当前位置:文档之家› 电厂水处理基本知识

电厂水处理基本知识

电厂水处理基本知识
电厂水处理基本知识

水处理基本知识

混凝剂:

聚合铝(PAC):uW v3j9sif X

聚合铝是在一定温度和一定压力下,用碱和氧化铝制取的一类聚合物,产品有固体和液体两种。固体外观有无色、浅灰色、淡黄色几种,液体外观有无色、浅灰色、淡黄色或棕褐色几种,是一种透明或半透明液体,无沉淀。

聚合铝适用范围广,对低浊度水、高浊度水、低温水及高色度水均有较好的处理效果;由于处理后,水中中性盐增加少,可节约除盐设备的用碱量,降低除盐设备的运行费用等。

在设备启动或原水浊度低时,为提高混凝效果,可适量投加PAM作为助凝剂。聚丙烯酰胺(PAM),它是一种非离子型的有机高分子絮凝剂,相对分子质量一般为200万-600万。水解聚丙烯酰胺(HPAM)它是阴离子型絮凝剂,PAM阳离子型是聚丙烯酰胺的霍夫曼反应物。NI+y;C#O:Tw:R

有机高分子絮凝剂,可与PAC联合使用,即作为助凝剂,也可以单独作为混凝剂使用。

(1) 化学方法a2B1LyRT@

化学方法是向水中加入添加剂,以改善混凝过程,提高混凝处理效果,具体方法如下。

①投加碱和酸:对于碱度不高的中、低浊度水,可投加碱[Ca(OH)2、NaHC03、NaOH等]。对于高浊度水或碱度较高的

高、中等有机物水,可投加酸(H2S04、H2C03等)。用以改变水中胶体的电荷,改变混凝剂水解产物的结构并改善其吸附杂质的性质;降低机械杂质的分子电荷,从溶解胶体中转移物质。

1rt0`g^ x:b8d

②投加助凝剂:此措施适用于各种浊度和中等有机物含量的天然水或污水。提高细小矶花的有效碰撞率,加速混凝过程。此外,由于聚合物的吸附架桥作用,增加了矶花的密度和强度,有利于矶花的沉降。X6`.~r2lT7P

③投加膨润土及活性炭粉此措施适用于低温、低浊度水和受有机物污染较严重的地表水。此措施可以加速矶花的形成和沉降,提高对有机物的去除率。

④向水中投加氧化剂(如氯、臭氧、高锰酸钾等)此措施适用于微生物和有机物含量较高的水。它可以破坏亲水性的有机物和稳定的分散杂质。*Wu3F?"Q(G n0H*s

(2) 物理方法

物理方法是改善混凝过程的物理条件,从而提高混凝处理效果,其具体方法如下。:guF$Fp/zO,\\A

①将水温调整到25-30℃此措施可创造矶花形成的最佳温度条件,增加矶花的粒度和强度,适应于低温水。"p\\ w| @1lR

②在澄清池的分离区或清水区加装斜板或斜管此措施

可以缩短矶花的沉降距离,提高沉降效率,降低处理水的浊度。此措施适用于各种水。

③预先对原水进行曝气吹脱处理此措施可以去除水中挥发性有机物和溶解、分散气体,防止澄清池水面出现泡沫和矶花上浮,提高澄清池出水质量。此措施适用于含有较多挥发性有机物,受有机物污染较严重的天然水。)m3r ~q%n

④在矾花形成的开始阶段用空气进行搅拌此措施可强

化矶花形成,氧化有机化合物和二价铁盐,防止矾花上浮。此措施适用于各种水。5Q0G1gfi

._b#EJ p-L Y8y@(q

影响过滤的主要因素有以下几点:\\iUN\\9~;s u J

(1)滤料的粒径和滤层的高度

在过滤设备的运行中,悬浮颗粒穿透滤层的深度,主要取决于滤料的粒径,在同样的运行工况下,粒径越大,穿透滤层的深度也越大,滤层的截污能力也越大,也利于延长过滤周期。增加滤层的高度,同样有利于增大滤层的截污能力。但是应当指出的是截污能力越大,反洗的困难也同样增大。3x B,W2JF.v8VR jwZ

(2)滤料的形状和滤层的空隙率

滤料的形状会影响滤料的表面积,滤料的表面积越大,滤层的截污能力也越大,过滤效率也越高。如采用多棱角的破碎粒滤料,由于其表面积较大,因而可提高滤层的过滤效率。一般说,滤料的表面积与滤层的空隙率成反比,孔隙大,滤层的截污能力大,但过滤效率较低。

(3)过滤流速Q)Ls$~:Z.@p4O2W

一般所指的滤速,是在无滤料时水通过空过滤设备的速度,也称为“空塔速度”。过滤设备的滤速不宜过慢或过快。滤速慢意味着单位过滤面积的出力小,因此为了达到一定的出力,必须增大过滤面积,这样将大大增加投资。滤速太快会使出水水质下降,而且因水头损失较大,而使过滤周期缩短。

在过滤经过混凝澄清处理的水时,滤速一般取

8-12m/h。0pwZa}A x1Y D^

(4)进水的前处理方式S:q'w"ICio a

滤层的截污能力(又称泥渣容量),是指单位滤层表面或单位滤料体积所能除去悬浮物的重量,可用每平方米过滤截面能除去泥渣的千克数(kg/m2),或每立方米滤料能除去泥渣的千克数(kg/m3)表示。Qo:h xQ)R.c

(5)水流的均匀性 P x;IBjp

过滤设备在过滤或反洗过程中,要求沿过滤截面水流分布均匀,否则就会造成偏流,影响过滤和反洗效果。在过滤设备中,对水流均匀性影响最大的是配水系统,为了使水流均匀,一般都采用低阻力配水系统。

压力式过滤器

所谓压力式过滤器是指设备在一定压力下工作,通常外壳为一个密闭的钢罐。压力式过滤器可分为单流和双流两种,

单流式过滤器的滤料还可分为单层、双层和三层。

运行时,进水从进水管进入过滤器,经进水挡板均匀配水,自上而下通过滤层。清水经滤嘴(水帽)收集后,由出水管引出。

①当过滤阻力达到一定值时,停止运行,进行反洗。反洗方式可根据需要采用水冲洗或辅助空气冲洗、辅助表面冲洗。采用辅助空气冲洗时,一般先将过滤器内水垫层中的水放至滤层边缘,然后从底部送入压缩空气冲洗滤层,再用气、水同时冲洗,最后单用水冲洗。待滤层洗净后,停止反洗,进行正洗,待正洗水质合格后,进入下一周期运行。

②过滤速度单层滤料时为8-10m/h;双层滤料时为10-14m/h;三层滤料时为18-20m/h。用做接触凝聚过滤时,过滤速度应适当降低。 ?}4l \\ q1b0O

③过滤周期一般以水头损失控制,单、双层滤料时采用49-59kPa,三层滤料时采用98kPa。 kc-E?4g7z!M4H5f:A

④冲洗强度单层滤料时采用10-15L/(s.m2),双层滤料时采用5-18L/(s.m2),三层滤料时采用18-20L/(s.m2)。以滤层膨胀率达到40%-50%为宜。

⑤冲洗时间5-7min。

活性炭过滤器在锅炉补给水处理中的作用:V} V!_&h*I(o?V 锅炉补给水用自来水作为水源,自来水中的游离氯,会氧化离子交换树脂,因此必须除去水中的余氯。此外,当原水被

有机物严重污染时,往往需要进行氯化处理,并维持水中有一定余氯,此时也要求除去水中的余氯。

混凝、澄清、过滤处理,只能除去水中部分有机物,对COD的去除率一般只有40%左右,当原水有机物含量较高时,将会造成阴树脂的有机物污染。

除去水中的余氯和进一步降低水中有机物含量,活性炭吸附处理是一种行之有效的方法。

水的预处理活性碳过滤器主要用来去除水中余氯及有机物,多层过滤床的作用主要是用来降低水中的浊度。

活性碳过滤

1.粒状活性碳使用前的处理:用5%(体积分数)的盐酸溶液浸泡活性碳,12-24h后,弃去废酸液。用除盐水正洗,除去活性碳中残留的HCl(以5%AgNO3溶液检验),然后以除盐水反洗。弃去存水,刮去上层炭末,最后以除盐水正洗到硬度

(1/2Ca2++1/2Mg2+)<10μmol/L。

2.水质要求:9gj\\5_0~'A/?7~w

进水水质:进水浊度≤2mg/L,进水余氯≤1mg/L;

'a*@5L&WU{

出水水质:出水CODMn<2.0mg/L,出水余氯

<0.1mg/L;%q&L4V)D_#C6J^5@4P

出水CODMn与总阴离子含量之比:小于0.004。

(1)运行流速 5-15m/h;

(2)工作压力≤0.6Mpa;X3si,n5nq

(3)碳层高度≥2000mm;

(4)运行周期 24h左右反洗一次,或进、出口总压差升到0.05-0.1Mpa时需要反洗。

3.粒状活性碳过滤器反洗再生操作步骤:,ltB1B6{1T

(1)反洗方式:放水,空气擦洗,最后水反洗;

(2)空气擦洗强度:≤20L/(m2.s)f-t{0Qi

(3)水反洗强度:≤14L/(m2.s))S+uN:rO5p J

(4)水正洗强度:≤1.5L/(m2.s)/TH*{2D.`9Ew6u

(5)气擦洗时间:15-20min

(6)水反洗时间:20-30min

(7)水正洗时间:120min或出水变清时结束。wW^9V;i3}

(8)失效标准 CODMn去除率≤20%!V6[ g MEE;N

(9)年损耗率≤5%

当水中有机物含量少时,粒状活性碳层高可选

0.6-1.5m,当有机物含量多时,层高可选1.5-3.0m。运行流量(以1m3活性碳计)为8-12m3/h,当截污过多和活性丧失时,可进行反洗和再生,其操作步骤如下。活性碳过滤器再生方法:kY4lmS*l

1.反洗强度8-10L/m

2.s,时间15-20min;

2.蒸汽吹洗,0.3Mpa的饱和蒸汽吹洗15-20min;

3.碱洗:用4%-6%左右NaOH,温度40℃,淋洗滤料层,用量为滤料体积的1.2-1.5倍;N.g)L#t i$`y9Ja

4.正洗:用软水清洗至出水合格时为止。

&V%K.eB2V-H

活性炭完全失效后,可在1000℃下熔烧再

生。!P*ar*EPS

~p Cy8lHrOlxi5Z

新树脂的预处理

1.阳树脂的预处理

a)水清洗(先反洗后正洗,洗至排水无色和无泡沫时为止);

b)用约为树脂体积2倍的2%-4%NaOH溶液浸泡4-8h;

c)排掉碱溶液,用水清洗至排液碱度小于20mmol/L u!C'A!Q1Bzh

d)通入约为树脂体积2倍的5%HCl溶液浸泡4-8h;

Y*D.u}G)dyGa

e)排掉酸溶液,用水清洗至排水酸度与进水强酸阴离子总和相近时为止。%_OV4gN4_2U)Ut

2.阴树脂的预处理[ A.D,UeH

a)水清洗(先反洗后正洗,洗至排水无色、无味和无泡沫时为止);&lcq}S9Id%]2v

b)用约为树脂体积2倍的5%盐酸溶液,浸泡4-8h;

c)排掉盐酸溶液,用水清洗至排酸度<20mmol/L时为止;

d)通人约为树脂体积2倍的2%-4%的NaOH溶液,浸泡4-8h;

e)排掉碱液,用H+交换水清洗至排水接近中性为止。6u'@ q_R

在处理过程中,氢氧化纳溶液的配制和浸泡后的清洗,应使用纯水、H+交换水、软化水,以免产生大量沉淀。

N$B`6N1X1Z }y

浮动床工艺:dTc5[,R [SA]3z

所谓浮动床,就是运行时水流方向是自下而上,再生时,再生液的流动方向是自上而下,正好与逆流再生的流向相反,是对流再生的另一种形式。:e"?(x Y)Mb

目前的浮床工艺又可分为交换器内充满树脂和不充满

树脂两种,我国使用的浮床多为前者,实质上它是一个满室床,并无法浮动。-]"p$X8F"`O/td2I

对于充满树脂的浮床设备,在投运时,树脂(再生态)

基本充满交换器。因此,在运行初期和中期交换器停止运行,由于树脂层不可能发生扰动,也就不会对出水水质和树脂的工作交换容量产生影响。但在运行后期,由于树脂转为失效型,树脂体积会收缩,这时会出现一个小的水垫层,同时保护层也已很薄,此时停运后再次起床,对出水水质和工作交换容量会产生一定的影响。装满树脂的浮床,因为去掉了反洗空间,运行的稳定性得到了提高,但却带来了无法反洗的缺点。为此,浮床设备要求进

水浊度严格,而且必须设有体外清洗装置。

不充满浮床保留了交换器内的反洗空间,可以进行反洗。由于这一空间的存在,运行中将出现部分树脂的浮动现象。浮动树脂的多少取决于交换器内上部空间的大小和起床时的流速。但至少应有40%的树脂,在运行中呈压实状态,以保证出水的质量。对于此种浮床,在运行初期,交换器下部就会出现水垫层,所以为了防止乱层,不能停止运行。

1.浮床交换器的结构 lPG9Z6]1y

底部进水装置:有多孔板水帽式和穹形孔板石英砂垫层式等。大、中型设备使用最多的是穹形孔板石英砂垫层式。石英砂层在流速80m/s以下不会乱层。但当进水浊度较高时,会因截污较多,造成清洗困难。Se+fAnAX fx%^F0j

顶部出水装置:有多孔板夹滤网、多孔板加水帽和弧形母管支管式等。前两种装置多用于小直径设备,后者多用于大直径设备。弧形支管上开孔,外包塑料窗纱和40-50目涤纶滤网套。将支管制成弧形,是为了减少树脂层向上移动时对支管的冲击,防止支管在运行中弯曲或断裂。另外,还可减少水流死区,有利于清洗。多数浮床出水装置兼做再生液分配装置,但由于再生液流量比进水流量小得多,很难使再生液分配均匀。因此,有的设备还是增设了环形多孔管再生液分配装置。

倒U型排液管:浮床再生时,由于交换器内树脂层以上空间很小,水垫层很薄,操作上稍不注意,就会造成再生液排干,

空气进入,影响再生效果。为了解决此问题,常在再生排液管上加装倒U型管。倒U型管的顶部应高于交换器的最高点约

50-100mm,并在U型管的最高点开孔通大气,防止发生虹吸现象。Q~Pv"MR;N

在交换器顶部设塑料白球层:为了防止破碎或细小树脂堵塞顶部出水装置,在交换器顶部加装塑料白球,塑料白球的粒径为1.0-1.5mm,密度小于1g/mL( 一般为0.2-0.4g/mL),装填高度为200-300mm。塑料白球应有一定的刚度,不能太软,还应有良好的化学稳定性,不会恶化出水水质。同时,对再生液没有吸附能力,否则会延长清洗时间。还应该指出的是,加装的塑料白球层还可以改善再生液分配的均匀性。-e!b'SXgD)r

2.浮动床设备的运行、再生.GID3|#KEd

浮动床设备运行、再生工艺参数

项目强酸阳浮床强碱阴浮

床 4B'm:KW~qE6BR

运行流速(m/h) 30-50 30-50 终点 Na+含量>30μg/L SiO2含量

≥100μg/L E#C5FB,k T

电导率≥5μs/cm no*Q"kL9}8X!QQ Q

落床靠树脂重力自然下沉

再生再生剂用量

(g/mol) H2S04 HCl NaOH :G8^

j3y @4}2o^S

55-65 40-50 50-60 流速

(m/h) 7-10 5-7 6-7

浓度

(%) 1.5-3 3-8 1.5-2.5 4b9e? %M\\1ePj+VC d

置换流速(m/h) 6-7 6-8 时间(min) 30 35 "^!C+uV%} jv7d

终点酸度<10mmol/L 碱度

<10mmol/L

清洗(小反洗) 流速

(m/h) 10-15 10-15 10-15 时间(min)

循环洗流速

(m/h) 30-50 30-50 10-50 时间(min)

水耗

(m3/m3) 1-3 1-3 1-3

成床速度

(m/h) >10 >10 >7

工作交换容量mol/(m3树脂) 强:850-950 强:900-1000 强:350-400

弱:1400-1700 弱:1500-1800 弱:800-850 6C h:e#I(Jx&_W#n

注: 1. 防止乱层和落床的最低流速: 阳床>10m/h,阴床>7m/h。,tC8l s&dA_Y5h

2. 体外清洗周期与进水浊度、周期制水量等有关。一般间隔时间,阳床为15-30d,阴床为1-3个月。体外清洗后,再生剂量应增加50%-100% 。

3. 反洗流速10-15m/h,时间15-25min。G;T+a b of2HQ C}

浮动床的运行过程为:制水→落床→进再生液→置换→成床→向上流清洗→制水。上述过程构成一个运行周期。在整个运行过程中,将定期进行体外清洗。T0~8w9rQ7Bh D,m/l0V 由于浮动床内树脂是基本装满的,无法进行体内清洗。当树脂需要清洗时,将其转移至专门设置的清洗罐中进行。清洗罐的容积应能满足一台浮动床全部树脂反洗用,还应允许树脂在罐中具有反洗展开率60%的空间。阳、阴清洗罐应各设一台,以免造成混脂。清洗罐中最好设有压缩空气装置,以便使用空气擦洗技术,提高清洗效果。

3.浮动床的工艺特点

浮床是对流再生的一种形式,它在运行和再生中的离

子排代情况与逆流再生相同,所以它具有和逆流再生相同的优点(如出水水质好,再生比耗低等)。此外,它还具备以下一些自身的特点。Z*{$fo8G4]^DT8w

a.再生时,再生液自上而下,较逆流再生更能保证树脂层处于稳定压实状态,不会出现乱层现象,且操作简单。另外,由于省去了容易损坏的中排装置,也提高了运行的可靠性。

6C2X(jI*h(b

b.浮动床由于其水流方向和重力方向相反,在相同流速条件下,与水流从上而下的流向相比,树脂层的压实程度较小,因而降低了水流阻力。e0Q/T-KNu"y'h7DN:c

c.浮动床设备由于树脂充满交换器,所以,其空间利用率可达95%以上,而顺流再生设备和逆流再生设备空间利用率只有60%。^s9Z?:V^%?

d.浮动床由于节省了反洗用水,再加上水垫层空间很小,清洗水耗也可降至树脂体积的2倍,因而总的自用水耗可降至5%以下。r G1H8b]

4.浮动床工艺虽然有很多优点,但也存在以下不足:J&b:{$R2rdt*x

a.需要增设专门的体外清洗罐,因而增加了投资和体外清洗操作的复杂性;l8S{B?,Q` MecL1Z

b.运行周期的最后阶段,如果中断运行,有可能造成树脂乱层,影响出水水质和周期制水量;#Ap0G7|+@.L

c.由于浮动床无法反洗,因此对进水浊度要求严格,一般应<2mg/L,否则会使树脂层阻力升高,影响设备正常运行;

d.浮动床内的碎、细树脂集中在树脂层的顶部,而运行时,水流自下而上,容易将其带出,阳树脂带入阴床,会引起出水电导率上升,阴树脂带入热力系统,会造成热力设备腐蚀,为此,浮动床出水管道上应装设树脂捕捉器。5tUE/kt-{6qEY

un*arPm#lE

阳浮床再生步骤 qvcb rTOS h

号操作步骤开启阀名称及阀号备

注 KlfM8o

进水阀出水阀进酸

阀反洗排水阀排水阀排气

阀 qWG|q5l

1 2 3 4 5 6 7O`P} KeoS

1 运

行●●

2 停

3 预喷

射●●

*^ a:I1]1Y1@f P

4 进

酸●●

#P IMA-_

5 置

换●●

6 清

洗●● .M)tI&T8gzH

7 循环

洗●●

阴浮床再生步骤3~WiaEwS F

号操作步骤开启阀名称及阀号备注

进水阀出水阀进碱

阀反洗排水阀排水阀排气

1 2 3 4 5 6 ,Y{ j ` ya&OVT

1 运

行●●

`u WQ |

2 停

(MO%B/I~N

3 预喷

射●●

4 进

碱●●

5 置

换●●

6 清

洗●●

7 循环

洗●●

ip Dy?

$~bQ_^U6E

强、弱树脂联合应用的特点:

强型、弱型树脂联合应用是指同时使用强、弱两种树脂来去除水中离子的除盐工艺。

联合应用的特点:mp2r,O d)l2W

1.强型树脂具有交换的彻底性。它能除去水中的全部离子。因此,当原水含盐量不太高时,只用强酸、强碱树脂进行水的化学除盐,也可获得合格的除盐水。但强型树脂也存在以下缺点:

a.交换容量低。在经济比耗下,强酸树脂的交换容量仅800-1000mol/m3。强碱树脂交换容量更低,用一般工业碱再生时,只有250-300mol/m3。:H-\\~[P:D!l

b.酸、碱比耗大,制水成本高。排放的废酸、碱量大,对环境的污染较严重。

c.不适用于含盐量较高的原水。当原水含盐量较高时,运行周期短,再生频繁,影响安全供水。

2.弱型树脂虽然不能除去水中的全部离子,但它却具有工作交换容量高和再生剂比耗低的优点。因此将强、弱两种树脂联合应用于水的化学除盐,可以发挥此两种树脂的优点,又可相互弥补其缺点。e,Jz Oj|;N;@r q

原水首先经弱型树脂,除去水中大部分离子,然后再经强型树脂,彻底除去水中的离子,从而保证出水水质。再生时,则相反,再生液先再生强型树脂,然后再生弱型树脂,从而使排出废液中的再生剂降至最低水平。同时再生液先通过强型树脂,后通过弱型树脂,这样可以使强型树脂的再生水平大大提高。如此既提高了强型树脂的工作交换容量,也保证了出水水质。

\\lHd pu!O

在联合应用工艺中,两种树脂的特长都得到了充分发挥,再生比耗只有1.O-1.2,阳离子交换工艺的平均工作交换容量达到1300-1700mol/m3。阴离子交换工艺的平均工作交换容量可达到600-900mol/m3。

3.采用联合应用应注意的问题:By+Z?9N:N1_ d

a.应尽量利用对流再生原理。两种树脂比例应尽量接近计算比例。两种树脂装填高度均不应低于最低极限层高:弱型树脂不低于600mm;强型树脂高度在流速2Om/h时不低于

600mm(001×7)和800mm(201×7),在流速40m/h时,不低于800mm(001×7)和1000mm(201×7)。在弱型树脂层中水的流速宜不大于20m/h。f ~1qN!TSr`

b.在采用双层床等特种工艺时,应确保两种树脂分层良好。在选用弱酸树脂时,应选择具有一定刚度的树脂,以防止在运行过程中结块,影响再生和运行。'o6M3z1o!A.`

c.防止胶体硅的析出。提高再生液的温度(35-40℃),也有助于防止胶硅的析出。 NGD gp7W

d.控制好弱碱树脂的运行终点。处于前面的大孔弱碱树脂,由于它对有机物具有较好的吸着和解析能力,保护强碱树脂。/H]U ]kb(Z

离子的电导率(25℃)μs/cm/每mg/L

阳离

子 Na+ K+ NH4-N Ca2+ Mg2+

电导

率 2.13 1.84 5.24 2.60 3.82 GkIX)H

阴离

子 Cl- F- NO3-N HCO3- CO32- SO42-

电导

率 2.14 2.91 5.10 0.715

电厂化学水处理技术发展与应用

电厂化学水处理技术发展与应用 发表时间:2017-10-20T11:59:18.583Z 来源:《防护工程》2017年第15期作者:王延风 [导读] 并且注意加强原有设施的利用率和使用效率,降低能耗节约成本,更应注重整个处理过程中的环保性,走可持续路线。 摘要:电厂是能源行业的重要部门,对居民的日常生产、生活都具有较大的影响。从现有的工作来看,电厂化学水处理技术虽然在某些方面表现的较为出色,但并没有创造出理想的价值。在人口不断增加和社会不断发展的今天,依靠固有的技术,是很难取得较大发展的。在今后的技术研究和应用中,需进一步贴合实际,根据不同地区的实际要求,进一步优化技术。在此,本文主要对电厂化学水处理技术的发展与应用进行讨论。 关键词:电厂;化学水处理;发展技术;应用 1、当今电化学处理技术的发展特点 1.1设备集中化布置 传统电厂化学水处理系统包括净水的预处理、锅炉补给水的处理、凝结水精的处理、汽水取样的监测分析、加药的、综合水泵房、循环水的加氯、废水的及污的水处理等系统。它存在占地的面积较大、生产的岗位较分散、管理的不便等等诸如此类的问题。现在,为了优化水处理整体流程,设备布置也发生了变化,其以紧凑、立体、集中构型来代替平面、松散、点状构型。节约占地面积、厂房空间,提高设备的综合利用率,并且方便运行的管理。 1.2生产集中化控制 传统的生产控制采用了模拟盘,而现在的趋势是集中化控制,即将电厂中所有化学水处理的子系统合为一套控制系统,取消了模拟盘,采用了PCL、上位机2级控制结构,并且利用PLC对各个系统中设备进行数据采集、控制,上位机、PCL之间通过数据通信接口进行了通信。各个子系统以局域网总线形式集中的联接在化学主控制室上位机上,从而实现化学水处理系统集中监视、操作、自动控制。 1.3方式以环保和节能为导向 21世纪环保观念已深入大家心中,随着环境保护意识的不断提高,减少水处理过程中产生的污染,尽量不使用或者少量的使用化学品已经成为一个趋势。绿色的水处理概念已经广泛的被大家接受。“少排放、零排放”、“少清洗、零清洗”也就成为了锅炉水的发展方向。而对于耗水量大的电厂来说,在我国水资源紧缺的现状下,合理的利用资源和提高水的使用重复率已经变成其关键的任务之一。重复率体现着对水的循环使用,串级使用,水的回收等方面的实现。“零排放”在电厂中已有部分实现,也就是说仅从水体中取出水但不向水体及环境排放废水。 1.4工艺多元化 传统电厂水处理工艺以混凝过滤、离子交换、磷酸铵盐处理等为主。当前,电厂的水处理技术出现多元化的特点。随化工材料的技术不断进步与发展,膜处理技术也开始广泛应用在水质处理当中,离子的交换树脂种类、使用的条件、范围也有了较大进展,粉末树脂在凝结水的处理中也同样发挥着积极作用。 1.5检测方法方式趋科学化 随着技术的发展,化学检测、诊断技术进一步的得到了发展、应用,其方式也日趋科学化。化学诊断实现从事后分析到事前防范转变,实现从手工分析到在线诊断转变,实现从微量分析到痕量分析转变。所有的转变,为预防事故发生、保证机组安全稳定运行提供有力保障。 2、电厂化学水处理技术的发展创新 2.1电厂化学水处理中膜技术的应用 与传统的化学水处理技术工艺相比,近几年才开始被采用的膜分离技术具有更加多的优点。膜处理技术是当前世界上最为高端先进的处理技术,在提高用水的品质上有着强大的优势。在传统的化学水处理过程当中,存在着很多的方法手段,比如电厂锅炉补给水的处理,一般情况下,都有过滤—软化—分离等一系列过程。其中,在电厂传统的化学水处理过程中,为了应付其中一道道复杂的工艺和处理难度,电厂需要投入大量劳动力、大量的占地面积和比较高的资金成本。然而,更主要的是,对于电厂化学水处理过程中所排放酸碱废液,国家规定了标准,而传统技术并不能达到当前绿色环保的标准要求。然而,在使用膜分离技术时,电厂化学水处理的整个过程中都不会排放一点酸碱废液,大大地减少了环境污染,切实体现了当代人的绿色环保理念。同时,采用膜分离技术还具有使用分离的设备少、结构简单、占地面积小、劳动强度小和实现自动化控制等优点,而将该技术应用于电厂化学水处理的过程中也实现了耗能低、效率高、生产的水品质量高的最终目的。 2.2化学水处理系统中的FCS技术应用 当前电厂化学水处理系统设备在运行时处于一种分散的状态,比如自动加药、汽水取样和监控常规测点等设备,不仅分布散而且数量还很多。而FCS技术则完全可以解决这一弊端,因为它的全分散性、全数字化、可相互操作性和全开放性的技术特点,与当前电厂水处理系统的设备分散性现状极为适合。在电厂化学水处理系统中,FCS技术的应用实现了低成本和性能全数字化,极大地减少了劳动力的投入。所以,改造或者建设这样一个能够将自动加药、远程遥控、即时监控和集合信息上传到MIS系统集为一体的化学水处理的综合全自动化平台,已经成为无法阻挡的电厂化学水处理技术的发展方向和趋势潮流。在理论上,这个系统是分解了原有的操控系统后,经过重新构建而形成的。改良后的系统在很多方面都有很明显的效果,可促使每一控制点的控制精准度大幅提高,这是此系统最为突出的一个特点,也由于这一点,系统整体的自动化水平和系统的硬件设备的管理水平都得到了提升,不仅人为的干扰因素大幅度地减少了,机组凝结水系统运行全自动化目标也得到了实现。同时,生产成本也有了很大的降低。此外,在系统改造完成后还提高了它的可靠性,连自动运行的速度也都有明显的提升。 3、关于电厂化学水处理技术应用的要点 3.1电厂水处理技术——锅炉补给水 在使用传统的水系统时,电厂经常使用混凝的方式进行锅炉补给水处理。如今,在变频技术出现后,电厂锅炉补给水系统发生了结构

电厂水处理的特点及方法

电厂水处理的特点及方法 【摘要】电厂只有对汽、水质量严格的监督,才能防止造成热力设备的结垢、腐蚀,避免爆管事故,才能防止过热器和汽轮机的积盐,以免汽轮机出力下降甚而造成事故停机,从而保证发电厂的安全经济运行。 【关键词】电厂;化学水处理;特点;方法 随着我国能源行业的不断前进与深入的发展,大型机组规模也在不断扩大,机组的参数和容量等不断提高,这导致电厂化学水处理发生巨大的变化。水处理包括补给水处理和汽、水监督工作,是改善锅炉运行工况、防止汽水循环不良的安全保障。以下阐述电厂化学处理技术的发展特点和方法。 1、当今电厂化学水处理技术的特点 在电厂技术不断进步与发展的现状下,水处理的设备、生产、方式、工艺方法等方面也都有了新的变化,存在新的特点。 1.1设备集中化布置 传统电厂化学水处理系统包括净水的预处理、锅炉补给水的处理、凝结水的处理、汽水取样的监测分析、加药、综合水泵房、循环水的加氯、废水及污水处理等系统。它存在占地面积较大、生产岗位分散、管理不便等诸多问题。现在以紧凑、立体、集中构型来代替平面、松散、点状构型。节约占地面积,提高设备的综合利用率,并且方便运行管理。 1.2生产集中化控制 传统的生产控制采用了模拟盘,而现在的趋势是集中化控制,即将电厂中所有化学水处理的子系统合为一套控制系统,取消了模拟盘,采用了PCL、上位机2级控制结构。各个子系统以局域网总线形式集中的联接在化学主控制室上位机上,从而实现化学水处理系统集中监视、操作,自动控制。 1.3工艺多元化 传统电厂水处理工艺以混凝过滤、离子交换、磷酸铵盐处理等为主。随化工材料技术的不断进步与发展,膜处理技术也开始广泛应用在水质处理当中,离子交换树脂的种类、使用条件、范围也有了较大进展,粉末树脂在凝结水处理中也同样发挥着积极作用。 2、电厂水处理的方法

电力系统稳态分析知识点汇总

电力系统稳态分析知识点汇总 第一章电力系统的基本概念 一、电力系统组成(*) 电力系统由发电厂、变电站、输电线、配电系统及负荷组成的有机的整体。 电力网络就是由电力线路、变压器等变换、输送、分配电能设备所组成的部分。 在电力系统中,发电机、变压器、线路与受电器等直接参与生产、输送、分配与使用电能的电力设备常称为主设备或称一次设备,由她们组成的系统又称为一次系统。 在电力系统中还包含各种测量、保护与控制装置,习惯上将它们称为二次设备与二次系统。 二、电力系统基本参量 总装机容量系统中实际安装的发电机组额定有功功率的总与,其单位用千瓦(KW)、兆瓦(MW)或吉瓦(GW)。 年发电量指系统中所有发电机组全年实际发出电能的总与,其单位用兆瓦时,吉瓦时或太瓦时。 最大负荷电力系统总有功夫与在一年内的最大值,以千瓦,兆瓦或吉瓦计。年发电量与最大负荷的比成为年最大负荷利用小时数Tmax 额定频率按国家标准规定,我国所有交流电系统的额定功率为50HZ。 最高电压等级就是指该系统中最高的电压等级电力线路的额定电压。 三、电力系统的结线方式 对电力系统接线方式的基本要求:1、保证供电可靠性与供电质量;2、接线要求简单、明了,运行灵活,操作方便;3、保证维护及检修时的安全、方便;4、在满足以上要求的条件下,力求投资与运行费用低;5、满足扩建的要求。 无备用结线包括单回路放射式、干线式与链式网络。优点:简单、经济、运行方便。缺点:供电可靠性差。适用范围:供电可靠性要求不高的场合。 有备用结线包括双回路放射式、干线式与链式网络。优点:供电可靠性与电压质量高。缺点:不经济。适用范围:电压等级较高或重要的负荷。 四、电压等级及适用范围(*)

电厂化学水处理认识

电厂化学水处理综述 ——水寿 摘要:对用水进行较好的净化处理才能防止热力设备的结垢、腐蚀,避免爆管事故,有效防止过热器和汽机的积盐,以免汽轮机出力下降甚至造成事故,从而保证锅炉、汽机等重要设备的安全、有序运行。本文介绍了电厂化学水处理技术的发展特点,以及常规的方法与应用。 关键词:化学水处理;特点;方法 前言:电厂的化学水处理主要是指锅炉用水的给水处理,这个过程的好坏直接关系到相关设备是否可以安全经济运行,所以说化学水处理是电厂生产的重要过程。因此必须在建设前期从设计上严把关,深入研究化学处理的工艺,做好预控工作,建设过程中慎重对待化学水处理的施工和设备安装,为以后电厂顺利投产运营打下坚实的基础。基于该背景,本文对电厂化学水处理的发展特点、常见方法和工艺进行了综述,方便更好的理解该该部分技术内容为以后工作打下坚实的基础,同时也作为本人的学习总结。 1 化学水处理的技术特点 水在火力发电厂水汽循环系统中所经历的过程不同,水质常有较大的差别。因此根据实用的需要,人们常给予这些水以不同的名称,具体为原水、锅炉补给水、给水、锅炉水、锅炉排污水、凝结水、冷却水和疏水等,通常情况下为了方便又简单的分为炉内水和炉外水。电厂化学水处理主要包括补给水处理和汽、水监督工作,补给水处理

也叫炉外水处理,是净化原水、制备热力系统所需质量合格的补给水,是锅炉水质合格的重要保障。汽水监督工作是改善锅炉运行工况、防止汽水循环不良的安全保障。随着当前技术的不断发展进步,现代电厂化学水处理呈现出集中、多元化、环保等特点,下面分别阐述。1.1分布集中化 在以往的电厂化学水处理过程中,常常设有多种处理系统,一般按照功能分为净水预处理系统、锅炉补给水处理系统、汽水的取样监测分析、循环水处理系统、加药处理系统、废水处理系统等等。这种按照功能作用设立的多种处理系统占地面积大、需要的维护人员多、给生产管理造成了不便。现在为了提高化学水处理设备的利用率、节约场地及管理方便,化学水处理设备的布置呈现紧凑、集中、立体的结构。根据相关文献的研究,该种结构的布局满足了整体流程的需要,是一种效果较好的结构模式。 1.2处理工艺多元化 化学水处理的传统常用工艺为混凝过滤、离子交换、磷酸酸化处理,随着科学技术的不断发展,电厂化学水处理工艺向着多元化的方向发展。当前水处理工艺发展为利用微生物对水质进行处理,利用膜处理技术对化学水进行反渗透、细微过滤也已经广泛应用于水处理,超滤、流动电流技术也在化学水处理中发挥着积极的作用。 处理控制系统也越来越集中化,把各个子系统合为一整套系统,然后采用PLC加上位机的控制结构。其中,PLC负责对各个子系统进行控制和数据采集,通过通信接口与PLC连接起来的上位机负责对各

电厂水处理工作总结

电厂水处理工作总结 总结一:电厂水处理工作总结 本人**年毕业于**大学化工分析专业,参加工作以来,一直在***厂动力分厂工作,担任化学水处理工段长,主要负责化学水处理工段(以下简称化水)的技术工作,本工段主要任务是为锅炉提供合格的给水,补给水;监督水、汽运行质量;防止锅炉结垢、腐蚀,保证锅炉安全,经济地运行。几年来,我在这个岗位上一直刻苦钻研,勤奋努力,致力于专业技术水平和业务工作水平的提高,下面把几年来的工作回顾总结,汇报如下: 一、开车前精心准备,化水工段试车一次成功。 化水工段基建安装期间,我认真研读图纸,消化资料,监督施工质量,熟练掌握了本工段的工艺流程,设备布局、设备构造和安装,并积极提出一些合理化建议。安装结束后,同基建处、车间一起对工程进行验收。仔细检查每一根管道,每一个阀门,每一台设备,为化水工段一次试车成功打下良好的基础。94年底,为了开好车,被公司派到江苏无锡热电厂实习,实习期间深入透彻地学习了化水处理的工艺特点,理论同实际相结合,经常向跟班师傅学习实际操作,化验分析,及工作中容易出现问题,处理方法等,并得到了实习工厂的一致好评。实习回厂后,结合本厂实际进行开车试车前的准备工作,从树脂的预处理,化验药剂配制,阴、阳离子

交换剂的再生到编写操作规程,人员上岗前培训。由于从理论上、实践上精心准备,使化水工段试车一次成功,个人工作也得到车间及公司领导的认可。 二、运行中精心维护,保障正常运行。 在生产正常进行时,精心维护,经常巡查各设备,发现跑、冒、滴、漏等现象,立即组织人员维修,指导运行人员精心操作,发现不正确,及时指正,消除事故隐患。查看水汽分析报表,发现不正常时指导化验人员找出原因并采取相应的对策,防止锅炉热力腐蚀例如,一次生产中发现炉水PH值较低,重新取样检验PH仍较低,而仪器分析方法均正常,查找原因,采取对策,关小锅炉连排,排水,换水,自汽包内加入磷酸盐等,PH仍较低。查看水系统,发现中间水箱有大量泡沫。经查是由于酒精车间热交换器漏,导致醪液进入冷却水,经给水站送至化水工段,醪液中的一些有机物过滤不净,经阴阳离子交换又交换不掉,送到锅炉后在高温高压导致炉水水质PH较低,在热交换器暂时不能维修,生产又不停的情况下,我建议向锅炉中加入碳酸钠以提高炉水的PH。建议架临时管道给化水供水等。从而防止锅炉酸性腐蚀,保证生产正常进行为公司减少了损失。 三、刻苦钻研,精心技术改造,方便操作。 在几年的工作实践中,结合实际工作经验,本着经济方便实用的原则,对一些设备管道进行了技术改造。如设计中,

(完整word版)发电厂电气部分 知识点总结

2-1哪些设备属于一次设备二次设备答:通常把生产、变换、输送、分配和使用电能的设备,如发电机、变压器和断路器等称为一次设备。其中对一次设备和系统的运行进行测量、控制、监视和保护的设备称为二次设备电气主接线:由高压电气设备通过连接线,按其功能要求组成的接受和分配电能的电路 第三章 3-1长期发热短期发热意义和特点 电气设备有电流通过时将产生损耗,这些损耗都将转变成热量使电气设备的温度升高。发热对电气设备的影响;使绝缘材料性能降低;使金属材料色机械强度下降;使导体接触部分电阻增强。导体短路时,虽然持续时间不长,但短路电流很大,发热量仍然很多。这些热量在短时间内不容易散出,于是导体的额温度迅速升高。同时,导体还受到电动力超过允许值,将使导体变形或损坏。由此可见,发热和电动力是电气设备运行中必须注意的问题。长期发热,由正常工作电流产生的;短时发热,由故障时的短路电流产生的。 3-3导体长期发热允许电流的根据是根据什么确定的?提高允许电流应采取哪些措施? 是根据导体的稳定温升确定的,为了提高导体的载流量,宜采用电阻率小的材料。导体的形状,在同样截面积的条件下,圆形导体的表面积较小,而矩形和槽型的表面积则较大。导体的布置应采用去散热效果最佳的方式,而矩形截面导体竖放的散热效果比平放要好。 对电气主接线要求:可靠灵活经济4-2隔离开关与断路器的区别?对它们的操作程序应遵循那些重要原则 断路器有开合电路的专用的灭弧装置,可以开断或闭合负荷电流和开断短路电流,故用来作为接通货切断电路的控制电器。而隔离开关没有没虎装置,其开合电流作用极低,只能用做设备停用后退出工作时断开电路。原则:①防止隔离开关带负荷合闸或拉闸。②防止在断路器处于合闸状态下误操作隔离开关的事故发生在母线隔离开关上,以避免误操作的电弧引起母线短路事故。 高压断路器:正常运行时倒换运行方式,把设备或线路接入电路或退出运行,起控制作用;当设备或线路发生故障时,能快速切断故障贿赂,保证无故障回路正常运行,起保护作用。高压隔离开关:保证高压电气设备及装置在检修工作时的安全,不能用于切断,投入负荷电流,仅允许用于不产生大电弧的切换操作 主母线和旁路母线各起什么作用?设置专用旁路断路器和以母联断路器或分段断路器兼作旁路断路器,各有什么特点?检修处线路断路器时,如何操作? 答:主母线主要用来汇集电能和分配电能。旁路母线主要用于配电装置检修断路器时不致中断回路而设计的。设置旁路短路断路器极大的提高了可靠性。而分段断路器兼旁路断路器的连接和母联断路器兼旁路断路器的接线,可以减少设备,节省投资。当出线的断路器需要检修时,先合上旁路断路器,检查旁路母线是否完好,如果旁路母线有故障,旁路断路器在合上,就不会断开,合上出线的旁路隔离开关,然后断开出线的断路器,再断开两侧的隔离开关,有旁路断路器代替断路器工作,便可对断路器进行检修。 4-8电器主接线中通常采用哪些方法限制短路电流? 1装设限流电抗器,2采用低压分裂绕组变压器,3采用不同的主接线形式和运行方式。 4-9为什么分裂电抗器具有正常运行时电抗小。而短路时电抗大的特点。分裂电抗器在正常运行时两分支的负荷电流相等,在两臂中通过大小相等,方向相反的电流,产生方向相反的磁通,其中有X=X1-Xm=(1-f)X1且f=0.5得X=0.5X1。可见在正常情况下,分裂电抗器每个臂自感电抗的1/4、而当某一分支短路时X12=2(X1+Xm)=2X1(1+f)可见,当f=0.5时,X12=3XL使分裂电抗器能有效的限制另一臂送来的短路电流。5-0工作电源,备用电源 发电厂的厂用工作电源是保证正常运 行的基本电源,工作电源应不少于2 个,现代发电厂一般都投入系统并联 运行。备用电源用于工作电源因事故 或检修而失电时替代工作电源,起后 备作用、 5-1什么叫厂用电和厂用电效率? 答:发电厂在启动、运转、挺役、检 修过程中,有大量以电动机拖动的机 械设备,用以保证机组的主要设备(如 锅炉、汽轮机或水轮机和发电机等) 和输煤、碎煤、除灰、除尘以及水处 理的正常运行。这些电动机以及全场 的运行、操作、试验、检修、照明等 用电设备都属于厂用电负荷,总的耗 电量,统称为厂用电。 5-3厂用电负荷分为哪几类?为什么 要进行分类? 答:厂用电负荷,根据其用电设备在 生产中的作用和突然中断供电所造成 的危害程度,分为以下四类。 Ⅰ类厂用负荷。凡是属于短时(手动 切换恢复供电所需要的时间)停电会 造成主辅设备损坏、危急人身安全、 主机停运以及出力下降的厂用负荷, 都属于Ⅰ类负荷。 Ⅱ类厂用负荷。允许短时停电(几秒钟 或者几分钟),不致造成生产紊乱,但 较长时间停电有可能损坏设备或影响 机组正常运转的厂用负荷,均属于Ⅱ 类厂用负荷。 Ⅲ类厂用负荷。较长时间停电,不会 直接影响生产,仅造成生产上的不方 便的厂用负荷,都属于Ⅲ类厂用负荷。 0类不停电负荷,直流保安负荷,交 流保安负荷。 对厂用电电压等级的确定和厂用电源引接 的依据是什么? 答:厂用电电压等级是根据发电机额定电 压、厂用电电动机的电压和厂用电供电网络 等因素,相互配合,经过技术经济综合比较 后确定的。在大容量发电厂中,要设启动电 源和事故保安电源, 火电厂厂用接线为什么要锅炉分段? 为提高厂用电系统供电可靠性,通常 用哪些措施? 答:为了保证厂用供电的连续性,使 发电厂能安全满发,并满足运行安全 可靠性灵活方便。所以采用按锅炉分 段原则。为提高厂用电工作的可靠性, 高压工作厂用变压器和启动备用变压 器采用带负荷调压变压器,以保证厂 用电安全,经济的运行。 何谓厂用电动机的自启动?为什么要 进行电动机的自启动校验?如果厂用 变压器的容量小于自启动电动机总容 量时,应该如何解决? 厂用电系统运行的电动机,当突然断 开电源或者厂用电压降低时,电动机 转速就会下降,甚至会停止运行,这 一转速下降的过程称为惰性。若电动 机失去电压以后,不予电源断开,在 很短时间内,厂用电压又恢复或通过 自动切换装置将备用电源投入,此时, 电动机惰性将未结束,又自动恢复到 稳定状态运行,这一过程称为电动机 的自启动。若参加自启动的电动机数 目多,容量大时,启动电流过大,可 能会使厂用母线及厂用电网络电压下 降,甚至引起电动机过热,将危急电 动机的安全以及厂用电网络的稳定运 行,因此,必须进行电动机的自启动 校验。若不能自启动应采用:1.失压自 启动。2.空载自启动。3.带负荷自启动。 6-6电压互感器一次绕组及二次绕组 的接地各有什么作用? 一次接地是工作接地,保护接地二次 侧接地是为防止高低压线圈击穿,高 压引入低压,造成设备损坏危机人身 安全 6-9电流互感器误差与那些因素有关 电流互感器的电流误差fi及相位差δi 决定于互感器铁心及二次绕组的结 构,同时又与互感器的运行状态有关。 6-10运行中为什么不允许电流互感器 二次回路开路? 二次绕组开路是,电流互感器由正常 工作状态变为开路工作状态,I2=0, 励磁磁动势由正常为数甚小的I0N1 骤增为I1N1,铁心中的磁通波形呈现 严重饱和的平顶波,因此二次绕组将 在磁通为零时,感应产生很高的尖顶 波电动势,其值可达数千伏甚至上万 伏,危及工作人员的安全和仪表、继 电器的绝缘。由于磁感应强度剧增, 会引起铁心和绕组过热。此外,在铁 芯中还会产生剩磁,使互感器准确度 下降。 6-11三相三柱式电压互感器为什么不能 测量相对地电压? 测中性点电压时,应使互感器一次侧中 性点接地,但是由于普通三相三柱式电 压互感器一般为Y,yn型接线,它不允许 一次侧中性点接地,故无法测量对地电 压。 7-2试述最小安全净距的定义及分类。 最小安全净距是指在这一距离下,无论 在正常最高工作电压或出现内、外部过 电压时,都不致使空气间隙被击穿。对 于敞露在空气中的屋内、外配电装置中 有关部分指尖的最小安全净距分为 ABCDE五类。 8-3断路器控制回路应满足哪些基本要 求?试以灯光监视的控制回路为例,分 析它是如何满足这些要求的。 ①断路器的合闸和跳闸回路是按短路 时通电设计的,操作完成后,应迅速自 动断开合闸或跳闸回路以免烧坏线圈。 ②断路器既能在远方由控制开关进行 手动合闸或跳闸,又能在自动装置和继 电保护作用下自动合闸或跳闸。③控制 回路应具有反应断路器位置状态的信 号。④具有防止断路器多次合、跳闸的 “防跳”装置。⑤对控制回路及其电源 是否完好、应能进行监视。⑥对采用气 压、液压和弹簧操作的断路器,应有对 压力是否正常、弹簧是否拉紧到位的监 视回路和动作闭锁回路。 8-4什么叫断路器的“跳跃”?在控 制回路中,防止“跳跃”的措施是什么? 手动合闸:①合闸前,断路器处于 跳闸状态,动断触点QF1-2在合位控 制开关在跳闸后,触点SA11-10处于接 通状态+1→SAH-10→绿灯HG→R3→ QF1-2→合闸接触器KM→-1形成通路 犹豫R3限流作用KM不动作这是绿 灯HG发平光②预备合闸将控制开关 手柄顺时针转90°进入“预备合闸”位 置触点SA9-10、SA14-13接通 SA11-10断M100→SA9-10→HG→R3 →QF1-2→KM→-1 这是绿灯发闪光 ③将控制开关顺时针转45°至合闸位 置SA5-8接通+1→SA5-8→KCF3-4→ QF1-2→KM→-1此时么有R3 达到QM 的动作值KM将常开触点闭合(YC通 电、合闸完毕) +2→KM→YC→KM→-1 合闸线圈带电带动断路器操纵机构合 闸④合闸后断路器辅助触电互相切 换位置+1→SA13-17→HR1→R4→ KCF1→QF3-4→Y7→-1红灯HR发平光 手动跳闸:①操作前,断路器处于 合闸状态,QF3-4在合位+M→SA13-14 →HR→KCFI→QF3-4→YT→-1红灯闪 光(将控制开关SA由"合闸后"垂直位置 逆时针转至"预备跳闸"水平位置 ②SA逆时针转45°至条扎位置,SA6-7 接通+1→SA6-7→Y7→-1 YT中较大电 流YT跳开、断路器辅助触点状态变化, QF1-2闭合,QF3-4断开、SA弹回“跳 闸后水平位置,SA11-10接通+1→ SA11-10→HG→R3→QF1-2→KM→-1 绿光发平光。 自动合闸:K1闭合+1→K1→ KCF2→QF1→KM→-1 KM动作断路 器进入合闸状态此时SA仍处于跳闸 后SA14-15接通,QF3-4变成合位, -M100→SA14-15→HR→R4→KCF→ QF2→YT→-1红灯闪光回路中电阻限 流作用YT不懂做红灯闪光表示控制 开关SA位置与当前断路器实际状态不 对应,提醒运行人员调整控制开关SA 手柄位置 自动跳闸。如果线路或其他一次设 备出现故障时,继电保护装置就会动 作,从而引起保护出口继电器动作,其 动合触点KCO闭合。由于触点KCO与 SA6-7并联,所以接下来的断路器跳闸 过程与手动跳闸过程类似,只是断路器 跳闸后,控制开关仍停留在“合闸后” 位置,与断路器跳闸位置不对应,使得 绿灯HG经M100(+)→SA9-10→HG→ 东段QF1-2→KM与控制电源的负极接 通,绿灯发闪光,告知运行人缘已发生 跳闸。将SA逆时针转动,最后停至“跳 闸后”位置。 自动跳闸表明事故发生,除闪光 外,控制与信号回路还应发生音响。断 路器跳闸后,事故音响回路的动断触点 QF5-6闭合;控制开关仍处于“合闸后” 位置,SA1-3和SA19-17均处于接通状 态,使事故音响信号M708与信号回路 电源负极(-700)接通,从而可启动事故 音响信号装置发出音响。 “防跳”:如果外部发生永久性故障, SA5-8成K1不能复归+1→KCO→KCF→ QF2→YT→-1 YT带电断路器跳闸②KCF 带电常开触点闭合常闭触点断开+1→ SA5-8→KCF1→KCF→-1使KCF自保持, KCF2断开了,切断了合闸回路。防止跳跃 的措施是:一:35KV以上的断路器,应采 用电气防跳。二:较为简单的机械防跳, 即操作机构本身就具有防跳性能。 8-0事故音响信号起跳及复归过程。 启动①断路器发生跳闸+700→脉冲 继电器K→+M708→-700脉冲继电器启动, KRD常开触点闭合②+700→KRD→KC→ KC1→SA4→-700→+700→KC-1→SA3,KC 带电,常开触点闭合,KC形成自保持+1 →KC-2→HA V→-700,蜂鸣器发声响。 复归:当蜂鸣器HAU和时间继电器 KT1启动,KT1的动合触点延时闭合后启 动继电器KC1,KC1的动断触点断开,致 使继电器KC失电,其三对动合触点全部返 回,音响信号停止,由此实现了事故音响 信号装置的自动复归。 3-7三相平行导体发生三相短路时最大电 动力出现在B相上,因三相短路时B相冲 击电流最大。 3-9导体的动态应力系数的含义是什么、在 什么情况下才考虑动态应力? 动态应力系数β为动态应力与静态应力之 比值。导体发生震动时,在导体内部会产 生动态应力。对于动态应力的考虑,一般 是采用修正静态计算法,即在最大点动力 Fmax上乘以动态应力系数β,以求得实际 动态过程中动态应力最大值。 4-4发电机—变压器单元接线中,在发电机 和双绕组变压器之间通常不装断路器,有 何利弊? 答:在发电机和双绕组作变压器之间通常 不装设断路器,避免了由于额定电流或断 流电流过大,使得在选择出口断路器时, 受到制造条件或价格甚高等原因造成的困 难。但是,变压器或厂用变压器发生故障 时,除了跳主变压器高压侧出口断路器外, 还需要发电机磁场开关,若磁场开关拒跳, 则会出现严重的后果,而发电机定子绕组 本身发生故障时,若变压器高压侧失灵跳 闸,则造成发电机和主变压器严重损坏。 并且发电机一旦故障跳闸,机组将面临厂 用电中断的威胁 开关电器中常用灭弧方法有哪些 1利用灭弧介质,2采用特殊金属材料作为 灭弧触头3利用气体或油吹动电弧,吹弧 使带电离子扩散和强烈地冷却而复合4采 用多段口熄弧5提高断路器触头的分离速 度,迅速拉长电弧,可使弧隙的电场强度 骤降;同时使电弧的表面突然增大,有利 于电弧的冷却和带电质子向周围介质中扩 赛和离子复合。 什么叫介质强度恢复过程?什么叫电压恢 复过程?它与哪些因素有关? 答:①弧隙介质强度恢复过程是指电弧电 流过是指电弧熄灭,而弧隙的绝缘能力要 经过一定时间恢复到绝缘的正常状态过程 称之为弧隙介质强度的恢复过程。②弧隙 介质强度主要有断路器灭弧装置结构和灭 弧介质的性质所决定,随断路器形式而异。 ③弧隙电压恢复过程是指电弧电流自然过 零后,电源施加于弧隙的电压,将从不大 的电弧熄灭电压逐渐增长,一直恢复到电 源电压的过程,这一过程中的弧隙电压称 为恢复电压,电压恢复过程主要取决于系 统电路的参数,即线路参数、负荷性质等, 可能是周期性的或非周期性的变化过程。 4-5主变压器的选择 答:影响主变压器选择的因素主要有:容 量、台数、型式、其中单元接线时变压器 应按发电机的额定容量扣除本机组的厂用 负荷后,留有10%的裕度来确定。连接在 发电机母线与系统之间的主变压器容量= (发电机的额定容量—厂用容量—支配负 荷的最小容量)*70%。微粒确保发电机电 压上的负荷供电可靠性,所接主变压器一 般不应小于两台,对于工业生产的余热发 电的中、小型电厂,可装一台主变压器与 电力系统构成弱连接。除此之外,变电站 主变压器容量,一般应按5—10年规划负 荷来选择。主变压器型式可根据:①、相 数决定,容量为300MW及以机组单元连接 的变压器和330kv及以下电力系统中,一 般选用三相变压器,容量为60MW的机组单 元连接的主变压器和500kv电力系统中的 主变压器经综合考虑后,可采用单相组成 三相变压器。②、绕组数与结构:最大机 组容量为125MW以及下的发电厂多采用三 绕组变压器,机组容量为200MW以上的发 电厂采用发电厂双绕组变压器单元接线, 在110kv以上的发电厂采用直接接地系统 中,凡需选用三绕组变压器的场合,均采 用自耦变压器。

水处理基础知识试题及答案

一、选择题 1、为使得好氧反应器正常运行,污水中所含的营养物质应比例适当,其所需要的主要营养物质比例为BOD5:N:P=【】。 A.10:5:1; B.1:5:10; C.100:5:1; D.1:5:100。 2、根据曝气池内混合液的流态,活性污泥法分为【】两种类型。 A.好氧与厌氧; B.推流和完全混合式; C.活性污泥和生物膜法; D.多投水法和生物吸附法 3、一般情况下,污水的可生化性取决于【】 A、BOD5/COD的值 B、BOD5/TP的值 C、DO/BOD5的值 D、DO/COD的值 4、污泥回流的目的主要是保持曝气池中一定【】 A、溶解氧 B、MLSS C、温度 D、pH 5、在生物滤池中,为保证微生物群生长发育正常,溶解氧应保持在一定的水平,一般以【】为宜 A、1-2mg/L B、2-4mg/L C 4-6mg/L D 6-8mg/L 6、好氧微生物生长的适宜pH范围是【】 A、4.5-6.5 B、6.5-8.5 C、8.5-10.5 D、10.5-12.5 7、城市污水厂,初次沉淀池中COD的去除率一般在【】之间 A、10%-20% B、20%-40% C、40%-60% D、60%-80% 8、某工业废水的BOD5/COD为0.5,初步判断它的可生化性为【】 A较好B可以C较难 D 不易 9、生物膜法产泥量一般比活性污泥的【】 A多 B少C一样多D不确定 10、下列四种污水中的含氮化合物,【】很不稳定,很容易在微生物的作用下,分解为其他三种。 A.有机氮; B.氨氮; C.亚硝酸盐氮; D.硝酸盐氮

11、城市污水处理厂污泥的主要成分是【】。 A.无机物; B.简单有机物; C.有机物; D.砂砾 12、污泥中温消化控制的温度范围为【】。 A. 20℃~ 25℃; B. 25℃~ 30℃; C. 30℃~ 37℃; D. 40℃~ 45℃ 13、传统活性污泥法的曝气时间为【】。 A.4~6h; B.6~8h; C.16~24h; D.8~10h; 14、厌氧消化池中的微生物种类主要属于【】 A.好氧菌; B.厌氧菌; C.兼性菌; D.厌氧菌和兼性菌 15、下列不属于污水二级处理工艺的是【】 A.SBR; B.氧化沟; C.A2/O; D.混凝沉淀 16、环境保护“三同时”制度是【】。 A.同时审批、同时施工、同时投产 B.同时设计、同时施工、同时投产 C.同时设计、同时改造、同时投产 D.同时审批、同时改造、同时投产 17、斜板沉淀池【】。 A不宜作为二次沉淀池 B.不宜作为初次沉淀池 C.适宜已建污水处理厂扩大处理时采用 D.适宜作为初次和二次沉淀池 18、一般活性污泥系统选择在【】阶段工作。 A 适应期 B 对数期 C 平衡期(稳定期) D 衰亡期 19、污泥沉降比是一定量的曝气池混合液静止【】后,沉淀污泥与混合液的体积比。 A 10分钟 B 30分钟 C 60分钟 D 100分钟 20、活性污泥净化废水主要阶段【】。 A 粘附 B 有机物分解和有机物合成 C 吸附 D 有机物分解 21、国内外普遍采用的BOD培养时间是【】天。 A 5 B 20 C 1 D 30 22、如果二沉池大量翻泥说明【】大量繁殖。 A 好氧菌 B 厌氧菌 C 活性污泥 D 有机物 23、曝气池有臭味说明【】。 A 进水pH值过低 B 丝状菌大量繁殖 C 曝气池供养不足 D 曝气池供养充足

电力系统基础知识问答集锦.doc

1、什么是动力系统、电力系统、电力网? 答:通常把发电企业的动力设施、设备和发电、输电、变电、配电、用电设备及相应的辅助系 统组成的电能热能生产、输送、分配、使用的统一整体称为动力系统;把由发电、输电、变电、配电、用电设备及相应的辅助系统组成的电能生产、输送、分配、使用的统一整体称为电力系统;把由输电、变电、配电设备及相应的辅助系统组成的联系发电与用电的统一整体称为电力网。 2、现代电网有哪些特点? 答:1、由较强的超高压系统构成主网架。2、各电网之间联系较强,电压等级相对简化。3、具 有足够的调峰、调频、调压容量 ,能够实现自动发电控制,有较高的供电可靠性。4、具有相应的 安全稳定控制系统,高度自动化的监控系统和高度现代化的通信系统。5、具有适应电力市场运 营的技术支持系统,有利于合理利用能源。 3、区域电网互联的意义与作用是什么? 答:1、可以合理利用能源,加强环境保护,有利于电力工业的可持续发展。2、可安装大容量、 高效能火电机组、水电机组和核电机组,有利于降低造价,节约能源,加快电力建设速度。3、可以利用时差、温差,错开用电高峰,利用各地区用电的非同时性进行负荷调整,减少备用容量和装机容量。4、可以在各地区之间互供电力、互通有无、互为备用,可减少事故备用容量,增强抵 御事故能力,提高电网安全水平和供电可靠性。5、能承受较大的冲击负荷,有利于改善电能质 量。6、可以跨流域调节水电,并在更大范围内进行水火电经济调度,取得更大的经济效益。 4、电网无功补偿的原则是什么? 答:电网无功补偿的原则是电网无功补偿应基本上按分层分区和就地平衡原则考虑,并应能随负荷或电压进行调整,保证系统各枢纽点的电压在正常和事故后均能满足规定的要求,避免经长距离线路或多级变压器传送无功功率。 5、一个完整的电力系统由分布各地的各种类型的发电厂、升压和降压变电所、输电线路及电力用户组成,它们分别完成电能的生产、电压变换、电能的输配及使用。 电力系统的组成示意图:

火力发电厂化学水处理设计技术规定

火力发电厂化学水处理设计技术规定 SDGJ2—85 主编部门:西北电力设院 批准部门:东北电力设院 施行日期:自发布之日起施行 水利电力部电力规划设计院 关于颁发《火力发电厂化学水处理 设计技术规定》SDGJ2—85的通知 (85)水电电规字第121号 近几年来,随着电力工业的发展和高参数大机组的建设,电厂化学水处理技术迅速发展,积累了许多新的经验。为了总结近年来水处理设计经验和在设计中更好地采用水处理技术革新和技术革命的新成果,提高设计水平,加速电力建设,我院组织有关设计院对原《火力发电厂化学水处理设计技术规定》(SDGJ2—77)进行了修改。修订工作经过调查研究、征求意见、组织讨论,并邀请了有关生产、科研、设计、施工、制造等单位的有关同志对修订后的送审稿进行了审查定稿,现颁发执行,原设计技术规定作废。 本规定由水利电力部西北电力设计院和水利电力部东北电力设计院负责管理。希各单位在执行过程中,注意积累资料,及时总结经验,如发现不妥和需要补充之处,请随时函告水利电力部西北电力设计院和水利电力部东北电力设计院,并抄送我院。 1985年10月22日 第一章总则 第1.0.1条火力发电厂(以下简称发电厂)水处理设计应满足发电厂安全运行的要求,做到 经济合理、技术先进、符合环境保护的规定,并为施工、运行、维修提供便利条件。 第1.0.2条水处理室在厂区总平面中的位置,宜靠近主厂房,交通运输方便,并适当地留有扩建余地;不宜设在烟囱、水塔、煤场的下风向(按最大频率风向)。 第1.0.3条水处理系统和布置应按发电厂最终容量全面规划,其设施应根据机组分期建设情况及技术经济比较来确定是分期建设还是一次建成。 第1.0.4条本规定适用于汽轮发电机组容量为12~600MW的新建发电厂或扩建发电厂的水处理设计。 第1.0.5条发电厂水处理设计,除应执行本规定外,还应执行现行的有关国家标准、规范及水利电力部颁布的有关规程。 第二章原始资料 第2.0.1条在设计前应取得全部可利用的历年来水源水质全分析资料,所需份数应不少于下列规定: 对于地面水,全年的资料每月一份,共十二份;对于地下水或海水,全年的资料每季一份,共四份。

水处理必备基础知识

50条水处理必备基础知识 1、什么是水体自净? 水体自净:受污染的河流经过物理、化学、生物等方面的作用,使污染物浓度降低或转化,水体恢复到原有的状态,或者从最初的超过水质标准降低到等于水质标准。 2、污水处理的基本方法有哪些? 污水处理的基本方法:就是采用各种手段和技术,将污水中的污染物质分离去除,回收利用,或将其转化为无害物质,使污水得到净化。一般分为给水处理和污水处理。 3、现在污水处理技术有哪些? 现代污水处理技术,按作用原理可分为物理处理法,化学处理法,生物处理法。 4、五个水的测量指标 生化需氧量(BOD):是指在有氧的条件下,由于微生物的作用,降解有机物所需的氧量。是表示污水被有机物污染的综合指标。 理论需氧量(thOD):水中某一种有机物的理论需氧量。通常是指将有机物中的碳元素和氢元素完全氧化为二氧化碳和水所需氧量的理论值(即按完全氧化反应式计算出的需氧量)。 总需氧量(TOD):是指水中能被氧化的物质,主要是有机物质在燃烧中变成稳定的氧化物时所需要的氧量,结果以O2的mg/L表示。 化学需氧量(COD):是以化学方法测量水样中需要被氧化的还原性物质的量。废水、废水处理厂出水和受污染的水中,能被强氧化剂氧化的物质(一般为有机物)的氧当量。 总有机碳(TOC): 是指水体中溶解性和悬浮性有机物含碳的总量。 5、什么情况采用生化法处理? 一般认为BOD/COD值大于0.3的污水才适于采用生化法处理。 6、生活饮用水的卫生标准是什么? 生活饮用水卫生标准的物理指标:色,浑浊度,臭和味。 7、什么是水体富营养化? 水体富营养化是发生在淡水中,由水体中氮、磷、钾含量过高导致藻类突然性过度增殖的一种自然现象。

探讨电厂化学水处理技术

探讨电厂化学水处理技术 【摘要】我国一些地区水资源已成为制约经济发展的主要因素之一,节约用水成为社会发展所必须面对的问题。火力发电厂是一个耗水大户,为1.0m3/(S?GW),其中循环水冷却塔的耗水量约占整个电厂耗水量的60%以上。本文探讨了电厂化学水处理的特点及工艺应用技术,以期为电厂水处理方面提供借鉴。 【关键词】电厂;化学;技术 1电厂化学水处理技术特点 1.1设备布置集中化 根据设备的功能对其进行分类是传统电厂化学水处理系统的常用布置方式,由于该系统种类繁多,每次布置都需要占用较多空间,且分散状态下的设备在生产过程中会造成很大的不便,管理过程也会受到一定的限制。而集中化的化学水处理系统则很好地避开了这些问题,由于其对运行过程中的各个环节进行了优化,设备在布置上具有立体性、紧凑性以及集中性等特点,对节约厂房面积、缩小存储空间等十分有效,同时系统的集中化布置能够促进设备之间的良好配合,设备的综合利用率得到了提升,系统的运行管理水平也得到了显著改善。

1.2生产控制集中化 集中化电厂化学水处理系统能够将各子系统融合为一套综合性的控制系统,利用可编程的逻辑控制器以及上位机的二级控制结构,使整个化学水处理系统真正实现检测、控制以及操作环节的集中性。其中,可编程的逻辑控制器用来采集和控制设备中的数据,上位机和PCL之间的数据通讯接口能够满足通讯的需求,以达到连接各个子系统的目的。 1.3工艺多元化 传统的电厂水处理系统模式较为单一,当前却在向着多元化的方向发展。随着化工材料的不断发展,各种新型的处理工艺在水质处理过程中得到了广泛应用,多样化的工艺效果的出现,使化学水处理的水平不断得到完善。 1.4检测方法向着科学化发展 近年来,化学水处理工艺和检测手段都在不断进步,科学化的检测方法和处理方式备受大家追捧。化学诊断方式的出现,不但起到了事前防范的作用,在线诊断以及痕量分析模式的出现都使检测诊断技术日趋成熟,机组的运行安全得到了合理保证,事故的发生频率也由此得到了有效控制。 1.5以环保和节能为主要方向 环保问题己经成为社会关注的焦点,发电厂污水的处理也随之向着绿色的方向发展。作为水资源的消耗大户,电厂应该做到水资源的合理利用,提高水的重复利用率。目前,

水处理基础知识

水处理基础知识 1、原水:是指未经任何处理的天然水或城市的自来水等也叫生水 2、澄清水:去除了原水中的悬浮杂质的水。 3、除盐水:是指水中的阳、阴离子基本上除去或降低到一定程度的水称为除盐 水。除盐的方法有蒸馏法、电渗析法、反渗透法、离子交换法等。 4、浊度:就是指水的浑浊程度,它是因水中含有一定的悬浮物(包括胶体物质) 所产生的光学效应。单位用表示。浊度是在外观上判断水是否遭受污染的主要特征之一。浊度的标准单位规定为102所构成的浑浊度为1度。 5、絮凝剂:能引起胶粒产生凝结架桥而发生絮凝作用的药剂。 6、总碱度:是指水中能与强酸发生中和作用的物质总量。 7、酸度:是指水中能与强碱发生中和作用的物质总量。 8、硬度:是指水中某些易于形成沉淀物的金属离子,通常指钙、镁离子含量。 9、电导率:是在一定温度下,截面积为1平方厘米,相距为1厘米的两平行电 极之间溶液的电导。可以间接表示水中溶解盐的含量。 10、什么是水的含盐量:水的含盐量也称矿化度,是表示水中所含盐类的数量。 由于水中各种盐类一般均以离子的形式存在,所以含盐量也可以表示为水中各种阳离子的量和阴离子的量的和。 11、沉淀:废水处理的技术方法之一。可分为物理沉淀和化学沉淀两种作用。通 常所指的沉淀是物理沉淀,即重力分离的方法。它是利用废水中悬浮物与水的比重不同,借重力沉降或上浮的作用,从水中分离出来。化学沉淀是在废水中投加某种化学药剂,使之与废水中的溶解物质发生化学反应,生成难溶于水的化合物而析出沉淀。

12、“中水”的定义有多种解释,在污水工程方面称为“再生水”,工厂方面称 为“回用水”,一般以水质作为区分的标志。其主要是指城市污水或生活污水经处理后达到一定的水质标准,可在一定范围内重复使用的非饮用水。再生水水质介于上水(饮用水)和下水(生活污水之间),这也是中水得名的由来,人们又将供应中水的系统称为中水系统。 13、什么是有机物污染:是指以碳水化合物、蛋白质、氨基酸以及脂肪等形式存 在的天然有机物质等某些其它可生物降解的人工合成有机物质。主要来源于生活污水和工业废水。 14、什么是浓差极化:反渗透在运行状况下,膜表面盐类被浓缩,同进水中的盐 类之间存在浓度差,若浓水流量小,流速低时,高含量盐类的水不能被及时带走,在膜表面会形成很高的浓度差,阻碍了盐分的扩散,这种现象叫浓差极化。 15、悬浮物():指悬浮在水中的固体物质,包括不溶于水中的无机物、有机物及 泥砂、粘土、微生物等。水中悬浮物含量是衡量水污染程度的指标之一。它是水样过滤后在103-105度温度下把滤纸上截留物烘干所得的固体量。单位。 16、曝气:使空气中O2转移到混合液中而被微生物利用的过程。目的是提供活性 污泥等微生物所需的溶解氧,保障微生物代谢过程的需氧量。 17、生化需氧量():是指在规定时间、规定温度、规定条件下微生物在分解、氧 化水中有机物的过程中,所消耗的溶解氧量,通常所用时间为5天,温度20℃,简记5,单位。 18、化学需氧量():是指在一定条件下,用强氧化剂氧化废水中的有机物质所消 耗的氧量。废水检验标准一般采用重铬酸钾作氧化剂,单位。 19、什么是生物处理法:通过微生物的代谢作用,使污水中呈溶解、胶体状态的

相关主题
文本预览
相关文档 最新文档