当前位置:文档之家› 锚网索喷浆卸压孔联合支护在软岩巷道中的应用

锚网索喷浆卸压孔联合支护在软岩巷道中的应用

锚网索喷浆卸压孔联合支护在软岩巷道中的应用
锚网索喷浆卸压孔联合支护在软岩巷道中的应用

煤矿巷道锚网索支护优化研究92

煤矿巷道锚网索支护优化研究 摘要:通过对某公司工作面巷道的支护方案优化进行分析,探究常规支护方案的不足之处,并且通过计算机软件,提出煤矿巷道的锚网索支护优化改进方案。 关键词:煤矿巷道锚网索支护优化 在煤矿巷道支护中,锚网索支护方案是主要的支护手段,但是由于巷道的开采深度以及位置的变化,导致整体支护情况受到一定的影响,在此情况下,应该对煤矿巷道锚网索支护情况进行优化研究。 1工程概况 某公司煤矿东南翼以及水洞沟深部勘测区从+750m到地面,煤层由倾斜变成直立状态,另外,在断层附近,存在较大的倾斜角变化,深部勘探区的地段倾斜度为12°-20°,平均倾斜度在16°左右,在落差20m以上的环境中,主要具有3个断层,断层为南北走向,在该地区中,西部和深部的岩浆活动相对强烈,而在东部地区较微弱。 2工作内容 2.1锚杆阻力检测 在支护中,主要应用锚杆测力计检测轴向力,在煤矿+200m开采区中,对于86巷道设计两个监测点,每隔30m左右一个断面,在顶板以及两侧安装锚杆,应用阻力检测仪进行检测,煤层厚度为2.8-3.4m,倾斜角为9-11o,在对煤层特征分析后,需要对顶底板的情况进行分析,可以发现,在巷道的整体变化中,应力主要由两帮承担,顶部锚杆的支护效果已经失效,巷道顶板在浅部已经逐渐离层,对巷道的整体产生了较大的影响。 2.2相对位移检测 在巷道的整体支护中,需要对相对位移情况进行检测,以此来确定整体的使用情况,在86巷道支护中,间隔30m具有位移断面检测,在顶板基点附近安装锚杆,在中央位置锚固1m短锚杆检测顶底板的位移量以及巷道的变形情况,根据现场的监测可以发现,在巷道的支护中,存在底鼓情况较为严重现象,致使巷道出现围岩的松动,对巷道整体的承载力产生一定的影响,进而导致巷道的载荷高度增加,因此,在设计的过程中,初期的支护方案存在一定的不合理性。 2.3围岩松动圈 围岩松动圈表示应力超过一定的范围,现有的支护手段已经难以满足支护需求,其主要表现在破碎岩块啮合不垮落,但是裂缝逐渐扩张,在86巷道的设计中,松动圈值达到150cm左右,属于一般稳定围岩,通过设计锚杆,可以对其整体支护参数进行分析,其具体数据如表1所示。 表1 86巷道力学参数分析表 通过上述的分析可以发现,在巷道的设计中,可以采用组合拱理论来进行设计,以便满足巷道的锚网索支护需求。 3设计优化 3.1材料选择 锚杆选择:直径20mm;强度为335MPa,采用左旋无纵筋螺纹钢。 锚索选择:设计预拉力大于200kN,预拉力为130kN,采用树脂锚固剂加长锚固。 3.2优化方案 在86巷道的整体锚网索支护优化中,需要对锚杆的支护方案进行优化设计,在设计过程中,主要采用FLAC数值模拟软件进行分析,在分析中,可以确定围岩的应力和位移情况,

松软煤层大断面切眼锚网索喷联合支护李勇

松软煤层大断面切眼锚网索喷联合支护 李勇 (龙煤矿业集团鹤岗分公司振兴煤矿,黑龙江鹤岗154100) 摘要该文以振兴煤矿为例,介绍在易发火松软煤层沿底板施工大断面切眼,采用锚网索喷联合支护取得的效果,并与其他支护方式进行了对比。 关键词松软煤层大断面底板切眼锚网索喷联合支护 中图分类号TD353文献标识码B 1概况 振兴煤矿18号煤层为主采煤层,该区域位于三水平北18层边界区三段底板层,工作面走向长320m,倾斜宽127m,煤层倾角33?,煤层厚度10m。煤层结构复杂,煤质较软,层理、节理都较发育,属半光亮型煤。煤层含一层0.3m厚夹矸。发火期短(1 3个月)。 该煤层顶板有一层0.3 1.0m伪顶,为深灰色凝灰质粉砂岩,破碎。其上为3 5m厚直接顶,为灰色细砂岩,坚硬。底板为灰色细砂岩,坚硬。 2施工设计 18层边界区切眼采用锚网索喷浆联合支护,切眼宽3.0m,中高2.8m,净断面8.4m2,由下至上施工。贯通后由上至下开大断面,开大断面后宽6.6m,中高2.8m,净断面:18.5m2。 (1)超前支护:采用锚杆为Φ20mm左旋无纵筋螺纹钢,长2.0m,锚杆间距0.1m,每前进1.6m打一排超前支护锚杆,超前支护锚杆的外露部分与钢筋网固定在一起。 (2)锚杆支护:由下至上施工切眼时顶板采用5根Φ20mm左旋无纵筋螺纹钢,长2.0m。两帮每帮3根Φ20mm左旋无纵筋螺纹钢,长2.0m。锚杆排距0.8m,顶锚杆间距0.75m,帮锚杆间距0.8m。每根锚杆采用2根长0.45m树脂锚固剂进行端头锚固。顶锚杆锚固力≥100kN,帮锚杆锚固力≥60kN。 (3)锚索:每施工0.8m在锚杆排空内打3根9.3 m长的锚索,锚索均匀布置,锚索采用直径Φ17.8mm 左捻7股钢绞线,托梁采用长0.8中间钻孔工字钢铁托,锚索锚固剂采用长0.45m的树脂药卷,每孔3卷,锚固长度1.35m,端头锚固。锚索的设计锚固力不小于180kN,锚索外露长度0.3m。 *收稿日期:2011-07-14 作者简介:李勇(1962-)男,毕业于黑龙江鹤岗工学院,大专学历,工程师,现在黑龙江龙煤矿业集团鹤岗分公司振兴煤矿从事技术工作。 (4)开大断面宽3.6m,中高2.8m,顶板5根2.0 m锚杆,硬帮3根2.0m锚杆,每排施工3根9.3m长的锚索。 (5)锚索必须打入18层煤顶板1.5m以上,确保锚索锚固在稳定岩石内,如煤层厚度发生变化,根据实际煤层厚度适当调整锚索长度。 (6)顶板铺双网,里面一层菱形网,外面一层钢筋网,两帮铺单层钢筋网,网搭接0.2m,双丝双扣,逢网格必联。 (7)喷射混凝土。采用200#混凝土,水泥标号为425#,配比率:水泥与过火岩为1:4(体积比)。喷浆厚度为0.1m,分初喷和复喷,过火岩粒径为5 8mm,速凝剂掺入量一般为水泥重量的4.4%,顶板有淋水时,可酌情加大速凝剂掺入量,速凝剂必须在喷浆机内均匀洒入。 (8)切眼由下向上施工时,采用台阶法施工,即分步进行。先施工高度2.0m,打锚网、锚索支护。后拉底施工0.8m,补两帮锚杆,达到设计断面。 (9)切眼贯通后,先支设一排顺山支架,采用DZ-2.8单体与3m长π型钢梁“一梁三柱”,顺山距软帮2.0m。开大断面后距硬帮2.0m打一排顺山支架,采用DZ-2.8单体与3m长π型钢梁“一梁三柱”支护。 3施工顺序 超前支架→打眼→装药→放炮→安装顶锚杆→铺顶网→打锚索→安装帮锚杆→铺帮网→喷浆。 4支护原理 先采用支设前探锚杆护顶,然后采用锚网索支护,通过锚杆对煤体进行锚固力加固,限制煤体松动范围的增大。挂网主要是避免煤体表面破碎片落,保持支护煤体的整体性,同样也起到限制其松动范围向煤体深部发展的作用。喷射混凝土的作用一方面利用压风高速喷射到煤体表面的节理、裂隙中,把节理、裂隙分隔的煤体固结起来,有效地阻止煤体的松动和脱落;另一方面,喷射混凝土形成一种紧贴煤体的封闭层,隔绝 31 2012年第1 期

主要巷道支护技术研究措施

神华宁煤集团清水营煤矿 主要巷道支护技术研究方案 神华宁煤集团 山东科技大学 二○○九年六月

1 工程的必要性1 1.1 现状分析1 1.2 国内外同类技术发展状况4 1.3 研究目的及意义5 2 研究开发内容6 3 主要经济技术指标、工程最终目标7 4 关键技术及创新点7 5 研究或研制开发的技术路线,实施的方式、方法、步骤7 5.1 课题的总体研究思路7 5.2 研究方法8 5.3 技术路线8 5.4 实施方式<具体方案)9 5.5 矿压观测18 6 技术、经济可行性及可靠性分析、论证19 7 现有基础、技术条件,保证体系20 7.1 实用矿山压力理论已经取得了系统的突破性成果20 7.2 岩石破坏与失稳理论20 7.3 深部巷道支护取得一些创新性研究成果21 7.4 实践基础22 8 经济、社会效益分析24 9 工程实施进度计划24 10 经费计划25

QSYK-1 神华宁煤集团清水营煤矿 主要巷道支护技术研究方案 1工程的必要性 1.1现状分析 1.1.1矿井地质情况 矿区钻孔揭露地层自下而上有三叠系、侏罗系、白垩系、古近系、第四系,含煤地层为侏罗系中统延安组,钻孔揭露厚度245.01~304.86m,平均276.50m,岩性由灰、灰白色长石石英砂岩、深灰色、灰黑色粉砂岩、泥岩、煤和少量含铝质泥岩组成。主要可采煤层顶板均为易冒落、不稳定—中等冒落、中等稳定岩层,底板为不稳定岩层。 矿井地层中含水层属弱~中等富水性,分别为第四系孔隙潜水含水层<Ⅰ)、白垩系砾岩裂隙孔隙层间承压含水层<Ⅱ)、侏罗系上统安定组~中统直罗组裂隙孔隙含水层<Ⅲ)、二~八煤间砂岩裂隙孔隙承压含水层<Ⅳ)、八~十八煤间砂岩裂隙孔隙承压含水层<Ⅴ)、十八煤以下至底部分界线砂岩含水层组<Ⅵ),隔水层以低阻、高密度的粉砂岩、泥岩为主,主要有四层,分别为安定~直罗组裂隙孔隙含水层顶板隔水层、二~八煤含水层顶板隔水层、八煤及其顶底板泥岩隔水层、十八煤及其顶底板泥岩隔水层。 1.1.2主要巷道设计布置层位 <1)主斜井、副斜井由六煤-五煤露头对应地面位置开口,由四上- 三煤间进入煤系地层,穿过三煤后进入二煤底板。主斜井坡度为22°~24°~25°,副斜井坡度为22°~25°,所处层位为四上- 二煤之间的砂岩层。该层位由灰、灰白、深灰色不同粒级的砂岩组成,属二煤- 八煤间砂岩含水层

锚网索喷支护技术规范

锚网索喷支护技术规范 1 范围 本标准规定了锚网索喷巷道支护技术要求。 本标准适用于集团公司所属矿井锚网索喷支护巷道。 2 规范性引用文件 本标准中涉及规范性引用文件,凡是注明日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本适用于本文件。 煤矿安全技术操作规程 GB 50511-2010 煤矿井巷施工规范 GB 50213-2010 煤矿井巷工程质量验收规范 GB 50086-2001 锚杆喷射混凝土支护技术规范 MT 146.1-2002 树脂锚固剂行业标准 煤矿安全质量标准化基本要求及评分办法(试行)煤安监行管…2013?1号3 技术要求 3.1材质要求 3.1.1锚杆、锚盘、螺母、让压构件的材质、品种、规格、强度必须符合设计要求,锚杆各构件强度与设计锚固力要匹配。不同规格的锚杆进场后,同一规格的锚杆每1500根或不足1500根的抽样检验不少于1次。 3.1.2 锚杆种类。根据集团公司实际,规定允许使用的锚杆种类包括以下五种:3.1.2.1等强螺纹钢树脂锚杆。钢材屈服强度要求不低于335MPa,钢材宜选用螺纹钢、碳素结构钢,直径在Φ18mm、Φ20mm、Φ22mm及以上选取。 3.1.2.2高强预应力左旋无纵肋螺纹钢树脂锚杆 1)钢材屈服强度要求在335MPa、500MPa和600MPa三种规格的碳素钢或低合金高强度结构钢中选取,直径在Φ20mm、Φ22mm、Φ25mm及以上选取。 2)高强锚杆尾部采用滚丝工艺。锚盘采用厚度不小于8mm的20MnSi钢板制作,其尺寸应不小于120×120mm或Φ120mm。三点支撑抗压试验强度不低于设计锚固力。 3)高强预应力左旋无纵肋螺纹钢树脂锚杆实验要求:尾部螺纹部位的破断载荷大于杆体的破断载荷,主要表现在抗拉试验中,锚杆破断位臵应在杆体部位,尾部螺纹部位破断或尾部螺纹与杆体交接部位破断视为不合格。除做屈服载荷实验外,应在杆体滚压螺纹部做抗弯试验。抗弯试验以Φ175mm为弯芯直径,受弯部位为杆体与尾螺纹交接部位,要求90°弯曲时受弯部位不得脆断。抗剪切强度为屈服强度的0.6~0.8倍。

锚网索喷支护技术标准

锚网索喷支护技术标准 1 范围 本标准规定了锚网索喷巷道支护技术要求。 2 规范性引用文件 本标准中涉及规范性引用文件,凡是注明日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本适用于本文件。 煤矿安全技术操作规程 GB 50511-2010 煤矿井巷施工规范 GB 50213-2010 煤矿井巷工程质量验收规范 GB 50086-2001 锚杆喷射混凝土支护技术规范 MT 146.1-2002 树脂锚固剂行业标准 3 技术要求 3.1 材质要求 3.1.1 锚杆、锚盘、螺母、让压构件的材质、品种、规格、强度必须符合设计要求,锚杆各构件强度与设计锚固力要匹配。不同规格的锚杆进场后,同一规格的锚杆每1500根或不足1500根的抽样检验不少于1次。 3.1.2 锚杆种类。根据集团公司实际,规定允许使用的锚杆种类包括以下五种: 3.1.2.1等强螺纹钢树脂锚杆。钢材屈服强度要求不低于335MPa,钢材宜选用螺纹钢、碳素结构钢,直径在Φ18mm、Φ20mm、Φ22mm及以上选取。 3.1.2.2高强预应力左旋无纵肋螺纹钢树脂锚杆 1)钢材屈服强度要求在335MPa、500MPa和600MPa三种规格的碳素钢或低合金高强度结构钢中选取,直径在Φ20mm、Φ22mm、Φ25mm及以上选取。 2)高强锚杆尾部采用滚丝工艺。锚盘采用厚度不小于8mm的20MnSi钢板制作,其尺寸应不小于120×120mm或Φ120mm。三点支撑抗压试验强度不低于设计锚固力。 3)高强预应力左旋无纵肋螺纹钢树脂锚杆实验要求:尾部螺纹部位的破断载荷大于杆体的破断载荷,主要表现在抗拉试验中,锚杆破断位置应在杆体部位,尾部螺纹部位破断或尾部螺纹与杆体交接部位破断视为不合格。除做屈服载荷实验外,应在杆体滚压螺纹部做抗弯试验。抗弯试验以Φ175mm为弯芯直径,受弯部位为杆体与尾螺纹交接部位,要求弯曲90°时,受弯部位不得脆断。抗剪切强度为屈服强度的0.6~0.8倍。 3.1.2.3 圆钢锚杆(只限于回采巷道煤巷两帮支护)。钢材选用GB/T702-2008标准热轧圆钢,直径在Φ14mm、Φ16mm和Φ18mm中选取。 3.1.2.4 玻璃钢或尼龙锚杆(允许在使用时间较短、围岩稳定的煤巷两帮、切眼面前侧使用),使用前必须有经总工程师批准的作业规程或施工措施。 3.1.2.5 经集团公司鉴定并经专业主管部门批准使用的新型锚杆。 3.1.3热轧圆钢锚杆埋深400m以浅使用,只用于支护回采巷道煤巷两帮,锚盘厚度不得小于6mm,长度在1000mm、1400mm和1600mm中选取;埋深超过400m时,必须使用Φ≥18mm 以上的等强螺纹钢树脂锚杆或高强预应力左旋无纵肋树脂锚杆,长度在1800mm、2000mm、

煤矿巷道支护技术获重大突破锚注支护成果获国家科技进步二等奖

煤矿巷道支护技术获重大突破锚注支护成果获国家科技进步二等奖 在2月28日召开的国家科学技术奖励大会上,淮北矿业集团等四家单位合作完成的“高应力极软岩工程锚注支护机理及技术研究与应用”成果,荣获国家科学技术进步二等奖。 由淮北矿业集团、山东科技大学、淮南矿业集团、中国矿业大学合作完成的这项成果,标志着我国在煤矿巷道支护技术领域方面取得重大突破。 近年来,随着我国煤矿开采范围和开采深度逐渐加大,矿井开采深度在600米以上的高应力极软岩巷道分布越来越广泛。在应用传统的锚杆、U型钢等支护方式时,围岩和支护数月就遭到破坏,严重影响矿井的安全与生产。 淮北矿业集团是一个拥有10多座矿井、年产原煤2000万吨的国有特大型煤炭企业,大部分矿井的煤炭属于三软煤层,给巷道支护增加了很大难度。从上个世纪90年代开始,淮北矿业集团就组织科研人员对高应力极软岩巷道技术难题进行攻关,率先在临涣煤矿、祁南煤矿等矿井进行锚注支护的工业性研究与应用,并与山东科技大学、淮南矿业集团、中国矿业大学携手合作,开始进行

高应力极软岩工程锚注支护机理及技术研究与应用。 据有关专家介绍,锚注支护是利用锚杆兼做注浆管实现外锚内注的支护方式。经过长达10年的研究、实验、应用,科研人员先后攻克了锚注一体化、锚封一体化、可控压注浆、浆液扩散规律及控制、锚注岩体物理力学性质测试、锚注岩体声波测试等技术难关。其中,在国内外首次研制成功的外锚内注式注浆锚杆、可控压内注浆锚杆,分别获得了国家专利。 该项技术成果先后在全国15个矿区大规模推广应用,锚注支护巷道累计长度为17.5万米,节约资金高达4.9亿元。2001年11月,安徽皖北煤电集团祁东煤矿发生突水淹井事故,排水历时4个月,U型钢支护、锚喷支护等支护方式的巷道均遭破坏,只有锚注支护的680米主大巷完好无损。 据淮北矿业集团副总工程师李明远介绍,目前,我国煤矿井下有高应力极软岩巷道几百万米,水利、矿冶、交通、土建等行业的松岩体高边坡工程治理,深基坑和高坝体的加固,软围岩的大型硐室和隧道支护,都可以应用锚注支护新技术。

浅谈煤矿软岩巷道支护技术

浅谈煤矿软岩巷道支护技术 随着煤矿开采技术的成熟,开采深度的不断深化、开采规模的扩大,巷道损坏程度逐渐的扩大。软岩巷道支护一直是巷道工程的一个疑难点。软岩巷道的支护与使用维护优劣程度,直接影响到煤矿安全高效生产。文章通过对软岩巷道的概念、支护原理、支护原则、支护类型、支护对策等方面进行论述。 标签:软岩巷道;支护;原理;原则 1 软岩的基本概念 软岩是在特定的环境下,塑性变形明显的岩体。这种岩体多是泥岩、粉岩等。软岩的特点可以用软、弱、松、散概括。在煤矿巷道支护施工中,巷道围岩就是需要施工的岩体;工程力是指岩体上的重力、应力、水作用力、膨胀应力等。软岩通常分:低强度高膨胀性软岩、高应力软岩、极破碎软岩、复合型软岩四类。 1.1 低强度高膨胀性软岩,围岩质地破碎、强度偏低、遇水变形,对施工中的震动耐受力差。巷道围岩变形迅速,给支护带来很大困难。由于软岩中的泥质成分和结构面确定了软岩的特征,导致软岩产生塑性变形。软岩通常具有可塑性、膨胀性、崩解性、流变性、扰动性等特性。 1.2 我国煤矿开采深度逐年增加,使得一些矿井重力引起的垂直应力骤增,构造应力场错综复杂;在高应力条件下,扰动影响剧烈,围岩破坏程度加剧,涌现新裂纹致使煤岩体积扩大,扩容膨胀。 1.3 极破碎软岩巷道围岩内节理不同、裂隙等结构面,围岩支体破碎、稳定性差。巷道掘进工作中可能发生冒顶和片帮,给支护作业带来诸多不便。 1.4 复合型软岩指上述3种软岩类型各种组合。 2 软岩巷道支护原理与支护原则 2.1 支护原理 软岩巷道支护的重点在于发掘自承能力。支护原理:依据岩层特性,地压来源,运用科学设计方法,使支护体系和施工过程能够适应围岩变形的种种情况,从而达到控制围岩变形、维护巷道稳定的宗旨。 (1)改变思想,支护结构和强度和围岩自承能力相适应,与围岩变形及强度相结合,实践证明,单纯提高支护刚度的做法是难以达到预期效果;(2)适当卸压、加固与支护相结合的方法相辅相成,运筹帷幄,高应力区,需要卸力合理,对变形大的区域,要让度适量,支离破碎区域,进行整体加固;(3)对于围岩变形量测定,及时掌握围岩变形的活动状态,根据测定结果予以反馈,以确定二次

轨道下山打点硐室施工安全技术措施正式样本

文件编号:TP-AR-L2695 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 轨道下山打点硐室施工安全技术措施正式样本

轨道下山打点硐室施工安全技术措 施正式样本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 一、目的 根据矿井生产需要,决定在轨道下山二1-11051 风片口处施工打点硐室一个,为了保证施工安全及工 程质量特制定此安全技术措施,望施工单位认真贯彻 执行。 二、工程概述 打点硐室布置在二1煤层中,沿二1煤层顶板施 工,采用锚网索+喷浆联合支护,巷道净高2.1m,净 宽2m,深度2m,根据已知地质资料显示,无大的地 质构造,巷道围岩稳定。

附打点硐室位置平面图 三、施工内容、工艺及工序 1、施工内容:除去原巷道支护喷浆皮,沿二1煤层顶板施工,人工清理浮煤、渣。 2、施工顺序:交接班→采取措施保护好施工地点的管线→拆除原巷道喷浆支护→敲帮问顶→按照标定的位置刷帮成巷→打锚杆挂网→处理煤矸→喷浆 3、运输:施工期间采用人工装运至矿车出煤。运输路线:工作面→轨道下山→+90平台→副井底→地面。 4、施工前准备 1)施工前,先由地测队标定开口位置。 2)施工前对交叉点补打锚索加强支护。 3)施工前,备齐施工所需要使用工具、支护材料,如水泥、沙子、石子、速凝剂、锚杆、锚网、锚

关于软岩支护技术

关于软岩支护技术 前言 巷道支护是井工开采工程的核心,是一切安全生产和效益的基础,随着开采条件的日益恶化,采深的迅速增加,支护对井工开采的制约作用日趋明显,先进采矿方法能否实现,在很大程度上取决于巷道支护状况和有效断面能否得到保证。 第一节,深井巷道围岩强化支护技术体系及实践 一,深部高应力巷道:常规支护不能满足要求的一类巷道。 1,采用传统的架棚支护、锚杆支护都不能有效维护巷道。 2,以德国为代表采用U型钢可缩性支架、壁后充填、预留变形量架棚支护的方式,也不能有效维护巷道。 3,常常在掘进时就需要多次卧底、返修。 为此:出路在于发展新型锚杆类支护综合治理比较乐观,目前遇到的大部分问题可以得到解决或改善。 如:德国向我国输入U型钢可缩性支架、壁后充填技术,在德国使用范围400-600米深,可是在我国达到400米深度就解决不了我国的问题。 二,深部支护问题: 1,相当一部分埋深达到800-1000米的深井巷道支护难度不大,可以采用常规的支护技术解决,因此深井巷道支护并不都属于复杂困难支护巷道,我们关心的焦点是深部难支护巷道称为深部

支护问题。 2,它通常是指主要由于巷道埋藏深度导致的围岩较高的水平应力,使相对软弱的岩体发生大范围破坏,并产生大变型的一类工程支护问题。 三,复杂困难条件: 1,由于地层运动和成岩过程产生的强构造应力集中区,水平应力通常较大;这类构造区域内巷道变形有自身规律,其中顶板支护的安全可靠性要求较高。 2,膨胀性岩体、泥质岩体遇水泥化等条件,由于物理化学原因导致的岩体力学承载性能的衰减、岩体的变形等。 3,由于开采造成的次生应力集中区产生的巷道支护问题。 四,深井软岩成为支护重点: 1,深部高应力巷道的两个显著特点: (1),原始应力水平相对围岩强度高。 (2),采动附加应力更趋强烈、围岩破碎区范围进一步加大,不易形成结构效应。 2,时间效应强烈、变形速度快,不易长期维护: (1),第一类,围岩软弱型、即软岩巷道; (2),第二类,采动影响型、即动压巷道; (3),第三类,深井高应力型、即深井巷道; 五,巷道大变形、难以支护原因: 1,围岩松软破碎:单轴抗压强度﹤10-20MPa;

软岩巷道的锚网索喷注联合支护技术

软岩巷道的锚网索喷注联合支护技术 分析了软岩巷硐稳定性影响的因素,总结了软岩巷道的支护治理原则。并结合现场实际提出了具有针对性的以“锚、喷、网”支护为主、以锚索、注浆支护为辅的支护方案,通过现场仪器试验,证明支护效果较理想。 标签:软岩巷道二次支护锚喷支护 1 概述 对软岩巷硐进行维护在煤矿生产建设中一直没有得到有效的解决,困扰着煤矿的生产。在软岩巷道施工中,由于围岩变形量比较大,在一定程度上影响了其稳定性,同时增加了施工的难度,并且巷道屡遭破坏,导致维修的次数大大增加,并且需要对其进行多重维护,严重影响矿井的正常生产和安全运行。由于煤矿的实际生产条件存在差异,使得国内外无法形成统一的支护方法。为了取得良好的支护效果,只有对其力学原理进行具体分析,采用科学合理的支护措施。 我矿井为垂深210m的斜井,泥岩及砂质泥岩共同构成斜井所处的岩层结构,对于该岩层机构来说,其泥岩的特点是:裂隙多,层理复杂,易风化,低强度,并且遇风风化、遇水膨胀,泥化现象比较严重。在对井巷进行施工的过程中,对巷道进行维护难度较大,尤其是部分巷道已经发生严重的变形,在一定程度上对其进行多次修复,但是仍难以确保其稳定。 2 巷硐变形原因 导致巷道发生严重变形的原因主要表现在:首先,巷道断面较大,层理较多,并且应力分布不均;其次,构成巷硐围岩的泥岩和砂质泥,岩层强度低,完整性差。另外,掘进后处于稳定期的巷硐,在一定程度上发生着持续蠕变;巷硐两帮的较大变形及底板鼓起直接影响巷硐围岩的整体稳定性,这些因素在一定程度上,导致难以对巷硐进行围护。 3 巷硐治理支护技术 3.1 巷硐治理的控制原则 ①预留断面,二次支护,对围岩、帮角等进行固结和加固。②在掘进巷硐过程中,产生集中应力,围岩强烈变形,通过“锚、喷、网”支护体系对围岩变形进行控制,需要进行复喷处理。③对围岩进行预应力锚索支护和注浆加固,避免巷硐掘出后稳定期间出现较大的、长时间的蠕变。④对帮、底进行加固处理,是确保巷道两帮整体稳定性的重点,受巷道帮、底变形的影响和制约,通过用倾斜锚杆和倾斜锚索对巷道底角进行加固,同时对两帮、底角和底板通过高效速凝材料进行注浆加固处理。

锚网巷道支护设计说明书

锚网巷道支护设计说明书 一、地质条件 根据地测科提供22508轨道巷地质说明书及钻孔情况分析,该巷道沿5#煤层掘进,煤厚为3.0-4.0m,煤层顶板多为k4细粒砂岩,局部地段发育厚度约为0.2m的黑色砂质泥岩;煤层底板多为粉砂岩或灰色泥岩,局部地段发育有薄层的石英砂岩。参考煤柱面掘进资料显示,在该段巷道可能遇见断层发育。 二、巷道断面 巷道采用锚网索支护、断面为矩形,设计规格:3.4m*3m(宽*高)巷道支护设计图(见附图1) 三、锚杆支护巷道支护设计 1、支护方式 ①临时支护 锚网索巷道临时支护采用带帽圆木点柱,点柱规格为直径不小于16cm、长3m的新鲜圆木、点柱不少于2根。 ②、永久支护 采用锚网索支护作为永久支护,支护材料为: 顶部:锚杆18mm*2200mm,Q500高强度螺纹钢锚杆,托盘150mm*150mm,厚度8mm 帮部:锚杆16mm*1800mm,Q335矿用螺纹钢锚杆,托盘150mm*150mm,厚度6mm 金属网:采用直径6mm钢筋焊接,网孔规格为70mm*70mm。

菱形铁丝网:采用10铁丝编制、网孔45mm*45mm 塑料网:采用pp180ms矿用塑料网网孔为30*30. 锚索直径17.8*6300mmswrh82b、强度级别1860兆帕钢绞线。托盘300*300*12mm 3、按悬吊理论计算锚杆参数: (1)、锚杆设计长度计算: L= L1+L2+L3 式中 L—锚杆长度2200mm L1—锚杆外露长度0.07m, L2—锚杆有效长度1.50(顶部锚杆取免压拱高b) L3—锚入岩层深度0.6m 根据满足顶板最下一层岩石外表抗拉强度条件确定组合梁厚度,即锚杆有效长度L2,则顶板稳定时应满足 L2≥ 式中:B—巷道开掘宽度,取3.4m ;σ1 ———顶板岩石抗拉强度; K1—顶板岩石坚固安全系数3~5 根据以上数据计算出该长度满足巷道支护设计要求。 (2)、锚杆间、排距计算: 式中:式中 SC ———锚杆间、排距; τ———杆体材料抗剪强度 ,MPa;

软岩巷道支护技术发展现状分析

软岩巷道支护技术发展现状分析 耿志光 (河南工程学院安全工程系郑州451109) 摘要:随着我国新生代煤层的大力开发,软岩矿井的数量也在与日俱增。特殊条件下的巷道施工与维护问题已变得日益突出,并成为影响和制约我国煤炭工业发展的重要因素之一。采用常规的支护方法,已不能满足安全生产的需要。研究有效而经济的软岩支护方法, 是当前生产中急需解决的问题。为此查阅了大量相关科技期刊,对多个典型软岩矿井的支护技术进行分析,总结了我国软岩支护的发展现状。这对提高我国软岩支护的技术水平,提高经济效益,都有着十分重要的意义。 关键词:软岩;支护技术;发展现状 1引言 由于深部岩体处于复杂的工程地质环境,使深部岩体表现出的力学特性与浅部开采时往往具有很大的差异,并且,随着开采深度的增加,伴随着硬岩矿井向软岩矿井的转型。在浅部开采基础上发展起来的传统支护理论、设计方法及技术已难以适应深部巷道支护的要求,尤其是深部软岩巷道支护设计及实际的需要[1]。 随着其开采深度不断增加, 受高应力的影响, 软岩问题愈趋严重, 深部围岩处于软岩状态, 施工条件趋于复杂化, 巷道及硐室支护的难度和破坏程度不断增加[2]。底臌是煤矿巷道中经常发生的动力现象, 巷道底臌使断面缩小, 阻碍运输、通风和人员行走, 因底臌而造成巷道报废的现象时有发生, 严重影响生产和威胁安全[3]。软岩巷道支护问题日益突出。研究高效而经济的软岩巷道支护方法,是目前矿井生产急需解决的问题。 2软岩巷道的特征 2.1软岩的概念 软岩是我国煤炭系统的习惯用语, 它的概念已不是狭义的字面上的含义。目前人们普遍认可的软岩的概念包括松散型软岩、破碎型软岩、流变型软岩、膨胀型软岩及高地应力型也称硬岩软化型软岩等五种特点岩石。 2.2软岩的基本特征 1)软岩松散破碎, 结构疏松, 容重低, 孔隙率较高, 强度小, 稳定性差。一般软岩多为泥岩、炭质泥岩、砂质泥岩及粉砂岩组成, 单向抗压强度小于200 Mpa。 2)软岩易吸水崩解, 膨胀性强。软岩膨胀的概念有两个一、专指那些含有膨胀性矿物如高岭石、蒙脱石等的软岩所产生的膨胀变形。二、指软岩岩体向巷道空间的位移变形。 3)软岩巷道自稳性差, 围岩压力大, 来压快, 自稳时间短。多数围岩自稳时间仅几十分钟到几小时。 4)软岩巷道变形量大, 变形持续时间长, 具有流变性能。软岩静压巷道中总变形量超过400-500mm者甚多。变形时 间一般都在1-3个月以上, 甚至半年后仍继续增长。 5)软岩巷道变形速度快, 变形范围广, 底腻明显。 2.3软岩巷道的特征 1)围岩的自稳时间短、来压快所谓的自稳时间, 就是在没有支护的情况下, 围岩从暴露起到开始失稳而冒落的时间。软岩巷道的自稳时间仅为几十分钟到几个小时, 巷道来压快,

煤矿巷道顶板锚网索联合支护安全技术措施

20101回风顺槽顶板锚网索联合支护 补充安全技术措施 编制人: 施工单位:浩然煤业机掘队 编制日期:2019年8月16日 执行日期:2019年8月17日

浩然煤业巷道顶板锚网索联合支护 补充安全技术措施 为了合理有效地对20101回风顺槽顶板进行锚网索联合支护,确保掘进施工安全,根据目前20101回风顺槽已掘进100m的地质情况:巷道顶板破碎,煤岩层起伏变化频繁,造成巷道顶部局部漏顶、巷道成形不好等现象的发生;按照公司调度会议要求,浩然煤业机掘队项目部特对20101回风顺槽顶板锚网索联合支护补充编制以下安全技术措施。 1、顶板支护 采用Φ20mm×2000mm左旋螺纹钢锚杆,间排距改为800mm×800mm,每排6根,方形高强度蝶型钢托板,钢筋网用Φ6mm钢筋焊制成方格网,网要压茬连接,搭接长度不小于100mm,联网采用14号铁丝要孔孔相连,双丝双扣,绑扎牢固绑死扭结不少于3圈。连接点要均匀布置,间距200mm。钢带Ф10mmH型。每间隔两排锚杆第三排中间两根锚杆换打成4m锚索。第三排锚杆支护内Ф17.8×4000(mm)锚索,锚索间距800mm,排距2400mm,锚索托板规格为300mm×300mm,厚16mm。对称布置每排2根;巷内Ф17.8×7000(mm)锚索,锚索间距1300mm,排距2400mm,对称布置每排2根;锚索托板规格为300mm×300mm,厚16mm (详见附图)。

2、预防局部漏顶 巷道顶部破碎地段打好锚杆和锚索后采用先加铺设菱网形再铺设钢筋网支护方式,钢筋网规格:钢筋φ6mm圆钢焊制成方格网,网格边长为100mm的正方形。菱形网规格:φ3.5mm优质低碳钢丝焊制而成,网格边长为50mm的正方形。局部漏垮处采用增打锚杆或锚索填加木材接顶加强支护。 3、掘进机切割工艺: 采用横向往复式截割,先将截割头调至巷道的左下部,伸出截割部,由巷道左下部煤壁开口进刀,进刀深度以0.8m 为宜,左右摆动先割出槽窝,然后按照自下而上从左到右(1.5-2.1m)由煤至岩石的顺序进行截割,当割至永久支护达到或接近最大空顶距时,必须停止掘进,按临时支护的支护工艺进行临时支护,再在临时支护的掩护下进行锚杆支护,达到最小空顶,然后方可继续向前掘进并以此循环(详见附图)。 每个小班结束后,安全隐患必须当班处理,永久支护达到最小空顶距要求。 其它施工要求严格按20101回风顺槽作业规程执行。 2012年8月16日

软岩巷道掘进支护技术分析

软岩巷道掘进支护技术分析 发表时间:2013-09-16T14:47:26.233Z 来源:《中国科技教育·理论版》2013年第5期供稿作者:贺海军[导读] 巷道开挖工程中会破坏岩体的原岩应力,工程围岩中的应力分布会出现一定的变化。 贺海军汾西矿业紫金煤业公司 031304 摘要基于我国煤矿资源分布的较为广泛,由于各储藏位置的地质结构的差异导致巷道围岩的地质环境也变得更为复杂化,其中涉及软岩巷道掘进支护施工工程占有较大的比例。因而对于软岩巷道掘进支护技术的探讨与研究具有重要的价值作用。本文将对软岩的地质特点以及影响软岩巷道稳定性的因素进行系统的分析,再进一步探讨软岩巷道掘进支护技术。关键词软岩巷道支护巷道掘进 随着国内煤矿开采步伐的不断深入,部分硬岩在开采应力的作用下开始软化,同时一些软岩区域的煤储层也成为的开发的重点,因而对于软岩巷道支护的研究已经成为了煤矿产业可持续发展规划的重点内容,此外,基于软岩本身的地质特点,软岩巷道掘进效率较低且容易出现变形,或受到其他地质环境的影响而遭到破坏,因而严重制约着煤矿产业的经济效益。 一、软岩地质特点以及工程力学特性 一般来说,地质软岩指的是单轴抗压强度小于25Mpa,具有松散、破碎、风化等一系列特征,该定义并非适用于工程实践中,它是在一定的施工环境下才能够成立的,如对于部分浅开挖巷道来说,即便抗压强度较低,但是地应力的水平也较低,因而“地质软岩”并非会呈现出软岩的特性。工程软岩指的是在一定量的工程力的作用下,产生较大塑性变形的工程岩体,在煤矿巷道掘进中,工程围岩是巷道施工中研究的重点,工程岩体往往承受着重力、构造残余应力、水的作用力、工程扰动及膨胀应力等工程力共同的作用,在工程力学的影响下,软岩的地质特征会得到充分的体现,在部分煤矿巷道开挖的场地中,如果选择的支护方式不够科学完善,就会出现坍塌、变形。由于软岩承受工程力的能力较差,因而在设计支护方式时,存在着一定的难度。 二、软岩巷道的支护原理以及支护措施 巷道开挖工程中会破坏岩体的原岩应力,工程围岩中的应力分布会出现一定的变化。巷道开挖工程的不断进行,切向应力力增大而径向应力不断缩小,到达硐壁处时应力达到极限,在两种应力的共同作用下,由于围岩本身的地质特性,其会向巷道的空区发生变形,同时可能会存在一定裂纹,进而对巷道形成一定的破坏能力,而继续掘进,工程围岩的性质将会变得更为恶劣。在围岩应力的基础上,切向应力在硐壁处对达到最大值,进而造成这个区域的岩石迫力屈服发生塑性变形。对于硬岩巷道的支护工程来说,因其强度较高,在巷道掘进中需要控制塑性区与松动去的出现,促使围岩处于弹性状态,进而具有抵御工程应力的极限水平。但是对于软岩掘进工程来说,其要求工程围岩中的岩体达到塑性状态,且需要达到最大的塑性变形。塑性区的出现使应力集中区从硐壁向围岩深部发展,当应力强度超过围岩的屈服强度时,又会出现新的塑性区,如此不断发展。该变化对支护来讲将产生以下两个力学效应:围岩中切向应力和径向应力降低,减小了作用于支护体上的荷载。这种变化能够在巷道支护体上出现两种力学效应:1)工程围岩上应力的减小会有效的减弱支护体的荷载力;2)围岩深部是应力集中的主要方向。由于深部岩石承受着三种不同的应力,因而能够减弱岩体受到工程力的总和。通过对图1与图2的分析可知,在软岩的稳定塑性变形区域内,尽可能以变形的方式释放围岩所积蓄的应力荷载,可以游戏哦啊的保证支护体的稳定,也有利于软岩巷道工程的开展与深入。 图1巷道开挖后围岩中应力分布的曲线 1—未出现塑性区时,切向应力与径向应力的分布曲线,可见,二者平衡;2—塑性区域为半径为R2的圆形区域内的应力分布;3—塑性区域为半径为R3的圆形区域内的应力分布

回采巷道锚网索支护设计决策系统的应用与研究(最新版)

回采巷道锚网索支护设计决策系统的应用与研究(最新版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0222

回采巷道锚网索支护设计决策系统的应用 与研究(最新版) 1、前言 锚杆支护作为一种新的巷道支护形式,与传统支护方式相比,在改善支护效果、降低支护成本、加快成巷速度、减轻劳动强度、提高巷道断面利用率、简化回采面端头区维护工艺等方面的优越性十分突出。因而受到了世界主要产煤国家的普遍重视,代表了煤矿巷道支护技术的发展方向。 目前,三河口矿在回采巷道支护中,普遍采用了“锚网索”联合支护形式。虽然取得了较为显著的经济效益和安全效果,但是,长期以来,锚网索支护参数一直以周边邻近矿区的经验为主,没有针对矿的具体地质条件和开采条件进行科学合理的锚网索支护设计。因此,带有较大的盲目性,导致支护设计参数缺乏科学依据,

给矿井的安全生产带来了隐患。为了解决上述何题,针对的主采煤层 ——3上煤层的地质条件和目前巷道支护状,能够通过计算机可视化手段,建立一套锚网索支护的力学模型,决定开发《3上煤层回采巷道锚网索支护设计系统》,为回采巷道支护设计提供依据。 2、3上煤层回采巷道支护现状 3上煤层回采巷道目前普遍采用矩形断面,巷道净高度一般为2.5m,巷道净宽度一般为3.2-3.5m。采用锚网带、锚索联合支护。顶板选用Ф18mm的螺纹树脂锚杆,锚杆长度1.8m。锚杆间排距为800mm ×800mm(700mm×800mm),排距0.8m(0.7m),每排锚杆的锚杆数为5根,两肩窝处锚杆的安装角度为70o,锚杆间距为0.8m。(见图1)金属网采用10#铁丝编制成菱形网,网格为30mm×30mm。为了加强顶板支护强度,每隔2.4m安装锚索2根。锚索长度5m,直径15.24mm,由低松弛预应力钢绞线绞合而成,与W钢带配合使用。W 钢带型号为WX180/3.0(辅助顺槽),WX180/3.2(运输顺槽)。锚索孔间距为1200mm。

软岩巷道支护

煤矿软岩巷道支护技术 摘要:煤矿软岩巷道工程支护,尤其是深部高应力软岩巷道支护,一直是矿业工程难点问题之一。随着矿井开采规模的增大和开采深度的不断加大,软岩巷道的支护与维护问题显得越来越突出,软岩问题愈趋严重,直接影响煤矿安全高效生产。本文分析了软岩的概念及分类,提出了软岩巷道支护对策与主要支护形式,并指出了以后软岩巷道支护新的发展趋势。 关键字:软岩巷道;高应力;支护对策 1 引言 由于煤层赋存条件的复杂、多变,煤层开采条件的不可选择性,多数矿井的生产和建设都将面临不同程度、不同数量的软岩巷道开掘及维护难题。特别是服务年限较长的准备巷道、开拓巷道施工、维护,需解决一系列软岩巷道问题,比如巷道自稳时间短、变形大、难维护、返修率高等。加之多数软岩巷道断面较大,巷道变形破坏的影响因素复杂[1],在支护设计中,要考虑多方面的影响因素。软岩巷道的变形主要体现在顶板下沉量较大,两帮收缩、偏帮、底鼓严重。巷道的变形严重影响到运输、通风、行人的问题,因此寻找合理的支护方式已经迫在眉睫。 2 软岩的概念及分类 工程软岩是指在工程力的作用下,能够产生显著塑性变形的工程岩体[2]。在煤矿巷道支护工程中,巷道围岩就是所研究的工程岩体;工程力则是指作用在工程岩体上的力的总和,它包括重力、构造残余应力、水的作用力、工程扰动及膨胀应力等。该定义揭示了软岩的相对性,实质即工程力与岩体的相互关系。当工程力一定时,不同岩体可能表现为硬岩特性,也可能表现为软岩的特性。而对于同一种岩石,在较低工程力的作用下可表现为硬岩的变形特性,在较高的工程力作用下可能表现为软岩的大变形特性。按其上述特性,大体上可分为4大类:低强度高膨胀性软岩、高应力软岩、极破碎软岩、复合型软岩。 1)低强度高膨胀性软岩巷道,围岩不仅松软、强度低,而目_遇水软化、膨胀,对风、水、扰动十分敏感。巷道围岩变形速度快、变形量大、持续时间长,给支护带来极大困难。软岩之所以能产生显著的塑性变形,主要是因为软岩中的泥质成分和结构面控制了软岩的工程力学特性。软岩一般具有可塑性、膨胀性、崩解性、流变性以及工程扰动性等工程力学特性。 2)我国煤矿开采深度以每年8~12m的速度增加,开采深度超过1000m的煤矿已有数十处,部分矿井重力引起的垂直应力明显增大,构造应力场复杂,地应力高;在高地应力作用下,开采扰动影响强烈,围岩破坏严重,煤岩体的扩容现象突出,表现为大偏应力下的煤岩体内部节理、裂隙、裂纹张开,出现新裂纹导致煤岩体积增大,扩容膨胀。

锚网索梁喷联合支护在深部软岩中的应用

锚网索梁喷联合支护在深部软岩中的应用 单忠祥 (龙煤集团鹤岗分公司开拓技术处,黑龙江鹤岗154100) 摘要该文论述了矿井深部巷道应用锚网索梁喷联合支护方式的作用、原理、施工工艺,阐述了该支护方式的优点,可操作性,取得了较好的经济效益,从而促进矿井深部软岩锚网索梁喷联合支护的推广应用。 关键词锚喷砌碹锚网索梁松动圈 中图分类号TD353+.9文献标识码B 1工程概况 益新煤矿三水平北一石门区是三、四水平延深工 程的首采区,北一石门轨道巷是该采区的关键工程。 该轨道巷位于地表下630m,断面13m2。根据地质资 料,该巷将穿11层煤,并且处于F13断层带、破碎带 内。自1993年开始先后采用锚杆喷券支护、工字钢梯 形棚喷券支护、U型钢圆形棚喷券支护、料石砌碹支护 等支护形式,始终末能解决三水平北一石门轨道巷穿 过断层破碎带支护难题。为此,巷道支护采用锚网索 梁喷支护新技术,并于2010年11月10日安全、准确 地与三水平北一石门大巷贯通,解决了这一难题。 2支护方式确定 由于该巷道服务年限长,巷道经过破碎带及深部 软岩,巷道开挖后,如不及时支护,极易抽顶、片帮。巷 道断面毛宽3.9m,毛高3.5m,由于巷道跨度和高度 均不适于一次性爆破成巷,因此采用正台阶施工方法。 上部高度2.3m,下部高度1.2m,上部与下部留6m 平台,上部前进一遍炮,下部跟进一遍,此种方法工序 简单,施工方便,不但作业安全,也有利于节约正规循 环时间,提高掘进速度。巷道采用锚网索梁喷(一梁三 索)联合支护方式。 3支护参数的选择 (1)锚杆选用Φ20mm左旋螺纹钢锚杆,根据加固 拱原理,确定支护参数。 锚杆长度: L=N(1.1+B/10)=1.2?(1.1+4.7/10)=1.88m 锚杆间距:D≤0.5L=0.5?1.88=0.94m 式中:B-巷道跨度m; N-围岩稳定性系数,Ⅴ类围岩取1.2。 锚杆长度取2.5m,间距取0.8m、排距取1.0m。 (2)锚索长度确定:L=L 1+L 2 +L 3 *收稿日期:2011-08-03 作者简介:单忠祥(1961-),男,毕业于黑龙江矿业学院地采专业,大专学历,工程师,现任龙煤矿业集团鹤岗分公司开拓技术处副主任工程师。式中:L-锚索长度; L 1 -锚索外露长度取,0.3m; L 2 -锚索有效长度; L 3 -锚索锚固长度,一般取1 2m。 在锚杆失效的情况下,其潜在冒落高度为1.5倍的巷道宽度,L=8.0m(煤层厚度6m)。 锚索间排距的确定: S a =3(δ a )/4a2rk 式中:δ a -单根锚索超极限破断力,取260kN; a-巷道宽度,m; r-上覆岩层平均容重,取25.3kN/m3; k-安全系数,取2 。 图1锚网索梁喷巷道断面图(mm) 通过上式计算锚梁排距为1.0m,锚索梁选择长3.54m的29U型钢加工成拱形梁(见图2)。每根梁打3根锚索,梁距0.8m,钢筋网选择规格1.0?2m,网眼规格75?75mm,Φ4mm圆钢制成。使用425#水泥,水泥与沙石按1:2:2配比,水灰比0.45,混凝土标号达到200#,最终喷碹厚度为150mm。锚固剂选择聚脂树酯锚固剂,选用快速和中速两种,锚索锚固剂直径为23 mm,锚杆锚固剂为25mm,当锚索或锚(下转第33页) 13 2012年第3 期

相关主题
文本预览
相关文档 最新文档