当前位置:文档之家› acq气缸

acq气缸

acq气缸
acq气缸

电缸和气缸的区别分析

电缸与气缸的运行能耗分析 气缸驱动系统自20世纪70年代以来就在工业化领域得到了迅速普及. 气缸适用于作往复直线运动,尤其适用于工件直线搬运的场合.20世纪90年代开始,电机和微电子控制技术迅速发展,使电动执行器的应用迅速扩大.在气动执行器和电动执行器的选择上,特别是在工业自动化需求最多的PTP输送场合,一直没有充足的数据来论述两者选择标准. 本文从运行能耗的角度探讨两种执行器的能量消耗问题. 能耗评价方法 气动执行器运行消耗的是压缩空气. 压缩空气输送过程中,经过节流阀、管道弯头等阻性元件后,会有一定的压力损失. 另外由于工厂普遍存在接头、气缸或电磁阀处的空气泄露. 尽管安装时的泄漏量标准低于5%,但很多工厂的泄漏量10%~40% . 泄露也将导致一定的压力损失。气动执行器消耗的是压缩空气,需要将消耗压缩空气转化为压缩机的耗电. 而电动执行器可采用直接测量得到耗电量,因此可将两种执行器在相同工况下的耗电量作为能耗评价依据. 耗能过程 图一气动执行器耗电过程

图二 电动执行器耗电过程 测量气动执行器耗能流程 ~ 气动执行器的空气消耗量测量流程: ①打开截止阀,向储气罐中充满0. 75MPa 的压缩空气;②关闭截止阀,读取储气罐的压力,检查是否压力下降,以防空气泄露; ③设定减压阀的压力为0. 5MPa,气动执行器往复动作20次; ④读取储气 罐的最终压力,结束测量.系统中压缩空气消耗是一个固定容腔充放气 的过程,可利用差压法来计算压缩空气的消耗量. 气动执行器的运行能耗计算模型 设空压机组(含冷干机)的实际运行功率为Pc (W) ,空压机组的输出流量为Qc (m3 / s) , 则空压机组的比能量为Qc Pc =α,则气动执行器每次往复作动耗气折算成压缩机的能耗W 和平均消耗功率P 为W=β α-11*V (J), P = W f (W ). 式中,β为空气泄漏率; f 为执行器往复作动频率. V 1为气动执行器的空气消耗量m3 ,其中V RT p p V *0 )21(1ρ-=。V 为气罐和管路的所有容积(m3 ) ; T 为室温( K) ;R 为气体常数,对空气R = 287N ·m / ( kg ·K): ρ0 为标准状况下空气的密度. p1 为气罐的初始压力( Pa ) ; p2 为气罐的最终压力( Pa) . 电动执行器的运行能耗计算方法 测定方法. 利用电力计测量电动执行器和控制器在工作时每秒钟的功率. 测量结果通过A /D 板卡传送到PC 并保存起来,利用积分的方法,将工作时间内的功率曲线进行积分就得到电动执行器工作这段时间所消耗的电量. 气动执行器与电动执行器的运行能耗实验结果 通过实验我们可以清楚的看到两种执行器在相同工况的情况下,每次往返运动

有关气缸类型试题

习题 一、填空题 1.气门式配气机构由()和()组成。 2.四冲程发动机每完成一个工作循环,曲轴旋转()周,各缸的进、排气门各开启()次,此时凸轮轴旋转()周。 3.由曲轴到凸轮轴的传动方式有()、()和()等三种。 4.充气效率越高,进入气缸内的新鲜气体的量就(),发动机所发出的功率就()。 5.凸轮轴上同一气缸的进、排气凸轮的相对角位置与既定的()相适应。 6.根据凸轮轴的()和同名凸轮的()可判定发动机的发火次序。7.在装配曲轴和凸轮轴时,必须将()对准以保证正确的()和()。 8.气门弹簧座是通过安装在气门杆尾部的凹槽或圆孔中的()或()固定的。 9.气门由()和()两部分组成。 10.汽油机凸轮轴上的斜齿轮是用来驱动()和()的。而柴油机凸轮轴上的斜齿轮只是用来驱动()的。 二、选择题 1.设某发动机的进气提前角为α,进气迟关角为β,排气提前角为γ,排气迟关角为δ,则该发动机的进、排气门重叠角为()。A.α+δB.β+γC.α+γD.β+δ

2.排气门的锥角一般为() A.30°B.45°C.60°D.50° 3.四冲程四缸发动机配气机构的凸轮轴上同名凸轮中线间的夹角是()。A.180°B.60°C.90°D.120° 4.曲轴与凸轮轴之间的传动比为()。A.2:1 B.1:2 C.1:l D.4:1 5.曲轴正时齿轮一般是用()制造的。 A.夹布胶木B.铸铁C.铝合金D.钢 6.当采用双气门弹簧时,两气门的旋向()。 A.相同B.相反C.无所谓D.不一定 7.汽油机凸轮轴上的偏心轮是用来驱动()的。 A.机油泵B.分电器C.汽油泵D.A和B 8.凸轮轴上凸轮的轮廓的形状决定于()。 A.气门的升程B.气门的运动规律C.气门的密封状况D.气门的磨损规律 三、判断题 1.凸轮轴的转速比曲轴的转速快1倍。()改正: 2.气门间隙过大,发动机在热态下可能发生漏气,导致发动机功率下降。()改正: 3.气门间隙过大时,会使得发动机进气不足,排气不彻底。()改正: 4.曲轴正时齿轮是由凸轮轴正时齿轮驱动的。()改正: 5.对于多缸发动机来说,各缸同名气门的结构和尺寸是完全相同的,

plc控制气缸

神威气动https://www.doczj.com/doc/8d16386897.html, 文档标题:plc控制气缸 plc控制气缸的介绍: 引导活塞在缸内进行直线往复运动的圆筒形金属机件。空气在发动机气缸中通过膨胀将热能转化为机械能;气体在压缩机气缸中接受活塞压缩而提高压力。涡轮机、旋转活塞式发动机等的壳体通常也称“气缸”。气缸的应用领域:印刷(张力控制)、半导体(点焊机、芯片研磨)、自动化控制、机器人等等。 二、气缸种类: ①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。 ②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。 ③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。它的密封性能好,但行程短。 ④冲击气缸:这是一种新型元件。它把压缩气体的压力能转换为活塞高速(10~20米/秒) 运动的动能,借以做功。 ⑤无杆气缸:没有活塞杆的气缸的总称。有磁性气缸,缆索气缸两大类。 做往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴做摆动运动,摆动角小于280°。此外,还有回转气缸、气液阻尼缸和步进气缸等。 三、气缸结构: 气缸是由缸筒、端盖、活塞、活塞杆和密封件等组成,其内部结构如图所示: 2:端盖 端盖上设有进排气通口,有的还在端盖内设有缓冲机构。杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命。导向套通常使用烧结含油合金、前倾铜铸件。端盖过去常用可锻铸铁,为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的。 3:活塞 活塞是气缸中的受压力零件。为防止活塞左右两腔相互窜气,设有活塞密封圈。活塞上的耐磨环可提高气缸的导向性,减少活塞密封圈的磨耗,减少摩擦阻力。耐磨环长使用聚氨酯、聚四氟乙烯、夹布合成树脂等材料。活塞的宽度由密封圈尺寸和必要的滑动部分长度来决定。滑动部分太短,易引起早期磨损和卡死。活塞的材质常用铝合金和铸铁,小型缸的活塞有黄

气缸选择实际经验总结

如何选择合适的气缸(实际经验总结) 1、类型的选择 根据工作要求和条件,正确选择气缸的类型。要求气缸到达行程终端无冲击现象和撞击噪声应选择缓冲气缸;要求重量轻,应选轻型缸;要求安装空间窄且行程短,可选薄型缸;有横向负载,可选带导杆气缸;要求制动精度高,应选锁紧气缸;不允许活塞杆旋转,可选具有杆不回转功能气缸;高温环境下需选用耐热缸;在有腐蚀环境下,需选用耐腐蚀气缸。在有灰尘等恶劣环境下,需要活塞杆伸出端安装防尘罩。要求无污染时需要选用无给油或无油润滑气缸等。 2、安装形式 根据安装位置、使用目的等因素决定。在一般情况下,采用固定式气缸。在需要随工作机构连续回转时(如车床、磨床等),应选用回转气缸。在要求活塞杆除直线运动外,还需作圆弧摆动时,则选用轴销式气缸。有特殊要求时,应选择相应的特殊气缸。 3、作用力的大小 即缸径的选择。根据负载力的大小来确定气缸输出的推力和拉力。一般均按外载荷理论平衡条件所需气缸作用力,根据不同速度选择不同的负载率,使气缸输出力稍有余量。缸径过小,输出力不够,但缸径过大,使设备笨重,成本提高,又增加耗气量,浪费能源。在夹具设计时,应尽量采用扩力机构,以减小气缸的外形尺寸。 4、活塞行程 与使用的场合和机构的行程有关,但一般不选满行程,防止活塞和缸盖相碰。如用于夹紧机构等,应按计算所需的行程增加10~20㎜的余量。 5、活塞的运动速度 主要取决于气缸输入压缩空气流量、气缸进排气口大小及导管内径的大小。要求高速运动应取大值。气缸运动速度一般为50~800㎜/s。对高速运动气缸,应选择大内径的进气

管道;对于负载有变化的情况,为了得到缓慢而平稳的运动速度,可选用带节流装置或气—液阻尼缸,则较易实现速度控制。选用节流阀控制气缸速度需注意:水平安装的气缸推动负载时,推荐用排气节流调速;垂直安装的气缸举升负载时,推荐用进气节流调速;要求行程末端运动平稳避免冲击时,应选用带缓冲装置的气缸。 气缸的选型 程序1:根据操作形式选定气缸类型:气缸操作方式有双动,单动弹簧压入及单动弹簧压出等三种方式 程序2:选定其它参数: 1、选定气缸缸径大小根据有关负载、使用空气压力及作用方向确定 2、选定气缸行程工件移动距离 3、选定气缸系列 4、选定气缸安装型式不同系列有不同安装方式,主要有基本型、脚座型、法兰型、U型钩、轴耳型 5、选定缓冲器无缓冲、橡胶缓冲、气缓冲、油压吸震器 6、选定磁感开关主要是作位置检测用,要求气缸内置磁环 7、选定气缸配件包括相关接头 二、方向阀的选择 1、选用阀的适用范围应与使用现场的条件相一致。即应根据使用场合的气源压力大小、电源条件(交直流、电压大小及波动范围)、介质温度、湿度、环境温湿度、粉尘、振动等选用适合在此条件下可靠使用的阀。 2、选用阀的功能及控制方式应符合系统工作要求即应根据气动系统对元件的位置数、通路数、记忆性、静置时通断状态和控制方式等的要求选用符合所需功能及控制方式的阀。

气缸使用说明书 十

气缸使用说明书十 产品使用说明书 产品名称: 产品型号: ************有限公司 一、说明书的使用范围 本产品使用说明书是按气缸在一般气动系统中作为执行元件应用的情况下编写的,因此适用于一切普通单杆双作用、带缓冲的、无油润滑的、耐高温的,薄型的、方型的、微型的各种型号各种规格的标准气缸和在标准气缸基础上修改设计的非标准气缸。同时也适用于普通标准气缸的基础上开发设计的各种特殊气气缸。 二、气缸使用条件 1、气缸使用系统压力、介质温度应符合各型号气缸基本参数表

规定的基本参数值(见产品样本) 2、驱动气缸的压缩空气必须清洁、水份少、为此在气动系统回路中必须使用分水过滤器。 3、为了润滑气缸内部在气动系统回路中必须安装使用油雾器(无油润滑气缸可不用油雾器)。 三、气缸安装使用 1、气缸开箱安装前应检查气缸在运输过程中有无损坏、两端连杆螺母或螺纹连接处有无松动,清除防锈油及防护罩(帽)方可安装使用。 2、气缸安装时应注意气缸活塞杆不宜承受偏心载荷或横向载荷,应使载荷的运动方向与活塞杆轴心线一致,对与长行程气缸负载和活塞杆的连接最好采用可活动的V型接头或关节接头。无论任何安装形式都必须保证气缸安装底座有足够的刚度。 3、气缸缸体在水平使用时,可用“三点法”进行检验。首先使用活塞杆与负载相连接,当活塞杆全部伸出时,在杆的中间放一水准仪观察水平情况;其次当活塞杆处于中间位置时,在靠近气缸前端盖处的活塞杆上放一水准仪观察情况;最后当活塞杆处于退回位置时,应无别劲现象。长行程气缸卧式安装时,为了防止活塞杆下垂、缸筒变形,须设置适当支撑。 4、采用前后法兰、脚架式安装的气缸,应避免装螺栓直接承受推力或拉力的负荷。 5、采用尾部单双耳的气缸或中间摆动的气缸时活塞杆顶端连接

双作用气缸的速度控制21页word文档

双作用气缸的速度控制 教学目标: 1、知识与技能 1)、掌握各元件的名称、符号、功用; 2)、读懂原理图,并利用原理图连接气路; 3)、通过气路连接、控制,了解元件的工作原理; 2、过程与方法: 首先讲解各元器件的名称、符号、功用和原理图;其次通过老师的连接演示,启发学生;然后由学生自己动手进行气路连接和操作,通过实验由学生自己分析实验现象,进行总结。 3、情感态度价值观: 培养学生分析问题,解决问题的能力。 教学重点: 1、各元器件的名称、符号、功用; 2、气路连接 3、现象分析 教学难点: 气路连接及现象分析 教学方法: 讲授、演示、实操 课时安排: 2课时

课前准备: 各实验实训用元件 教学过程: 课堂小结: 这一节主要实验了双作用气缸的速度控制,在这里要注意各元器件的

功用、符号、名称 作业: 实验报告一份 板书设计: 一、实验目的: 二、实验元件: 三、实验原理图: 四、实验步骤: 五、实验现象记录: 1、刚开始通气时,气缸如何动作? 2、分别按下按钮常闭阀1和2,气缸如何动作? 3、分别调节单向节流阀1和2,气缸动作有何变化? 六、现象分析: 双作用气缸的与逻辑功能控制 教学目标: 2、知识与技能 1)、掌握各元件的名称、符号、功用; 2)、读懂原理图,并利用原理图连接气路; 3)、理解与逻辑功能; 2、过程与方法: 首先讲解各元器件的名称、符号、功用和原理图;其次通过老师的连接演示,启发学生;然后由学生自己动手进行气路连接和操作,

通过实验由学生自己分析实验现象,进行总结。 4、情感态度价值观: 培养学生分析问题,解决问题的能力。 教学重点: 4、各元器件的名称、符号、功用; 5、气路连接 6、现象分析 教学难点: 气路连接及现象分析 教学方法: 讲授、演示、实操 课时安排: 2课时 课前准备: 各实验实训用元件 教学过程:

气缸控制回路

气动教程:电气动回路 1029人阅读| 0条评论发布于:2009-5-15 15:03:00 一、双作用气缸直接控制回路(单电控) 按下按钮开关,气缸的活塞杆向前伸出;松开按钮开关,活塞杆回复到气缸的末端。 二、双作用气缸间接控制回路(双电控) 按下按钮开关,气缸的活塞杆向前伸出;松开按钮开关,活塞杆回复到气缸的末端。 三、双作用气缸逻辑“与”控制回路(直接控制) 按下两个按钮开关,气缸活塞向前伸出;松开一个或两个按钮开关,活塞杆回复到气缸末端

四、双作用气缸逻辑“或”控制回路(间接控制) 任意按下一个按钮开关,气缸活塞向前伸出;松开这个按钮开关,活塞杆回复到气缸末端。 五、双作用气缸自锁回路(断开、导通优先) 按下一个按钮开关,气缸活塞向前伸出;按下另一个按钮开关,则气缸活塞杆回到初始位置。若同时按下两个按钮,气缸的活塞杆不动(断开优先)。若同时按下两个按钮,气缸的活塞杆仍向前伸出(导通优先)。

六、双作用气缸往返运动控制回路(行程开关) 按下控制开关,气缸活塞杆作往返运动;再按一次这个控制开关则停止运行。 七、双作用气缸往返运动控制回路(非接触) 按下一个按钮开关,气缸活塞杆往返运动;按下另一个开关则停止运行。

八、双气缸的顺序控制回路 1.按一下按钮开关S1,气缸1活塞杆向前伸出把盒子往前推至气缸2正下方; 2.当气缸1活塞杆到达1B2时,气缸2的活塞杆向下伸出,在盒子上盖章;同时气缸1回缩复位至1B1; 3.气缸2活塞杆到达2S2盖完章后,自动回缩复位。 九、双缸时间控制回路 1. 静止状态下,气缸1活塞杆回缩在末端,气缸2活塞杆伸出。 2. 按下一个按钮开关,气缸1活塞杆向前伸出,同时气缸2的活塞杆回缩复位;3s后,气缸1的活塞杆回缩复位,同时气缸2活塞杆向前伸出。2s后,气缸1活塞杆再次向前伸出,同时气缸2的活塞杆回缩复位,如此往复。 3. 再次按下按钮开关,气缸运动停止。

FESTO气缸种类分析

气缸整理 气缸主要作用是通过压缩空气的开关流向实现伸缩和摆动等动作。(一).目前,公司所用到的气缸主要有以下几种类型: 一.无导向气缸 1.圆缸 需传感器安装支架 2.方缸 3.紧凑型气缸

二.有导向气缸 1.带滑块的气缸: a.DGSL 滑块 精确度高,封闭式滚珠导向,重复精度高, 两端采用弹性缓冲,并且不带金属挡块 b.SLF 滑块 扁平结构带高精度滚珠导轨和可调端位 c. SLF, SLS, SLT 滑块 窄型结构带高精度滚珠导轨 d. SLT滑台 高精度,耐重载的滚珠导轨和可调刚性端位。 e. 滑动单元(双活塞) SPZ 双活塞杆, 2.带导杆的气缸 a微型导向驱动器 DFC 带滑动导轨.

?直径 4, 6, 10 mm ?行程5 … 30 mm ?输出力7,5 … 47 N ? b中型导向驱动器 DFM 导向气缸,内置导轨 C高精度导杆气缸 DFP 导向气缸,抗扭转, 双活塞杆. d紧凑型气缸 ADVUL 带防止活塞转动的导柱 e导向驱动单元 SLE 直线驱动单元可配置 圆缸加配件 3.双活塞杆的气缸DPZ 带两根平行的活塞杆,位置感测,终端带弹性缓冲环 三.其它气缸

1.直线摆动夹紧缸 CLR 夹紧系统,具有直线及摆动动作,90度向右 2.摆动气缸 带可调液压缓冲器和能补偿间隙的齿轮系统. 摆动角度 0 (360) 用于搬运和装配的系统产品. 3.平行气爪/旋转气爪 自对中,内抓取或外抓取,182°摆角,位置感测 4.夹紧模块

5.气囊式气缸 6.无杆气缸 7.膜片式气缸

8.多位置气缸 (二)常见的气缸附件 (三).气缸常见故障 故障原因分析排除方法 外泄漏活塞杆端漏气 活塞杆安装偏心 润滑油供应不足 活塞密封圈磨损 活塞杆轴承配合面有杂质 活塞杆有伤痕 重新安装调整,使活塞杆不受偏心和横 向负荷。 检查油雾器是否失灵。 更换密封圈。 清洗除去杂质,安装更换防尘罩。 更换活塞杆。 缸筒与缸盖间漏气 缓冲调节处漏气 内 泄 漏活塞两端串气活塞密封圈损坏 润滑不良 活塞被卡住,活塞配合面 有缺陷。 杂质挤入密封面 更换密封 检查油雾器是否失灵 重新安装调整,使活塞杆不受偏心和横 向负荷。 除去杂质,采用净化压缩空气。 输出力不足动作不平稳润滑不良 活塞或活塞杆卡住 供气流量不足 有冷凝水杂质 检查油雾器是否失灵 重新安装调整,消除偏心横向负荷。 加大连接或管接头口径 注意用净化干燥压缩空气,防止水凝结。 缓冲效果不良缓冲密封圈磨损 调节螺钉损坏 汽缸速度太快 更换密封圈 更换调节螺钉 注意缓冲机构是否适合 损伤活塞杆损坏有偏心横向负荷 活塞杆受冲击负荷 气缸的速度太快 消除偏心横向负荷 冲击不能加在活塞杆上 设置缓冲装置

【CN109812454A】一种自驱动气缸【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910187869.4 (22)申请日 2019.03.01 (71)申请人 浙江师范大学 地址 321004 浙江省金华市婺城区迎宾大 道688号浙江师范大学 (72)发明人 王淑云 杨泽盟 刘晨欣 马继杰  唐红艳 曾平  (51)Int.Cl. F15B 1/04(2006.01) F15B 11/036(2006.01) F15B 11/04(2006.01) F15B 11/17(2006.01) F15B 13/02(2006.01) F15B 13/06(2006.01) F15B 15/14(2006.01) F15B 15/20(2006.01) H02N 2/06(2006.01)F04B 35/04(2006.01) (54)发明名称 一种自驱动气缸 (57)摘要 本发明属气动技术领域,具体涉及一种自驱 动气缸。带进出口阀的端盖装在壳体的左右两端 并与缸腔及活塞构成左右缸腔;壳体上下两侧装 有盖板,盖板经密封圈将换能器压接在壳体的泵 腔内并与壳体和盖板分别构成内外泵腔;盖板将 密封环压接在壳体的两个沉腔内形成进出孔腔; 进孔腔与各内泵腔及出孔腔依次串联构成内泵, 进孔腔与各外泵腔及出孔腔依次串联构成外泵; 壳体上下两侧的内外泵经分别并联成上下供气 单元,上下供气单元串联;下供气单元的出孔与 左右进口阀连接;换能器由两个驱动器及垫圈构 成,驱动器由基板与压电片构成;换能器的驱动 单元受直流驱动电压作用变形并使传感单元输 出电压达到极值时驱动电压换向,驱动器实现自 激驱动。权利要求书1页 说明书4页 附图4页CN 109812454 A 2019.05.28 C N 109812454 A

气体气缸的工作原理

气缸的工作原理 1.2.1 单作用气缸 单作用气缸只有一腔可输入压缩空气,实现一个方向运动。其活塞杆只能借助外力将其推回;通常借助于弹簧力,膜片张力,重力等。 其原理及结构见图42.2-2。 图42.2-2 单作用气缸 1—缸体;2—活塞;3—弹簧;4—活塞杆; 单作用气缸的特点是: 1)仅一端进(排)气,结构简单,耗气量小。 2)用弹簧力或膜片力等复位,压缩空气能量的一部分用于克服弹簧力或膜片张力,因而减小了活塞杆的输出力。 3)缸内安装弹簧、膜片等,一般行程较短;与相同体积的双作用气缸相比,有效行程小一些。 4)气缸复位弹簧、膜片的张力均随变形大小变化,因而活塞杆的输出力在行进过程中是变化的。 由于以上特点,单作用活塞气缸多用于短行程。其推力及运动速度均要求不高场合,如气吊、定位和夹紧等装置上。单作用柱塞缸则不然,可用在长行程、高载荷的场合。 1.2.2 双作用气缸 双作用气缸指两腔可以分别输入压缩空气,实现双向运动的气缸。其结构可分为双活塞杆式、单活塞杆式、双活塞式、缓冲式和非缓冲式等。此类气缸使用最为广泛。 1)双活塞杆双作用气缸双活塞杆气缸有缸体固定和活塞杆固定两种。其工作原理见图42.2-3。 缸体固定时,其所带载荷(如工作台)与气缸两活塞杆连成一体,压缩空气依次进入气缸两腔(一腔进气另一腔排气),活塞杆带动工作台左右运动,工作台运动范围等于其有效行程s的3倍。安装所占空间大,一般用于小型设备上。 活塞杆固定时,为管路连接方便,活塞杆制成空心,缸体与载荷(工作台)连成一体,压缩空气从空心活塞杆的左端或右端进入气缸两腔,使缸体带动工作台向左或向左运动,工作台的运动范围为其有效行程s的2倍。适用于中、大型设备。 图42.2-3 双活塞杆双作用气缸

气缸的结构及基本原理

气缸的结构及基本原理 一、气缸-气缸种类 气压传动中将压缩气体的压力能转换为机械能的气动执行元件。气缸有作往复直线运动的和作往复摆动的两类(见图)。作往复直线运动的气缸又可分为单作用、双作用、膜片式和冲击气缸 4种。 ①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。 ②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。 ③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。它的密封性能好,但行程短。 ④冲击气缸:这是一种新型元件。它把压缩气体的压力能转换为活塞高速(10~20米/秒)运动的动能,借以作功。冲击气缸增加了带有喷口和泄流口的中盖。中盖和活塞把气缸分成储气腔、头腔和尾腔三室。它广泛用于下料、冲孔、破碎和成型等多种作业。作往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴作摆动运动,摆动角小于 280°。此外,还有回转气缸、气液阻尼缸和步进气缸等。 二、气缸的作用: 将压缩空气的压力能转换为机械能,驱动机构作直线往复运动、摆动和旋转运动。 三、气缸的分类: 直线运动往复运动的气缸、摆动运动的摆动气缸、气爪等。 四、气缸的结构: 气缸是由缸筒、端盖、活塞、活塞杆和密封件组成。 五、SMC气缸原理图 1)缸筒 缸筒的内径大小代表了气缸输出力的大小。活塞要在缸筒内做平稳的往复滑动,缸筒内表面的表面粗糙度应达到Ra0.8um。对钢管缸筒,内表面还应镀硬铬,以减小摩擦阻力和磨损,并能防止锈蚀。缸筒材质除使用高碳钢管外,还是用高强度铝合金和黄铜。小型气缸有使用不锈钢管的。带磁性开关的气缸或在耐腐蚀

气缸的工作原理.pdf

气动执行元件和控制元件 气动执行元件是一种能量转换装置,它是将压缩空气的压力能转化为机械能,驱动机构实现直线往复运动、摆动、旋转运动或冲击动作。气动执行元件分为气缸和气马达两大类。气缸用于提供直线往复运动或摆动,输出力和直线速度或摆动角位移。气马达用于提供连续回转运动,输出转矩和转速。 气动控制元件用来调节压缩空气的压力流量和方向等,以保证执行机构按规定的程序正常进行工作。气动控制元件按功能可分为压力控制阀、流量控制阀和方向控制阀。 第一节气缸 一、气缸的工作原理、分类及安装形式 1.气缸的典型结构和工作原理 图13-1 普通双作用气缸 1、3-缓冲柱塞 2-活塞 4-缸筒 5-导向套 6-防尘圈7-前端盖 8-气口 9- 传感器 10-活塞杆 11-耐磨环 12-密封圈 13-后端盖 14-缓冲节流阀 以气动系统中最常使用的单活塞杆双作用气缸为例来说明,气缸典型结构如图13-1所示。它由缸筒、活塞、活塞杆、前端盖、后端盖及密封件等组成。双作用气缸内部被活塞分成两个腔。有活塞杆腔称为有杆腔,无活塞杆腔称为无杆腔。 当从无杆腔输入压缩空气时,有杆腔排气,气缸两腔的压力差作用在活塞上所形成的力克服阻力负载推动活塞运动,使活塞杆伸出;当有杆腔进气,无杆腔排气时,使活塞杆缩回。若有杆腔和无杆腔交替进气和排气,活塞实现往复直线运动。 2.气缸的分类 气缸的种类很多,一般按气缸的结构特征、功能、驱动方式或安装方法等进行分类。分类的方法也不同。按结构特征,气缸主要分为活塞式气缸和膜片式气缸两种。按运动形式分为直线运动气缸和摆动气缸两类。 3.气缸的安装形式 气缸的安装形式可分为 1)固定式气缸 气缸安装在机体上固定不动,有脚座式和法兰式。 2)轴销式气缸 缸体围绕固定轴可作一定角度的摆动,有U形钩式和耳轴式。 3)回转式气缸 缸体固定在机床主轴上,可随机床主轴作高速旋转运动。这种气缸常用于机床上气动卡盘中,以实现工件的自动装卡。 4)嵌入式气缸 气缸缸筒直接制作在夹具体内。 二、常用气缸的结构原理 1.普通气缸 包括单作用式和双作用式气缸。常用于无特殊要求的场合。 图13-2为最常用的单杆双作用普通气缸的基本结构,气缸一般由缸筒、前后缸盖、活塞、活塞杆、密封件和紧固件等零件组成。

FESTO气缸工作原理

FESTO气缸工作原理 1.2.1 单作用气缸 单作用气缸只有一腔可输入压缩空气,实现一个方向运动。其活塞杆只能借助外力将其推回;通常借助于弹簧力,膜片张力,重力等。 它由四个部分组成:缸体;活塞;弹簧;活塞杆; 单作用气缸的特点是: 1)仅一端进(排)气,结构简单,耗气量小。 2)用弹簧力或膜片力等复位,压缩空气能量的一部分用于克服弹簧力或膜片张力,因而减小了活塞杆的输出力。 3)缸内安装弹簧、膜片等,一般行程较短;与相同体积的双作用气缸相比,有效行程小一些。 4)气缸复位弹簧、膜片的张力均随变形大小变化,因而活塞杆的输出力在行进过程中是变化的。 由于以上特点,单作用活塞气缸多用于短行程。其推力及运动速度均要求不高场合,如气吊、定位和夹紧等装置上。单作用柱塞缸则不然,可用在长行程、高载荷的场合。 1.2.2 双作用气缸 双作用气缸指两腔可以分别输入压缩空气,实现双向运动的气缸。其结构可分为双活塞杆式、单活塞杆式、双活塞式、缓冲式和非缓冲式等。此类气缸使用最为广泛。 1)双活塞杆双作用气缸双活塞杆气缸有缸体固定和活塞杆固定两种。 缸体固定时,其所带载荷(如工作台)与气缸两活塞杆连成一体,压缩空气依次进入气缸两腔(一腔进气另一腔排气),活塞杆带动工作台左右运动,工作台运动范围等于其有效行程s的3倍。安装所占空间大,一般用于小型设备上。 活塞杆固定时,为管路连接方便,活塞杆制成空心,缸体与载荷(工作台)连成一体,压缩空气从空心活塞杆的左端或右端进入气缸两腔,使缸体带动工作台向左或向左运动,工作台的运动范围为其有效行程s的2倍。适用于中、大型设备。

1)双活塞杆气缸因两端活塞杆直径相等,故活塞两侧受力面积相等。当输入压力、流量相同时,其往返运动输出力及速度均相等。 2)缓冲气缸对于接近行程末端时速度较高的气缸,不采取必要措施,活塞就会以很大的力(能量)撞击端盖,引起振动和损坏机件。为了使活塞在行程末端运动平稳,不产生冲击现象。在气缸两端加设缓冲装置,一般称为缓冲气缸。缓冲气缸主要由活塞杆、活塞、缓冲柱塞、单向阀、节流阀、端盖等组成。其工作原理是:当活塞在压缩空气推动下向右运动时,缸右腔的气体经柱塞孔及缸盖上的气孔排出。在活塞运动接近行程末端时,活塞右侧的缓冲柱塞将柱塞孔堵死、活塞继续向右运动时,封在气缸右腔内的剩余气体被压缩,缓慢地通过节流阀及气孔排出,被压缩的气体所产生的压力能如果与活塞运动所具有的全部能量相平衡,即会取得缓冲效果,使活塞在行程末端运动平稳,不产生冲击。调节节流阀阀口开度的大小,即可控制排气量的多少,从而决定了被压缩容积(称缓冲室)内压力的大小,以调节缓冲效果。若令活塞反向运动时,从气孔输入压缩空气,可直接顶开单向阀,推动活塞向左运动。如节流阀阀口开度固定,不可调节,即称为不可调缓冲气缸。 气缸所设缓冲装置种类很多,上述只是其中之一,当然也可以在气动回路上采取措施,达到缓冲目的。 1.2.3 组合气缸 组合气缸一般指气缸与液压缸相组合形成的气-液阻尼缸、气-液增压缸等。众所周知,通常气缸采用的工作介质是压缩空气,其特点是动作快,但速度不易控制,当载荷变化较大时,容易产生“爬行”或“自走”现象;而液压缸采用的工作介质是通常认为不可压缩的液压油,其特点是动作不如气缸快,但速度易于控制,当载荷变化较大时,采用措施得当,一般不会产生“爬行”和“自走”现象。把气缸与液压缸巧妙组合起来,取长补短,即成为气动系统中普遍采用的气-液阻尼缸。 气-液阻尼缸实际是由气缸与液压缸串联而成,两活塞固定在同一活塞杆上。液压缸不用泵供油,只要充满油即可,其进出口间装有液压单向阀、节流阀及补油杯。当气缸右端供气时,气缸克服载荷带动液压缸活塞向左运动(气缸左端排气),此时液压缸左端排油,单向阀关闭,油只能通过节流阀流入液压缸右腔及油杯内,这时若将节流阀阀口开大,则液压缸左腔排油通畅,两活塞运动速度就快,反之,若将节流阀阀口关小,液压缸左腔排油受阻,两活塞运动速度会减慢。这样,调节节流阀开口大小,就能控制活塞的运动速度。可以看出,气液阻尼缸的输出力应是气缸中压缩空气产生的力(推力或拉力)与液压缸中

气缸十大品牌排行榜 知名的气缸品牌有哪些参考资料

气缸十大品牌排行榜知名的气缸品牌有哪些 作为一种常用的气动元件,气缸在在电子元器件中的应用也极为广泛。我们在选择气缸类型时,将不再仅仅考虑气缸的类型、安装形式、作用力大小、活塞行程及运动速度等因素,而是将品牌纳入了选购的重要标准之列,高端营销推广平台鹿豹座(广告)根据业内相关指标的综合评价总结了十大气缸品牌,我们一起去看看。 品牌一:西派格 一九九五年的三月,意大利西派格(cy.pag)气缸有限公司就已开始在工业自动化领域内专注于气缸的研发与制造。西派格公司与许多世界知名公司有着长期良好的合作关系;并且世界各地拥有众多的分销商。如今西派格气缸畅销世界50多个国家和地区;出口量占全公司总销售额的60%。 品牌二:肯呐特 英国肯呐特有限公司(KINETROL LIMITED)成立于1958年,是叶片式旋转气缸的发明者,并在多个国家拥有专利,英国肯呐特有限公司自成立以来,已生产了几百万套旋转气缸和其控制模块,在工业领域中得到了广泛的使用,其高可靠性的产品得到了广大用户的信任。 品牌三:三和(SANWO) 韩国三和(SANWO)1981年三和技研成立,1995年首次获得ISO9001品质认证,2001年被韩国政府批准为进出口公司,2002年建立三和EOCR公司,有国内外多次授奖经历。 品牌四:BIMBA 美国BIMBA 公司成立于1957年,是美国最大气缸生产商之一。其再全球与150个合作伙伴一起运营五个制造厂,已成为北美地区最大的气缸生产厂。 BIMBA气缸,以其卓越的性能品质,占有北美60%市场。 品牌五:亚德客 亚德客国际集团是全球知名专业生产各类气动器材的大型国际集团,致力于向客户提供满足其需求的气动控制元件、气动执行元件、气源处理元件、气动辅助元件等各类气动器材、服务和解决方案,为客户创造长期的价值和潜在的增长。 品牌六:新恭 台湾新恭股份有限公司成立于1980年,创立“SHAKO”品牌,是台湾最具实力的空压组件研发与生产厂家。济南新恭气动机械有限公司,主要负责台湾新恭产品的销售与服务。公司在气动工业尖端技术领域不断探索,以保持在工业制造技术上的领先地位。 品牌七:华能 中国华能集团公司是经国务院批准成立的国有重要骨干企业。是国家授权投资的机构和国家控股公司的试点,是世界500强企业。按照国务院关于国家电力体制改革的要求,中国华能集团公司是自主经营、自负盈亏,以经营电力产业为主,综合发展的企业法人实体。 品牌八:SMC SMC CORPORATION 成立于1959年,总部设在日本东京都。时至今日,SMC已成为世界级的气动元件研发、制造、销售商。在日本本土更拥有庞大的市场网络,为客户提供产品及售后服务。SMC作为世界最著名的气动元件制造和销售的跨国公司,其销售网及生产基地遍布世界。 品牌九:费斯托(FESTO) Festo AG & Co. KG 是世界上最著名的气动元件、组件和系统的生产厂商。公司总部位于德国Esslingen。费斯托(中国)有限公司是它于 1993 年在中国大陆设立的独资子公司,FESTO公司是全球气动元件制造商中第一家通过ISO 9001 质量认证的企业。 品牌十:KINGPOWER 昆山望展机械有限公司系是从研发,制造,到销售一体化服务所成立之企业。公司本着

亚德客气缸系列与特点

亚德客气缸系列与特点 irTAC亚德客企业是台湾最大之气动元件生产商。主要项目有电磁阀、气缸、气源处理器、手动阀、机动阀、脚踏阀及油压缓冲器等。 气缸的特点document.write('')是: 1)仅一端进(排)气,结构简单,耗气量小。 2)用弹簧力或膜片力等复位,压缩空气能量的一部分用于克服弹簧力或膜片张力,因而减小了活塞杆的输力。 3)缸内安装弹簧、膜片等,一般行程较短;与相同体积的双作用气缸相比,有效行程小一些。 4)气缸复位弹簧、膜片的张力均随变形大小变化,因而活塞杆的输出力在行进过程中是变化的。 由于以上特点,单作用活塞气缸多用于短行程。其推力及运动速度均要求不高场合,如气吊、定位和夹紧等装置上。单作用柱塞缸则不然,可用在长行程、高载荷的场合。 气缸系列document.write(''): SI气缸标准气缸(无拉杆式)标准气缸(拉杆式)不锈钢迷你气缸铝合金迷你气缸超大型薄气缸多位置固定气缸双轴气缸滑如气缸等; 台湾亚德客(AIRTAC)电磁阀(三口二位/五口二三位);手动阀(三口二位/五口二三位);电磁阀(二口二位); 台湾亚德客(AIRTAC)电磁阀型号:4V310/4V320/4V330/4A310/4A320/4A330系列电磁阀4V330V-10、 4V330C-10DC24V、4V310-10AC220V 台湾亚德客(AIRTAC)气源处理元件:ACBC系列三联件,AFCBFC系列二联件, 台湾亚德客(AIRTAC)AFRBFR系列调压过滤器,AFBF系列过滤器, 台湾亚德客(AIRTAC)ARBR系列调节器压阀,AXBL系列给油器,SR系列调压阀, 系列: 4v,4A,4F,4H,3V1,2V,2W,2S,2L,2P,FRLs,S3,SC,SU,SI,MAL,MA,MAC,TN,SDA,SDAS,AC,AD,CS1,MD,STM,ASC... 功能:2/2,3/2,4/2,5/2,5/3 接口:M5,1/8,1/4,3/8,1/2 缸径:16,20,25,32,40,50,63,80,100,125,160,200 选项:常闭,常开,NAMUR安装,管接式,匯流板式,單作用,双作用,双轴可调气缸,多位置行程,轴芯止回转型类别档案 薄型气缸SDA,SSA,STA,SDAD,SDAJ,SDAT,SDAW,SDASensorSwitch 不绣钢气缸MA,MAC,MSA,MAD,MACD,MAJ,MACJ,MAR, MARCMAAccessories&SensorSwitch 铝合金气缸MAL,MSAL,MALD,MALJ,MALAccessories&SensorSwitch 标准气缸SC SC,SCD,SCJ,SCT,SCAccessories&SensorSwitch 标准气缸SU SU,SUD,SUJ,SUAccessories&SensorSwitch ISO气缸SI SI,SID.SIJ,SIAccessories&SensorSwitch 自由安装气缸MD,MSD,MTD,MDD,MDJ,MK,MSK,MTK,MKD,MKJ,MDSensorSwitch

气缸的选型

1.气缸的选型步骤 气缸的选型应根据工作要求和条件,正确选择气缸的类型。下面以单活塞杆双作用缸为例介绍气缸的选型步骤。 (1)气缸缸径。根据气缸负载力的大小来确定气缸的输出力,由此计算出气缸的缸径。 (2)气缸的行程。气缸的行程与使用的场合和机构的行程有关,但一般不选用满行程。 (3)气缸的强度和稳定性计算 (4)气缸的安装形式。气缸的安装形式根据安装位置和使用目的等因素决定。一般情况下,采用固定式气缸。在需要随工作机构连续回转时(如车床、磨床等),应选用回转气缸。在活塞杆除直线运动外,还需作圆弧摆动时,则选用轴销式气缸。有特殊要求时,应选用相应的特种气缸。 (5)气缸的缓冲装置。根据活塞的速度决定是否应采用缓冲装置。 (6)磁性开关。当气动系统采用电气控制方式时,可选用带磁性开关的气缸。 (7)其它要求。如气缸工作在有灰尘等恶劣环境下,需在活塞杆伸出端安装防尘罩。要求无污染时需选用无给油或无油润滑气缸。 2.气缸直径计算 气缸直径的设计计算需根据其负载大小、运行速度和系统工作压力来决定。首先,根据气缸安装及驱动负载的实际工况,分析计算出气缸轴向实际负载F,再由气缸平均运行速度来选定气缸的负载率θ,初步选定气缸工作压力(一般为 ,最后计算出缸径及杆0.4MPa~0.6MPa),再由F/θ,计算出气缸理论出力F t 径,并按标准圆整得到实际所需的缸径和杆径。

例题气缸推动工件在水平导轨上运动。已知工件等运动件质量为m=250kg,工件与导轨间的摩擦系数μ=0.25,气缸行程s为400mm,经1.5s时间工件运动到位,系统工作压力p=0.4MPa,试选定气缸直径。 解:气缸实际轴向负载 F=mg=0.25?250?9.81=613.13N 气缸平均速度 选定负载率 θ=0.5 则气缸理论输出力 双作用气缸理论推力 气缸直径 按标准选定气缸缸径为63mm。

双气缸控制

双气缸控制 继电器逻辑电路系列文章(谨以此书献给广大的电工朋友 图1. 气缸和行程开关的分布 这个电路的要求: 当按下启动开关后,气缸A前进,压住行程开关K1后,气缸B前进,气缸B碰到K2后退,碰到K3后,气缸A退回,全过程结束. 气缸由二位四通电磁阀控制,常态下使气缸保持在后止点,得电后气缸前进. 象这样的电路说难不难,说易不易.关键在于对信号的认识和处理,时序图的绘制. 和我的另一篇文章<气缸的四行程控制>相比,这个电路要简单些,但是有共同之处. 对于信号的分类,可以分为 1.瞬时信号 2.持续信号 3.启动信号 4.停止信号 5.额外启动信号 6额外停止信号.在本例中,K1就是一个持续信号,它一直保持到过程的结束,如果有继电器以它为启动信号,而这个继电器并不工作到终点,就要考虑如何停止的问题. 根据信号的出现顺序和控制要求,画出以下时序图

从上图看得出:气缸A(YV1)实际上是全程通电,气缸B(YV2)是在K1到K2区间工作. K1是一个持续信号,一直保持到终点.K1和K2之间有一个额外信号K3,它是气缸B在前进过程中必须要碰到行 程开关K3所发出的. 现在我们按照一般思路来设计电路,给气缸A和B各分配一个继电器J1和J2,对应各自的工作区间.J1的启动由按钮发出,停止信号由K3发出. J 2由K1启动,K2停止.电路如下 上面的电路能达到控制要求吗?肯定不行

根据气缸布置图和时序图,很容易看出问题: 1.气缸A是保持不到终点的,因为气缸B开始向前运动时会碰到K3, 它会使气缸A(电磁阀YV1)提前断电. 这是因为继电器J1选择了以K3为停止信号,但是K3提前出现了一次,破坏了程序. 我们把K3称之为“额外停止信号”,想办法把它排除就可以了,这里我 们并联J2的触点来排除,如下图 我们在行程开关K3上并联2号继电器的常开触点,就解决了1号继电器提前停止的问题. 因为气缸B前进时要启动2号继电器, 它在K3上并联的常开触点闭合,然后K3再动作时1号继电器就不会 断电了. 2.我们发现气缸B(电磁阀YV2,继电器2)的动作也不对,它由K1启动 向前运动,然后压下K2,断电后退,工作过程完成.但气缸B后退会让 K2复位,气缸又向前运动-------如此反复不止,出现振荡现 象. 原因就在于K1是一个持续信号,虽然K2想让它停下来,但只要 K2不被压住,这个支路又通电了,如下图

生产工艺简介

混凝土产品生产工艺:混凝土搅拌站的混合搅拌过程,为物理反应,无化学反应,一般采用配料机对骨料-砂石进行配比,运送到搅拌机,同时添加计量好的水泥及外加剂等粉料及水料,输送到搅拌机,由搅拌机对这些物料进行均匀搅拌,达到搅拌匀度生产出成品混凝土。现在,大型混凝土搅拌站的整个操作过程现在都是在电脑控制下进行,采用自动化配比,自动化输送和自动化搅拌工艺,能便捷的生产出建筑专用混凝土,具体混凝土生产过程如下: 一、骨料称量:所需骨料包括砂石料,由汽车运至厂区(要求混凝土所需骨料需符合使用标准,或经过洗石机洗石达标的骨料),再分别用装载机装入密闭骨料仓,在骨料仓下方均接一个计量称,分别对各种骨料按质量配比称量,称好的骨料由皮带输送机(半封闭)输送到骨料过渡仓,由过渡仓开门落至混凝土搅拌机内搅拌。 二、粉料称量(水泥、粉煤灰等):所需的粉料由密封罐车运至厂区,再由罐车或其它输送装置通过压缩空气泵打入立式粉料仓,开启蝶阀,粉料落入螺旋输送机,再由螺旋输送机输送到称量斗称量,称量按骨料的配比误差进行扣称,称好的水泥由水泥称量斗下的气缸开启蝶阀滑入混凝土搅拌机搅拌。 三、水称量:所需的水由水泵把水池的水抽入称量箱称量,称好的水由增压泵抽出经喷水器喷入搅拌机。 四、外加剂称量:所需的添加剂由自吸泵从添加剂箱内抽至称量箱称量,称好的添加剂投入水箱经喷水器喷入混凝土搅拌机。

五、混凝土搅拌站的搅拌主机进行搅拌:骨料、粉料、水及外加剂等是按照设定的时间投入混凝土搅拌机的,进入混凝土搅拌机的物料在相互反转的两根搅拌轴上的双道螺旋叶片的搅拌下,使物料产生挤压,磨擦、剪切、对流,从而进行剧烈的强制掺合,搅拌时间到时,由搅拌机开门装置的气缸将门打开,由叶片将已搅拌好的混凝土推到等待在混凝土搅拌机下的运输车(在进入运输车之前先取一部分搅拌好的混凝土进行抽测试验,检验是否满足要求),合格后全部推出后关门进入下一个搅拌循环,成品料由混凝土罐车运往施工现场。

相关主题
文本预览
相关文档 最新文档