当前位置:文档之家› 湖南工学院 毕业设计

湖南工学院 毕业设计

湖南工学院毕业设计(论文) 课题名称专业名称所在班级学生姓名学生学号指导老师专用铣床液压系统设计机械设计与制造及其自动化04 机制专科一班李超2004101114 隆文革完成日期:2007 年 5 月湖南工学院毕业设计论文前言 1.铣床概述铣床是用铣刀对工件进行铣削加工的机床。铣床除能铣削平面、沟槽、轮齿、螺纹和花键轴外,还能加工比较复杂的型面,效率较刨床高,在机械制造和修理部门得到广泛应用。2.液压技术发展趋势液压技术是实现现代化传动与控制的关键技术之一,世界各国对液压工业的发展都给予很大重视。液压气动技术具有独特的优点,如: 液压技术具有功率重量比大,体积小,频响高,压力、流量可控性好,可柔性传送动力,易实现直线运动等优点;气动传动具有节能、无污染、低成本、安全可靠、结构简单等优点,并易与微电子、电气技术相结合,形成自动控制系统。主要发展趋势如下:1.减少损耗,充分利用能量 2.泄漏控制 3.污染控制 4.主动维护 5.机电一体化 6.液压CAD 技术7.新材料、新工艺的应用 3. 主要设计内容本设计是设计专用铣床工作台进给液压系统,本机床是一种适用于小型工件作大批量生产的专用机床。可用端面铣刀,园柱铣刀、园片及各种成型铣刀加工各种类型的小型工件。设计选择了组成该液压系统的基本液压回路、液压元件,进行了液压系统稳定性校核,绘制了液压系统图,并进行了液压缸的设计。2 湖南工学院毕业设计论文目录前言毕业设计任务书第一章专用铣床液压系统设计1.1 技术要求1.2 系统功能设计1.2.1 工况分析1.2.2 确定主要参数,绘制工况图1.2.3 拟定液压系统原理图1.2.4 组成液压系统1.3 系统液压元件、辅件设计第二章专用铣床液压系统中液压缸的设计 2.1 液压缸主要尺寸的确定 2.2 液压缸的结构设计结束语致谢参考文献2 4 6 6 6 6 7 9 9 11 16 16 19 24 25 3 湖南工学院毕业设计论文毕业设计任务书一、设计课题专用铣床液压系统设计二、设计依据:某铣床工作台为卧式布置(导轨为水平导轨,其静、动摩擦因数?s=0.2;?d= 0.1),拟采用缸筒固定的液压缸驱动工作台,完成工件铣削加工时的进给运动;工件采用机械方式夹紧。工作台由液压与电气配合实现的自动循环要求为:快进—→工进—→快退—→停止。工作台除了机动外,还能实现手动。铣床工作台的运动参数和动力参数如表所列。行程(mm) 300 100 400 表铣床工作台的运动参数和动力参数速度时间运动部件铣削负载(m/s) t(s) 重力G(N) Fe(N) t1 0.075 4 t2 0.016~0.001 5500 9000 6.25~10 t3 0.075 5.33 启动、制动t(s) 工况快速工进快退0.05 三、设计任务及要求设计要求:设计选择组成该液压系统的基本液压回路并说明液压系统的工作原理,设计计算选择液压元件,进行液压系统稳定性校核,绘液压系统图,设计液压缸,编写液压系统设计说明书。4 湖南工学院毕业设计论文设计任务: 1 设计说明书一份 2 绘制液压系统图(A1) 3 专用铣床示意图(A1)4 液压缸装配图(A1) 5 液压缸各零件图(缸体、活塞、活塞杆、缸盖)5 湖南工学院毕业设计论文第一章专用铣床液压系统设计1.1 技术要求铣床采用缸筒固定的液压缸驱动工作台,卧式布置,,完成工件铣削加工时的进给运动;工件采用机械方式夹紧。工作台由液压与电气配合实现的自动循环要求为:快进—→工进—→快退—→停止。工作台除了机动外,还能实现手动。铣床工作台的运动参数和动力参数如表一所列。行程(mm) 300 100 400 表一铣床工作台的运动参数和动力参数速度时间运动部件铣削负载(m/s) t(s) 重力G(N) Fe(N) t1 0.075 4 t2 0.016~0.001 5500 9000 6.25~10 t3 0.075 5.33 启动、制动t(s) 工况快速工进快退0.05 1.2 系统功能设计1.2.1 工况分析工作台液压缸外负载计算结果见表二表二工作台液压缸外负载计算结果计算公式外负载(N) 注:静摩擦负载:F1=Ffs 1100 Ffs=?s(G+Fn)=0.2×F2=Ffd+G/g×(5500+0)=1100(N) 1390 △v/△t 动摩擦负载:F3=Ffd 550 Ffd=?d(G+Fn)=0.1×(5500+0)=550(N) F4=Fe+Ffd 9550 惯性负载:Ffd+G/g×△v/△F5=Ffs 1100 t=5500×0.075/(9.81×0.05)F6=Ffd+G/g× 1390 =840(N). △v/△t △v/△t:平均加速度(m/s2). F7=Ffd 550 工启加况动速快进工进反向启动加快速退 6 湖南工学院毕业设计论文由表一和表二即可绘制出图一所示液

压缸的行程特性(L-t)图、速度特性(v-t)图和负载特性(F-t)图。图一液压缸的L-t 图、v-t 图和F-t 图(2)确定主要参数,编制工况图由参考文献一,初选液压缸的设计压力P1=3MPa. 为了满足工作台进退速度相等,并减小液压泵的流量,今将液压缸的无杆腔作为主工作腔,并在快进时差动连接,则液压缸无杆腔的有效面积A1 与A2 应满足A1=2A2(即液压缸内径D 和活塞杆直径d 间应满足:D= 2 d.)为防止工进结束时发生前冲,液压缸需保持一定回油背压。由参考文献一,暂取背压为0.8MPa,并取液压缸机械效率ηcm=0.9,则可计算出液压缸无杆腔的有效面积。7 湖南工学院毕业设计论文A1 = F η cm ( P1 ? P2 2 ) = 9550 = 40 × 10 ? 4 (m 2 ) 0 .8 0.9 ? (3 ? ) × 10 6 2 液压缸内径:按GB/T2348-1980,取标准值D=80mm=8cm,因A1=2A2,故活塞杆直径为d = D / 2 = 8 / 2 ≈ 56mm = 5.6cm(标准直径)则液压缸的实际有效面积为A1 = A2 = π π 4 D2 = π × 82 4 = 50(cm 2 ) 4 4 A = A1 ? A2 = 25(cm 2 ) (D 2 ? d 2 ) = π (8 2 ? 5.6 2 ) = 25(cm 2 ) 差动连接快进时,液压缸有杆腔压力P2 必须大于无杆腔压力P1;其差值估取△P= P2- P1=0.5MPa,并注意到启动瞬间液压缸尚未移动,此时△P=0;另外,取快退时的回油压力损失为0.5MPa。根据上述假定条件经计算得到液压缸工作循环中各阶段的压力、流量和功率,并可绘出其工况图(图二)。表三液压缸工作循环中各阶段的压力、流量和功率负载F(N)回油腔压力P2(MPa) 0.5 工作腔压力P1(MPa) 0.48 1.12 输入流量q(L/mm) 输入功率N(W) - 工作阶段启动加速快进计算公式F p1 = η cm + A2 △p 1100 1390 550 恒速A q = AV i; N = p1 q F 0.5 0.74 10.8 133.2 工进启动加速恒速p1 = η cm + P2 A2 A1 9550 1100 1390 550 0.8 0.5 0.5 2.52 0.49 1.62 1.24 0.3~4.98 10.8 12.6~202 232.5 q = A1V2 ; N = p1 q F p1 = 快退η cm + p 2 A1 A2 q = A1V1 ; N = p1 q 8 湖南工学院毕业设计论文图二液压缸的工况图1.2.3 拟定液压系统原理图1)选择液压回路①调速回路与动力源由工况图可以看到,液压系统在快速进退阶段,负载压力较低,流量较大,且持续时间较短;而系统在工进阶段,负载压力较高、流量较小,持续时间较长。同时注意到铣削加工过程中铣削里的变化和顺铣及逆铣两种情况,为此,采用回油路调速阀节流调速回路。这样,可以保证进给运动平稳性和速度稳定。在确定主要参数时,已决定快速进给时液压缸采用差动连接,所以所需动力源的流量较小,从简单经济学观点,此处选用单定量泵供油。②油路循环方式由于上已选用节流调速回路,系统必然为开式循环方式。③换向与速度换接回路综合考虑到铣床自动化程度要求较高、但工作台终点位置的定位精度要求不高、工作台可机动也可手动、系统压力低流量小、工作台换向过渡位置不应出现液压冲击等因素,选用三位四通“Y”型中位机能的电磁滑阀作为系统的主换向阀。选用二位三通电磁换向阀实现差动连接。通过电气行程开关控制换向阀电磁铁的通断电即可实现自动换向和速度换接。9 湖南工学院毕业设计论文④压力控制回路在泵出口并联一先导式溢流阀,实现系统的定压溢流,同时在溢流阀的远程控制口连接一个二位二通的电磁换向阀,以便一个工作循环结束后,等待装卸工件时,液压泵卸载,并便于液压泵空载下迅速启动。1.2.4 组成液压系统在主回路初步选定的基础上,只要增添一些必要的辅助回路便可组成完整的液压系统了。如:在液压泵进口(吸油口)设置一过滤器;出口设一压力表及压力表开关,以便观测液压泵的压力。经过整理所组成的液压系统如图三所示,其对应的动作顺序如表四。快进工进快退M 图三专用铣床工作台液压系统1—过滤器2—定量叶片泵3—压力表开关5—先导式溢流阀6—二位二通电磁换向阀7—单向阀8—三位四通电磁换向阀9—单向调速阀10—二位三通电磁换向阀11—液压缸10 湖南工学院毕业设计论文表四专用铣床液压系统动作顺序表信号来源动作名称工作台快进工作台工进工作台快退液压泵卸载电磁铁工作状态1Y A 2Y A 3YA 4YA + + + + + + + - 按下启动按钮压下工进行程开关压下快退行程开关压下液压泵卸载行程开关注:“+”——通电;“-”——断电。行程开关安装在液压缸经过的路径上。快进回路:进油:1→2→7→8→11;回油:10→8。工

进回路:进油:1→2→7→8→11;回油:10→9→8→油箱。快退回路:进油:1→2→7→9→10;回油:11→8→油箱。卸载:1→2→5→6→油箱。1.3 系统液压元件、辅件设计(1)液压泵及其驱动电机由液压缸的工况图二或表三可以查得液压缸的最高工作压力出现在工进阶段,p1=2.52MPa。此时缸的输入流量较小,且进油路元件较少,故泵至缸间的进油路压力损失估取为△p=0.5MPa.则液压泵的最高工作压力pp 为Pp≥p1+△p=2.52+0.5=3.02(MPa) 考虑压力储备,液压泵的最高压力为Pp =3.02(1+25%)=3.77(MPa) 液压泵的最大供油量qp 按液压缸的最大输入流量(10.8L/mm)进行估算。取泄露系数K=1.1,则qp≥1.1×10.8L/min=11.88L/min 按第七章表7-108 查得:YB1-10 型单级叶片泵能满足上述估算得出的压力和流量要求:该泵的额定压力为 6.3MPa,公称排量V=10mL/min,额定转速为n=1450r/min。现估取泵的容积效率ηv=0.85,当选用转速n=1400r/min 的驱动电动机时,泵的流量为qp =Vnηv=10×1400×0.85=11.90(L/min)≈12(L/min) 由工况图二可知,最大功率出现在快退阶段,查表1-13 取泵的总效率为η p=0.75,则Np = ppqp 1.24 × 10 6 ×12 × 10 ?6 = 330 ( w) 0.75 × 60 ηp = 11 湖南工学院毕业设计论文选用的电动机型号:由参考文献一表7-134 查得,Y90S-4 型封闭式三相异步电动机满足上述要求,其转速为1400r/min,额定功率为1.1kW。根据所选择的液压泵规格及系统工作情况,可算出液压缸在各阶段的实际进、出流量,运动速度和持续时间(见表五),从而为其他液压元件的选择及系统的性能计算奠定基础。(2)液压控制阀和部分液压辅助元件根据系统工作压力与通过各液压控制阀及部分辅助元件的最大流量,查产品样本所选择的元件型号规格如表六所列。表五液压缸在各阶段的实际进出流量、运动速度和持续时间工作阶段流量(L/min)无杆腔有杆腔速度(m/s)时间(s)快进A 50 × 12 = 24 = 24 q进= A1 q p q出= q 进= 24 × = 12 25 50 A2 A1 V1 = qp A 12 × 10 ?3 = 60 × 25 × 10 ?4 = 0.08 q进A1 t1 = = L1 V1 300 × 10 ?3 0.08 = 3.75 t2 = = L2 V2 最高速度时工进最低速度时q出= q 进q 进= 4.98 = 4.98 × = 2.49 q出= q 进q 进= 0 .3 = 0 .3 × = 0.15 q出= q 进A2 A1 A2 A1 25 50 V2 = = 4.98 × 10 ?3 60 × 50 × 10 ? 4 = 0.016 100 × 10 ?3 0.016 = 6.25 L2 V2 A2 A1 V2 = = q进A1 t2 = = 25 50 0.3 × 10 ?3 60 × 50 × 10 ? 4 = 0.001 V3 = q进A2 100 × 10 ?3 0.001 = 100 L3 V3 t3 = 快退= 12 × = 24 50 25 q 进= q p = 12 12 × 10 ?3 = 60 × 25 × 10 ? 4 = 0.08 400 × 10 ?3 = 0.08 =5 注:工进阶段只计算了调速上限时的参数。表六专用铣床液压系统中控制阀和部分辅助元件的型号规格12 湖南工学院毕业设计论文序号 1 3 4 5 6 7 8 9 10 名称通过流量(L/min) 12 12 12 2.4 12 24 12 12 额定流量(L/min) 16 25 10 6.3 6.3 6.3 6.3 额定压力(Mpa) 1 6.3 测压范围0~10 6.3 6.3 25 25 25 25 额定压降(Mpa) 卸荷压力0.15 <0.2 <0.2 <0.25 <0.3(调速阀) <0.2(单向阀) <0.2 型号规格XU-A16×80J K-3B Y-60 Y-25B 22D-10BH I-25B 34D-25B QI-25B 23D-25H 过滤器压力表开关压力表溢流阀二位二通电磁阀单向阀三位四通电磁阀单向调速阀二位三通电磁阀注:考虑到液压系统的最大压力均小于 6.3Mpa,故选用了广州机床研究所的中低压系列液压元件;单向调速阀的最小稳定流量为0.07L/min,小于系统最低工进速度时的流量0.15 L/min。(3)其他辅助元件及液压油液1)管件由表五可知,流经液压缸无杆腔和有杆腔油管的实际最大流量分别为24 L/min 和12 L/min。查表取油管内油液的允许流速为4 L/min,分别算得无杆腔油管的管径d 无和 d 有为d无= d有= 4q = πv 4q = πv 4 × 24 × 10 ?3 = 0.0112 m = 11.2mm 60 × π × 4 4 × 12 × 10 ?3 = 0.0079 m = 7.9mm 60 × π × 4 查表JB827-66,同时考虑制作方便,两根油管均选用18×2(外径18mm,壁厚2mm)的10 号冷拔无缝钢管(YB231-70);查手册得管材的抗拉强度为412MPa,查表取安全系数n=8,对管子的强度进行校核:δ = 2mm ≥ pd n 3.77 × 10 6 × (18 ? 2 × 2) × 10 ?3 × 8 = = 0.0005 m = 0.5mm 2σ b 2 × 412 × 10 6 13 湖南工学院毕业设计论文所选的管子壁厚安全。其他油管,可直接按所连接的液压元、辅件的接口尺寸决定其管径大小。2) 油箱取ζ=6,算得液压系统中的油

箱容量为V = ζq p = 6 × 12 L = 72 L 3)液压油液根据所选用的液压泵类型,选用牌号为L-HH32 的油液,其运动粘度为32mm2/s。4 计算液压系统技术性能(1)验算压力损失由于本系统的管路布局尚未确定,故仅按式: ?p进= ?p沿+ ?p局+ ?p阀估算阀类元件的压力损失。快进阶段液压缸差动连接,有杆腔的油液经二位三通换向阀流入无杆腔,根据表三和表五中的数值,可求得有杆腔压力p2 与无杆腔p1 之差:12 ?p = p 2 ? p1 = 0.2 × ( ) 2 = 0.046 MPa 25 将其折算到进油路上,可求得此阶段进油路上阀类元件的总压力损失为:12 25 ∑?p v 0.2 × ( ) 2 + 0.046 × ( ) = 0.046 + 0.057 + 0.046 = 0.15MPa 25 50 ? 25 工进阶段进油路上阀类元件的总压力损失:∑?p v = 0.2 × ( 4.98 2 4.98 2 2.49 2 25 ) + 0 .2 × ( ) + (0.2 + 0.3) × ( ) × 25 25 25 50 = 0.008 + 0.01 + 0.0025 = 0.02( MPa) 快退阶段进油路上阀类元件的总压力损失:∑?p v = 3 × 0.2 × ( 12 2 12 24 50 ) + 0.25 × ( ) 2 + 0.26 × ( ) 2 × 25 25 25 25 = 0.14 + 0.057 + 0.46 = 0.66( MPa ) 尽管上述计算结果与估取值不同,但不会是系统工作压力超过其能达到的最高压力。14 湖南工学院毕业设计论文(2)确定系统调整压力根据上述计算可知:液压泵也即溢流阀的调整压力应为工进阶段的系统工作压力和压力损失之和,即Pp ≥ (3.02 + 0.02) MPa = 3.04 MPa (3)估算系统效率、发热和升温由表五的数据可看到,本液压系统在整个工作循环持续时间中,快速进退仅占8%,而工作进给达92%(按最低进给速度计),所以系统效率、发热和温升可概略用工进时的数值来代表。可算出工进阶段的回路效率ηc = 2.52 × 0.3 = 0.02(最低进给速度时)3.04 × 12 2.52 × 4.98 = 0.34 ηc = (最高进给速度时) 3.04 ×12 前已取液压泵的总效率ηp=0.75 和液压缸的总效率ηcm=ηA=0.9,则可算得本液压系统的效率η = 0.75 × (0.02~0.34) × 0.9 = 0.014~0.23 足见工进时液压系统效率很低,这主要是由于溢流损失和节流损失造成的。根据系统的发热量计算公式可得工进阶段的发热功率H= 3.04 × 10 6 × 12 × 10 ?3 / 60 = (1 ? 0.014) = 800( w) 0.75 取散热系数K=15W/(m·℃)算得系统温升为?t = 800 0.065 × 15 × 3 (72) 2 = 47.7(°C ) 此温升超出了许用范围△t=35℃,为此,采取两条措施:通过适当加大油箱容量(即V=7 × 12=84L)以增大油箱散热面积,采用风扇冷却[ 即取K=20W/ (m2·℃)]。?t = 800 0.065 × 20 × 3 (84) 2 = 32(°C ) 从而满足了许用温升要求。第二章专用铣床液压系统中液压缸的设计15 湖南工学院毕业设计论文根据前面设计可知数据: 1. 液压缸的工作压力:p=3Mpa。2. 无杆腔有效面积:F 9550 A1 = = = 40 × 10 ? 4 (m 2 ) η cm ( P1 ? P2 2 ) 0.9 ? (3 ?

0.8 ) × 10 6 2 3. 有杆腔有效面积:A2 = π 4 (D2 ? d 2 ) = π 4 (8 2 ? 5.6 2 ) = 25(cm 2 ) ,其中:A1 = 2A2 。4. 液压缸内径:D=70mm,活塞杆直径d=56mm.其中D = 2d 。5. 工作行程:L=400mm。 6. 工作循环中最大外负载:F=9550N。 2.1 液压缸主要尺寸的确定 1.缸工作压力的确定:取p=3Mpa。 2.液压缸内径D 和活塞杆直径 d 的确定为了防止工进结束时发生前冲,液压缸需保持一定回油背压,暂取背压为0.8Mpa,并取机械效率为ηcm=0.9。D=70mm, d=56mm, 其中D = 2d 。对于选定后的液压缸内径D,必须进行最小稳定速度的验算。要保证液压缸节流腔的有效工作面积A,必须大于保证最小稳定速度的最小有效面积Amin,即A>Amin 显然,由已知可得满足速度稳定要求。 3.液压缸壁厚和外径的计算:由公式:δ≥PyD/2[σ]计算。式中:δ——液压缸壁厚(m); σ——液压缸内径(m);Py——试验压力,一般取最大工作压力的(1.25~1.5)倍(Mpa); 16 湖南工学院毕业设计论文[σ]——缸筒材料的许用应力。在这用高强度铸铁,其值为:[σ]=60Mpa. 计算可得:δ=2.63 则缸体的外径D1 为:D1≥D+2δ=75.3 4.液压缸工作行程的确定已知:L=400mm. 5.缸盖厚度的确定前缸盖:t ≥ 0.433D2 后缸盖:t ≥ 0.433D2 p y D2 [σ ]( D2 ? d 0 ) = 20.7 (取Py=1.5p=4.5Mpa). py [σ ] = 7 .7 式中:t——缸盖有效厚度(m);;D2——缸盖止口内径(m)D0——缸盖孔的直径(m)。 6.最小导向长度的确定当活塞杆全部外伸时,从活塞支承面中点到缸盖滑动支承面中点的距离H 称为最小导向长度。如果导向长度过小,将使液压缸的初始挠度增大,影响液压缸的稳定性,因

此设计时必须保证有一定的最小导向长度。按下式:L D H≥ + = 55 20 2 式中:L——液压缸的最大行程;D——液压缸的内径。图四液压缸的导向长度17 湖南工学院毕业设计论文活塞的宽度B 一般取:(0.6~1.0)D;缸盖滑动支承面的长度l1 ,根据液压缸内径D 而定:当D<80mm 时,取l1 =(0.6~1.0)D; 当D>80mm 时,取l1 =(0.6~1.0)d. 为保证最小导向长度H,若过分增大l1 和 B 都是不适合的,必要时可在缸盖与活塞之间增加一隔套K 来增加H 的值.隔套的长度 C 由需要的最小导向长度H 决定,即c=H? 1 (l1 + B ) 2 取l1 =0.8D=56mm,B=0.6D=42mm 则:C=7 7.缸体长度的确定液压缸缸体内部长度应等于活塞的行程与活塞的宽度之和。缸体外形长度还要考虑到两端盖的厚度,一般液压缸缸体长度不应大于内径的20~30 倍。而缸体长度为:L2=D+t=70+7.7=77.7 显然,满足所需条件。8.活塞杆稳定性的验算活塞杆长度根据液压缸最大行程L 而定。对于工作行程中受压的活塞杆,当活塞杆长度L 与其直径d 之比大于15 时,应对活塞杆进行稳定性验算。而L/d=400/56=7.14<15。活塞杆稳定性好。2.2 液压缸的结构设计1.缸体与缸盖的连接形式一般来说,缸筒和缸盖的结构形式和其使用的材料有关。工作压力p<10MPa 时,使用铸铁;p<20MPa 时,使用无缝钢管;p>20MPa 时,使用铸钢或锻钢。如图所示为缸筒和缸盖的常见结构形式。图五(a)所示为法兰连接式,结构简单,容易加工,也容易装拆,但外形尺寸和重量都较大,常用于铸铁制的缸筒18 湖南工学院毕业设计论文上。图五(b)所示为半环连接式,它的缸筒壁部因开了环形槽而削弱了强度,为此有时要加厚缸壁,它容易加工和装拆,重量较轻,常用于无缝钢管或锻钢制的缸筒上。图五(c)所示为螺纹连接式,它的缸筒端部结构复杂,外径加工时要求保证内外径同心,装拆要使用专用工具,它的外形尺寸和重量都较小,常用于无缝钢管或铸钢制的缸筒上。图五(d)所示为拉杆连接式,结构的通用性大,容易加工和装拆,但外形尺寸较大,且较重。图五(e)所示为焊接连接式,结构简单,尺寸小,但缸底处内径不易加工,且可能引起变形。图五缸筒和缸盖结构(a)法兰连接式(b)半环连接式(c)螺纹连接式(d)拉杆连接式(e)焊接连接式1—缸盖2—缸筒3—压板4—半环5—防松螺帽6—拉杆在此使用铸铁,选用法兰连接。2.活塞杆与活塞的连接结构可以把短行程的液压缸的活塞杆与活塞做成一体,这是最简单的形式。但当行程较长时,这种整体式活塞组件的加工较费事,所以常把活塞与活塞杆分开制造,然后再连接成一体。图六所示为几种常见的活塞与活塞杆的连接形式。图六(a)所示为活塞与活塞杆之间采用螺母连接,它适用负载较小,受力无冲击的液压缸中。螺纹连接虽然结构简单,安装方便可靠,但在活塞杆上车螺纹将削弱其强度。图六(b)和(c)所示为卡环式连接方式。图六(b)中活塞杆 5 上开19 湖南工学院毕业设计论文有一个环形槽,槽内装有两个半圆环3 以夹紧活塞4,半环 3 由轴套2 套住,而轴套2 的轴向位置用弹簧卡圈1 来固定。图六(c)中的活塞杆,使用了两个半圆环4,它们分别由两个密封圈座 2 套住,半圆形的活塞 3 安放在密封圈座的中间。图六(d)所示是一种径向销式连接结构,用锥销1 把活塞2 固连在活塞杆3 上。这种连接方式特别适用于双出杆式活塞。图六常见的活塞组件结构形式 3.活塞杆导向部分的结构选用导向套导向。因导向套磨损后便于更换,应用普遍。 4.活塞及活塞杆处密封圈的选用图七密封装置(a)间隙密封(b)摩擦环密封(c)O 形圈密封(d)V 形圈密封20 湖南工学院毕业设计论文图七(a)所示为间隙密封,它依靠运动间的微小间隙来防止泄漏。为了提高这种装置的密封能力,常在活塞的表面上制出几条细小的环形槽,以增大油液通过间隙时的阻力。它的结构简单,摩擦阻力小,可耐高温,但泄漏大,加工要求高,磨损后无法恢复原有能力,只有在尺寸较小、压力较低、相对运动速度较高的缸筒和活塞间使用。图七(b)所示为摩擦环密封,它依靠套在活塞上的摩擦环(尼龙或其他高分子材料制成)在O 形密封圈弹力作用下贴紧缸壁而防止泄漏。这种材料效果较好,摩擦阻力较小且稳定,可耐高温,磨损后有自动补偿能力,但加工要求高,装拆较不便,适用于缸筒和活塞之间的密封。图七(c)、图七(d)所示为密封

圈(O 形圈、V 形圈等)密封,它利用橡胶或塑料的弹性使各种截面的环形圈贴紧在静、动配合面之间来防止泄漏。它结构简单,制造方便,磨损后有自动补偿能力,性能可靠,在缸筒和活塞之间、缸盖和活塞杆之间、活塞和活塞杆之间、缸筒和缸盖之间都能使用。对于活塞杆外伸部分来说,由于它很容易把脏物带入液压缸,使油液受污染,使密封件磨损,因此常需在活塞杆密封处增添防尘圈,并放在向着活塞杆外伸的一端。在此选O 形圈加挡圈密封。5.液压缸的缓冲装置缓冲装置的工作原理是利用活塞或缸筒在其走向行程终端时封住活塞和缸盖之间的部分油液,强迫它从小孔或细缝中挤出,以产生很大的阻力,使工作部件受到制动,逐渐减慢运动速度,达到避免活塞和缸盖相互撞击的目的。在此选三角槽式节流缓冲装置。见参考文献一图2-4。活塞 5 的两端开有三角槽,前后缸盖3、8 上的钢球7 起单向阀的作用。当活塞启动时,压力油顶开钢球进入液压缸,推动活塞运动。当活塞接近缸的端部时,回油路被活塞逐渐封闭,使液压缸油只能通过活塞上轴向的三角槽缓慢排出,形成缓冲液压阻力。节流口的通流面积随活塞的移动而逐渐减小,活塞运动速度逐渐减慢,实现制动缓冲。 6.液压缸的排气装置液压缸在安装过程中或长时间停放重新工作时,液压缸里和管道系统中会渗入空气,为了防止执行元件出现爬行,噪声和发热等不正常现象,需把缸中和系21 湖南工学院毕业设计论文统中的空气排出。一般可在液压缸的最高处设置进出油口把气带走,也可在最高处设置如图八(a)所示的放气孔或专门的放气阀〔见图八(b)、(c)〕。图八放气装置1—缸盖2—放气小孔3—缸体4—活塞杆7.液压缸的安装连接结构1).液压缸的安装形式(见参考文献一图2-13)选尾部外法兰连接形式。2).液压缸进、出油口形式及大小的确定(见参考书一表2-14)知进、出油口安装尺寸为:M27×2。3).液压缸用耳环安装结构(见参考文献一表2-15)采用带轴套的单耳环结构。4).杆用单耳环国际标准安装尺寸(见参考书一表2-16)具体参数如下:活塞型杆号直径缸筒内径公称力(N)Φ KK M48 ×2 CK(H9) EM(H13) ER(max) CA(Js13) AW(min) LE(min) 60 70 160 320000 56 70 59 126 63 63 8.液压缸主要零件的材料和技术要求。(见图纸)22 湖南工学院毕业设计论文结束语毕业设计是对我们三年大学学习的一次综合性的检测,它是我们走向社会前的一次实践。设计到此全部完成,历时五个月。通过此次设计,对液压系统有了较深层次的理解与诠释。本次设计的是铣床的液压系统,同时对其液压缸也进行了设计。掌握了一般的设计理论和方法,能够设计一般的机床液压系统。但由于经验不够丰富,其中也存在很多不足之处,恳请老师指正。此次设计中,伍老师给予了我极大的帮助,在此致以最诚挚的感谢。此致敬礼!23 湖南工学院毕业设计论文参考文献: 参考文献: 1、《液压系统设计简明手册》,杨培元、朱福元主编,机械工业出版社。2、《液压传动系统》第三版,官忠范主编,机械工业出版社。

3、《液压传动设计手册》,煤炭工业部、煤炭科学研究院上海研究所主编,上海科学技术出版社。

4、《袖珍液压气动手册》第二版,刘新德主编,机械工业出版社。

5、《液压传动课程设计指导书》,高等工程专科学校机制及液压教学研究会液压组主编。

6、《液压传动与气压传动》第二版,何存兴、张铁华主编,华中科技大学出版社。

7、《金属钻削机床液压传动》,章宏甲主编,江苏科学技术出版社。

8、《工程机械液压与液力传动》,李芳民主编,人民交通出版社。

9、《新编液压工程手册》,雷天觉主编,北京理工大学出版社。10、《液压系统设计图集》,周士昌主编,机械工业出版社。24

相关主题
文本预览
相关文档 最新文档