波窗口North_West.ker 图1-18 North_West.ker滤波后图像

3.添加一个高通滤波

①在“滤波”对话框中,从Edit菜单中,选择Append new filter项。

算法窗口中,添加了第二个滤波按钮,但是空的。

②从File菜单中,选择Load项。文件选择器窗口打开。

③在文件选择器窗口中,输入文件高通滤波文件:\kernel\filters_high_pass\Sharpen2.ker。滤波窗口如图1-19,滤波后图像如图1-20。ER Mapper通过高通滤波,锐化了边缘附近的高频信息。

这时,在算法窗口中,已经装入了2个滤波文件。

图1-19 高通滤波窗口图1-20高通滤波后图像

4.调整滤波图像对比度

①在算法窗口中,选择“变换”按钮,打开“变换”对话框。

②在“变换”对话框中,从Limits菜单中,选择Limits to Actual项。

X轴的变化区间与图像像素值实际边界相符。图像对比度增强,大多数像素被分配在中灰度色区,如图1-21。

③选择“自动剪切变换”按钮。

图像再次增强,如图1-22。

④在“滤波”对话框中,从Edit菜单中,选择Delete this filter项。可以删除当前滤波文件。

⑤关闭所有窗口。

图1-21 经过“Limits to Actual”图像图1-22 经过“自动剪切变换”的图像

“公式”使用(Using Formulas)

公式(Formulas)

“公式”通常用于图像处理,提取多波段信息。可以应用光栅空间模型和其它任务,可以通过简单的四则运算和阀值设定到复杂的“if-then-else”条件语句来实现。

公式图像处理是应用数学函数对图像中的每个像素进行操作,又称“点操作”。主要应用在:1.多波段数据的降维处理(如,主成分分析)

2.提取多波段数据的专题信息(如,植被指数、氧化铁比值)

3.不同特征的图像融合(数据融合)

4.用不同方法,处理同样数据。并且合并它们,离析出特殊性质(如边缘特征、地震方位角)

5.应用阀值、区域边界(多边形)和其它函数,离析出特殊的数据范围和感兴趣的地理区域。

6.大气影响、太阳角度以及光学卫星和海洋数据的虚光照校正。

在ER Mapper中,“公式”设置在“算法”处理流程对话框中,公式的编写和图像的显示是实时和交互性进行的,不同于传统的方法,磁盘保存公式结果,实验和调试更加困难。

在算法窗口中,点击“公式”编辑按钮,打开“公式”编辑对话框,如图1-23。建立、编辑、装入和保存公式。在“公式”编辑对话框中,较为重要的部分是“相关”区域,是实现ER Mapper公式灵活性和交互性的关键部位。公式中波段号、区名称等参数的改变都可以在这里方便的进行。“相关”区域中有4种基本规范,如表1-1。

图1-23 “公式”编辑对话框

表1-1 “相关”区域的4种基本规范

实习目的:

1.输入和编辑公式,测试公式系统。

2.在公式中使用输入、变量和区域等基本参数。

3.给基本参数赋予波段、变量和区域名称

4.保存公式

5.应用公式处理图像感兴趣的区域

6.使用公式产生主成分图像。

实习步骤:

(一)输入和测试公式

1.装入假彩色算法公式

①在工具条上,点击“算法”按钮,打开算法窗口。

②在算法窗口中,点击文件数据集按钮,输入文件

\examples\Applications\Mineral_Exploration\Magnetics_Pseudocolor.alg。

图像窗口显示出图像,该图像来源于澳大利亚航磁数据,数据值代表的是地表磁场强度。应用假彩色显示,蓝色对应着低值,黄色和红色对应着更高的磁场强度。如图1-24。

2.输入一个简单公式,测试系统错误

①在算法窗口中,点击“公式”按钮,打开“公式”编辑对话框。

②在“公式”编辑对话框中,输入公式表达式INPUT1-INPUT3。

③点击公式执行按钮。

ER Mapper发布错误信息,警告公式中有一个系统错误。

在这个例子里,给定的input序号,必须符合系统的序列顺序,在使用input3之前,必须

先有input2。

图1-24 澳大利亚航磁数据假彩色图像图1-25 公式运算后的假彩色图像

3.修改公式

①在“公式”编写栏中,将上述公式改为INPUT1-100。

③点击公式执行按钮。整个图像显示偏蓝,图像数据降低,如图1-25。

空间域滤波器(实验报告)

数字图像处理作业 ——空间域滤波器 摘要 在图像处理的过程中,消除图像的噪声干扰是一个非常重要的问题。本文利用matlab软件,采用空域滤波的方式,对图像进行平滑和锐化处理。平滑空间滤波器用于模糊处理和减小噪声,经常在图像的预处理中使用;锐化空间滤波器主要用于突出图像中的细节或者增强被模糊了的细节。本文使用的平滑滤波器有中值滤波器和高斯低通滤波器,其中,中值滤波器对去除椒盐噪声特别有效,高斯低通滤波器对去除高斯噪声效果比较好。使用的锐化滤波器有反锐化掩膜滤波、Sobel边缘检测、Laplacian边缘检测以及Canny算子边缘检测滤波器。不同的滤波方式,在特定的图像处理应用中有着不同的效果和各自的优势。

1、分别用高斯滤波器和中值滤波器去平滑测试图像test1和2,模板大小分别 是3x3 , 5x5 ,7x7;利用固定方差 sigma=1.5产生高斯滤波器. 附件有产生高斯滤波器的方法。 实验原理分析: 空域滤波是直接对图像的数据做空间变换达到滤波的目的。它是一种邻域运算,其机理就是在待处理的图像中逐点地移动模板,滤波器在该点地响应通过事先定义的滤波器系数与滤波模板扫过区域的相应像素值的关系来计算。如果输出像素是输入像素邻域像素的线性组合则称为线性滤波(例如最常见的均值滤波和高斯滤波),否则为非线性滤波(中值滤波、边缘保持滤波等)。 空域滤波器从处理效果上可以平滑空间滤波器和锐化空间滤波器:平滑空间滤波器用于模糊处理和减小噪声,经常在图像的预处理中使用;锐化空间滤波器主要用于突出图像中的细节或者增强被模糊了的细节。 模板在源图像中移动的过程中,当模板的一条边与图像轮廓重合后,模板中心继续向图像边缘靠近,那么模板的某一行或列就会处于图像平面之外,此时最简单的方法就是将模板中心点的移动范围限制在距离图像边缘不小于(n-1)/2个像素处,单处理后的图像比原始图像稍小。如果要处理整幅图像,可以在图像轮廓边缘时用全部包含于图像中的模板部分来滤波所有图像,或者在图像边缘以外再补上一行和一列灰度为零的像素点(或者将边缘复制补在图像之外)。 ①中值滤波器的设计: 中值滤波器是一种非线性统计滤波器,它的响应基于图像滤波器包围的图像区域中像素的排序,然后由统计排序的中间值代替中心像素的值。它比小尺寸的线性平滑滤波器的模糊程度明显要低,对处理脉冲噪声(椒盐噪声)非常有效。中值滤波器的主要功能是使拥有不同灰度的点看起来更接近于它的邻近值,去除那些相对于其邻域像素更亮或更暗,并且其区域小于滤波器区域一半的孤立像素集。 在一维的情况下,中值滤波器是一个含有奇数个像素的窗口。在处理之后,位于窗口正中的像素的灰度值,用窗口内各像素灰度值的中值代替。例如若窗口长度为5,窗口中像素的灰度值为80、90、200、110、120,则中值为110,因为按小到大(或大到小)排序后,第三位的值是110。于是原理的窗口正中的灰度值200就由110取代。如果200是一个噪声的尖峰,则将被滤除。然而,如果它是一个信号,则滤波后就被消除,降低了分辨率。因此中值滤波在某些情况下抑制噪声,而在另一些情况下却会抑制信号。 将中值滤波推广到二维的情况。二维窗口的形式可以是正方形、近似圆形的或十字形等。本次作业使用正方形模板进行滤波,它的中心一般位于被处理点上。窗口的大小对滤波效果影响较大。 根据上述算法利用MATLAB软件编程,对源图像test1和test2进行滤波处理,结果如下图:

《遥感数字图像处理》习题与标准答案

《遥感数字图像处理》习题与答案 第一部分 1.什么是图像?并说明遥感图像与遥感数字图像的区别。 答:图像(image)是对客观对象的一种相似性的描述或写真。图像包含了这个客观对象的信息。是人们最主要的信息源。 按图像的明暗程度和空间坐标的连续性划分,图像可分为模拟图像和数字图像。模拟图像(又称光学图像)是指空间坐标和明暗程度都连续变化的、计算机无法直接处理的图像,它属于可见图像。数字图像是指被计算机储存,处理和使用的图像,是一种空间坐标和灰度都不连续的、用离散数字表示的图像,它属于不可见图像。 2.怎样获取遥感图像? 答:遥感图像的获取是通过遥感平台搭载的传感器成像来获取的。根据传感器基本构造和成像原理不同。大致可分为摄影成像、扫描成像和雷达成像三类。 m= 3.说明遥感模拟图像数字化的过程。灰度等级一般都取2m(m是正整数),说明8时的灰度情况。 答:遥感模拟图像数字化包括采样和量化两个过程。 ①采样:将空间上连续的图像变换成离散点的操作称为采样。空间采样可以将模拟图像具有的连续灰度(或色彩)信息转换成为每行有N个像元、每列有M个像元的数字图像。 ②量化:遥感模拟图像经离散采样后,可得到有M×N个像元点组合表示的图像,但其灰度(或色彩)仍是连续的,不能用计算机处理。应进一步离散、归并到各个区间,分别用有限个整数来表示,称为量化。 m=时,则得256个灰度级。若一幅遥感数字图像的量化灰度级数g=256级,则灰当8 度级别有256个。用0—255的整数表示。这里0表示黑,255表示白,其他值居中渐变。由于8bit就能表示灰度图像像元的灰度值,因此称8bit量化。彩色图像可采用24bit量化,分别给红,绿,蓝三原色8bit,每个颜色层面数据为0—255级。 4.什么是遥感数字图像处理?它包括那些容? 答:利用计算机对遥感数字图像进行一系列的操作,以求达到预期结果的技术,称作遥感数字图像处理。 其容有: ①图像转换。包括模数(A/D)转换和数模(D/A)转换。图像转换的另一种含义是为使图像处理问题简化或有利于图像特征提取等目的而实施的图像变换工作,如二维傅里叶变换、沃尔什-哈达玛变换、哈尔变换、离散余弦变换和小波变换等。 ②数字图像校正。主要包括辐射校正和几何校正两种。 ③数字图像增强。采用一系列技术改善图像的视觉效果,提高图像的清晰度、对比度,突出所需信息的工作称为图像增强。图像增强处理不是以图像保真度为原则,而是设法有选择地突出便于人或机器分析某些感兴趣的信息,抑制一些无用的信息,以提高图像的使用价值。 ④多源信息复合(融合)。 ⑤遥感数字图像计算机解译处理。 5.说明遥感数字图像处理与其它学科之间的关系。 答:应具备的基础理论知识有:数学、地学、信息论、计算机、GIS、现代物理学。 6.说明全数字摄影测量系统的任务和主要功能。目前,比较著名的全数字摄影测量系统有哪些?

(完整word版)遥感数字图像处理习题(地信)-2018

考试时间:6月21日晚上19:00-21:00 地点:待定 题型:选择、填空、判断、简答、计算 1.考核方式:闭卷考试+ 平时成绩。 2.总成绩评定:闭卷卷面成绩(满分100分)占考核成绩的70%,平时成绩(满分100分)占30%。 3.平时成绩评定 (1)实验完成情况(80分):。根据学生实验报告提交次数及完成质量进行评定。 (2)作业完成情况(10 分):根据学生平时作业提交次数及完成质量进行评定。 (3)课堂考勤(10分):旷课一次扣3分,请假一次扣1分,扣完为止。 2018遥感数字图像处理习题 第1章概论 1.理解遥感数字图像的概念 2.理解遥感数字图像处理的内容 3.了解遥感数字图像处理与分析的目标和指导思想 4.了解遥感数字图像处理的发展及与其他学科的关系 第2章遥感数字图像的获取和存储 1. 理解摄影成像和扫描成像传感器的成像方式 2. 熟练掌握摄影成像和扫描成像影像的几何投影方式和影像特性 3. 掌握遥感常用的电磁波波段 4. 熟练掌握传感器的分辨率 5. 掌握数字化过程中的采样和量化 第3章遥感数字图像的表示和度量 1. 理解遥感图像的数字表示 2. 熟练掌握灰度直方图 第4章图像显示和拉伸 1. 熟练掌握图像的彩色合成 2. 熟练掌握灰度图像的线性拉伸 3. 熟练掌握直方图均衡化,理解直方图规定化

第5章图像校正 1.理解辐射误差产生的原因及辐射校正的类型 2.理解遥感数字图像大气校正的主要方法 3.理解几何畸变的类型与影响因素 4.熟练掌握多项式几何校正的原理与方法 第6章图像变换 1.理解傅立叶变换的原理 2.理解波段运算 3.理解K-L变换 4.理解缨帽变换 5.理解彩色变换 6.了解数字图像融合 第7章图像滤波 1.理解图像噪声与卷积、滤波的原理 2.掌握图像平滑 3.掌握图像锐化 4.掌握频率域滤波 第8章图像分割 1.了解图像分割的概念、方法和流程; 2.了解灰度阈值法; 3.了解梯度和区域方法。 第9章遥感图像分类 1.了解遥感图像的计算机分类的一般原理; 2.熟练掌握非监督分类和监督分类方法; 3.熟练掌握分类精度评估方法; 4.了解计算机分类新方法。 部分习题 几何校正 一、填空题: 1、控制点数目的最小值按未知系数的多少来确定。k阶多项式控制点的最少数目为___。 2、多项式拟合法纠正中控制点的数量要求,一次项最少需要__个控制点,二次项最少项需要__个控制点,三次项最少需要___个控制点。

遥感数字图像处理实习1

(1)以多波段组合方式将GeoTIFF格式的白银市TM原始数据转换为ENVI Standard 格式: 利用Basic Tools/Layer Stacking弹出对话框然后Import File,弹出对话框,导入GeoTIFF格式的TM原始数据,选择波段1、2、3、4、5和7, 点击OK,利用Choose选择输出路径及文件名,同时可以利用Reorder Files对输入的文件根据自己的需要进行调换顺序,点击OK输出ENVI Standard格式的数据。 (2)查询并记录影像文件的基本信息、投影信息,以及各个波段直方图信息,然后编辑头文件: 利用Basic Tools/Resize Data弹出对话框里面选择要查看的影像,左 边会出现其基本信息,如图所示:也有投影信息,既可以用来看单波段的也可以看合成后整个影像的信息。在对话框下,合成影像的名字上右击,选择Quick Statistics弹出对话框,在此对话框中点击Select Plo下拉菜单,选择单波段或者多波段的直方图,相应的对话框中会出现直方图(在结果与分析中记录),还可以右击选择edit修改横、纵坐标的单位。 同样的在合成影像的名字上右击,选择Edit Head,弹出对话框

然后点击Edit Attributes/Band Name弹出对话框,选中波段输入修改 后名字,点击OK即可进行波段名字的修改。点击Edit Attributes/Wavelengths弹出进行相应的波长的修改。 (3)在View视窗中,利用影像缩小、放大、漫游工具识别影像中的土地利用/土地覆盖类型: 可以结合当地的google earth上高分辨率的遥感影像,进行识别,利用Viewer视窗下Tools/SPEAR/Google Earth/Jump to Location可以在google earth上显示View主视窗中相应选中地物对应的位置。 (4)利用Viewer视窗打开影像,分别选取4、3、2和7、4、2波段组合进行假彩色合成,观察实习内容中所要求地物的色调变化: 利用File/Open Image File,选择第1步合成的ENVI Standard 格式的数据,弹出对话框,在其中选择RGB Color,将R、G、B分别设为4、3、2波段,点击Load Band,在Viewer#1中出现了4、3、2波段组合的假彩色图像,再在此窗口中,点击Display/New Display,弹出Viewer#2,选择RGB Color,将R、G、B分别设为7、4、2波段,点击Load Band,在Viewer#2中出现了7、4、2波段组合的假彩色图像,在Viewer窗口中右击选择Link Displays,弹出对话框,点击OK,可以把两个窗口中同一位置进行连接起来, 即其中一个窗口放大、缩小、漫游到某个位置,另外一个也跟着漫游到其相对应的位置。这样可以进行地物色调变化的对比。 (5)提取6种地物在不同波段的数值(Digital Number,DN),做光谱剖面图: 在Viewer视窗中Tools/Profile/Z Profile(Spectrum)弹出对话框,在其 Options下拉菜单中勾选Plot Key,对话框中出现了Viewer视窗中选中的目标地物的X,Y坐标,然后勾选Collect Spectra,鼠标箭头变为十字箭头,在目标地物中取九个点(本来图上就有一个,总共是十个点),然后在选择File/Save Plot As/ASCII弹出对话框 ,点击Select All Items,利用Choose选择输出路径和文件名,点击 OK,将其保存为.txt格式。选六种地物,重复以上操作,提取不同波段的数值(Digital Number,DN)。将.txt格式的文件用excel打开,然后用插入函数中的average函数求出每种地物的平均DN值,然后做出光谱剖面(光谱图如结果与分析中所示)。 (6)使用Excel制作6种地物的样本特征光谱统计表: 在Excel中分别使用插入函数中的AVERAGE、VAR、STDEV、MAX和MIN函数求出各地物样本DN值在各个波段的平均值、方差、标准差、最大值和最小值。然后,在07版Excel 的“Microsoft Office 按钮”,单击“Excel 选项”。“加载项”,然后在“管理”框中,选择“Excel 加载项”,单击“转到”弹出“加载宏”,在弹出来的对话框中选择“分析工具库”,并点击确定。然后从“工具”中找到“数据分析”,从“数据分析”对话框中选择“协方差”,并导入某种地物需求协方差的数据区域并选择“逐行”进行,最后选择数据输出区域并确定,则可得该地物的协方差矩阵。同理,在从“数据分析”对话框中选择“相关系数”,进行相应操作,可求得相关系数矩阵。(在结果与分析中附有个地物的样本特征光谱统计表)(7)制作散点图: 在Excel中,打开6种地物的样本DN数据(5步骤产生的),选择band2和band4做散

遥感数字图像处理教程复习分析

第一章. 遥感概念 遥感(Remote Sensing,简称RS),就是“遥远的感知”,遥感技术是利用一定的技术设备和系统,远距离获取目标物的电磁波信息,并根据电磁波的特征进行分析和应用的技术。 遥感技术的原理 地物在不断地吸收、发射(辐射)和反射电磁波,并且不同物体的电磁波特性不同。 遥感就是根据这个原理,利用一定的技术设备和装置,来探测地表物体对电磁波的反射和地物发射的电磁波,从而提取这些物体的信息,完成远距离识别物体。 图像 人对视觉感知的物质再现。图像可以由光学设备获取,如照相机、镜子、望远镜、显微镜等;也可以人为创作,如手工绘画。图像可以记录、保存在纸质媒介、胶片等等对光信号敏感的介质上。随着数字采集技术和信号处理理论的发展,越来越多的图像以数字形式存储。因而,有些情况下“图像”一词实际上是指数字图像。 物理图像:图像是人对视觉感知的物质再现 数字图像:图像以数字形式存储。 图像处理 运用光学、电子光学、数字处理方法,对图像进行复原、校正、增强、统计分析、分类和识别等的加工技术过程。 光学图像处理 应用光学器件或暗室技术对光学图像或模拟图像(胶片或图片)进行加工的方法技术 数字图像处理 是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。图像处理能做什么?(简答) 是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理主要目的:提高图像的视感质量,提取图像中所包含的某些特征或特殊信息,进行图像的重建,更好地进行图像分析,图像数据的变换、编码和压缩,更好图像的存储和传输。数字图像处理在很多领域都有应用。 遥感图像处理(processing of remote sensing image data )是对遥感图像进行辐射校正和几何纠正、图像整饰、投影变换、镶嵌、特征提取、分类以及各种专题处理的方法。常用的遥感图像处理方法有光学的和数字的两种。

遥感数字图像处理

遥感数字图像处理-要点 1.概论 遥感、遥感过程 遥感图像、遥感数字图像、遥感图像的数据量 遥感图像的数字化、采样和量化 通用遥感数据格式(BSQ、BIL、BIP) 遥感图像的模型:多光谱空间 遥感图像的信息内容: 遥感数字图像处理、遥感数字图像处理的内容 遥感图像的获取方式主要有哪几种? 如何估计一幅遥感图像的存储空间大小? 遥感图像的信息内容包括哪几个方面? 多光谱空间中,像元点的坐标值的含义是什么? 与通用图像处理技术比较,遥感数字图像处理有何特点? 遥感数字图像处理包括那几个环节?各环节的处理目的是什么? 2.遥感图像的统计特征 2.1图像空间的统计量 灰度直方图:概念、类型、性质、应用 最大值、最小值、均值、方差的意义 2.2多光谱空间的统计特征 均值向量、协方差矩阵、相关系数、相关矩阵的概念及意义波段散点图概念及分析 主要遥感图像的统计特征量的意义 两个重要的图像分析工具:直方图、散点图 3.遥感数字图像增强处理 图像增强:概念、方法 空间域增强、频率域增强 3.1辐射增强:概念、实现原理 直方图修正,线性变换、分段线性变换算法原理 直方图均衡化、直方图匹配的应用 3.2空间增强 邻域、邻域运算、模板、模板运算 空间增强的概念 平滑(均值滤波、中值滤波)原理、特点、应用 锐化、边缘增强概念

方向模板、罗伯特算子、索伯尔算子、拉普拉斯算子的算法和特点? 计算图像经过下列操作后,其中心象元的值: – 3×3中值滤波 –采用3×3平滑图像的减平滑边缘增强 –域值为2的3×1平滑模板 – Sobel边缘检测 – Roberts边缘检测 –模板 3.3频率域处理 高频和低频的意义 图像的傅里叶频谱 频率域增强的一般过程 频率域低通滤波 频率域高通滤波 同态滤波的应用 3.4彩色增强 彩色影像的类型:真彩色、假彩色、伪彩色

遥感数字图像处理考试知识点整理

遥感 第一章 1遥感数字图像;遥感数字图像的分类方式和对应类别。 (1)定义:遥感数字图像是数字形式的遥感图像。不同的地物能够反射或辐射不同波长的电磁波,利用这种特性,遥感系统可以产生不同的遥感数字图像。 (2)可见图像和不可见图像 单波段和多波段,超波段 数字图像和模拟图像 2遥感图像的成像方式(三大种:摄影、扫描、雷达)。 (1)摄影,扫描属于被动遥感 雷达属于主动遥感 (2)摄影:根据芦化银物质在关照条件下回发生分解这一机制,将卤化银物质均匀涂在片基上,制成感光胶片 扫描:扫描类遥感传感器逐点逐行地以时序方式获取的二维图像 雷达:由发射机向侧面发射一束窄波段,地物反射的脉冲,由无线接收后被接收机接收 3遥感图像的数字化(模数转换)过程——两大过程:采样、量化,名词解释。 采样:将空间上连续的图像变换成离散点的操作称为采样,即:图像空间位置的数字化。采样是空间离散。 量化:遥感模拟图像经离散采样后,可得到由M×N个像素点组合表示的图像,但其灰度(或彩色)仍是连续的,还不能用计算机处理。它们还要进一步离散并归并到各个区间,分别用有限个整数来表示,这称之为量化,即:图像灰度的数字化。量化属于亮度属性离散。 遥感图像数字化过程两个特点:亮度和空 4遥感数字图像的存储空间大小的计算。 图像的灰度级有:2,64,128,256 存储一幅大小为M*N,灰度量化位数G的图像,所需要的存储空间(图像数据量)为M*N*G(bit) 1B=8bit 1KB=1024B 1MB=1024KB 1GB=1024MB TM空间分辨:1,2,3,4,5,7为30米,6为120米 5遥感数字图像的分辨率(时间、空间、光谱、辐射分辨率); (1)时间分辨率:指对同一地点进行遥感采样的时间间隔即采样的时间频率,也称重访周期空间分辨率:指图像像素所代表的相应地面范围的大小,空间分辨率愈高,像素所代表的范围愈小 光谱分辨率:光谱分辨率是指成像的波段范围,分得愈细,波段愈多,光谱分辨率愈高 辐射分辨率:是传感器区分反射或发射的电磁波辐射强度差异的能力。高辐射分辨率可以区分信号强度的微小差异。 (2)常见传感器和空间分辨率书17-18页 6遥感数字图像的数据(数据级别、数据存储格式、元数据定义) (1)数据级别: 0级产品:未经过任何校正的原始图像数据 1级产品:经过了初步辐射校正的图像校正 2级产品:经过了系统级的几何校正,即根据卫星的轨道和姿态等参数以及地面系统中的有关参数对原始数据进行几何校正。产品的几何精度由上述参数和处理模型决定。 3级产品:经过几何精校正,即利用地面控制点对图像进行了校正,使之具有了更精确的地理坐标信息。产品的几何精度要求在亚像素量级上。 不同点:不同级别的产品使用条件不同,但是他们都是数据的集合,是信息量的汇总。一般来说,都是由元数据和图像基本数据两部分数据汇总的结果。

遥感数字图像处理重点

遥感数字图像处理重点 第一章概论 图像:对客观对象的一种相似性的描述或写真。 数字图像:是以数字形式存储和表达的遥感图像。 根据人眼的可视性,图像可分为可见图像和不可见图像。 图像具有空间坐标和数值,根据其连续性,图像可分为数字图像和模拟图像。 数字图像最基本的单位是像素,像素的基本属性特征为像素值,其高低反映了图像的明暗程度和能量高低。像素的属性是位置和灰度值; 遥感数字图像处理的内容: (1)图像增强:目的是压抑和去除噪声,增强显示图像整体,使图像更容易理解、解译和判读。方法:彩色合成、图像拉伸、图像平滑、锐化、图像融合。 (2)图像校正:主要是对传感器和环境造成的图像退化进行模糊消除、噪声滤除、几何失真或非线性校正。方法:辐射校正和几何校正。 (3)信息提取:根据地物光谱特征和几何特征,确定提取规则,并以此为基础从校正后的遥感图像的中提取各种有用信息的过程。方法:图像分割、图像分类。 遥感数字图像处理系统的典型功能包括: ○1不同传感器图像数据的测存取和转换○2几何校正○3辐射校正○4图像增强处理○5统计分析○6图像变换○7图像分类○8专题制图○9专业工具,如雷达图像处理工具。 第二章遥感数字图像的获取和储存 遥感图像是通过遥感平台上的传感器获取的,不同的传感器具有不同的辐射、电磁波谱、时间、空间分辨率。 遥感是通过非接触传感器获取测量对象信息的过程,是信息的获取、传输、处理以及判读和应用的过程。遥感的实施依赖于遥感系统。 传感器又称遥感器,是收集和记录电磁辐射能量信息的装置,是信息获取的核心部件。 传感器的分辨率:传感器区分自然特征相似或光谱特征相似的相邻地物的能力。分为:(1)辐射分辨率:传感器区分所接受到的电磁波辐射强度差异的能力。 (2)光谱分辨率:传感器记录的电磁波谱的波长范围和数量。 (3)空间分辨率:遥感图像上能够详细区分的最小单元的尺寸或大小。 (4)时间分辨率:传感器对同一空间区域进行重复探测时,相邻两次探测的时间间隔。图像数字化:数字化的两个过程是采样和量化。 (1)采样:分波谱采样和空间采样,通过空间采样,空间上连续的图像变换成离散点。 (2)量化:将像素灰度级转换成整数灰度级的过程。量化后,图像像素的原有灰度值转换为灰度级。 元数据:关于图像数据特征的表述,是数据的数据,主要参数包括:图像获取的日期和时间、投影参数、几何纠正精度、图像分辨率、辐射校正参数等。

遥感数字图像处理教程期末复习题

遥感数字图像处理教程 第一章概论 1.1图像和遥感数字图像 1.1.1图像和数字图像 本书定义图像为通过镜头等设备得到的视觉形象 根据人眼的视觉可视性可将图像分为可视图像和不可视图像。可视图像有图片、照片、素描和油画等,以及用透镜、光栅和全息技术产生的各种可见光图像。不可见图像包括不可见光成像和不可测量值 按图像的明暗程度和空间坐标的连续性,可将图像分为数字图像和模拟图像。数字图像是指用计算机存储和处理的图像,是一种空间坐标和灰度不连续、以离散数字原理表达的图像。在计算机,数字图像表现为二维阵列,属于不可见图像。模拟图像指空间坐标和明暗程度连续变化的、计算机无法直接处理的图像,属于可见图像。 利用计算机技术,可以实现模拟图像和数字图像之间相互转换。把模拟图像转化为数字图像成为模/数转换,记作A/D转换; 数字图像最基本的单位是像素。像素是A/D转换中国的取样点,是计算机图像处理的最小单位;每个像素具有特定的空间位置和属性特征。 1.1.2遥感数字图像 遥感数字图像时数字形式的遥感图像。不同的地物能够反射或辐射不同长波的电磁波,利用这种特性,遥感系统可以产生不同的遥感数字图像。 遥感数字图像中的像素成为亮度值。亮度值的高低由遥感传感器所探测到的地物电磁波的辐射强度决定。由于地物反射或辐射电磁波的性质不同受大气的影响不同,相同地点不同图像的亮度值可能不同。 图像的每个像素对应三维世界中的一个实体、实体的一部分或多个实体。在太阳照射下,一些电磁波被这个实体反射,一些被吸收。反射部分电磁波到达传感器被记录下来,成为特定像素点的值。 1.2压感数字图像处理 1.2.1遥感数字图像处理概述 遥感数字图像处理是利用计算机图像处理系统对遥感图像中的像素进行系列操作的过程。遥感数字图像处理主要包括三个方面 1.图像增强,使用多种方法,如:灰度拉伸、平滑、瑞华、彩色合成、主成分变换K-T变换、代数运算、图像融合等压抑、去除噪声、增强整体图像或突出图像中的特定地物的信息,是图像更容易理解、解释和判读、 图像增强着重强调特定图像特征,在特征提取、图像分析和视觉信息的显示很有用。 2.图像校正:图像校正也成图像回复、图像复原,主要是对传感器或环境造成的退化图像进行模糊消除、噪声滤除、几何失真或非线性校正。 信息提取:根据地物光谱特征和几何特征,确定不同地物信息的提取规则。 1.2.2 遥感数字图像处理系统 数字图像处理需要借助数字图像处理系统来完成。一个完整的遥感数字图像处理系统包括硬件系统和软件系统两大部分。 1.硬件系统 包括计算机、数字化设备、大容量存储、显示器和输出设备以及操作台 1)计算机 是图像处理核心,大的存和高的CPU速度有助于加快处理的进度。 2)数字化设备

《遥感数字图像处理》试卷

东南大学2008—2009学年考试试题 课程名称:遥感数字图像处理 学号姓名成绩 一、单项选择题(2分×20=40分) 1.遥感技术是利用地物具有完全不同的电磁波()或()辐射特征来判断地物目标和自然现象。 A.反射发射 B.干涉衍射 C.反射干涉 D.反射衍射 2.TM6所采用的10.4~12.6um属于()波段。 A.红外 B.紫外 C.热红外 D.微波 3.彩红外影像上()呈现黑色,而()呈现红色。 A.植被 B. 水体 C.干土 D.建筑物 4.影响地物光谱反射率的变化的主要原因包括()。 A. 太阳高度角 B.不同的地理位置 C. 卫星高度 D.成像传感器姿态角 5.红外姿态测量仪可以测定()。 A. 航偏角 B. 俯仰角 C.太阳高度角 D. 滚动角 6.下面遥感卫星影像光谱分辨率最高的是()。 A. Landsat-7 ETM+ B.SPOT 5 C.IKONOS-2 D. MODIS 7.下面采用近极地轨道的卫星是()。 A. Landsat-5 B. SPOT 5 C. 神州7号 D. IKONOS-2 8.下面可获取立体影像的遥感卫星是()。 A. Landsat-7 B.SPOT 5 C.IKONOS-2 D. MODIS 9.侧视雷达图像的几何特征有()。 A.山体前倾 B.高差产生投影差 C.比例尺变化 D. 可构成立体像对 10.通过推扫式传感器获得的一景遥感影像,在()属于中心投影。 A.沿轨方向 B. 横轨方向 C. 平行于地球自转轴方向 D. 任意方向 11. SPOT 1-4 卫星上装载的HRV传感器是一种线阵()扫描仪。 A. 面阵 B. 推扫式 C. 横扫式 D. 框幅式 12.()只能处理三波段影像与全色影像的融合。 A.IHS变换 B.KL变换 C. 比值变换 D. 乘积变换 13.()是遥感图像处理软件系统。 A. AreInfo B.ERDAS C. AUTOCAD D. CorelDRAW 14.一阶哈达玛变换相当于将坐标轴旋转了()。 A.30° B. 45° C. 60° D.90° 15.遥感影像景物的时间特征在图像上以()表现出来。 A. 波谱反射特性曲线 B.空间几何形态 C. 光谱特征及空间特征的变化 D.偏振特性 16.遥感传感器的分辨率指标包括有()。 A.几何分辨率 B.光谱分辨率 C.辐射分辨率 D.时间分辨率 17.遥感图像构像方程是指地物点在图像上的()和其在地物对应点的大地坐标之间的数学关系。 A.投影差 B. 几何特征 C.图像坐标 D. 光谱特征

数字图像的空间域滤波和频域滤波

数字图像的空间域滤波和频域滤波

三、实验过程 1. 平滑空间滤波: 1) 读出一幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一图像窗口中。 椒盐噪声: def salt_pepperNoise(src): dst = src.copy() num = 1000 # 1000个噪声点 ndim = np.ndim(src) row, col = np.shape(src)[0:2] for i in range(num): x = np.random.randint(0, row) # 随机生成噪声点位置 y = np.random.randint(0, col) indicator = np.random.randint(0, 2) # 灰度图像 if ndim == 2: if indicator == 0: dst[x, y] = 0 else: dst[x, y] = 255 # 彩色图像 elif ndim == 3: if indicator == 0: dst[x, y, :] = 0 else: dst[x, y, :] = 255 return dst 高斯噪声: def addGaussianNoise(image,sigma): mean = 0.0 row, col ,ch= image.shape gauss = np.random.normal(mean, sigma, (row, col,ch)) gauss = gauss.reshape(row, col,ch) noisy = image + gauss return noisy.astype(np.uint8)

《遥感数字图像处理》试卷及答案

2008—2009学年考试试题 课程名称:遥感数字图像处理 学号姓名成绩 一、单项选择题(2分×20=40分) 1.遥感技术是利用地物具有完全不同的电磁波(A)或()辐射特征来判断地物目标和自然现象。 A.反射发射 B.干涉衍射 C.反射干涉 D.反射衍射 2.TM6所采用的10.4~12.6um属于(C )波段。 A.红外 B.紫外 C.热红外 D.微波 3.彩红外影像上( B)呈现黑色,而( A)呈现红色。 A.植被 B. 水体 C.干土 D.建筑物 4.影响地物光谱反射率的变化的主要原因包括(A)。 A. 太阳高度角 B.不同的地理位置 C. 卫星高度 D.成像传感器姿态角 5.红外姿态测量仪可以测定(B)。 A. 航偏角 B. 俯仰角 C.太阳高度角 D. 滚动角 6.下面遥感卫星影像光谱分辨率最高的是(D)。 A. Landsat-7 ETM+ B.SPOT 5 C.IKONOS-2 D. MODIS 7.下面采用近极地轨道的卫星是(A)。 A. Landsat-5 B. SPOT 5 C. 神州7号 D. IKONOS-2 8.下面可获取立体影像的遥感卫星是( B)。 A. Landsat-7 B.SPOT 5 C.IKONOS-2 D. MODIS 9.侧视雷达图像的几何特征有(A )。 A.山体前倾 B.高差产生投影差 C.比例尺变化 D. 可构成立体像对 10.通过推扫式传感器获得的一景遥感影像,在(B)属于中心投影。 A.沿轨方向 B. 横轨方向 C. 平行于地球自转轴方向 D. 任意方向 11. SPOT 1-4 卫星上装载的HRV传感器是一种线阵(B)扫描仪。 A. 面阵 B. 推扫式 C. 横扫式 D. 框幅式 12.(A)只能处理三波段影像与全色影像的融合。 A.IHS变换 B.KL变换 C. 比值变换 D. 乘积变换 13.(B)是遥感图像处理软件系统。 A. AreInfo B.ERDAS C. AUTOCAD D. CorelDRAW 14.一阶哈达玛变换相当于将坐标轴旋转了(B)。 A.30° B. 45° C. 60° D.90° 15.遥感影像景物的时间特征在图像上以(C)表现出来。 A. 波谱反射特性曲线 B.空间几何形态 C. 光谱特征及空间特征的变化 D.偏振特性 16.遥感传感器的分辨率指标包括有(C)。 A.几何分辨率 B.光谱分辨率 C.辐射分辨率 D.时间分辨率 17.遥感图像构像方程是指地物点在图像上的( C)和其在地物对应点的大地坐标之间的数学关系。 A.投影差 B. 几何特征 C.图像坐标 D. 光谱特征

数字图像处理灰度变换与空间域matlab

学号: 0000000000 姓名:0000000 实验一灰度变换与空间域滤波 一.实验目的及要求 1.了解MATLAB的操作环境和图像处理工具箱Image Processing Toolbox的功能;2.加深理解图像灰度变换与空间域滤波概念和算法原理; 3.掌握MATLAB中图像灰度变换与空间域滤的实现方法。 二、实验内容 (一)研究以下程序,分析程序功能;输入执行各命令行,认真观察命令执行的结果。利用MATLAB帮助文档熟悉程序中所使用函数的调用方法,改变有关参数,观察试验结果。(可将每段程序保存为一个.m文件) 1.图像及视频文件的基本操作 (1)RGB彩色图像数据的读写操作 clear all; %清除工作空间的所有变量,函数,和MEX文件 close all; %关闭所有的Figure窗口 %查看一幅RGB彩色图像文件的信息 fileinfo = imfinfo('Fig0701_fruits.jpg') %暂停,阅读命令窗口中的结果,按空格键继续 pause; %读取该图像 I=imread('Fig0701_fruits.jpg'); %显示图像 imshow(I); title('Original RGB true color image'); %查看图像像素信息,在图像上移动鼠标,注意左下角的信息 impixelinfo; %暂停,按空格键继续 pause; % 读取图像的颜色分量,并保存到二维矩阵变量中 IR = I(:,:,1); IG = I(:,:,2); IB = I(:,:,3); %以灰度图像的方式显示各颜色分量

figure, imshow(IR); title('R分量'); figure, imshow(IG); title('G分量'); figure, imshow(IB); title('B分量'); %在图像左上角画一条5像素宽、100像素长的水平稍暗红线 I(31:35,61:160,1)=200; I(31:35,61:160,2)=0; I(31:35,61:160,3)=0;% %显示处理结果 figure, imshow(I); title('在图像背景中画红线'); %将结果保存为tif格式图像文件 imwrite(I,'fruits_bar.tif'); %-------------------------------------------------------------------------------- (2)索引图像与 RGB彩色图像之间的转换

遥感数字图像处理考试知识点整理

'. 遥感 第一章 1遥感数字图像;遥感数字图像的分类方式和对应类别。 (1)定义:遥感数字图像是数字形式的遥感图像。不同的地物能够反射或辐射不同波长的电磁波,利用这种特性,遥感系统可以产生不同的遥感数字图像。 (2)可见图像和不可见图像 单波段和多波段,超波段 数字图像和模拟图像 2遥感图像的成像方式(三大种:摄影、扫描、雷达)。 (1)摄影,扫描属于被动遥感 雷达属于主动遥感 (2)摄影:根据芦化银物质在关照条件下回发生分解这一机制,将卤化银物质均匀涂在片基上,制成感光胶片 扫描:扫描类遥感传感器逐点逐行地以时序方式获取的二维图像 雷达:由发射机向侧面发射一束窄波段,地物反射的脉冲,由无线接收后被接收机接收 3遥感图像的数字化(模数转换)过程——两大过程:采样、量化,名词解释。 采样:将空间上连续的图像变换成离散点的操作称为采样,即:图像空间位置的数字化。采样是空间离散。 量化:遥感模拟图像经离散采样后,可得到由M×N个像素点组合表示的图像,但其灰度(或彩色)仍是连续的,还不能用计算机处理。它们还要进一步离散并归并到各个区间,分别用有限个整数来表示,这称之为量化,即:图像灰度的数字化。量化属于亮度属性离散。 遥感图像数字化过程两个特点:亮度和空 4遥感数字图像的存储空间大小的计算。 图像的灰度级有:2,64,128,256 存储一幅大小为M*N,灰度量化位数G的图像,所需要的存储空间(图像数据量)为M*N*G(bit) 1B=8bit 1KB=1024B 1MB=1024KB 1GB=1024MB TM空间分辨:1,2,3,4,5,7为30米,6为120米 5遥感数字图像的分辨率(时间、空间、光谱、辐射分辨率); (1)时间分辨率:指对同一地点进行遥感采样的时间间隔即采样的时间频率,也称重访周期空间分辨率:指图像像素所代表的相应地面范围的大小,空间分辨率愈高,像素所代表的范围愈小 光谱分辨率:光谱分辨率是指成像的波段范围,分得愈细,波段愈多,光谱分辨率愈高 辐射分辨率:是传感器区分反射或发射的电磁波辐射强度差异的能力。高辐射分辨率可以区分信号强度的微小差异。 (2)常见传感器和空间分辨率书17-18页 6遥感数字图像的数据(数据级别、数据存储格式、元数据定义) (1)数据级别: 0级产品:未经过任何校正的原始图像数据

《遥感数字图像处理》试卷A(B)卷

河南大学环境与规划学院2005~2006学年第一学期期末考试 《遥感数字图像处理》试卷A(B)卷 一、名词解释:(每题2分,共8分) 1、几何畸变: 2、数字镶嵌: 3、影像增强: 4、遥感影像分类: 二、填空(每空1分,共22分) 1、遥感数据的处理流程包括:(1)观测数据的输入;(2); (3);(4);(5)处理结果的输出。 2、在遥感数据的处理流程中,所采集的数据包括和数字数据两种,后者多记 录在特殊的数字记录器中(HDDT等),所以必须变换到一般的数字计算机都可以读出的等通用载体上。 3、在Erdas Imagine图标面板菜单条中,主要包括综合菜单(Session Menu)、菜 单、菜单、菜单、帮助菜单(Help Menu)。 4、在图像分类界面中,包括、、分类结果处理、知识工程 师、专家分类器。 5、在视图窗口中,主要有六部分组成:菜单条、工具条、、状态条、滑动 条、标题条。 6、在窗口中,可查阅或修改图像文件的有关信息,如投影信息、统计信息 和显示信息等。 7、三维图像操作的内部原理是将图像与叠加生成三维透视图,并在此基础 上的空间操作。 8、用户从遥感卫星地面站购置的TM图像数据或其他图像数据,往往是经过转换以后的单 波段普通数据文件,外加一个说明头文件。 9、遥感影像的降质可归结为两类:即遥感影像的和。 10、影像变换与增强的实质是:影像的和,实际 上是改善影像的质量以获得最好的主观效果。 11、影像对比度扩展又称反差增强。常常采用以达到易于识别的目的。 12、常用的直方图调整方法有以下两种:和直方图规定化。前者又称直方图 平坦化,将减少影像灰度等级来换取对比度的扩大。 13、滤波增强技术有两种:和。前者是在影像的空间变量内 进行的局部运算,使用空间二维卷积方法;后者使用傅氏分析等方法,通过修改原影像的傅氏变换式实现滤波。 三、单项选择题(每题2分,共20分)

考试遥感数字图像处理理论考试复习题(答案)

第一章 一、名词解释 1.数字图像: 指用计算机存储和处理的图像,是一种空间坐标和灰度均不连 续的、用离散数学表示的图像。 2.遥感数字图像: 是以数字形式表述的遥感图像。不同的地物能够反射或辐 射不同波长的电磁波,利用这种特性,遥感系统可以产生不同的遥感数字图像。 3.像素: 数字图像最基本的单位是像素,像素是A/D转换中的取样点,是计 算机图像处理的最小单元;每个像素具有特定的空间位置和属性特征 4.遥感数字图像处理: 遥感数字图像处理是通过计算机图像处理系统对遥 感图像中的像素进行的系列操作过程。 5.频率域: 频率域基于傅里叶变换,频率域的图像处理是对傅里叶变换后产 生的反映频率信息的图像进行处理。 二、简答 1.怎样理解图像处理的两个观点:离散方法的观点和连续方法的观点 答:(1)离散方法的观点认为,一幅图像的存储和表示均为数字形式,数字是离散的,因此,使用离散方法进行图像处理才是合理的。与该方法相关的一个概念是空间域。空间域图像处理以图像平面本身为参考,直接对图像中的像素进行处理。 (2)连续方法的观点认为,我们感兴趣的图像通常源自物理世界,它们服从可用连续数学描述的规律,因此具有连续性,应该使用连续数学方法进行图像处理。与该方法相关的一个主要概念是频率域。频率域基于傅里叶变换,频率域的图像处理是对傅里叶变换后产生的反映频率信息的图像进行处理。完成频率域图像处理后,往往要变换回到空间域进行图像的显示和对比。 2.遥感数字图像处理需要掌握哪些基本知识: 答:(1)物理学中电磁辐射、光学和电子光学等方面的基本知识; (2)地理学知识是有效利用遥感图像处理技术,认识地球客观世界的基本条件; (3)遥感数字图像处理是信息处理的主要组成部分,只有掌握了信息论的基础和方法,才能保证遥感数字图像处理工作在正确的理论指导下进行; (4)计算机技术和地理信息系统的理论和知识。 三、填空 1.遥感数字图像处理的主要内容包括(图像增强)、(图像校正)、(信息 提取)。 2.图像校正也称图像恢复、图像复原,校正的方法除了图像增强中的一些方 法外,主要包括(辐射校正)和(几何纠正)。 3.遥感数字图像处理系统包括硬件系统和软件系统两大部分,其中硬件系统 主要由计算机、(数字化器)、(大容量存储器)、(显示器)和(输出设备)、操作台。 4.在计算机中,基本的度量单位是(比特(位))。存储一幅1024字节的8 位图像需要(1MB)的存储空间。一景正常的包括7个波段的LANDSAT5的TM图像文件,至少占用(200MB)的存储空间。

遥感数字图像处理期末复习资料

第一章概论 1、按图像的明暗程度和空间坐标的连续性,可以分为数字图像和模拟图像。 数字图像:可用计算机存储和处理,空间坐标和灰度均不连续。 模拟图像:计算机无法直接处理,空间坐标和明暗程度连续变化。 2遥感数字图像中的像素值称为亮度值(灰度值/DN值),它的高低由传感器所探测到的地物电磁波的辐射强度决定。 2、遥感数字图像处理的主要内容包括以下三个方面:图像增强、图像校正、信息提取。 1)图像增强:用来改善图像的对比度,突出感兴趣的地物信息,提高图像大的目视解译效果,它包括灰度拉伸、平滑、锐化、滤波、变换(K—L/K—T)、彩色合成、代数运算、融合等。 图像显示:为了理解数字图像中的内容,或对处理结果进行对比。 图像拉伸:为了提高图像的对比度(亮度的最大值与最小值的比值),改善图像的显示效果。 2)图像校正(恢复/复原):为了去除和压抑成像过程中由各种因素影响而导致的图像失真。 注意:图像校正包括辐射和几何校正,前者通过辐射定标和大气校正等处理将像素值由灰度级改变为辐照度或反射率,后者利用已有的参照系修改像素坐标,使得图像能够与地图匹配或多景图像之间可以相互匹配。 3)信息提取:从校正后的遥感数据中提取各种有用的地物信息。包括图像分割、分类等。 图像分割:用于从背景中分割出感兴趣的地物目标。分割的结果可作为监督分类的训练区。 图像分类:按照特定的分类系统对图像中像素的归属类别进行划分。 3、遥感数字图像处理系统:硬件系统(输入、存储、处理、显示、输出),软件系统。 4、数字图像处理的两种观点:离散方法(空间域)、连续方法(频率域) 第二章遥感图像的获取和存储 1、遥感是遥感信息的获取、传输、处理以及分析判读和应用的过程。遥感的实施依赖于遥感系统 2、遥感系统是一个从地面到空中乃至整个空间,从信息收集、储存、传输、处理到分析、判读、应 用的技术体系,主要包括遥感试验、信息获取(传感器、遥感平台)、信息传输、信息处理、信息应用等5个部分。 3、传感器按是否具有人工辐射源,可分为被动方式和主动方式;按数据记录方式,可分为成像方式 (摄影成像、扫描成像)和非成像方式。按成像原理分为摄影成像和扫描成像两类。 a)摄影成像:其传感器主要为摄影机,其基本特点是在快门打开后的一瞬间几乎同时收集目标 上所有的反射光,聚焦到胶片上成为一幅影像,并记录下来。 b)扫描成像:其特点逐点逐行地收集信息。 4、传感器分辨率指标主要有4个:辐射分辨率、光谱分辨率、空间分辨率和时间分辨率。 A.辐射分辨率:是传感器区分反射或发射的电磁波辐射强度差异的能力。高辐射分辨率意味着 可以区分信号强度的微小差异。在可见、近红外波段用噪声等效反射率表示,在热红外波段

相关主题
文本预览
相关文档 最新文档