当前位置:文档之家› 离散时间系统的时域分析--一阶和二阶差分方程求解9页word文档

离散时间系统的时域分析--一阶和二阶差分方程求解9页word文档

离散时间系统的时域分析--一阶和二阶差分方程求解9页word文档
离散时间系统的时域分析--一阶和二阶差分方程求解9页word文档

课程设计任务书

目录

1 引言 (1)

2 Matlab7.0入门 (1)

3 利用Matlab 7.0实现一阶和二阶差分方程求解的设计 (2)

3.1 设计原理分析 (2)

3.1.1 差分方程定义 (2)

3.1.2 差分方程的意义与应用 (2)

3.1.3 用MATLAB仿真时用的相关函数说明 (3)

3.2 一阶和二阶差分方程求解的编程设计及实现 (4)

3.2.1 设计函数思路 (4)

3.2.2 理论计算 (4)

3.2.3 设计过程记录及运行结果 (4)

4 结论 (5)

5 参考文献 (6)

1引言

人们之间的交流是通过消息的传播来实现的,信号则是消息的表现形式,消息是信号的具体内容。

《信号与系统》课程是一门实用性较强、涉及面较广的专业基础课,该课程是将学生从电路分析的知识领域引入信号处理与传输领域的关键性课程,对后续专业课起着承上启下的作用. 该课的基本方法和理论大量应用于计算机信息处理的各个领域,特别是通信、数字语音处理、数字图像处理、数字信号分析等领域,应用更为广泛。

近年来,计算机多媒体教序手段的运用逐步普及,大量优秀的科学计算和系统仿真软件不断涌现,为我们实现计算机辅助教学和学生上机实验提供了很好的平台。通过对这些软件的分析和对比,我们选择MATLAB语言作为辅助教学工具,借助MATLAB 强大的计算能力和图形表现能力,将《信号与系统》中的概念、方法和相应的结果,以图形的形式直观地展现给我们,大大的方便我们迅速掌握和理解老师上课教的有关信号与系统的知识。

2Matlab7.0入门

MATLAB的名称源自Matrix Laboratory,它是一种科学计算软件,专门以矩阵的形式处理数据。MATLAB将高性能的数值计算和可视化集成在一起,并提供了大量的内置函数,从而被广泛地应用于科学计算、控制系统、信息处理等领域的分析、仿真和设计工作,而且利用MATLAB产品的开放式结构,可以非常容易地对MATLAB的功能进行扩充,从而在不断深化对问题认识的同时,不断完善MATLAB产品以提高产品自身的竞争能力。

Matlab7.0比Matlab的老版本提供了更多更强的新功能和更全面、更方便的联机帮助信息。当然也比以前的版本对于软件、硬件提出了更高的要求。

在国内外Matlab已经经受了多年的考验。Matlab7.0功能强大,适用范围很广。其可以用来线性代数里的向量、数组、矩阵运算,复数运算,高次方程求根,插值与数值微商运算,数值积分运算,常微分方程的数值积分运算、数值逼近、最优化方法等,即差不多所有科学研究与工程技术应用需要的各方面的计算,均可用Matlab来解决。

MATLAB是MATLAB产品家族的基础,它提供了基本的数学算法,例如矩阵运算、数值分析算法,MATLAB集成了2D和3D图形功能,以完成相应数值可视化的工作,并且提供了一种交互式的高级编程语言——M语言,利用M语言可以通过编写脚本或者函数文件实现用户自己的算法。

利用M语言还开发了相应的MATLAB专业工具箱函数供用户直接使用。这些工具箱应用的算法是开放的可扩展的,用户不仅可以查看其中的算法,还可以针对一些算法进行修改,甚至允许开发自己的算法扩充工具箱的功能。目前MATLAB产品的工具箱有四十多个,分别涵盖了数据采集、科学计算、控制系统设计与分析、数字信号处理、数字图像处理、金融财务分析以及生物遗传工程等专业领域。

综上,在进行信号的分析与仿真时,MATLAB7.0无疑是一个强大而实用的工具。尤其对于信号的分析起到了直观而形象的作用,非常适合与相关课题的研究与分析。·3 利用Matlab 7.0实现一阶和二阶差分方程求解的设计

3.1 设计原理分析

3.1.1 差分方程定义

含有未知函数y(t)=f(t)以及yt的差分Dy(t),D2y(t),…的函数方程,称为常差分方程(简称差分方程);出现在差分方程中的差分的最高阶数,称为差分方程的阶。n阶差分方程的一般形式为F(t,y(t),D y(t),…,Dn y(t))=0,其中F是t,y(t), D y(t),…,Dn y(t)的已知函数,且Dnyt一定要在方程中出现。

含有两个或两个以上函数值y(t),y(t+1),…的函数方程,称为(常)差分方程,出现在差分方程中未知函数下标的最大差,称为差分方程的阶。n阶差分方程的一般形式为F(t,y(t),y(t+1),…,y(t+n))=0,其中F为t,y(t),y(t+1),…,y(t+n)的已知函数,且y(t)和y(t+n)一定要在差分方程中出现。

3.1.2 差分方程的意义与应用

差分方程模型有着广泛的应用。实际上,连续变量可以用离散变量来近似逼近1,从而微分方程模型就可以近似于某个差分方程模型。差分方程模型有着非常广泛的实际背景。在经济金融保险领域、生物种群数量结构规律分析、疫病和病虫害的控制与防治、遗传规律的研究等许许多多的方面都有着非常重要的的作用。可以这样讲,只要牵涉到关于变量的规律,性质,就可以适当的用差分方程模型来表现体与分析求解。

离散系统的时域及变换域分析

实验1 离散系统的时域及变换域分析 一、实验目的: 1.加深对离散系统的差分方程、单位抽样响应和卷积分析方法的理解。 2.加深对离散系统的频率响应分析和零、极点分布的概念理解。 二、实验原理: 1.时域 离散系统 其输入、输出关系可用以下差分方程描述: ∑∑==-=-M m m N k n m n x b k n y a )()( 输入信号分解为冲激信号, ∑∞ -∞ =-= m m n m x n x )()()(δ 系统单位抽样序列h (n ), 则系统响应为如下的卷积计算式: ∑∞ -∞ =-= *=m m n h m x n h n x n y )()()()()( 当0 0≠a N k a k ,...2,1,0==时,h(n)是有限长度的(n :[0,M]),称系统为FIR 系统;反之,称系统为IIR 系统。 在MATLAB 中,可以用函数y=filter(b,a,x)实现差分方程的仿真,也可以用函数 y=conv(x,h)计算卷积。 2.变换域 离散系统的时域方程为 ∑∑==-=-M m m N k n m n x b k n y a )()(

其变换域分析方法如下: X(z)H(z) Y(z) )()()()()(=?-= *=∑∞ -∞ =m m n h m x n h n x n y 系统函数为 N N M M z a z a a z b z b b z X z Y z H ----++++++= =......)()()(110110 分解因式 ∏∏∑∑=-=-=-=---== N k k M m m N k k k M m m m z d z c K z a z b z H 1 1 11 ) 1() 1()( , 其中 m c 和 k d 称为零、极点。 在MATLAB 中,可以用函数[z ,p ,K]=tf2zp (num ,den )求得有理分式形式的系统函数的零、极点,用函数zplane (z ,p )绘出零、极点分布图;也可以用函数zplane (num ,den )直接绘出有理分式形式的系统函数的零、极点分布图。使用h=freqz(num,den,w)函数可求系统的频率响应,w 是频率的计算点,如w=0:pi/255:pi, h 是复数,abs(h)为幅度响应,angle(h)为相位响应。另外,在MATLAB 中,可以用函数 [r ,p ,k]=residuez (num ,den )完成部分分式展开计算;可以用函数sos=zp2sos (z ,p ,K )完成将高阶系统分解为2阶系统的串联。 三 、实验内容 1.时域 (1.)编制程序求解下列系统的单位抽样响应,并绘出其图形。 )1()()2(125.0)1(75.0)(--=-+-+n x n x n y n y n y 解 用MATLAB 计算程序如下: N=15; n=0:N-1; b=[1,-1]; a=[1,0.75,0.125]; x=[n==0]; y=filter(b,a,x); subplot(3,2,1); stem(n,y,'.'); axis([0,N,-1,2]); ylabel('y(n)');

实验6离散时间系统的z域分析

实验6 离散时间系统的z 域分析 一、实验目的 1.掌握z 变换及其反变换的定义,并掌握MATLAB 实现方法。 2.学习和掌握离散时间系统系统函数的定义及z 域分析方法。 3.掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。 二、实验原理 1. Z 变换 序列x(n)的z 变换定义为 ()()n n X z x n z +∞ -=-∞ = ∑ Z 反变换定义为 1 1 ()()2n r x n X z z dz j π-= ? 在MATLAB 中,可以采用符号数学工具箱的ztrans 函数和iztrans 函数计算z 变换和z 反变换: Z=ztrans(F) 求符号表达式F 的z 变换。 F=ilaplace(Z) 求符号表达式Z 的z 反变换。 2.离散时间系统的系统函数 离散时间系统的系统函数H(z)定义为单位抽样响应h(n)的z 变换 ()()n n H z h n z +∞ -=-∞ = ∑ 此外,连续时间系统的系统函数还可以由系统输入和输出信号的z 变换之比得到 ()()/()H z Y z X z =

由上式描述的离散时间系统的系统函数可以表示为 101101()M M N N b b z b z H z a a z a z ----+++= +++…… 3.离散时间系统的零极点分析 离散时间系统的零点和极点分别指使系统函数分子多项式和分母多项式为零的点。在MATLAB 中可以通过函数roots 来求系统函数分子多项式和分母多项式的根,从而得到系统的零极点。 此外,还可以利用MATLAB 的zplane 函数来求解和绘制离散系统的零极点分布图,zplane 函数调用格式为: zplane(b,a) b,a 为系统函数的分子、分母多项式的系数向量(行向量)。 zplane(z,p) z,p 为零极点序列(列向量)。 系统函数是描述系统的重要物理量,研究系统函数的零极点分布不仅可以了解系统单位抽样响应的变化,还可以了解系统的频率特性响应以及判断系统的稳定性: ①系统函数的极点位置决定了系统单位抽样响应h(n)的波形,系统函数零点位置只影响冲激响应的幅度和相位,不影响波形。 ②系统的频率响应取决于系统的零极点,根据系统的零极点分布情况,可以通过向量分析系统的频率响应。 ③因果的离散时间系统稳定的充要条件是H(z)的全部极点都位于单位圆内。 三、实验内容 (1)已知因果离散时间系统的系统函数分别为: ①23221()0.50.0050.3 z z H z z z z ++=--+

离散信号与系统时域分析

目录 第1章设计任务及要求 (1) 1.1课程设计内容 (1) 1.2课程设计要求 (1) 第2章设计原理 (2) 2.1离散信号与系统的时域分析设计 (2) 2.1.1描写系统特性的方法介绍 (2) 2.1.2系统的时域特性 (2) 第3章设计实现 (3) 3.1实验内容与方法 (3) 3.1.1实验内容 (3) 第4章设计结果及分析 (3) 4.1程序设计结果及分析 (4) 总结 (7) 参考文献: (7) 附录: (8)

第1章 设计任务及要求 1.1课程设计内容 编制Matlab 程序,完成以下功能,产生系统输入信号;根据系统差分方程求解单位脉冲响应序列;根据输入信号求解输出响应;用实验方法检查系统是否稳定;绘制相关信号的波形。具体要求如下: (1) 给定一个低通滤波器的差分方程为 ()0.05()0.05(1)0.9(1)y n x n x n y n =+-+- 输入信号分别为182()=()()()x n R n x n u n =, ① 分别求出系统响应,并画出其波形。 ② 求出系统的单位脉冲响应,画出其波形。 (2) 给定系统的单位脉冲响应为1102()=()()() 2.5(1) 2.5(2)(3)h n R n h n n n n n δδδδ=+-+-+-,用线性卷积法求18()=()x n R n 分别对系统h1(n)和h2(n)的输出响应,并画出波形。 (3) 给定一谐振器的差分方程为() 1.8237(1)-0.9801(2)()(2)o o y n y n y n b x n b x n =--++-令b0=1/100.49,谐振器的谐振频率为0.4rad 。 1) 用实验方法检查系统是否稳定。输入信号为u(n)时,画出系统输出波形。 2) 给定输入信号为()=sin(0.014)sin(0.4)x n n n +求出系统的输出响应,并画出其波形。 1.2课程设计要求 1. 要求独立完成设计任务。 2. 课程设计说明书封面格式要求见《天津城市建设学院课程设计教学工作规范》附表1 3. 课程设计的说明书要求简洁、通顺,计算正确,图纸表达内容完整、清楚、规范。 4. 简述离散系统时域分析方法和通过实验判断系统稳定性的方法;完成以上设计实验并对结果进行分析和解释;打印程序清单和要求画出的信号波形;写出本次课程设计的收获和体会。 5. 课设说明书要求: 1) 说明题目的设计原理和思路、采用方法及设计流程。 2) 详细介绍运用的理论知识和主要的Matlab 程序。 3) 绘制结果图形并对仿真结果进行详细的分析。

实验一 时域离散信号与系统变换域分析(2015)资料

实验一 时域离散信号与系统变换域分析 一、实验目的 1.了解时域离散信号的产生及基本运算实现。 2.掌握离散时间傅里叶变换实现及系统分析方法。 3. 熟悉离散时间傅里叶变换性质。 4. 掌握系统Z 域分析方法。 5. 培养学生运用软件分析、处理数字信号的能力。 二、实验设备 1、计算机 2、Matlab7.0以上版本 三、实验内容 1、对于给定的时域离散信号会进行频谱分析,即序列的傅里叶变换及其性质分析。 2、对于离散系统会进行频域分析及Z 域分析。包括频谱特性、零极点画图、稳定性分析。 3、对于差分方程会用程序求解,包括求单位冲击序列响应,零输入响应、零状态响应、全响应,求其系统函数,及其分析。 4、信号时域采样及其频谱分析,序列恢复。 5、扩展部分主要是关于语音信号的读取及其播放。 四、实验原理 1、序列的产生及运算 在Matlab 中自带了cos 、sin 、exp (指数)等函数,利用这些函数可以产生实验所需序列。 序列的运算包括序列的加法、乘法,序列)(n x 的移位)(0n n x -,翻褶)(n x -等。序列的加法或乘法指同序号的序列值逐项对应相加或相乘,但Matlab 中“+”“.*”运算是对序列的值直接进行加或乘,不考虑两序列的序号是否相同,因此编程时考虑其序号的对应。 2、序列的傅里叶变换及其性质 序列的傅里叶变换定义:)(|)(|)()(ω?ωωω j j n n j j e e X e n x e X ==∑∞-∞=-,其幅度特性为|)(|ωj e X , 在Matlab 中采用abs 函数;相位特性为)(ω?,在Matlab 中采用angle 函数。 序列傅里叶变换的性质:

离散系统的变换域分析

实验2 离散系统的变换域分析 一、实验目的 1、熟悉对离散系统的频率响应分析方法; 2、加深对零、极点分布的概念理解。 二、实验原理 离散系统的时域方程为 其变换域分析方法如下: 频域: 系统的频率响应为: Z域: 系统的转移函数为: 分解因式: , 其中 和 称为零、极点。 三、预习要求 1. 在MATLAB中,熟悉函数tf2zp、zplane、freqz、residuez、 zp2sos的使用,其中:[z,p,K]=tf2zp(num,den)求得有 理分式形式的系统转移函数的零、极点;zplane(z,p)绘 制零、极点分布图;h=freqz(num,den,w)求系统的单位频率 响应;[r,p,k]=residuez(num,den)完成部分分式展开 计算;sos=zp2sos(z,p,K)完成将高阶系统分解为2阶系 统的串联。 2. 阅读文中的范例,学习频率分析法在MATLAB中的实现; 3. 编程实现系统参数输入,绘出幅度频率响应和相位响应曲线

和零、极点分布图。 四、实验内容 求系统 的零、极点和幅度频率响应和相位响应。 五、范例 求下列直接型系统函数的零、极点,并将它转换成二阶节形式 解:用MATLAB计算程序如下: num=[1 -0.1 -0.3 -0.3 -0.2]; den=[1 0.1 0.2 0.2 0.5]; [z,p,k]=tf2zp(num,den); m=abs(p); disp('零点');disp(z); disp('极点');disp(p); disp('增益系数');disp(k); sos=zp2sos(z,p,k); disp('二阶节');disp(real(sos)); zplane(num,den) 输入到“num”和“den”的分别为分子和分母多项式的系数。计算求得零、极点增益系数和二阶节的系数: 零点: 0.9615 -0.5730 -0.1443 + 0.5850i -0.1443 - 0.5850i 极点: 0.5276+0.6997i 0.5276-0.6997i -0.5776+0.5635i -0.5776-0.5635i 增益系数: 1 二阶节: 1.0000 -0.3885 -0.5509 1.0000 1.15520 0.6511

实验六 离散时间系统的时域分析

信号与系统实验报告 实验名:离散时间信号与系统的频域分析 实验六离散时间系统的时域分析 一、实验目的 1、掌握离散时间信号与系统的频域分析方法,从频域的角度对信号与系统的特性进行分析。 2、掌握离散时间信号傅里叶变换与傅里叶逆变换的实现方法。 3、掌握离散时间傅里叶变换的特点及应用 4、掌握离散时间傅里叶变换的数值计算方法及绘制信号频谱的方法 二、预习内容 1、离散时间信号的傅里叶变换与逆变换。 2、离散时间信号频谱的物理含义。 3、离散时间系统的频率特性。 4、离散时间系统的频域分析方法。 三、实验原理 1. 离散时间系统的频率特性

2. 离散时间信号傅里叶变换的数值计算方法 3.涉及到的Matlab 函数

四、实验内容 1、离散时间系统的时域分析 1 离散时间傅里叶变换 (1)下面参考程序是如下序列在范围?4π≤ω≤ 4π的离散时间傅里叶变换 %计算离散时间傅里叶变换的频率样本 clear all; w=-4*pi:8*pi/511:4*pi; num=[2 1]; den=[1 -0.6]; h=freqz(num,den,w); subplot(2,1,1)

plot(w/pi,real(h)); grid; title(‘实部’) xlabel(‘omega/\pi’); yl abel(‘振幅’); subplot(2,1,2) plot(w/pi, imag(h)); grid; title(‘虚部’) xlabel(‘omega/\pi’); ylabel(‘振幅’); figure; subplot(2,1,1) plot(w/pi, abs(h)); grid; title(‘幅度谱’) xlabel(‘omega/\pi’); ylabel(‘振幅’); subplot(2,1,2) plot(w/pi, angle (h)); grid; title(‘相位谱’) x label(‘omega/\pi’); ylabel(‘以弧度为单位的相位’);

数字信号处理实验3-离散系统的变换域分析

实验3 离散系统的变换域分析 一、实验目的: 加深对离散系统的频率响应分析和零、极点分布的概念理解。 二、实验原理: 离散系统的时域方程为 ∑∑==-=-M m m N k n m n x b k n y a 00)()( 其变换域分析方法如下: X(z)H(z)Y(z) )()()()()(=?-= *=∑∞-∞=m m n h m x n h n x n y 系统函数为 N N M M z a z a a z b z b b z X z Y z H ----++++++==......)()()(110110 分解因式 ∏∏∑∑=-=-=-=---==k k M m m k k k M m m m z d z c K z a z b z H 111100)1() 1()( , 其中 m c 和 k d 称为零、极点。 在MATLAB 中,可以用函数[z ,p ,K]=tf2zp (num ,den )求得有理分式形式的系统函数的零、极点,用函数zplane (z ,p )绘出零、极点分布图;也可以用函数zplane (num ,den )直接绘出有理分式形式的系统函数的零、极点分布图。使h=freqz(num,den,w)函数可求系统的频率响应,w 是频率的计算点,如w=0:pi/255:pi, h 是复数,abs(h)为幅度响应,angle(h)为相位响应。另外,在MATLAB 中,可以用函数 [r ,p ,k]=residuez (num ,den )完成部分分式展开计算;可以用函数sos=zp2sos (z ,p ,K )完成将高阶系统分解为2阶系统的串联。 (在实验报告中对这几种函数的使用方法及参数含义做出说明,这一部分手写) 三、实验内容 例1 求下列直接型系统函数的零、极点,并将它转换成二阶节形式 解 用MATLAB 计算程序如下: num=[1 -0.1 -0.3 -0.3 -0.2]; den=[1 0.1 0.2 0.2 0.5]; [z,p,k]=tf2zp(num,den); disp('零点');disp(z); disp('极点');disp(p); disp('增益系数');disp(k); sos=zp2sos(z,p,k);

信号、系统及系统响应,离散系统的时域分析实验报告

实验报告 实验二 信号、系统及系统响应,离散系统的时域分析 一、实验目的 (1) 熟悉连续信号经理想采样前后的频谱变换关系,加深对时域采样定理的理 解; (2) 熟悉时域离散系统的时域特性; (3) 利用卷积方法观察分析系统的时域特性; (4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信 号、离散信号及系统响应进行频域分析。 (5) 熟悉并掌握离散系统的差分方程表示法; (6) 加深对冲激响应和卷积分析方法的理解。 二、实验原理与方法 1、信号、系统及系统响应 采样是连续信号数字处理的第一个关键环节。对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生的变化以及信号信息不丢失的条件,而且可以加深对傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。 我们知道,对一个连续信号xa(t)进行理想采样的过程可用(2-1)表示。 ^ ()()() (21) a a x t x t p t =- 其中^ ()a x t 为()a x t 的理想采样,()p t 为周期冲激脉冲,即 ()() (22) n p t t nT δ∞ =-∞= --∑ ^ ()a x t 的傅里叶变换^ ()a X j Ω为 ^ 1()[()] (23) a a s m X j X j m T ∞ =-∞ Ω=Ω-Ω-∑ (2-3)式表明^ ()a X j Ω为()a X j Ω的周期延拓,其延拓周期为采样角频率

(2/)s T πΩ=。其采样前后信号的频谱只有满足采样定理时,才不会发生频率混叠失真。 将(2-2)带入(2-1)式并进行傅里叶变换: ^ ()[()()]j t a a n X j x t t nT e dt δ∞ ∞ -Ω-∞ =-∞ Ω=-∑? [()()]j t a n x t t nT e dt δ∞ ∞ -Ω-∞ =-∞ = -∑? ()(24) j nT a n x nT e ∞ -Ω=-∞ = -∑ 式中()a x nT 就是采样后得到的序列()x n ,即 ()()a x n x nT = ()x n 的傅里叶变换()j X e ω为 ()()(25) j j n n X e x n e ω ω∞ -=-∞ = -∑ 比较(2-5)和(2-4)可知 在数字计算机上观察分析各种序列的频域特性, 通常对X(ej ω)在[0, 2π]上进行M 点采样来观察分析。 对长度为N 的有限长序列x(n), 有 一个时域离散线性非移变系统的输入/输出关系为 上述卷积运算也可以在频域实现 2、离散系统时域分析 ^ ()() (26) j a T X j X e ωω=ΩΩ=-1 ()()(27) 2,0,1,,1k N j n j k n k X e x m e k k M M ωωπ ω--==-= =???-∑()()()()() (28) m y n x n h n x m h n m ∞ =-∞ =*= --∑()()() (29) j j j Y e X e H e ωωω=-式中

离散系统的时域分析实验报告

实验2 离散系统的时域分析 一、实验目的 1、熟悉并掌握离散系统的差分方程表示法; 2、加深对冲激响应和卷积分析方法的理解。 二、实验原理 在时域中,离散时间系统对输入信号或者延迟信号进行运算处理,生成具有所需特性的输出信号,具体框图如下: 其输入、输出关系可用以下差分方程描述: 输入信号分解为冲激信号, 记系统单位冲激响应,则系统响应为如下的卷积计算式: 当时,h[n]是有限长度的(),称系统为FIR系统;反之,称系统为IIR系统。 三、实验内容

1、用MATLAB 求系统响应 1) 卷积的实现 线性移不变系统可由它的单位脉冲响应来表征。若已知了单位脉冲响应和系统激励就 可通过卷积运算来求取系统响应,即)(*)()(n h n x n y 程序: x=input(‘Type in the input sequence=’); %输入x h=input(‘Type in the impulse response sequence=’); %输入h y=conv(x,h); % 对x ,h 进行卷积 N=length(y)-1; %求出N 的值 n=0:1:N; %n 从0开始,间隔为1的取值取到N 为止 disp(‘output sequence=’); disp(y); %输出y stem(n,y); %画出n 为横轴,y 为纵轴的离散图 xlabel(‘Time index n ’); ylable(‘Amplitude ’); % 规定x 轴y 轴的标签 输入为: x=[-2 0 1 -1 3] h=[1 2 0 -1] 图形: 2) 单位脉冲响应的求取 线性时不变因果系统可用MA TLAB 的函数filter 来仿真 y=filter(b,a,x); 其中,x 和y 是长度相等的两个矢量。矢量x 表示激励,矢量a ,b 表示系统函数形式 滤波器的分子和分母系数,得到的响应为矢量y 。例如计算以下系统的单位脉冲响应 y(n)+0.7y(n-1)-0.45y(y-2)-0.6y(y-3)=0.8x(n)-0.44x(n-1)+0.36x(n-2)+0.02x(n-3) 程序: N=input(‘Desired impuse response length=’); b=input(‘Type in the vector b=’); a=input(‘Type in the vector a=’); x=[1 zeros(1,N-1)]; y=filter(b,a,x);

离散时间信号与系统

实验:离散时间信号与系统的时域分析 一、实验目的 1、熟悉和掌握常用的用于信号与系统时域仿真分析的MA TLAB函数; 2、掌握离散时间信号的MATLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MA TLAB编程; 3、牢固掌握系统的单位序列响应的概念,掌握MATLAB描述LTI系统的常用方法及有关函数,并学会利用MATLAB求解LTI系统响应,绘制相应曲线。 基本要求:掌握用MATLAB描述离散时间信号的方法,能够编写MATLAB程序,实现各种信号的时域变换和运算,并且以图形的方式再现各种信号的波形。掌握线性时不变离散系统的时域数学模型用MATLAB描述的方法,掌握线性常系数差分方程的求解编程。 二、实验原理 信号(Signal)一般都是随某一个或某几个独立变量的变化而变化的,例如,温度、压力、声音,还有股票市场的日收盘指数等,这些信号都是随时间的变化而变化的,还有一些信号,例如在研究地球结构时,地下某处的密度就是随着海拔高度的变化而变化的。一幅图片中的每一个象素点的位置取决于两个坐标轴,即横轴和纵轴,因此,图像信号具有两个或两个以上的独立变量。 在《信号与系统》课程中,我们只关注这种只有一个独立变量(Independent variable)的信号,并且把这个独立变量统称为时间变量(Time variable),不管这个独立变量是否是时间变量。 在自然界中,大多数信号的时间变量都是连续变化的,因此这种信号被称为连续时间信号(Continuous-Time Signals)或模拟信号(Analog Signals),例如前面提到的温度、压力和声音信号就是连续时间信号的例子。但是,还有一些信号的独立时间变量是离散变化的,这种信号称为离散时间信号。前面提到的股票市场的日收盘指数,由于相邻两个交易日的日收盘指数相隔24小时,这意味着日收盘指数的时间变量是不连续的,因此日收盘指数是离散时间信号。 而系统则用于对信号进行运算或处理,或者从信号中提取有用的信息,或者滤出信号中某些无用的成分,如滤波,从而产生人们所希望的新的信号。系统通常是由若干部件或单元组成的一个整体(Entity)。系统可分为很多不同的类型,例如,根据系统所处理的信号的不同,系统可分为连续时间系统(Continuous-time system)和离散时间系统(Discrete-time system),根据系统所具有的不同性质,系统又可分为因果系统(Causal system)和非因果系统(Noncausal system)、稳定系统(Stable system)和不稳定系统(Unstable system)、线性系统(Linear system)和非线性系统(Nonlinear system)、时变系统(Time-variant system)和时不变系统(Time-invariant system)等等。 然而,在信号与系统和数字信号处理中,我们所分析的系统只是所谓的线性时不变系统,这种系统同时满足两个重要的基本性质,那就是线性性和时不变性,通常称为线性时不变(LTI)系统。 1. 信号的时域表示方法 1.1将信号表示成独立时间变量的函数

数字信号处理matlab实验4 离散系统的变换域分析

实验4离散系统的变换域分析 实验目的:加深对离散系统的频率响应分析和零、极点分布的概念理解。 实验原理:离散系统的时域方程为 ∑∑==-=-M k k N k k k n x p k n y d 00) ()(其变换域分析方法如下: 频域)()()(][][][][][ΩΩ=Ω?-= *=∑∞ -∞=H X Y m n h m x n h n x n y m 系统的频率响应为Ω -Ω-Ω-Ω-++++++=ΩΩ=ΩjN N j jM M j e d e d d e p e p p D p H ......)()()(1010Z 域)()()(][][][][][z H z X z Y m n h m x n h n x n y m =?-=*=∑∞ -∞=系统的转移函数为N N M M z d z d d z p z p p z D z p z H ----++++++==......)()()(110110分解因式∏-∏-=∑∑==-=-=-=-N i i M i i N i i k M i i k z z K z d z p z H 11110 0)1()1()(λξ,其中i ξ和i λ称为零、极点。 在MATLAB 中,可以用函数[z,p,K]=tf2zp(num,den)求得有理分式形式的系统转移函数的零、极点,用函数zplane(z,p)绘出零、极点分布图;也可以用函数zplane(num,den)直接绘出有理分式形式的系统转移函数的零、极点分布图。使h=freqz(num,den,w)函数可求系统的频率响应,w 是频率的计算点,如w=0:pi/255:pi,h 是复数,abs(h)为幅度响应,angle(h)为相位响应。另外,在MATLAB 中,可以用函数[r,p,k]=residuez(num,den)完成部分分式展开计算;可以用函数sos=zp2sos(z,p,K)完成将高阶系统分解为2阶系统的串联。例1 求下列直接型系统函数的零、极点,并将它转换成二阶节形式 解用MATLAB 计算程序如下: num=[1-0.1-0.3-0.3-0.2]; den=[10.10.20.20.5];

离散时间系统的时域分析

第七章离散时间系统的时域分析 §7-1 概述 一、离散时间信号与离散时间系统 离散时间信号:只在某些离散的时间点上有值的 信号。 离散时间系统:处理离散时间信号的系统。 混合时间系统:既处理离散时间信号,又处理连 续时间信号的系统。 二、连续信号与离散信号 连续信号可以转换成离散信号,从而可以用离散时间系统(或数字信号处理系统)进行处理: 三、离散信号的表示方法:

1、 时间函数:f(k)<——f(kT),其中k 为序号,相当于时间。 例如:)1.0sin()(k k f = 2、 (有序)数列:将离散信号的数值按顺序排列起来。例如: f(k)={1,0.5,0.25,0.125,……,} 时间函数可以表达任意长(可能是无限长)的离散信号,可以表达单边或双边信号,但是在很多情况下难于得到;数列的方法表示比较简单,直观,但是只能表示有始、有限长度的信号。 四、典型的离散时间信号 1、 单位样值函数:? ??==其它001)(k k δ 下图表示了)(n k ?δ的波形。

这个函数与连续时间信号中的冲激函数 )(t δ相似,也有着与其相似的性质。例如: )()0()()(k f k k f δδ=, )()()()(000k k k f k k k f ?=?δδ。 2、 单位阶跃函数:? ??≥=其它001)(k k ε 这个函数与连续时间信号中的阶跃函数)(t ε相似。用它可以产生(或表示)单边信号(这里称为单边序列)。 3、 单边指数序列:)(k a k ε

比较:单边连续指数信号:)()()(t e t e t a at εε=,其 底一定大于零,不会出现负数。 (a) 0.9a = (d) 0.9a =? (b) 1a = (e) 1a =? (c) 1.1a = (f) 1.1a =?

实验一离散时间信号与系统分析

实验一 离散时间信号与系统分析 一、实验目的 1.掌握离散时间信号与系统的时域分析方法。 2.掌握序列傅氏变换的计算机实现方法,利用序列的傅氏变换对离散信号、系统及系统响应进行频域分析。 3.熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对采样定理的理解。 二、实验原理 1.离散时间系统 一个离散时间系统是将输入序列变换成输出序列的一种运算。若以][?T 来表示这种运算,则一个离散时间系统可由下图来表示: 图 离散时间系统 输出与输入之间关系用下式表示 )]([)(n x T n y = 离散时间系统中最重要、最常用的是线性时不变系统。 2.离散时间系统的单位脉冲响应 设系统输入)()(n n x δ=,系统输出)(n y 的初始状态为零,这是系统输出用)(n h 表示,即)]([)(n T n h δ=,则称)(n h 为系统的单位脉冲响应。 可得到:)()()()()(n h n x m n h m x n y m *=-= ∑∞ -∞= 该式说明线性时不变系统的响应等于输入序列与单位脉冲序列的卷积。 3.连续时间信号的采样 采样是从连续信号到离散时间信号的过渡桥梁,对采样过程的研究不仅可以了解采样前后信号时域何频域特性发生的变化以及信号内容不丢失的条件,而且有助于加深对拉氏变换、傅氏变换、Z 变换和序列傅氏变换之间关系的理解。 对一个连续时间信号进行理想采样的过程可以表示为信号与一个周期冲激脉冲的乘 积,即:)()()(?t t x t x T a a δ=

其中,)(?t x a 是连续信号)(t x a 的理想采样,)(t T δ是周期冲激脉冲 ∑∞ -∞=-= m T mT t t )()(δδ 设模拟信号)(t x a ,冲激函数序列)(t T δ以及抽样信号)(?t x a 的傅立叶变换分别为)(Ωj X a 、)(Ωj M 和)(?Ωj X a ,即 )]([)(t x F j X a a =Ω )]([)(t F j M T δ=Ω )](?[)(?t x F j X a a =Ω 根据连续时间信号与系统中的频域卷积定理,式(2.59)表示的时域相乘,变换到频域为卷积运算,即 )]()([21)(?Ω*Ω=Ωj X j M j X a a π 其中 ?∞ ∞ -Ω-==Ωdt e t x t x F j X t j a a a )()]([)( 由此可以推导出∑∞-∞=Ω-Ω=Ωk s a a jk j X T j X )(1)(? 由上式可知,信号理想采样后的频谱是原来信号频谱的周期延拓,其延拓周期等于采样频率。根据香农定理,如果原信号是带限信号,且采样频率高于原信号最高频率的2倍,则采样后的离散序列不会发生频谱混叠现象。 4.有限长序列的分析 对于长度为N 的有限长序列,我们只观察、分析在某些频率点上的值。 ???-≤≤=n N n n x n x 其它010),()( 一般只需要在π2~0之间均匀的取M 个频率点,计算这些点上的序列傅立叶变换: ∑-=-=1 0)()(N n jn j k k e n x e X ωω 其中,M k k /2πω=,1,,1,0-=M k 。)(ωj e X 是一个复函数,它的模就是幅频特 性曲线。 三、主要实验仪器及材料

离散LSI系统的时域分析.doc

. ... 实验二:离散LSI系统的时域分析 一、实验内容 1.知描述某离散LSI系统的差分方程为2y(n)-3y(n-1)+y(n-2)=x(n-1),分别用impz 和dstep函数、filtic和filter函数两种方法求解系统的单位序列响应和单位阶跃响应。 用impz和dstep函数求解系统的单位序列响应和单位阶跃响应如下 a=[1,-3/2,1/2]; b=[0,1/2,0]; N=32; n=0:N-1; hn=impz(b,a,n); gn=dstep(b,a,n); subplot(1,2,1);stem(n,hn,'k'); title('系统的单位序列响应'); ylabel('h(n)');xlabel('n'); axis([0,N,1.1*min(hn),1.1*max(hn)]); subplot(1,2,2);stem(n,gn,'k'); title('系统的单位阶跃响应'); ylabel('g(n)');xlabel('n'); axis([0,N,1.1*min(gn),1.1*max(gn)]); 课程名称数字信号 实验成绩 指导教师实验报告.

... 010203000.10.20.0.0.0.0.0.0.1系统的单位序列响应h(n) n01020300112230系统的单位阶跃响应g(n)n 用函数filtic和filter求解离散系统的单位序列响应和单位阶跃

解:x01=0;y01=0; a=[1,-3/2,1/2]; b=[1/2,0,0]; N=32;n=0:N-1; xi=filtic(b,a,0); x1=[n==0]; hn=filter(b,a,x1,xi); x2=[n>=0]; gn=filter(b,a,x2,xi); subplot(1,2,1);stem(n,hn,'k'); title('系统的单位序列响应'); ylabel('h(n)');xlabel('n'); axis([0,N,1.1*min(hn),1.1*max(hn)]); . ... subplot(1,2,2);stem(n,gn,'k'); title('系统的单位阶跃响应'); ylabel('g(n)');xlabel('n'); axis([0,N,1.1*min(gn),1.1*max(gn)]); 01020300.550.60.650.70.750.80.850.90.951

离散系统变换域分析.

离散系统变换域分析 实验目的 1 熟悉对离散系统的频率响应分析方法; 2 加深对零,极点分布的概念的理解。 实验内容: 程序: b=[0.036 0.143 0.214 0.143 0.036]; a=[1 -1.035 0.826 0.260 0.040]; [z,p,k]=tf2zp(b,a); disp('零点');disp(z); disp('极点');disp(p); disp('增益系数');disp(k); sos=zp2sos(z,p,k); disp('二阶节');disp(real(sos)); zplane(b,a); k=256; b=[0.036 0.143 0.214 0.143 0.036]; a=[1 -1.035 0.826 0.260 0.040]; w=0:pi/k:pi; h=freqz(b,a,w); subplot(2,2,1); plot(w/pi,real(h));grid title('实部') xlabel('\omega/\pi'); subplot(2,2,2); plot(w/pi,imag(h));grid title('虚部') xlabel('\omega/\pi'); subplot(2,2,3); plot(w/pi,abs(h));grid title('幅度谱') xlabel('\omega/\pi');ylabel('幅值') subplot(2,2,4) plot(w/pi,angle(h));grid title('相位谱') xlabel('\omega/\pi');ylabel('相位') 实验结果: 零点 -0.9861 + 0.1661i -0.9861 - 0.1661i -1.0000 -1.0000

6.离散时间信号与系统的时域分析

第6章线性时不变离散系统的时域分析 6.1 学习要求 (1)掌握离散信号的基本描述方法、分类及其基本运算; (2)掌握离散时间系统的差分方程描述; (3)熟练掌握系统的单位样值响应; (4)熟练掌握卷积和的概念及计算; (5)掌握系统零输入响应和零状态响应的求解方法; (6)了解离散相关的概念和性质。 6.2学习重点 (1)系统的单位样值响应的计算; (2)零输入响应和零状态响应的求解方法; (3)卷积和的概念及计算。 6.3知识结构

6.4内容摘要 6.4.1 离散时间信号的定义 离散时间信号是指仅在不连续的离散时刻有确定函数值,而在其它点上函数值未定义的信号,简称离散信号,也称序列,常用)(n x 表示。 6.4.2 常用的时间序列 (1)单位样值序列)(n

?? ?≠==0 00 1)(n n n δ (2)单位阶跃序列)(n u ? ??<≥=000 1)(n n n u )(n u 和)(n δ的关系: +-+-+-+=)3()2()1()()(n n n n n u δδδδ∑∞ =-=0 )(k k n δ )1()()(--=n u n u n δ (3)矩形序列)(n R N ? ? ?≥<-≤≤=)0(0) 10(1)(N n n N n n R N 或 矩形序列与阶跃序列、样值序列的关系: ∑-=-=+-++-+-+=10 )()1()2()1()()(N m N m n N n n n n n R δδδδδ )1()()(+--=N n u n u n R N (4)正弦序列 )sin()(0φω+=n A n x 式中,A 为幅度,φ为起始相位,0ω为正弦序列的数字域频率,N π ω20=。 (5)实指数序列 )()(n u a n x n = 波形特点为:a >1时,序列发散;1

实验二 离散时间系统的时域分析实验

实验二离散时间系统的时域分析实验

数字信号处理——实验二 武汉工程大学电气信息学院通信工程 红烧大白兔 一、实验目的 1、在时域中仿真离散时间系统,进而理解离散 时间系统对输入信号或延时信号进行简单运算处理,生成具有所需特性的输出信号的方法。 2、仿真并理解线性与非线性、时变与时不变等 离散时间系统。 3、掌握线性时不变系统的冲激响应的计算并 用计算机仿真实现。 4、仿真并理解线性时不变系统的级联、验证线 性时不变系统的稳定特性。 二、实验设备 计算机,MATLAB语言环境 三、实验基础理论 1、系统的线性 线性性质表现为系统满足线性叠加原理:若某一输入是由N个信号的加权和组成的,则输出就是由系统对这N个信号中每一个的响应的相应加权和组成的。设x1(n)和 x2(n)

分别作为系统的输入序列,其输出分别用y1(n)和y2(n)表示,即 Y1(n)=T[x1(n)], y2(n)=T[x2(n)] 若满足T[a1x1(n)+a2x2(n)]=a1y1(n)+a2y2(n) 则该系统服从线性叠加原理,或者称为该系统为线性系统。 2、系统的时不变特性 若系统的变换关系不随时间变化而变化,或者说系统的输出随输入的移位而相应移位但形状不变,则称该系统为时不变系统。对于时不变系统, 若y(n)=T[x(n)] 则T[x(n-m)]=y(n-m) 3、系统的因果性 系统的因果性既系统的可实现性。如果系统n 时刻的输出取决于n时刻及n时刻以前的输入,而和以后的输入无关,则该系统是可实现的,是因果系统。系统具有因果性的充分必要条件是h(n)=0,n<0 4、系统的稳定性 稳定系统是指有界输入产生有界输出(BIBO)的系统。如果对于输入序列x(n),存在一个不变的正有限值M,对于所有n值满足|x(n)|

离散系统的时域分析matlab.(DOC)

实验一 常见离散信号的MATLAB 产生和图形显示 一、 实验目的 加深对常见离散信号的理解 二、实验原理 1、单位抽样序列的产生 ,10,0{=≠=n n n )(δ 在MATLAB 中可以用zeros()函数实现 x=[1,zeros(1,N-1)]; 或x=zeros(1,N); x(1)=1; 2、单位阶跃序列的产生 0,10,0{u ≥<=n n n )( 在MATLAB 中可以用ones()函数实现 x=one(1,N); 3、正弦序列的产生 在MATLAB 中实现方法如下: N=0:N-1 X=A*sin(2*pi*f*n/fs+fai) 4、复正弦序列的产生jwn e A n x *)(= 在MATLAB 中实现方法如下: n) *w *exp(j *A 1 :0=-=x N n 5、实指数序列的产生n a A n x *)(= 在MATLAB 中实现方法如下: n a A x N n .^*1 :0=-= 三、实验内容及步骤 编制程序产生以下信号,并绘出其图形。 1)产生64点的单位抽样序列)(n δ

N=64 x=[1,zeros(1,N-1)] stem(x) 2)产生64点并移位20位的单位抽样序列)20(-n δ N=64 x=[0,zeros(1,N-1)] x(20)=1 stem(x) 3)任意序列)5(7.0)4(9.2)3(6.5)2(8.1)1(4.3)(0.8)(-+-+-+-+-+=n n n n n n n f δδδδδδ b=[1]; a=[8,3.4,1.8,5.6,2.9,0.7]; xh=[1,zeros(1,20)]; h=filter(b,a,xh) figure(1); n=0:20; stem(n,h,) legend('冲激')

相关主题
文本预览
相关文档 最新文档