当前位置:文档之家› 电气主接线讲义

电气主接线讲义

电气主接线讲义
电气主接线讲义

第五章电气主接线讲义

第一节电气主接线概述

一、电气主系统与电气主接线图

(一)电气主接线

电气主接线是由多种电气设备通过连接线,按其功能要求组成的汇聚和分配电能的电路,也称电气一次接线或电气主系统。

(二)电气主接线图

用规定的设备文字和图形符号将各电气设备,按连接顺序排列,详细表示电气设备的组成和连接关系的接线图,称为电气主接线图。

电气主接线图一般画成单线图。

二、电气主接线中的电气设备和主接线方式

(一)电气主接线中的电气设备

电气主接线中的主要电气设备包括:电力变压器、断路器、隔离开关、电压互感器、电流互感器、避雷器、母线、接地装置以及各种无功补偿装置等。(二)主接线方式

常用的主接线方式有:单母线接线、单母线分段接线、单母线分段带旁路母线接线、双母线接线、双母线带旁路母线接线、双母线分段接线、双母线分段带旁路母线接线、内桥接线、外桥接线、一台半断路器接线、单元接线、和角形接线等。

三、电气主接线的基本要求

电气主接线的选择正确与否对电力系统的安全、经济运行,对电力系统的稳定和调度的灵活性,以及对电气设备的选择,配电装置的布置,继电保护及控制方式的拟定等都有重大的影响。在选择电气主接线时,应满足下列基本要求。

1. 保证必要的供电可靠性和电能的质量;

2. 具有一定的运行灵活性;

3. 操作应尽可能简单、方便;

4. 应具有扩建的可能性;

5. 技术上先进,经济上合理。

第二节 电气主接线的基本接线形式

一、单母线接线

(一) 单母线接线的优点

简单、清晰、设备少、投资小、运行操作方便,有利于扩建和采用成套配电装置。

(二) 单母线接线的主要缺点

母线或母线隔离开关检修时,连接在母线上的所有回路都将停止工作;当母线或母线隔离开关上发生短路故障,装设母差保护时,所有断路器都将自动断开,造成全部停电;检修任一电源或出线断路器时,该回路必须停电。

二、单母线分段接线

出线回路数增多时,可用断路器或隔离开关将母线分段,成为单母线分段接线,如图所示。根据电源的数目和功率,母线可分为2~3段。

(一)单母线分段接线的优点

该接线方式由双电源供电,故供电可靠性高,同时具有接线简单、操作方便、投资少等优点。当一段母线发生故障时,分段断路器或隔离开关将故障切除,保证正常母线供电,重要用户分别取自不同母线,不会全停,提高了供电的可靠性。

(二)单母线分段接线的缺点

当一段母线或母线隔离开关故障或检修时,必须断开接在该分段上的全部电源和出线,并使该段单回路供电的用户停电;任一出线断路器检修时,

该回路

必须停止工作。

三、单母线带旁路母线接线

单母线带旁路母线接线方式的最大优点是供电可靠性高。断路器故障检修时,可不停电进行检修,供电可靠,运行灵活,适用于向重要用户供电,出线回路较多的变电所尤为适用,其接线方式如图,该接线方式仅适用于110kV及以下电压等级的母线。旁路断路器在同一时间只能代替一个线路断路器的工作。但母线出现故障或检修时,仍会造成整个主母线停止工作。

单母线分段带旁路母线接线这种接线方式兼顾了旁路母线和母线分段两方面的优点。为了减少投资,可不专设旁路断路器,而用母线分段断路器兼作旁路断路器,常用的接线如图8-5所示。供电可靠性高一般用在35kV~110kV的变电所母线。

四、双母线不分段接线

(一)双母线接线简述

每一电源和每一出线都经一台断路器和两组隔离开关分别与两组母线相连。两组母线之间通过母线联络断路器(简称母联断路器)连接。

(二)双母线接线优点

运行方式灵活,便于扩建;检修母线时,电源和出线都可以继续工作;检修任一回路母线隔离开关时,只需断开该回路;工作母线故障时,所有回路能迅速恢复工作;检修任一线路断路器时,可用母联断路器代替其工作。

(三)双母线接线缺点

当母线故障或检修时,需使用隔离开关进行倒闸操作,容易造成误操作;工作母线故障时,将造成短时(切换母线时间)全部进出线停电;开关检修时,改回路必须停电;使用的母线隔离开关数量较大,同时也增加了母线的长度,使得配电装置结构复杂,投资和占地面积增大。

为了弥补上述缺点,提高双母线接线的可靠性,可进行双母线分段和双母线带旁路两种方式的改进。

五、双母线分段和带旁路母线的接线方式

(一)双母线分段接线方式

用分段断路器将母线Ⅰ分段,每段用母联断路器与母线Ⅱ相连。这种接线具有单母线分段和双母线接线的特点,有较高的供电可靠性与运行灵活性,但所使用的电气设备较多,使投资增大。

(二)带旁路母线的双母线接线

采用带旁路母线的双母线接线,目的是为了不停电检修任一回路断路。

用母联断路器兼作旁路断路器几种形式当出线回路数较少时,为了减少断路器的数目,可不设专用的旁路断路器,而用母联断路器兼作旁路断路器。

一般采用(a)种接线方式。

(三)姚江变电站专用旁路接线方式代路操作票:220kV旁路210开关带姚历线207开关运行,姚历线207开关运行转检修

姚江站220kV部分一次接线图

运行方式简介:210开关冷备用,207开关在220kV1号母线运行。

1.检查220kV旁路210开关在断开位置

2.合上220kV旁路210间隔刀闸操作电源开关

3.合上220kV旁路210-1刀闸

4.检查220kV旁路210-1刀闸已合上

5.检查220kV旁路210-1刀闸电压切换正常(I母灯应亮)

6.检查220kV母差保护屏刀闸切换正确(220kV旁路210-1刀闸)

7.合上220kV旁路210-4刀闸

8.检查220kV旁路210-4刀闸已合上

9.拉开姚历线210间隔刀闸操作电源开关

10.检查220kV旁路210开关保护定值与姚历线207开关保护定值相符

11.合上220kV旁路210开关

12.检查220kV旁路210开关已合上

13.检查220kV旁路母线运行正常

14.拉开220kV旁路210开关

15.检查220kV旁路210开关已拉开

16.合上姚历线207间隔刀闸操作电源开关

17.合上姚历线207-4刀闸

18.检查姚历线207-4刀闸已合上

19.拉开姚历线207间隔刀闸操作电源开关

20.退出姚历线207开关纵联保护和零序保护

21.合上220kV旁路210开关

22.检查220kV旁路210开关已合上

23.检查220kV旁路210开关、姚历线207开关负荷分配正确

24.拉开姚历线207开关

25.检查姚历线207开关已拉开

26.检查220kV旁路210开关负荷正常

27.投入220kV旁路210开关纵联保护和零序保护

28.合上姚历线207间隔刀闸操作电源开关

29.拉开姚历线207-3刀闸

30.检查姚历线207-3刀闸已拉开

31.拉开姚历线207-1刀闸

32.检查姚历线207-1刀闸已拉开

33.在姚历线207-2刀闸开关侧验电应无电

34.合上姚历线207-D6接地刀闸

35.检查姚历线207-D6接地刀闸已合上

36.在姚历线207-3刀闸开关侧验电应无电

37.合上姚历线207-D5接地刀闸

38.检查姚历线207-D5接地刀闸已合上

39.拉开姚历线207开关操作电源

40.拉开姚历线207开关机构电机电源开关

41.退出姚历线207开关矢量保护启动压板

42.检查220kV母差保护刀闸位置正常

(四)、母联兼旁路接线方式代路操作的基本步骤

1)、将负荷倒至主母线(1母)运行,倒母线时注意取下母联控制保险,母差保护投非选择。

2)、母差保护投有选择,投充电保护后,用母联向旁母充电,良好后将母差投非选择(单母线)。注意将代路保护定值切至被带线路定值并核对正确。

3)、拉开母联后,合上被带母线旁母刀闸,合上母联开关,拉开被带线路开关。

六、二分之三断路器接线方式

两组母线之间接有若干串断路器,每一串有3台断路器,每两台之间接入一条回路,共有两条回路。

主要优点:可靠性高;运行灵活性好;操作检修方便。主要缺点是投资大、继电保护装置复杂。

在一个半断路器接线中,一般应采用交叉配置的原则,即同名回路应接在不同串内,电源回路宜与出线回路配合成串。此外,同名回路还宜接在不同侧的母线上。

这种接线的主要优点如下:

1) 可靠性高。任一断路器检修时,所有回路都不会停止工作。任一组母线

故障或检修时,所有回路仍可通过另一组母线继续运行,任何回路不会停电,甚至在一组母线检修、另一组母线故障的情况下,仍能继续输送功率;在保证对用户不停电的前提下,可以同时检修多台断路器。

2) 运行灵活性好。正常运行时成环形供电,运行调度十分灵活。

3) 操作检修方便。隔离开关只用作检修时隔离电源,不做倒闸操作。另外,当检修任一组母线

或任一台断路器时,只需拉开对应的断路器及隔离开关,各个进出线回路都不需切换操作。

这种接线的主要缺点是:所用的断路器、电流互感器等设备较多,投资大;由于每个回路接至

两台断路器,联络断路器连接着两个回路,因此继电保护及二次回路的设计、调整、检修等比较复杂。

一个半断路器接线,目前在国内、外已较广泛应用于大型发电厂和变电所的330~500kV 的配电装置中。当进出线回路数为 6 回及以上,在系统中占重要地位时,宜采用一个半断路器接线。

七、桥形接线

当只有两台主变压器和两条电源进线线路时,可以采用如图所示的接线方式。这种接线称为桥式接线,可看作是单母线分段接线的变形。

根据桥臂的位置又可分为内桥接线、外桥接线和双断路器桥形接线三种形式。

内桥接线如图(a)所示,桥臂置于线路断路器的内侧。其特点如下:(1)线路发生故障时,仅故障线路的断路器跳闸,其余三条支路可继续工作,并保持相互间的联系。

(2)变压器故障时,联络断路器及与故障变压器同侧的线路断路器均自动跳闸,使未故障线路的供电受到影响,需经倒闸操作后,方可恢复对该线路的供电。

(3)线路运行时变压器操作复杂。

内桥接线适用于输电线路较长、线路故障率较高、穿越

功率少和变压器不需要经常改变运行方式的场合。

外桥接线如图(b)所示,桥臂置于线路断路器的外侧。其特点如下:

(1)变压器发生故障时,仅跳故障变压器支路的断路器,其余支路可继续工作,并保持相互间的联系。

(2)线路发生故障时,联络断路器及与故障线路同侧的变压器支路的断路器均自动跳闸,需经倒闸操作后,方可恢复被切除变压器的工作。

(3)线路投入与切除时,操作复杂,影响变压器的运行。

这种接线适用于线路较短、故障率较低、主变压器需按经济运行要求经常投切以及电力系统有较大的穿越功率通过桥臂回路的场合。桥式接线属于无母线的接线形式,简单清晰,设备少,造价低,也易于发展过渡为单母线分段或双母线接线。但因内桥接线中变压器的投入与切除要影响到线路的正常运行,外桥接线中线路的投入与切除要影响到变压器的运行,而且更改运行方式时需利用隔离开关作为操作电器,故桥式接线的工作可靠性和灵活性较差。

为了提高供电可靠性,克服内外桥形接线的不足,使运行方式的调度操作更为方便,确保安全可靠供电,可在高压母线与主变压器进线之间增设断路器,其原理接线如图(c)。

思考题:

1.倒母线操作注意事项?

2.内桥接线和外桥接线方式的优缺点和适用范围?

3.专用旁路接线方式旁路开关代零压闭锁开关操作的基本步骤?

枯藤老树昏鸦,小桥流水人家,古道西风瘦马。夕阳西下,断肠人在天涯。4.

110kva变电站电气主接线图分析

把变电站内的电气设备都要算上啊 一次设备:主变(中性点隔离开关、间隙保护、消弧线圈成套设备)、断路器(或开关柜、GIS等)、电压互感器(含保险)、电流互感器、避雷器、隔离开关、母线、母排、电缆、电容器组(电容、电抗、放电线圈等等),站用变压器(或接地变),有的变电站还有高频保护装置 二次设备:综合自动化、. 、逆变0000.、小电流接地选线、站用电、直流(蓄电池)、逆变、远动通讯等等 其他:支持瓷瓶、悬垂、导线、接地排、穿墙套管等等,消防装置、SF6在线监测装置等等 好像有点说多了,也可能有少点的,存在差异吧 35KV高压开关柜上一般都设有哪些保护各作用是什么? 过电流保护:1.速断电流保护:用于保护本开关以后的母排、电缆的短路故障。 2.定时限电流保护:用于下一电压级别的短路保护。 3.反时限电流保护:作用与2相同,但灵敏度比2高。 4.电压闭锁过电流保护:防止越级跳闸和误跳闸,提高供电可靠性。 5.纵联差动电流保护:专用于变压器内部故障保护。 6.长延时过负荷保护:用于保护专用设备或者电网的过负荷运行,首选发信,其次跳闸。 零序电流保护:1.零序电流速断保护:保护线路和线路后侧设备对地短路、严重漏电故障。 2.定时限零序电流保护:保护线路和线路后侧设备的轻微对地短路和小电流漏电,监测绝缘状况。可以选择作用于跳闸或发信。 过电压保护:1.雷电过电压保护。 2.操作过电压保护。1、2两种过电压通常都是用避雷器来保护,可防止线路或设备绝缘击穿。

3.设备异常过电压保护:通过电压继电器和综保定值整定来实现跳闸或发信,用于保护设备在异常过压下运行造成的发热损坏。 低电压保护:瞬时低电压保护只发信不跳闸,用于避免瞬间短路或大负荷启动造成的正常设备误跳闸。俗称躲晃电。 非电量保护:1.重瓦斯保护:用于变压器内部强短路或拉弧放电的严重故障保护。选择跳闸。 2.轻瓦斯保护:用于变压器轻微故障的检测,选择发信报警。 3.温度保护:用于检测变压器顶层油温监测,轻超温发信报警,重超温跳闸。 以上都是针对一次侧设计的保护。 二次侧的保护:1.直流失压保护,用于变电所直流设备故障时防止设备在保护失灵状况下运行。一般设备通常选择发信报警。重要设备选择跳闸。 2.临柜直流消失保护,用于监测相邻高压柜的直流电压状态,选择发信报警。 随着技术的发展,继电保护的内容越来越多,供人们在不同情况下选用。 目前使用的微机型综合保护器内都设计了各种保护功能,可以通过控制字的设定很方便地选择所需要的保护功能组合。

分析电气主接线选择及优化

分析电气主接线选择及优化 摘要:变电所主接线设计是电力系统总体设计的重要组成部份。变电所主接线形式应根据变电所在电力系统中的地位、作用、回路数、设备特点及负荷性质等条件确定,并且应满足运行可靠、简单灵活、操作方便和节约投资等要求。 关键词:电气主接线;选择;优化 引言 变电站是电力系统的重要组成部分,其可靠性直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,随着经济的发展,110kV变电站迅速发展起来。变电站的可靠性是其供电能力的直接表现,而在影响其供电可靠性的诸多因素中,主接线的选择显得尤为重要。 一、选择电气主接线时考虑的问题 (1)考虑变电站种类的影响。变电站有地区变电站、企业变电站、枢纽变电站、分支变电站和终端变电站几种,不同的特性和作用使其对电气主接线的要求也不相同。 (2)考虑主接线灵活性的影响。①可以灵活地操作,投入或切除某些变压器及线路,调配电源和负荷能够满足系统在事故运行方式,检修运行方式以及特殊运行方式下的调度要求;③主接线扩建方面:可以容易地从初期过渡到其最终接线,使其在扩建过渡时,无论是一次设备还是二次装置等所需的改造工作量最小。 (3)考虑主接线可靠性的影响。主接线可靠性的具体要求:①断路器检修时,不宜影响对系统的供电;②断路器或母线故障以及母线检修时,尽量减少停运的回路数和停运时间,并要求保证对一级负荷全部和大部分二级负荷的供电; ③尽量避免变电所全部停运的可能性。 (4)考虑主变台数产生的影响,变电站的主变台数直接影响着电气主接线,不同的传输容量有对主接线灵活可靠性的不同要求。 (5)考虑负荷的分级和出线回数的影响。一级负荷需要两个独立电源供电,如果其中一个不发生作用时,必须保证所有的一级负荷连续供电;二级负荷通常也需要两个供电电源,当一个不发生作用时,需保证大部分二级负荷继续供电;三级负荷往往只需一个电源供电。 (6)考虑备用容量的影响,备用容量主要是适应负荷突增,维持可靠供电,防止检修设备和故障停运的应急情况。 二、选择电气主接线的要求

电气主接线基本形式

电气主接线基本形式 第一节 单母线接线 一 单母线接线 1.接线特点 单母线接线如图10-1所示 单母线接线的特点是每一回路均经过一台断路器QF 和隔离开关QS 接于一组母线上。断路器用于在正常或故障情况下接通与断开电路。断路器两侧装有隔离开关,用于停电检修断路器时作为明显断开点以隔离电压,靠近母线侧的隔离开关称母线侧隔离开关(如11QS ),靠近引出线侧的称为线路侧隔离开关(如13QS )。在主接线设备编号中隔离开关编号前几位与该支路断路器编号相同,线路侧隔离开关编号尾数为3,母线侧隔离开关编号尾数为1(双母线时是1和2)。在电源回路中,若断路器断开之后,电源不可能向外送电能时,断路器与电源之间可以不装隔离开关,如发电机出口。若线路对侧无电源,则线路侧可不装设隔离开关。 图10-1 单母线接线 L1 1QF 4QF 13QS 11QS 2QF

二、单母线分段接线 1.接线特点 单母线分段接线,如图10-2所示。 正常运行时,单母线分段接线有两种运行方式: (1)分段断路器闭合运行。正常运行时分段断路器0QF 闭合,两个电源分别接在两段母线上;两段母线上的负荷应均匀分配,以使两段母线上的电压均衡。在运行中,当任一段母线发生故障时,继电保护装置动作跳开分段断路器和接至该母线段上的电源断路器,另一段则继续供电。有一个电源故障时,仍可以使两段母线都有电,可靠性比较好。但是线路故障时短路电流较大。 (2)分段断路器0QF 断开运行。正常运行时分段断路器0QF 断开,两段母线上的电压可不相同。每个电源只向接至本段母线上的引出线供电。当任一电源出现故障,接该电源的母线停电,导致部分用户停电,为了解决这个问题,可以在0QF 处装设备自投装置,或者重要用户可以从两段母线引接采用双回路供电。分段断路器断开运行的优点是可以限制短路电流。 图10-2 单母线分段接线 L1 1QF 0QF 01QS I 段 Ⅱ段 13QS 11QS 2QF 02QS

电气主接线方式优缺点

电气主接线方式优缺点 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

电气主接线方式优缺点 1、单母线接线 优点:接线简单、清晰、操作方便、扩建容易; 缺点:运行方式不灵活、供电可靠性差。 2、单母线分段接线 单母线分段接线就是将一段母线用断路器分为两段或多段 优点:母线故障或检修时缩小停电范围; 缺点:当一段母线或母线隔离开关故障或检修时,必须断开该分段上的所有电源或出现,这样就减少了系统的发电量,并使该分段单回路供电的用户停电。 3、双母线接线 双母线接线就是将工作线、电源线和出线通过一台断路器和两组隔离开关连接到两组(一次/二次)母线上,且两组母线都是工作线,而每一回路都可通过母线联络断路器并列运行。 优点:与单母线相比,它的优点是供电可靠性大,可以轮流检修母线而不使供电中断。 缺点:每一回路都增加了一组隔离开关,使配电装置的构架及占地面积、投资费用都相应增加;同时由于配电装置的复杂,在改变运行方式倒闸操作时容易发生误操作,且不宜实现自动化;尤其当母线故障时,须短时切除较多的电源和线路,这对特别重要的大型发电厂和变电站是不允许的。4、双母线分段接线

优点:可缩小母线故障停电范围、提高供电可靠性; 缺点:保护及二次接线复杂。 5、双母线带旁路接线 双母线带旁路接线就是在双母线接线的基础上,增设旁路母线。 优点:具有双母线接线的优点,当线路(主变压器)断路器检修时,仍可继续供电。 缺点:旁路的倒换操作比较复杂,增加了误操作的机会,也使保护及自动化系统复杂化,投资费用较大。 6、双母线分段带旁路接线? 双母线分段带旁路接线就是在双母线带旁路接线的基础上,在母线上增设分段断路器。 优点:具有双母线带旁路的优点。 缺点:投资费用较大,占用设备间隔较多。 一般采用此种接线的原则为: (1)当设备连接的进出线总数为12~16回时,在一组母线上设置 分段断路器; (2)当设备连接的进出线总数为17回及以上时,在两组母线上 设置分段断器。 7、3/2接线 3/2断路器接线就是在每3个断路器中间送出2回回路,一般只用于500kV(或重要220kV)电网的母线主接线。 优点:

电气一次设备和电气主接线讲义全

电气一次设备及主接线 第一章电气设备 第1节概述 发电厂变电站的电气设备,根据其用途常分为一次设备和二次设备。一次设备是指直接生产、输送和分配电能的设备,包括有生产变换电能的设备(如发电机、变压器),开关设备(如高、低压断路器、隔离开关、接触器等),限流限压设备(如避雷器、电抗器),接地装置,载流导体(如母线、电力电缆等)。二次设备是对一次设备进行控制、测量、监视和保护的电气设备,包括测量表计(如电压表、电流表、功率表),继电保护及自动装置(如各种继电器、端子排),直流设备(如直流发电机、蓄电池)。下面主要针对部分一次设备的作用和工作原理进行介绍。 第2节母线 在发电厂变电站中,将发电机、变压器和各种电器连接的导线称为母线。母线是电气主接线和各级电压配电装置中的重要环节。它的作用是汇集和分配电能。 母线按所使用的材料可分为铜母线、铝母线和钢母线。 铜母线:具有电阻率低、机械强度高、抗腐蚀性强等特点,是很好的导电材料。但铜的储量少,属贵重金属,一般在含有腐蚀性气体的场合采用。 铝母线:电阻率比铜高,但储量丰富,比重小,加工方便,价格便宜,通常情况下采用铝母线。 钢母线:机械强度高,价格便宜,但钢的电阻率是铜的7倍,用于交流时会有很强的集肤效应,所以仅用于高压小容量回路(如电压互感器)。 母线按其截面形状可分为矩形母线、管形母线和槽形母线。 矩形母线:具有集肤效应系数小、散热条件好、安装简单、连接方便等优点,在35kV 及以下的户配电装置中多采用矩形母线。 管形母线:是空芯导体,集肤效应系数小,且电晕放电电压高。在35kV以上的户外配电装置中广泛采用。 槽形母线:电流分布比较均匀,与同截面的矩形母线相比,具有集肤效应系数小、冷却条件好、金属材料的利用率高、机械强度高等优点。当母线的工作电流很大,每相需要三条以上的矩形母线才能满足要求时,一般采用槽形母线。

电气主接线的基本形式及优缺点

第四章电气主接线 第2节单母线接线 主接线的基本形式,就是主要电气设备常用的几种连接方式。概括的讲可分为两大类:有汇流母线的接线形式;无汇流母线的接线形式。 变电所电气主接线的基本环节是电源(变压器)、母线和出线(馈线)。各个变电所的出线回路数和电源数不同,且每路馈线所传输的功率也不一样。在进出线数较多时(一般超过4回),为便于电能的汇集和分配,采用母线作为中间环节,可使接线简单清晰,运行方便,有利于安装和扩建。但有母线后,配电装置占地面积较大,使用断路器等设备增多。无汇流母线的接线使用开关电器较少,占地面积小,但只适于进出线回路少,不再扩建和发展的变电所。有汇流母线的接线形式主要有:单母线接线和双母线接线。 一、单母线接线 单母线接线的特点是整个配电装置只有一组母线,每个电源线和引出线都经过开关电器接到同一组母线上。供电电源是变压器或高压进线回路,母线即可以保证电源并列工作,又能使任一条出线路都可以从电源1或2获得电能。每条回路中都装有断路器和隔离开关,靠近母线侧的隔离开关称作母线隔离开关,靠近线路侧的称为线路隔离开关(在实际变电所中,通常把靠近电源侧的隔离开关称为甲刀闸,把靠近负荷侧的隔离开关称为乙刀闸。 断路器具有开合电路的专用灭弧装置,可以开断或闭合负荷电流和开断短路电流,用来作为接通或切断电路的控制电器。 隔离开关没有灭弧装置,其开合电流能力极低,只能用作设备停运后退出工作时断开电路,保证与带电部分隔离,起着隔离电压的作用。同一回路中在断路器可能出现电源的一侧或两侧均应配置隔离开关,以便检修断路器时隔离电源。 同一回路中串接的隔离开关和断路器,在运行操作时,必须严格遵守下列操作顺序:如对馈线L1送电时,须先合上隔离开关QS1和QS2,再投入断路器QF2;如欲停止对其供电,须先断开QF2,然后再断开QS3和QS2。为了防止误操作,除严格按照操作规程实行操作票制度外,还应在隔离开关和相应的断路器之间,加装电磁闭锁、机械闭锁。接地开关(又称接地刀闸)QS4是在检修电路和设备时合上,取代安全接地线的作用。当电压在110kV及以上时,断路器两侧的隔离开关和线路隔离开关的线路侧均应配置接地开关。对35kV及以上的母线,在每段母线上亦应设置1~2组接地开关或接地器,以保证电器和母线检修时的安全。

电气主接线基本形式

第一节单母线接线 一单母线接线 1.接线特点 单母线接线如图10-1所示 图10-1 单母线接线 单母线接线的特点是每一回路均经过一台断路器QF和隔离开关QS接于一组母线上。断路器用于在正常或故障情况下接通与断开电路。断路器两侧装有隔离开关,用于停电检修断路器时作为明显断开点以隔离电压,靠近母线侧的隔离开关称母线侧隔离开关(如11QS),靠近引出线侧的称为线路侧隔离开关(如13QS)。在主接线设备编号中隔离开关编号前几位与该支路断路器编号相同,线路侧隔离开关编号尾数为3,母线侧隔离开关编号尾数为1(双母线时是1和2)。在电源回路中,若断路器断开之后,电源不可能向外送电能时,断路器与电源之间可以不装隔离开关,如发电机出口。若线路对侧无电源,则线路侧可不装设隔离开关。

二、单母线分段接线 1.接线特点 单母线分段接线,如图10-2所示。 正常运行时,单母线分段接线有两种运行方式: (1)分段断路器闭合运行。正常运行时分段断路器0QF 闭合,两个电源分别接在两段母线上;两段母线上的负荷应均匀分配,以使两段母线上的电压均衡。在运行中,当任一段母线发生故障时,继电保护装置动作跳开分段断路器和接至该母线段上的电源断路器,另一段则继续供电。有一个电源故障时,仍可以使两段母线都有电,可靠性比较好。但是线路故障时短路电流较大。 图10-2 单母线分段接线 L1 1QF I 段 11QS

(2)分段断路器0QF断开运行。正常运行时分段断路器0QF断开,两段母线上的电压可不相同。每个电源只向接至本段母线上的引出线供电。当任一电源出现故障,接该电源的母线停电,导致部分用户停电,为了解决这个问题,可以在0QF处装设备自投装置,或者重要用户可以从两段母线引接采用双回路供电。分段断路器断开运行的优点是可以限制短路电流。 三、单母线分段带旁路母线接线 图10-3 单母线分段带旁路接线 1.接线特点 图10-3为单母线分段带旁路接线的一种情况。旁路母线经旁路断路器接至I、II段母线上。正常运行时,90QF回路以及旁路母线

浅析电气主接线设计

浅析电气主接线设计 发表时间:2014-12-15T09:44:30.280Z 来源:《科学与技术》2014年第10期下供稿作者:苏楠[导读] 明确电力负荷的等级根据对供电可靠性的要求及中断供电在政治、经济上所造成的损失或影响的程度,电力负荷分为三级。 贵阳铝镁设计研究院有限公司苏楠摘要:概述了电气主接线的基本概念,介绍了电气主接线的设计原则、基本要求和基本形式,论述了技术经济比较所涉及的内容。关键词:主接线,原则,要求,形式,技术经济比较1.引言电气主接线是发电厂、变电所电气设计中的重要组成部分,也是电力系统中电能传递的重要环节。电气主接线是指在电力系统中,把发电机、变压器、断路器和隔离开关等高压电气设备按照一定的要求和顺序连接,为满足电能输送及分配的要求而设计的,实现发电、变电、输配电任务的电路。 2.电气主接线设计的原则电气主接线设计的原则是以设计任务书为依据,以国家政策、电力行业的技术规范、标准为准绳,按照负荷性质、容量、地区供电条件,根据工程实际情况和发展规划,确定技术经济合理的设计方案。为此,在进行电气主接线设计时,应遵循的原则如下。 2.1 明确电力负荷的等级根据对供电可靠性的要求及中断供电在政治、经济上所造成的损失或影响的程度,电力负荷分为三级。每一级负荷对供电可靠性的要求不同,则变压器容量、台数以及出线回路数等配置就不一致。因此,首先要明确电力负荷的等级,确认电力负荷在电力系统中的作用和地位,才能初步确定主接线的设计方案。 2.2 考虑近期和远期的发展关系电气主接线设计应考虑近期和远期的发展关系,做到远近期结合,以近期为主,适当考虑发展的可能,按照负荷的性质、用电容量、地区供电条件,合理确定电气主接线形式、电源进线的数量和出线回路数。 2.3 主变压器容量的选择如果主变压器的容量选择过大、台数过多,则会增加建设资金、占地面积、运行费用和检修工作量,不能充分发挥供电设备的经济效益;如果主变压器的容量选择过小、台数过少,则不具备可扩展性,无法满足今后的发展需要,影响供电的灵活性和可靠性。因此,主变压器容量的选择除依据负荷计算外,还取决于主变压器的运行方式、负荷的增长速度等因素,其容量可按投运后5~10 年的预期负荷选择,并适当考虑到远期10~20 年的负荷发展。 2.4 主变压器的运行方式根据负荷等级对供电可靠性和灵活性的要求,存在多种主变压器的运行方式可供选择,例如:当配置一台主变压器时,该台主变压器独立运行,则应满足全部负荷的用电需求,并且留有15~25%的裕量;当配置两台及以上主变压器时,每台主变压器独立运行且互为备用,当断开一台时,其余主变压器的容量应能保证一、二级负荷的全部用电需求。 2.5 合理确定电压等级电压等级与用电负荷的大小、电源点至用电负荷的距离、用电设备的电压等级、用电负荷的分布情况以及地方电网可能供给的电压等因素有关,需经过多方案技术经济比较后,与电力部门共同协商确定。 3.电气主接线设计的基本要求3.1 安全性安全性是电气主接线基本要求的第一要素,是整个供电系统的核心。因为只有在保证人身安全和设备安全的前提下,才能确保整个供电系统的正常运行。否则,即使设备再先进也无法正常投入使用。 3.2 可靠性重要负荷的停电往往会给政治、经济上带来巨大的损失和影响,因此,供电可靠性是电气主接线的最基本要求,是满足各级电力负荷持续不间断供电的基本保障。评价电气主接线可靠性的标志如下:(1)一级负荷应由两个电源供电,当一个电源因故障中断供电时,另一个电源不应同时受到损坏,并且对于特别重要的一级负荷还需增设应急电源。二级负荷应由两回线路供电,做到当发生故障时,不致中断供电或中断后能够迅速恢复。(2)母线或断路器故障、母线或隔离开关检修时,应尽量减少停电的回路数和停电时间,并保证对重要负荷的供电。(3)优先选用经过长期实践考验的电气主接线形式,并选择使用可靠性高,性能先进的电气设备。 3.3 灵活性电气主接线系统无论是在正常运行中、发生事故时、需要检修时还是其他运行方式下,都应能灵活地投入和切除某些机组、变压器或线路,满足调度运行的要求,不影响电力系统的正常运行,不中断向用户的供电,达到分配电源和负荷的目的。 3.4 可扩展性根据发展的需要,在进行扩建时,可在预留的空间内进行设备的布置,并且在不影响连续供电或允许停电时间较短的情况下,对于投入的新机组、变压器或线路能够安全快速地与原有系统进行连接组网,满足扩建要求。 3.5 经济性电气主接线系统应在保证运行操作的方便以及满足技术条件的要求下,做到经济合理。一般从以下三个方面考虑:(1)节省投资电气主接线的一次系统应力求简单,尽可能简化二次回路的继电保护系统,以此节省一次和二次设备的投资,并且采取限制短路电流的措施,以便选择分断能力较小的电气设备和截面较小的导体。(2)节约用地同一电压等级下,选择不同的电气主接线方案,其占地面积有很大差别,应在保证技术要求和防火要求的前提下,充分利用地形地质紧凑合理的对主接线进行布置,并且应尽量不占或少占耕地。(3)减少电能损耗首先,根据用电负荷的大小、等级和发展需要,合理选择变压器容量和台数,以实现其经济运行;其次,尽量缩短输电线路,减少线路损耗;最后,通过技术手段提高用电系统的功率因数,加强对电气设备、线路的维护和管理,降低电能损耗。 4.电气主接线的基本形式电气主接线的基本形式分为有汇流母线和无汇流母线两种,其中有汇流母线通常包括单母线接线、单母线分段接线、双母线接线、单母线分段带旁路母线接线、一台半断路器接线等形式;无汇流母线通常包括桥型接线、多边形接线、线路变压器组接线等形式。下面就几种常用的主接线形式分析如下。 4.1 单母线接线

电气主接线图使用分析.

电气主接线图使用分析 王霞 电气1202班,电气工程及自动化,水利与能源动力工程学院,2013.11.5 摘要:电气主接线是由各种电气设备如发电机、变压器、断路器、隔离开关、互感器、母线、电缆、线路等按照一定的要求和顺序连接起来,完成电能的输送和分配的电路。电气主接线是传输强电流、高电压的网络,故又称为一次接线或电气主系统。当用国家统一规定的图形和文字符号表示各种电气设备,并按工作顺序排列,详细地表示电气主接线的全部基本组成和连接关系的接线图,称为主接线图。电气主接线的选择,直接影响着电气设备的选择和配电装置的布置,也在一定程度上决定了这些设备和装置运行的可靠性和经济性。现就发配电技术中的电气主接线图的基本形式进行分析研究。 一.对一次主接线的要求 1.安全性 对电气主接线的安全性,主要体现在:隔离开关的正确配置和隔离开关接线的正确绘制。隔离开关的主要用途是将检修部分与电源隔离,以保证检修人员的安全。在电气主接线图中,凡是应该安装隔离开关的地方都必须配置隔离开关,不能有遗漏之处,也不可以为乐节省投资而不装。在绘制隔离开关时,电源应接在通过瓷瓶与隔离开关的刀片联结,因为这样安装在打开和合上隔离开关时,刀片端的带电时间较短,这样可以保证操作人员的安全。 2.可靠性 电气主接线的可靠性不是绝对的。同样的形式在一些发电厂或变电所来说是可靠的,但对另一些发电厂或变电所则不一定能满足可靠性要求。所以在分析主接线图时,要考虑发电厂或变电所在整个系统中的地位和作用,也要考虑用户的负荷性质和类别。 (1)在分析电气主接线可靠性时,根据负荷性质,可按以下几个方面进行: 1)各断路器检修时,停电的范围和时间; 2)母线故障或检修时,停电范围和时间; 3)有没有使发电厂或变电所全部停电的可能。 电气主接线可靠性的高低直接决定着经济损失的大小,可靠性越高停电时的经济损失越少,反之,则越多。 (2)按重要性的不同,将负荷分为三类: Ⅰ类负荷——停电后将造成人员伤亡和重大设备损坏的最重要负荷。如机场和军事设施等电力

10kV配电工程电气主接线方式选择原则

10kV配电工程电气主接线方式选择原则 目录 1 10kV中压公用电缆网 (2) 1.1 一般原则 (2) 1.2 10kV典型接线模式 (2) 2 20kV中压公用电缆网 (4) 2.1 一般原则 (4) 2.2 20kV典型接线模式 (4) 3 中压架空网 (6) 3.1 一般原则 (6) 3.2 典型接线模式 (6) 4 混合型网架 (8) 5 10kV中心开关站 (8) 5.1 一般原则 (8) 5.2 中心开关站接线方式 (8) 6 室内配电站 (8) 7 10kV箱式变 (9) 8 低压配电网 (9) 8.1 典型接线模式 (9) 9 用户专用配电网结线方式 (10) 9.1一般原则 (10) 9.2 电气主接线的主要型式 (11) 9.3 电气主接线的确定 (11) 9.4 用户专用配电网结线方式 (11)

1 10kV中压公用电缆网 1.1 一般原则 1.1.1 10kV每回线路最终总装见容量不宜超过12000kVA。 1.1.2 环网中线路应在适当位置设置开关站或综合房,每个开关站或综合房每段母线实际负荷电流不宜超过100A。 1.1.3 10kV开关站电气接线采用单母线或单母线分段,每段母线接4~6面开关柜;综合房电气接线采用单母线,宜接4~6面开关柜。开关站应按终期规模一次性建成。 1.1.4 在原有线路新增开关站或综合房应以“π”接形式接入。 1.2 10kV典型接线模式 1.2.1电缆网“2-1”环网接线 (1)电缆网“2-1”环网接线如图1.2.1所示。 图1.2.1电缆网“2-1”环网接线 (2)电缆网“2-1”环网接线应满足: ?电缆网“2-1”环网接线应按平均每回线路不超过50%额定载流量运行。 ?构建电缆网“2-1”环网接线必须结合考虑区域电网规划,为今后将线路改造成“3-1”环网接线提供可能和便利。 1.2.2电缆网“3-1”环网接线 (1)电缆网“3-1”环网接线(3回线路为1组)、(4回线路为1组)分别如图1.2.2-1、图1.2.2-2所示。

电气主接线方式优缺点

电气主接线方式优缺点 1、单母线接线 优点:接线简单、清晰、操作方便、扩建容易; 缺点:运行方式不灵活、供电可靠性差。 2、单母线分段接线 单母线分段接线就是将一段母线用断路器分为两段或多段 优点:母线故障或检修时缩小停电范围; 缺点:当一段母线或母线隔离开关故障或检修时,必须断开该分段上的所有电源或出现,这样就减少了系统的发电量,并使该分段单回路供电的用户停电。 3、双母线接线 双母线接线就是将工作线、电源线和出线通过一台断路器和两组隔离开关连接到两组(一次/二次)母线上,且两组母线都是工作线,而每一回路都可通过母线联络断路器并列运行。 优点:与单母线相比,它的优点是供电可靠性大,可以轮流检修母线而不使供电中断。 缺点:每一回路都增加了一组隔离开关,使配电装置的构架及占地面积、投资费用都相应增加;同时由于配电装置的复杂,在改变运行方式倒闸操作时容易发生误操作,且不宜实现自动化;尤其当母线故障时,须短时切除较多的电源和线路,这对特别重要的大型发电厂和变电站是不允许的。 4、双母线分段接线

优点:可缩小母线故障停电范围、提高供电可靠性; 缺点:保护及二次接线复杂。 5、双母线带旁路接线 双母线带旁路接线就是在双母线接线的基础上,增设旁路母线。 优点:具有双母线接线的优点,当线路(主变压器)断路器检修时,仍可继续供电。 缺点:旁路的倒换操作比较复杂,增加了误操作的机会,也使保护及自动化系统复杂化,投资费用较大。 6、双母线分段带旁路接线 双母线分段带旁路接线就是在双母线带旁路接线的基础上,在母线上增设分段断路器。 优点:具有双母线带旁路的优点。 缺点:投资费用较大,占用设备间隔较多。 一般采用此种接线的原则为: (1)当设备连接的进出线总数为12~16回时,在一组母线上 设置分段断路器; (2)当设备连接的进出线总数为17回及以上时,在两组母线上 设置分段断器。 7、3/2接线 3/2断路器接线就是在每3个断路器中间送出2回回路,一般只用于500kV(或重要220kV)电网的母线主接线。 优点:

电气主接线讲义

第五章电气主接线讲义 第一节电气主接线概述 一、电气主系统与电气主接线图 (一)电气主接线 电气主接线是由多种电气设备通过连接线,按其功能要求组成的汇聚和分配电能的电路,也称电气一次接线或电气主系统。 (二)电气主接线图 用规定的设备文字和图形符号将各电气设备,按连接顺序排列,详细表示电气设备的组成和连接关系的接线图,称为电气主接线图。 电气主接线图一般画成单线图。 二、电气主接线中的电气设备和主接线方式 (一)电气主接线中的电气设备 电气主接线中的主要电气设备包括:电力变压器、断路器、隔离开关、电压互感器、电流互感器、避雷器、母线、接地装置以及各种无功补偿装置等。(二)主接线方式 常用的主接线方式有:单母线接线、单母线分段接线、单母线分段带旁路母线接线、双母线接线、双母线带旁路母线接线、双母线分段接线、双母线分段带旁路母线接线、内桥接线、外桥接线、一台半断路器接线、单元接线、和角形接线等。 三、电气主接线的基本要求 电气主接线的选择正确与否对电力系统的安全、经济运行,对电力系统的稳定和调度的灵活性,以及对电气设备的选择,配电装置的布置,继电保护及控制方式的拟定等都有重大的影响。在选择电气主接线时,应满足下列基本要求。 1. 保证必要的供电可靠性和电能的质量; 2. 具有一定的运行灵活性; 3. 操作应尽可能简单、方便; 4. 应具有扩建的可能性; 5. 技术上先进,经济上合理。

第二节 电气主接线的基本接线形式 一、单母线接线 (一) 单母线接线的优点 简单、清晰、设备少、投资小、运行操作方便,有利于扩建和采用成套配电装置。 (二) 单母线接线的主要缺点 母线或母线隔离开关检修时,连接在母线上的所有回路都将停止工作;当母线或母线隔离开关上发生短路故障,装设母差保护时,所有断路器都将自动断开,造成全部停电;检修任一电源或出线断路器时,该回路必须停电。 二、单母线分段接线 出线回路数增多时,可用断路器或隔离开关将母线分段,成为单母线分段接线,如图所示。根据电源的数目和功率,母线可分为2~3段。 (一)单母线分段接线的优点 该接线方式由双电源供电,故供电可靠性高,同时具有接线简单、操作方便、投资少等优点。当一段母线发生故障时,分段断路器或隔离开关将故障切除,保证正常母线供电,重要用户分别取自不同母线,不会全停,提高了供电的可靠性。 (二)单母线分段接线的缺点 当一段母线或母线隔离开关故障或检修时,必须断开接在该分段上的全部电源和出线,并使该段单回路供电的用户停电;任一出线断路器检修时, 该回路

(完整版)110kV变电站电气主接线及运行方式

110kV变电站电气主接线及运行方式 变电站电气主接线是指高压电气设备通过连线组成的接受或者分配电能的电路。其形式与电力系统整体及变电所的运行可靠性、灵活性和经济性密切相关,并且对电气设备选择、配电装置的布置、继电保护和控制方式的拟定有较大影响。所以,主接线设计是一个综合性问题,应根据电力系统发展要求,着重分析变电所在系统中所处的地位、性质、规模及电气设备特点等,做出符合实际需要的经济合理的电气主接线。 一变电所主接线基本要求 1.1 保证必要的供电可靠性和电能质量。 保证供电可靠性和电能质量是对主接线设计的最基本要求,当系统发生故障时,要求停电范围小,恢复供电快,电压、频率和供电连续可靠是表征电能质量的基本指标,主接线应在各种运行方式下都能满足这方面的要求。 1. 2 具有一定的灵活性和方便性。 主接线应能适应各种运行状态,灵活地进行运行方式切换,能适应一定时期内没有预计到的负荷水平变化,在改变运行方式时操作方便,便于变电所的扩建。 1. 3 具有经济性。 在确保供电可靠、满足电能质量的前提下,应尽量节省建设投资和运行费用,减少用地面积。 1. 4 简化主接线。 配网自动化、变电所无人化是现代电网发展的必然趋势,简化主接线为这一技术的全面实施创造了更为有利的条件。 1. 5 设计标准化。 同类型变电所采用相同的主接线形式,可使主接线规范化、标准化,有利于系统运行和设备检修。 1. 6 具有发展和扩建的可能性。 变电站电气主接线应根据发展的需要具有一定的扩展性。 二变电所主接线基本形式的变化 随着电力系统的发展,调度自动化水平的提高及新设备新技术的广泛应用,变电所电气主接线形式亦有了很大变化。目前常用的主接线形式有:单母线、单母线带旁路母线、单母线分段、单母线分段带旁路、双母线、双母线分段带旁路、一个半断路器接线、桥形接线及线路变压器组接线等。从形式上看,主接线的发展过程是由简单到复杂,再由复杂到简单的过程。在当今的技术环境中, 随着新技术、高质量电气产品广泛应用,在某些条件下采用简单主接线方式比复杂主接线方式更可靠、更安全,变电所主接线日趋简化。因此,变电所电气主接线形式应根据可靠性、灵活性、经济性及技术环境统一性来决定。 三 110kV变电站的主接线选择 在电力系统和变电所设计中,根据变电所在系统中的地位和作用,可把电网中110kV变电所分为终端变电所和中间变电所两大类。下面就这两类变电所高压侧电气主接线模式作一分析。 3. 1 110kV终端变电所主接线模式分析

电力系统电气主接线的形式和要求

电力系统电气主接线的形式和要求 1、主接线的基本要求 (1)可靠性电气接线必须保证用户供电的可靠性,应分别按各类负荷的重要性程度安排相应可靠程度的接线方式。保证电气接线可靠性可以用多种措施来实现。 (2)灵活性电气系统接线应能适应各式各样可能运行方式的要求。并可以保证能将符合质量要求的电能送给用户。 (3)安全性电力网接线必须保证在任何可能的运行方式下及检修方式下运行人员的安全性与设备的安全性。 (4)经济性其中包括最少的投资与最低的年运行费。 (5)应具有发展与扩建的方便性在设计接线方时要考虑到5~10年的发展远景,要求在设备容量、安装空间以及接线形式上,为5~10年的最终容量留有余地。 2、单母线接线 (1)单母不分段 每条引入线和引出线的电路中都装有断路器和隔离开关, 电源的引入与引出是通过一根母线连接的。 单母线不分段接线适用于用户对供电连续性要求不高的 二、三级负荷用户。 2)单母线分段接线

单母线分段接线是由电源的数量和负荷计算、电网的结构来决定的。 单母线分段接线可以分段运行,也可以并列运行。 用隔离开关、负荷开关分段的单母线接线,适用于由双回路供电的、允许短时停电的具有二级负荷的用户。 用断路器分段的单母线接线,可靠性提高。如果有后备措施,一般可以对一级负荷供电。 3)带旁路母线的单母线接线 当引出线断路器检修时,用旁路母线断路器代替引出线断路器,给用户继续供电。旁路断路器一般只能代替一台出线断路器工作,旁路母线一般不能同时连接两条及两条以上回路,否则当其中任一回路故障时,会使旁路断路器跳闸。断开多条回路。通常35kV的系统出线8回以上、110kV系统出线6回以上,220kV 系统出线4回以上,才考虑加设旁路母线。 (4)单母线分段带旁路 在正常运行时,系统以单母线分段方式运行,旁路母线不带电。如果正常运行的 某回路断路器需退出运行进行检修,闭合旁路断路器,使旁路母线带电,合上欲检修回路旁路隔离开关,则该线路断路器可退出运行,进行检修。 这种旁路母线可接至任一段母线,在容量较少的中小型发电厂和35~110kV变电所中获得广泛应用。

电气主接线的选择

电气主接线的选择 电气主接线的确定对电力系统整体及发电厂、变电所本身运行的可靠性,灵活性和经济性密切相关,并且对电气设备的选择、配电装置选择、继电保护和控制方式的拟定有较大影响,因此,必须正确处理好各方面的关系,全面分析有关影响因素,通过技术经济比较,合理确定主接线方案. (一)设计的基本要求为: 1、满足对用户供电必要的可靠性和保证电能质量。 2、接线应简单、清晰且操作简便。 3、运行上要具有一定的灵活性和检修方便。 4、投资少、运行维护费用低。 5、具有扩建的可能性。 (二)设计主接线的原则: 采用分段单母线或双母线的110-220kv配电装置,当断路器不允许停电检修时,一般需设置旁路母线。对于屋内配电装置或采用SF6断路器,SF6全封闭电器的配电装置,可不设旁母.35-60kv配电装置中,一般不设旁路母线,因为重要用户多系双回路供电,且断路器检修时间短,平均每年约2-3天。如线路断路器不允许停电检修时,可设置其他旁路设施。6-10kv配电装置,可不设旁路母线。对于初线回路数多或多数线路系向用户单独供电,以及不允许停电的单母线,分段单母线的配电装置,可设置旁路母线。采用双母线的6-10kv配电装置多不设旁路母线。 对于变电站的电气接线,当能满足运行要求时,其高压侧应尽量采用断路器较少或不用断路器的接线,如线路一变压器组或桥形接线等。若能满足继电保护要求时,也可采用线路分支接线。在110-220kv配电装置,当出线不超过四回路时,一般采用分段单母线接线,四回路以上的一般采用双母线接线。 拟定可行的主接线方案2—3种,内容包括主变的形式,台数,以及各级电压配电装置的接线方式等,并依据对主接线的基本要求,从技术上论证各方案的优缺点,淘汰差的方案,保留一种较好的方案。 (三)方案的比较:

电气主接线图分析

以下是对仪器进行详细的介绍试验前应该常备的试验项目和介绍,以及仪器在现场是如何接线的,如果你需要了解更多详细的参考资料和技术说明,推荐一个不错的地方:直流高压发生器 使用直流高压试验器的工作人员必须是具有“高压试验上岗证”的专业人员。 ● 使用本仪器请用户必须按《电力安规》168条规定,并在工作电源进入试验器前加装两个明显 断开点,当更换试品和接线时应先将两个电源断开点明显断开。 ● 试验前请检查试验器控制箱、倍压筒和试品的接地线是否接好。试验回路接地线应按本说明书 所示一点接地。 ● 对大电容试品的放电应经100Ω/V放电电阻棒对试品放电。放电时不能将放电棒立即接触试品,应先将放电棒逐渐接近试品,至一定距离空气间隙开始游离放电有嘶嘶声。当无声音时可用放电 棒放电,最后直接接上地线放电。 ● 如做容性负载试验时,一定要接上限流电阻。 ● 直流高压在200kV及以上时,尽管试验人员穿绝缘鞋且处在安全距离以外区域,但由于高压直流离子空间电场分布的影响,会使几个邻近站立的人体上带有不同的直流电位。试验人员不要互 相握手或用手接触接地体等,否则会有轻微电击现象,此现象在干燥地区和冬季较为明显,但由 于能量较小一般不会对人造成伤害。 ● 试验完毕必须将接地线挂至高压输出端方可拆除高压引线。 (1).控制箱面板示意图 错误!未指定应用程序。 1.控制箱接地端子:控制箱接地端子与倍压筒接地端子及试品接地联接为一点后再与接地网相连。 2.中频及测量电缆快速联接插座:用于机箱与倍压部分的联接。联接时只需将电缆插头顺时针 方向转动到位,拆线时只需逆时针转动电缆插头。 3.过压整定拨盘开关:用于设定过电压保护值。拨盘开关所显示单位为kV ,设定值为试验电压1.1倍。 4.电源输入插座:将随机配置的电源线与电源输入插座相联。(交流220V±10%,插座内自带保 险管。) 5.数显电压表:数字显示直流高压输出电压。

电气主接线基本形式

电气主接线基本形式 第一节单母线接线 一单母线接线 1.接线特点 单母线接线如图10-1所示 单母线接线的特点是每一回路均经过一台断路器QF 和隔离开关QS 接于一组母线上。断路器用于在正常或故障情况下接通与断开电路。断路器两侧装有隔离开关,用于停电检修断路器时作为明显断开点以隔离电压,靠近母线侧的隔离开关称母线侧隔离开关(如11QS ),靠近引出线侧的称为线路侧隔离开关(如13QS )。在主接线设备编号中隔离开关编号前几位与该支路断路器编号相同,线路侧隔离开关编号尾数为3,母线侧隔离开关编号尾数为1(双母线时是1和2)。在电源回路中,若断路器断开之后,电源不可能向外送电能时,断路器与电源之间可以不装隔离开关,如发电机出口。若线路对侧无电源,则线路侧可不装设隔离开关。 二、单母线分段接线 1.接线特点 单母线分段接线,如图10-2所示。 图10-1 单母线接线 L1 1QF 4QF 13QS 11QS 2QF

正常运行时,单母线分段接线有两种运行方式: (1)分段断路器闭合运行。正常运行时分段断路器0QF 闭合,两个电源分别接在两段母线上;两段母线上的负荷应均匀分配,以使两段母线上的电压均衡。在运行中,当任一段母线发生故障时,继电保护装置动作跳开分段断路器和接至该母线段上的电源断路器,另一段则继续供电。有一个电源故障时,仍可以使两段母线都有电,可靠性比较好。但是线路故障时短路电流较大。 (2)分段断路器0QF 断开运行。正常运行时分段断路器0QF 断开,两段母线上的电压可不相同。每个电源只向接至本段母线上的引出线供电。当任一电源出现故障,接该电源的母线停电,导致部分用户停电,为了解决这个问题,可以在0QF 处装设备自投装置,或者重要用户可以从两段母线引接采用双回路供电。分段断路器断开运行的优点是可以限制短路电流。 三、单母线分段带旁路母线接线 图10-2 单母线分段接线 L1 1QF 0QF 01QS I 段 Ⅱ段 13QS 11QS 2QF 02QS

电气主接线的基本形式及优缺点

电气主接线的基本形式及 优缺点 Last revision on 21 December 2020

第四章电气主接线 第2节单母线接线 主接线的基本形式,就是主要电气设备常用的几种连接方式。概括的讲可分为两大类:有汇流母线的接线形式;无汇流母线的接线形式。 变电所电气主接线的基本环节是电源(变压器)、母线和出线(馈线)。各个变电所的出线回路数和电源数不同,且每路馈线所传输的功率也不一样。在进出线数较多时(一般超过4回),为便于电能的汇集和分配,采用母线作为中间环节,可使接线简单清晰,运行方便,有利于安装和扩建。但有母线后,配电装置占地面积较大,使用断路器等设备增多。无汇流母线的接线使用开关电器较少,占地面积小,但只适于进出线回路少,不再扩建和发展的变电所。有汇流母线的接线形式主要有:单母线接线和双母线接线。 一、单母线接线 单母线接线的特点是整个配电装置只有一组母线,每个电源线和引出线都经过开关电器接到同一组母线上。供电电源是变压器或高压进线回路,母线即可以保证电源并列工作,又能使任一条出线路都可以从电源1或2获得电能。每条回路中都装有断路器和隔离开关,靠近母线侧的隔离开关称作母线隔离开关,靠近线路侧的称为线路隔离开关(在实际变电所中,通常把靠近电源侧的隔离开关称为甲刀闸,把靠近负荷侧的隔离开关称为乙刀闸。 断路器具有开合电路的专用灭弧装置,可以开断或闭合负荷电流和开断短路电流,用来作为接通或切断电路的控制电器。

隔离开关没有灭弧装置,其开合电流能力极低,只能用作设备停运后退出工作时断开电路,保证与带电部分隔离,起着隔离电压的作用。同一回路中在断路器可能出现电源的一侧或两侧均应配置隔离开关,以便检修断路器时隔离电源。 同一回路中串接的隔离开关和断路器,在运行操作时,必须严格遵守下列操作顺序:如对馈线L1送电时,须先合上隔离开关QS1和QS2,再投入断路器QF2;如欲停止对其供电,须先断开QF2,然后再断开QS3和QS2。为了防止误操作,除严格按照操作规程实行操作票制度外,还应在隔离开关和相应的断路器之间,加装电磁闭锁、机械闭锁。接地开关(又称接地刀闸)QS4是在检修电路和设备时合上,取代安全接地线的作用。当电压在110kV及以上时,断路器两侧的隔离开关和线路隔离开关的线路侧均应配置接地开关。对35kV及以上的母线,在每段母线上亦应设置1~2组接地开关或接地器,以保证电器和母线检修时的安全。 图4—1单母线接线 QF—断路器;QS—隔离开关 1.单母线接线的优缺点 优点:接线简单清晰、设备少、操作方便、便于扩建和采用成套配电装置。 缺点:灵活性和可靠性差,当母线或母线隔离开关故障或检修时,必须断开它所连接的电源;与之相连的所有电力装置在整个检修期间均需停止工作。此外,在出 线断路器检修期间,必须停止该回路的工作。 2.单母线接线的适用范围: 一般适用于一台主变压器的以下三种情况: (1)6~10kV配电装置的出线回路数不超过5回。 (2)35~63kV配电装置的出线回路数不超过3回。 (3)110~220kV配电装置的出线回路数不超过2回。

相关主题
文本预览
相关文档 最新文档