当前位置:文档之家› 大一高数学习知识重点与例题讲解

大一高数学习知识重点与例题讲解

大一高数学习知识重点与例题讲解
大一高数学习知识重点与例题讲解

大一高数

函数与极限

第一节 函数

○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★) (){},|U a x x a δδ=-<

(){},|0U a x x a δδ=<-

第二节 数列的极限

○数列极限的证明(★)

【题型示例】已知数列{}n x ,证明{}lim n x x a →∞

= 【证明示例】N -ε语言

1.由n x a ε-<化简得()εg n >, ∴()N g ε=????

2.即对0>?ε,()N g ε?=????,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞

→lim

第三节 函数的极限

○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0

lim

【证明示例】δε-语言

1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg =

2.即对0>?ε,()εδg =?,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0

lim

○∞→x 时函数极限的证明(★)

【题型示例】已知函数()x f ,证明()A x f x =∞

→lim

【证明示例】X -ε语言

1.由()f x A ε-<化简得()x g ε>, ∴()εg X =

2.即对0>?ε,()εg X =?,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞

→lim

第四节 无穷小与无穷大

○无穷小与无穷大的本质(★) 函数()x f 无穷小?()0lim =x f

函数()x f 无穷大?()∞=x f lim

○无穷小与无穷大的相关定理与推论(★★)

(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ?=????

(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1

f x -为无穷小;反之,若()x f 为无穷小,且

()0f x ≠,则()x f 1-为无穷大

【题型示例】计算:()()0

lim x x f x g x →?????(或∞→x )

1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U ο

内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0

=→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;)

3.由定理可知()()0

lim 0x x f x g x →?=????

(()()lim 0x f x g x →∞

?=????)

第五节 极限运算法则

○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则

关于多项式()p x 、()x q 商式的极限运算

设:()()?????+?++=+?++=--n

n n m

m m b x b x b x q a x a x a x p 1

101

10

则有()()???????∞=∞→0

lim 0

b a x q x p x m n m n m n >=<

()()()

()000

lim 0

0x x f x g x f x g x →??

??=∞?????

()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00

lim 0

x x f x g x →=(不定型)时,通常分子分母约去公因式即约去可去间断点便可求解出极限值,也可

以用罗比达法则求解)

【题型示例】求值23

3

lim

9

x x x →-- 【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()23

333311

lim lim lim 93336

x x x x x x x x x →→→--====-+-+ 其中3x =为函数()23

9

x f x x -=

-的可去间断点 倘若运用罗比达法则求解(详见第三章第二节):

解:()()00

2

33323311

lim lim lim 926

9x L x x x x x x x '→→→'--===-'

-

○连续函数穿越定理(复合函数的极限求解)(★★)

(定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x x x x f x f x ??→→??=????????

【题型示例】求值:9

3

lim 23

--→x x x

【求解示例】3

6

x →===

第六节 极限存在准则及两个重要极限

○夹迫准则(P53)(★★★) 第一个重要极限:1sin lim 0=→x

x

x

∵??

?

??∈?2,

0πx ,x x x tan sin <<∴1sin lim

0=→x x x 0

000lim11lim lim 1sin sin sin lim x x x x x x x x x x →→→→===??

???

(特别地,000

sin()

lim

1x x x x x x →-=-)

○单调有界收敛准则(P57)(★★★)

第二个重要极限:e x x

x =??

?

??+∞

→11lim

(一般地,()()

()()

lim lim lim g x g x f x f x =????????

,其中()0lim >x f )

【题型示例】求值:1

1232lim +∞→??

? ??++x x x x

【求解示例】

()()2111

212

1212

2121

1221

2

2121lim

212

21232122lim lim lim 121212122lim 1lim 121212lim 121x x x x x x x x x x x x x x x x x x x x x x x x +++→∞→∞+→∞?++++??+++→∞

+→∞++→∞+++?????

?==+ ? ? ?+++???????

????

???=+=+ ? ???++??

??

?

?

?

??

???=+

???+????

解:()()12lim 121

21212

121

22lim 121x x x x x x x x x e

e

e e

+→∞??

?+??

+??+→∞+→∞???+??

+??

+??

?

+?

?

====

第七节 无穷小量的阶(无穷小的比较) ○等价无穷小(★★)

1.

()

~sin ~tan ~arcsin ~arctan ~ln(1)~1U U U U U U U e +-

2.U U cos 1~2

12

-

(乘除可替,加减不行)

【题型示例】求值:()()x

x x x x x 31ln 1ln lim

20++++→

【求解示例】

()()()()()()()3131lim 31lim 31ln 1lim 31ln 1ln lim ,0,000020=++=+?+=++?+=++++=≠→→→→→x x x x x x x x x x x x x x x x x x x x x 所以原式即解:因为

第八节 函数的连续性 ○函数连续的定义(★)

()()()00

0lim lim x x x x f x f x f x -

+→→==

○间断点的分类(P67)(★)

??

?∞?

???

?)无穷间断点(极限为

第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)

【题型示例】设函数()???+=x

a e x f x 2 ,00

【求解示例】

1.∵()()()2010000f e e e f a a f a -

-?++?===?

?=+=??

=??

2.由连续函数定义()()()e f x f x f x x ===+-→→0lim lim 0

∴e a =

第九节 闭区间上连续函数的性质 ○零点定理(★)

【题型示例】证明:方程()()f x g x C =+至少有一个根介于a 与b 之间 【证明示例】

1.(建立辅助函数)函数()()()x f x g x C ?=--在闭区间[],a b 上连续; 2.∵()()0a b ???<(端点异号)

3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξ?,即()()0f g C ξξ--=(10<<ξ)

4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ 第一章 导数与微分 第一节 导数概念

○高等数学中导数的定义及几何意义(P83)(★★)

【题型示例】已知函数()?

??++=b ax e x f x 1 ,00>≤x x 在0=x 处可导,求a ,b

【求解示例】

1.∵()()0

010f e f a -+'?==??'=??,()()()0000112

0012f e e f b f e -

-+?=+=+=??=?

?

=+=??

2.由函数可导定义()()()()

()001

0002f f a f f f b -+-+

''===???====??

∴1,2a b ==

【题型示例】求()x f y =在a x =处的切线与法线方程 (或:过()x f y =图像上点(),a f a ????处的切线与法线方程) 【求解示例】

1.()x f y '=',()a f y a x '='=| 2.切线方程:()()()y f a f a x a '-=- 法线方程:()()

()1

y f a x a f a -=-

-' 第二节 函数的和(差)、积与商的求导法则 ○函数和(差)、积与商的求导法则(★★★) 1.线性组合(定理一):()u v u v αβαβ'''±=+ 特别地,当1==βα时,有()u v u v '''±=± 2.函数积的求导法则(定理二):()uv u v uv '''=+

3.函数商的求导法则(定理三):2

u u v uv v v '

''

-??= ???

第三节 反函数和复合函数的求导法则

○反函数的求导法则(★) 【题型示例】求函数()x f

1

-的导数

【求解示例】由题可得()x f 为直接函数,其在定于域D 上单调、可导,且()0≠'x f ;∴()()

1

1

f

x f x -'

??=

??

' ○复合函数的求导法则(★★★)

【题型示例】设(

ln y e =,求y '

【求解示例】

(

22

arcsi y e x a e e e '

'=

'

?

?

' ?+=

???

? =

??

=

解:?? ?

第四节 高阶导数

○()

()()

()1n n f

x f

x -'??=??(或()()11n n n n d y d y dx dx --'??=????

)(★) 【题型示例】求函数()x y +=1ln 的n 阶导数 【求解示例】()1

111y x x

-'=

=++, ()()()12

111y x x --'??''=+=-?+??

, ()()()()()23

11121y x x --'??'''=-?+=-?-?+??

……

()1(1)(1)(1)n n n y n x --=-?-?+!

第五节 隐函数及参数方程型函数的导数 ○隐函数的求导(等式两边对x 求导)(★★★)

【题型示例】试求:方程y

e x y +=所给定的曲线C :()x y y =在点()1,1e -的切线方程与法线方程

【求解示例】由y

e x y +=两边对x 求导

即()

y y x e '

''=+化简得1y

y e y ''=+?

∴e

e y -=

-=

'11

111 ∴切线方程:()e x e

y +--=-111

1 法线方程:()()e x e y +---=-111

○参数方程型函数的求导

【题型示例】设参数方程()()

???==t y t x γ?,求22dx y

d

【求解示例】1.()()t t dx dy ?γ''= 2.()22dy d y dx dx

t ?'??

???=' 第六节 变化率问题举例及相关变化率(不作要求)

第七节 函数的微分

○基本初等函数微分公式与微分运算法则(★★★) ()dx x f dy ?'=

第二章 中值定理与导数的应用

第一节 中值定理 ○引理(费马引理)(★) ○罗尔定理(★★★)

【题型示例】现假设函数()f x 在[]0,π上连续,在()0,π 上可导,试证明:()0,ξπ?∈, 使得()()cos sin 0f

f ξξξξ'+=成立

【证明示例】

1.(建立辅助函数)令()()sin x f x x ?=

显然函数()x ?在闭区间[]0,π上连续,在开区间()0,π上可导; 2.又∵()()00sin00f ?==

()()sin 0f ?πππ==

即()()00??π==

3.∴由罗尔定理知

()0,ξπ?∈,使得()()cos sin 0f f ξξξξ'+=成立

○拉格朗日中值定理(★)

【题型示例】证明不等式:当1x >时,x

e e x >? 【证明示例】

1.(建立辅助函数)令函数()x f x e =,则对1x ?>,显然函数()f x 在闭区间[]1,x 上连续,在开区间()1,x 上可导,并且()x f x e '=;

2.由拉格朗日中值定理可得,[]1,x ξ?∈使得等式()11x e e x e ξ-=-成立, 又∵1

e e ξ

>,∴()111x e e x e e x e ->-=?-,

化简得x e e x >?,即证得:当1x >时,x

e e x >? 【题型示例】证明不等式:当0x >时,()ln 1x x +< 【证明示例】

1.(建立辅助函数)令函数()()ln 1f x x =+,则对0x ?>,函数()f x 在闭区间[]0,x 上连续,在开区间()0,π上可导,并且()1

1f x x

'=

+; 2.由拉格朗日中值定理可得,[]0,x ξ?∈使得等式()()()1

ln 1ln 1001x x ξ

+-+=-+成立, 化简得()1

ln 11x x ξ

+=+,又∵[]0,x ξ∈, ∴()1

11f ξξ

'=

<+,∴()ln 11x x x +时,x

e e x >?

第二节 罗比达法则

○运用罗比达法则进行极限运算的基本步骤(★★)

1.☆

等价无穷小的替换(以简化运算)

2.判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件 A .属于两大基本不定型(

0,0∞

∞)且满足条件, 则进行运算:()()()()

lim lim

x a x a f x f x g x g x →→'=' (再进行1、2步骤,反复直到结果得出)

B .☆

不属于两大基本不定型(转化为基本不定型) ⑴0?∞型(转乘为除,构造分式) 【题型示例】求值:0

lim ln x x x α

→?

【求解示例】

()1000020

1

ln ln lim ln lim lim lim 111

lim 0

x x L x x x x x x x x x x x x x a ααααααα∞∞

-'→→→→→'

?===?'??- ???

=-=解:

(一般地,()0

lim ln 0x x x β

α

→?=,其中,R αβ∈)

⑵∞-∞型(通分构造分式,观察分母) 【题型示例】求值:01

1lim sin x x x →??-

??

?

【求解示例】 200011sin sin lim lim lim sin sin x x x x x x x x x x x x →→→--??????-== ? ? ???

?????解:

()()()()00

0002

sin 1cos 1cos sin lim

lim lim lim 022

2L x x L x x x x x x x

x x x ''→→→→'

'---====='

' ⑶00型(对数求极限法) 【题型示例】求值:0

lim x

x x →

【求解示例】

()()0000

lim ln ln 000002ln ,ln ln ln 1ln ln 0lim ln lim lim

111

lim lim 0lim lim 11x x x x x L x y

y x x x x x y x y x x x x

x x

x y x

x x x y e e e x

→∞

'→→→→→→→====

'→=='?? ???

==-=====-解:设两边取对数得:对对数取时的极限:,从而有 ⑷1∞

型(对数求极限法)

【题型示例】求值:()10

lim cos sin x

x x x →+

【求解示例】

()()

()

()()

1

000

000lim ln ln 10

ln cos sin cos sin ,ln ,

ln cos sin ln 0limln lim ln cos sin cos sin 10lim lim 1,cos sin 10lim =lim x x

x x L x x y

y x x x x y x x y x

x x y x y x x x x x x x x y e e e e

→→→'→→→→+=+=

+→='+??--??====++'===解:令两边取对数得对求时的极限,从而可得

⑸0

∞型(对数求极限法)

【题型示例】求值:tan 01lim x

x x →??

?

??

【求解示例】

()()tan 00

2000202200011,ln tan ln ,

1ln 0lim ln lim tan ln 1ln ln lim

lim

lim 1sec 1tan tan tan sin sin lim lim li x

x x x L x x x L x y y x x x y x y x x x x

x x x x

x x x x x →→∞

'→→→'→→??

??

==? ?

???

??

??

??→=? ???

????'

=-=-=-??'??-

? ?????

'==='解:令两边取对数得对求时的极限,0

0lim ln ln 00

2sin cos m 0,1lim =lim 1

x x y

y x x x x

y e e e →→→→?====从而可得

○运用罗比达法则进行极限运算的基本思路(★★)

00001∞??∞-∞??→←???∞←???∞?∞?∞

(1)(2)(3)

⑴通分获得分式(通常伴有等价无穷小的替换)

⑵取倒数获得分式(将乘积形式转化为分式形式) ⑶取对数获得乘积式(通过对数运算将指数提前)

第三节 泰勒中值定理(不作要求) 第四节 函数的单调性和曲线的凹凸性 ○连续函数单调性(单调区间)(★★★)

【题型示例】试确定函数()3

2

29123f x x x x =-+-的单调区间

【求解示例】

1.∵函数()f x 在其定义域R 上连续,且可导

∴()2

61812f x x x '=-+

2.令()()()6120f x x x '=--=,解得:121,2x x ==

4.∴函数f x 的单调递增区间为,1,2,-∞+∞; 单调递减区间为()1,2

【题型示例】证明:当0x >时,1x

e x >+ 【证明示例】

1.(构建辅助函数)设()1x x e x ?=--,(0x >)

2.()10x

x e ?'=->,(0x >)

∴()()00x ??>=

3.既证:当0x >时,1x

e x >+

【题型示例】证明:当0x >时,()ln 1x x +< 【证明示例】

1.(构建辅助函数)设()()ln 1x x x ?=+-,(0x >)

2.()1

101x x

?'=

-<+,

(0x >) ∴()()00x ??<=

3.既证:当0x >时,()ln 1x x +<

○连续函数凹凸性(★★★)

【题型示例】试讨论函数2

3

13y x x =+-的单调性、极值、凹凸性及拐点

【证明示例】

1.()()2

36326661y x x x x y x x '?=-+=--??''=-+=--?? 2.令()()320

610

y x x y x '=--=???''=--=??解得:120,21x x x ==??=?

x

(,0)

-∞

(0,1)

1

(1,2)

2

(2,)+∞

y '

-

+

+

- y ''

+

+

-

-

y

1 (1,3) 5

4.⑴函数13y x x =+-单调递增区间为(0,1),(1,2) 单调递增区间为(,0)-∞,(2,)+∞;

⑵函数2

3

13y x x =+-的极小值在0x =时取到,为()01f =,

极大值在2x =时取到,为()25f =;

⑶函数2

3

13y x x =+-在区间(,0)-∞,(0,1)上凹,在区间(1,2),(2,)+∞上凸; ⑷函数2

3

13y x x =+-的拐点坐标为()1,3

第五节 函数的极值和最大、最小值 ○函数的极值与最值的关系(★★★)

⑴设函数()f x 的定义域为D ,如果M x ?的某个邻域()M U x D ?,使得对()M x U x ?∈o

,都适合不等式

()()M f x f x <,

我们则称函数()f x 在点(),M M x f x ????处有极大值()M f x ;

令{}123,,,...,M M M M Mn x x x x x ∈

则函数()f x 在闭区间[],a b 上的最大值M 满足:

()(){}123max ,,,,...,,M M M Mn M f a x x x x f b =;

⑵设函数()f x 的定义域为D ,如果m x ?的某个邻域()m U x D ?,使得对()m x U x ?∈o

,都适合不等式

()()m f x f x >,

我们则称函数()f x 在点(),m m x f x ????处有极小值()m f x ;

令{}123,,,...,m m m m mn x x x x x ∈

则函数()f x 在闭区间[],a b 上的最小值m 满足:

()(){}123min ,,,,...,,m m m mn m f a x x x x f b =;

【题型示例】求函数()33f x x x =-在[]1,3-上的最值 【求解示例】

1.∵函数()f x 在其定义域[]1,3-上连续,且可导 ∴()233f x x '=-+

2.令()()()3110f x x x '=--+=, 解得:121,1x x =-= 3.(三行表)

4.又∵()()12,12,318f f f -=-==-

∴()()()()max min 12,318f x f f x f ====- 第六节 函数图形的描绘(不作要求) 第七节 曲率(不作要求)

第八节 方程的近似解(不作要求) 第三章 不定积分

第一节 不定积分的概念与性质 ○原函数与不定积分的概念(★★) ⑴原函数的概念:

假设在定义区间I 上,可导函数()F x 的导函数为()F x ',即当自变量x I ∈时,有()()F x f x '=或

()()dF x f x dx =?成立,则称()F x 为()f x 的一个原函数

⑵原函数存在定理:(★★)

如果函数()f x 在定义区间I 上连续,则在I 上必存在可导函数()F x 使得()()F x f x '=,也就是说:连续函数一定存在原函数(可导必连续) ⑶不定积分的概念(★★)

在定义区间I 上,函数()f x 的带有任意常数项C 的原函数称为()f x 在定义区间I 上的不定积分,即表示为:

()()f x dx F x C =+?

(?称为积分号,()f x 称为被积函数,()f x dx 称为积分表达式,x 则称为积分变量)

○基本积分表(★★★)

○不定积分的线性性质(分项积分公式)(★★★)

()()()()1

2

1

2

k f x k g x dx k f x dx k g x dx +=+?

?????? 第二节 换元积分法

○第一类换元法(凑微分)(★★★) (()dx x f dy ?'=的逆向应用)

()()()()f x x dx f x d x ????'?=??

?????????????

【题型示例】求221

dx a x +?

【求解示例】 22221

1

111arctan 11x x dx dx d C a x a a a

a x x a a ??===+ ?+??????++ ? ???????

?解:

【题型示例】求 【求解示例】

(

)(

)121212x x C

=+=+=

○第二类换元法(去根式)(★★)

(()dx x f dy ?'=的正向应用)

⑴对于一次根式(0,a b R ≠∈):

t =,于是2t b x a

-=,

则原式可化为t

⑵对于根号下平方和的形式(0a >):

tan x a t =(2

2

t π

π

-

<<

),

于是arctan

x

t a

=,则原式可化为sec a t ; ⑶对于根号下平方差的形式(0a >):

a

sin x a t =(2

2

t π

π

-<<

),

于是arcsin

x

t a

=,则原式可化为cos a t ; b

sec x a t =(02

t π<<),

于是arccos a

t x =,则原式可化为tan a t ;

【题型示例】求

(一次根式) 【求解示例】

2221t x t dx tdt

tdt dt t C C t =-=?==+=??

【题型示例】求

(三角换元)

【求解示例】

()()2sin ()

2

2

22arcsin

cos 22cos 1cos 22

1sin 2sin cos 222x a t t x

t a

dx a t

a a tdt t dt

a a t t C t t t C ππ

=-<<==??????→=+??

=++=++ ???

??

第三节 分部积分法 ○分部积分法(★★)

⑴设函数()u f x =,()v g x =具有连续导数,则其分部积分公式可表示为:udv uv vdu =-??

⑵分部积分法函数排序次序:“反、对、幂、三、指”

○运用分部积分法计算不定积分的基本步骤: ⑴遵照分部积分法函数排序次序对被积函数排序; ⑵就近凑微分:(v dx dv '?=) ⑶使用分部积分公式:udv uv vdu =-??

⑷展开尾项vdu v u dx '=???

,判断

a .若v u dx '??

是容易求解的不定积分,则直接计算出答案(容易表示使用基本积分表、换元法与有理函数积分

可以轻易求解出结果);

b .若v u dx '??

依旧是相当复杂,无法通过a 中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定

积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C

【题型示例】求2x e x dx ??

【求解示例】

()()22222

2222222222x x x x x x x x x x x x x x x e x dx x e dx x de x e e d x x e x e dx x e x d e x e xe e dx x e xe e C

?===-=-?=-?=-+=-++????

???解:

【题型示例】求sin x e xdx ??

【求解示例】

()()

()()

sin cos cos cos cos cos cos sin cos sin sin cos sin sin x x x x

x x x x x x x x x x e xdx e d x e x xd e

e x e xdx e x e d x e x e x xd e e x e x e xdx

?=-=-+=-+=-+=-+-=-+-???????解:

()sin cos sin sin x x x x e xdx e x e x xd e ?=-+-??

即: ∴()1sin sin cos 2

x

x

e xdx e x x C ?=

-+?

第四节 有理函数的不定积分 ○有理函数(★)

设:()()()()101101m m m

n n n

P x p x a x a x a Q x q x b x b x b --=++?+==++?+ 对于有理函数

()()P x Q x ,当()P x 的次数小于()Q x 的次数时,有理函数()

()

P x Q x 是真分式;当()P x 的次数大于()Q x 的次数时,有理函数()

()

P x Q x 是假分式

○有理函数(真分式)不定积分的求解思路(★)

⑴将有理函数()

()

P x Q x 的分母()Q x 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示为一次因式

()k

x a -;而另一个多项式可以表示为二次质因式()2

l

x px q ++,(2

40p q -<);

即:()()()12Q x Q x Q x =?

一般地:n mx n m x m ?

?+=+

???,则参数n a m

=-

2

2

b c ax bx c a x x a a ??++=++ ??

?

则参数,b c p q a a

=

= ⑵则设有理函数

()

()

P x Q x 的分拆和式为: ()()()()()

()

122k l P x P x P x Q x x a x px q =+-++ 其中

()

()

()()

112

2...k k

k

P x A A A x a x a x a x a =

+++----

()

()

()()

21122

2

2222

...l

l l

l

P x M x N M x N x px q x px q x px q M x N x

px q ++=

+

+++++++++

++

参数12

1212,,...,,,,...,l k l

M M M A A A N N N ?????????由待定系数法(比较法)求出

⑶得到分拆式后分项积分即可求解

【题型示例】求2

1

x dx x +?(构造法) 【求解示例】

()()()2

21111111111

ln 112

x x x x dx dx x dx x x x xdx dx dx x x x C

x +-++??==-+ ?+++?

?=-+=-++++??????

第五节 积分表的使用(不作要求)

第四章 定积分极其应用

第一节 定积分的概念与性质 ○定积分的定义(★)

()()0

1

lim n

b

i

i

a

i f x dx f x I λ

ξ→==?=∑?

(()f x 称为被积函数,()f x dx 称为被积表达式,x 则称为积分变量,a 称为积分下限,b 称为积分上限,[],a b 称为积分区间)

○定积分的性质(★★★)

()()b

b

a

a

f x dx f u du =?

?

⑵()0a a f x dx =? ⑶()()b

b

a

a

kf x dx k f x dx =??????

⑷(线性性质)

()()()()1212b b b

a a a k f x k g x dx k f x dx k g x dx +=+?

?????? ⑸(积分区间的可加性)

()()()b

c b

a

a

c

f x dx f x dx f x dx =+?

??

⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0b

a

f x dx >?;

(推论一)

若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()b

b

a

a

f x dx

g x dx ≤?

?;

(推论二)

()()b

b

a

a

f x dx f x dx ≤?

?

○积分中值定理(不作要求)

第二节 微积分基本公式

○牛顿-莱布尼兹公式(★★★)

(定理三)若果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数,则

()()()b

a

f x dx F b F a =-?

○变限积分的导数公式(★★★)(上上导―下下导)

()()()

()()()()x x d f t dt f x x f x x dx

?ψ??ψψ''=-????????? 【题型示例】求2

1

cos 2

lim

t x

x e dt x

-→?

【求解示例】

()

2

2

11

00

cos cos 2002lim lim 解:t t x x x L x d e dt e dt dx x x --'→→='

??

()

()

()()22

22

2

21

cos cos

000cos 0

cos cos 0cos 010sin sin lim

lim 22sin lim 2cos sin 2sin cos lim 2

1

lim sin cos 2sin cos 21122x

x

x x x

L x x x x x x e e

x x e x

x

d

x e dx x x e x e x x e x x x x e e

---→→-'→--→-→-?-?-?==?='

?+??=??

=+??

?=?=

第三节 定积分的换元法及分部积分法 ○定积分的换元法(★★★) ⑴(第一换元法)

()()()()b b

a a f x x dx f x d x ????'?=??

????????????? 【题型示例】求201

21

dx x +?

【求解示例】

()[]2

220001111

21ln 212122121ln 5ln 5ln122

解:dx d x x x x =+=?

+???++=-=?? ⑵(第二换元法)

设函数()[],f x C a b ∈,函数()x t ?=满足:

a .,αβ?,使得()(),a

b ?α?β==;

b .在区间[],αβ或[],βα上,()(),f t t ??'????连续 则:

()()()b

a

f x dx f t t dt β

α

??'=??????

【题型示例】求4

?

【求解示例】

()221

0,43

22

0,1014,3

3

2332311132213111332223522933

解:t t x x t x t t dx t

t t dt t dt t x t =-====+??????→+??=??=+=+ ???=-=

???? ⑶(分部积分法)

()()()()()()()()()()()()

b

b

a a b

b

b a

a a

u x v x dx u x v x v x u x dx

u x dv x u x v x v x du x ''=-=-?

????

???

○偶倍奇零(★★)

设()[],f x C a a ∈-,则有以下结论成立: ⑴若()()f x f x -=,则

()()0

2a

a

a

f x dx f x dx -=?

?

⑵若()()f x f x -=-,则()0a

a

f x dx -=?

如:不定积分公式

21

arctan 1dx x C x =++?的证明。很多同学上课时无法证明,那么在学期结束时,我给出这样一种

证明方法以说明问题:

()tan 2

2arctan 222

22211tan 11tan 111cos sec cos cos arctan x t t t x dx t dt x t dt t dt dt t t t t C x C π

π??

=-<< ???='??????→??++=??=??==+=+????? 如此,不定积分公式2

211arctan x

dx C a x a a

=++?也就很容易证明了,希望大家仔细揣摩,认真理解。

高等数学下册典型例题精选集合.doc

最新高等数学下册典型例题精选集合 第八章 多元函数及其微分法 最大者泄义域,并在平面上画出泄义域的图形。 A - 77 Z[ = J4x_),的定义域是y 2 < 4x z 2二丿 的定义域是 从而z = :)-的定义域是Z]=』4x-护 与z? = / 1 定义域 的公共部分,即 V4x >y>0 x 2 > y>0 例 2 设 z 二 x+y + /(x 一 y),当 y = 0吋 z = ,求 z. 解:代入y = 0时Z = F,得〒=兀+ /(兀),即/(兀)=亍一匕 所以 z = (x- y)2 +2y. 2 2 例3求lim —— >4o J ,+)" +1 _ [ lim(Jx 2 + y 2 +1 +1) = 2 XT O V 尸0 例1求函数z 解:此函数可以看成两个函数Z 严』4x-y2与Z2 =的乘积。 兀-">0,即兀2 >y >0o y>0 lim (* + )(J 兀2 + y2 + ] 4- 1) 解: XT O 原式=厂0 (J 对 + )厂 +1 -1)( J 兀~ + + ] + 1)

法2化为一元函数的极限计算。令衣+八]=(,则当 x —0, y —?0 吋,t ―> 1 o 『2 _1 原式=lim --------- = lim(r +1) = 2。 t —I / — ] i ―I 例 4 求 lim r 兀+厂 ,T() 丿 解:法1用夹逼准则。因为2 | xy \< x 2 2 + y 2,所以 2 9 0<

而lim凶=0,从而lim| |=0 XT O 2 XT O厂 + \厂 〉?T O 〉?T O兀十〉 于是lim「1=0 牙-叮兀.+ y 尸0 丿 法2利用无穷小与有界函数的乘积 是无穷小的性质。 因为2|xy|< x2 + y2所以—^― Q +y =lim( AT O 〉?T O 尢y ?x) = 0 例5研究lim^- :护+y 解:取路径y二二一x + kxSke R± ,则lim 小 = [由k是任意非零 F *+y k yTO 丿 的常数,表明原极限不存在。a, 又limx = 0 XT O 〉T() 所以

高等数学知识点总结 (1)

高等数学(下)知识点 主要公式总结 第八章 空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2 222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222 双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111C B A n =ρ,),,(2222C B A n =ρ, ?∏⊥∏21 0212121=++C C B B A A ;?∏∏21// 2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: (三) 空间直线及其方程 1、 一般式方程:?????=+++=+++0 022221111D z C y B x A D z C y B x A 2、 对称式(点向式)方程: p z z n y y m x x 0 00-=-=-

高数典型例题解析

第一章函数及其图形 例1:(). A. {x | x>3} B. {x | x<-2} C. {x |-2< x ≤1} D. {x | x≤1} 注意,单选题的解答,有其技巧和方法,可参考本课件“应试指南”中的文章《高等数学(一)单项选择题的解题策略与技巧》,这里为说明解题相关的知识点,都采用直接法。 例2:函数的定义域为(). 解:由于对数函数lnx的定义域为x>0,同时由分母不能为零知lnx≠0,即x≠1。由根式内要非负可知即要有x>0、x≠1与同时成立,从而其定义域为,即应选C。 例3:下列各组函数中,表示相同函数的是() 解:A中的两个函数是不同的,因为两函数的对应关系不同,当|x|>1时,两函数取得不同的值。 B中的函数是相同的。因为对一切实数x都成立,故应选B。 C中的两个函数是不同的。因为的定义域为x≠-1,而y=x的定义域为(-∞,+∞)。 D中的两个函数也是不同的,因为它们的定义域依次为(-∞,0)∪(0,+∞)和(0,+∞)。例4:设

解:在令t=cosx-1,得 又因为-1≤cosx≤1,所以有-2≤cosx-1≤0,即-2≤t≤0,从而有 。 5: 例 f(2)没有定义。 注意,求分段函数的函数值,要把自变量代到相应区间的表达式中。 例6:函数是()。 A.偶函数 B.有界函数 C.单调函数 D .周期函数 解:由于,可知函数为一个奇函数而不是偶函数,即(A)不正确。 由函数在x=0,1,2点处的值分别为0,1,4/5,可知函数也不是单调函数;该函数显然也不是一个周期函数,因此,只能考虑该函数为有界函数。 事实上,对任意的x,由,可得,从而有。可见,对于任意的x,有 。 因此,所给函数是有界的,即应选择B。 例7:若函数f(x)满足f(x+y)=f(x)+f(y),则f(x)是()。 A.奇函数 B.偶函数 C.非奇非偶函数D.奇偶性不确定

高数知识点总结

高数重点知识总结 1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。 3、无穷小:高阶+低阶=低阶 例如:1lim lim 020==+→→x x x x x x x 4、两个重要极限:()e x e x x x x x x x x =?? ? ??+=+=∞ →→→11lim 1lim )2(1 sin lim )1(1 0 经验公式:当∞→→→)(,0)(,0x g x f x x ,[] ) ()(lim ) (0 )(1lim x g x f x g x x x x e x f →=+→ 例如:()33lim 10 031lim -? ? ? ? ?-→==-→e e x x x x x x 5、可导必定连续,连续未必可导。例如:||x y =连续但不可导。 6、导数的定义:()00 00 ') ()(lim ) (') ()(lim x f x x x f x f x f x x f x x f x x x =--=?-?+→→? 7、复合函数求导: [][])(')(')(x g x g f dx x g df ?= 例如:x x x x x x x y x x y ++=++ = +=2412221 1', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx 例如:y x dx dy ydy xdx y x y yy x y x - =?+- =?=+=+22,),2('0'22,),1(1 22左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若?? ?==) ()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[] ) (')('/)('/)/(/22 t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f ??=-?+ 例如:计算 ?31sin

高等数学同济第七版上册知识点总结

高等数学(同济第七版)上册-知识点总结 第一章 函数与极限 一.函数的概念 1.两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l=0,称f(x)是比g(x)高阶的无穷小,记以f(x)=0[)(x g ],称g(x)是比f(x)低阶的无穷小。 (2)l ≠0,称f(x)与g(x)是同阶无穷小。 (3)l=1,称f(x)与g(x)是等价无穷小,记以f(x)~g(x) 2.常见的等价无穷小 当x →0时 sin x ~x ,tan x ~x ,x arcsin ~x ,x arccos ~x , 1?cos x ~2/2^x ,x e ?1~x ,)1ln(x +~x ,1)1(-+αx ~x α 二.求极限的方法 1.两个准则 准则1.单调有界数列极限一定存在 准则2.(夹逼定理)设g (x )≤f (x )≤h (x ) 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次 5.洛必达法则 定理1设函数)(x f 、)(x F 满足下列条件: (1)0)(lim 0 =→x f x x ,0)(lim 0 =→x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;

(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)() (lim 0x F x f x x ''→为无穷大时,) () (lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则. ∞ ∞ 型未定式 定理2设函数)(x f 、)(x F 满足下列条件: (1)∞=→)(lim 0 x f x x ,∞=→)(lim 0 x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ; (3)) () (lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞ 型的洛必达法则,对于∞→x 时未定式∞ ∞ 型同样适用. 使用洛必达法则时必须注意以下几点: (1)洛必达法则只能适用于“00 ”和“∞ ∞ ”型的未定式,其它的未定式须先化简变形成“0 ”或“ ∞ ∞ ”型才能运用该法则; (2)只要条件具备,可以连续应用洛必达法则; (3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在. 6.利用导数定义求极限 基本公式)() ()(lim 0'000x f x x f x x f x =?-?+→?(如果存在) 7.利用定积分定义求极限 基本格式?∑==∞→1 1)()(1lim dx x f n k f n n k n (如果存在) 三.函数的间断点的分类 函数的间断点分为两类: (1)第一类间断点 设0x 是函数y =f (x )的间断点。如果f (x )在间断点0x 处的左、右极限都存在,则称0x 是f (x )的第一类间断点。左右极限存在且相同但不等于该点的函数值为可去间断点。左右极限不存在为跳跃间断点。第一类间断点包括可去间断点和跳跃间断点。 (2)第二类间断点 第一类间断点以外的其他间断点统称为第二类间断点。常见的第二类间断点有无穷间断点和振荡间断点。 四.闭区间上连续函数的性质 ) () (lim )()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→

高中数学典型例题详解和练习- 求分段函数的导数

求分段函数的导数 例 求函数?????=≠=0 ,00 ,1sin )(2 x x x x x f 的导数 分析:当0=x 时因为)0(f '存在,所以应当用导数定义求)0(f ',当 0≠x 时,)(x f 的关系式是初等函数x x 1 sin 2,可以按各种求导法同求它的导数. 解:当0=x 时,01sin lim 1 sin lim ) 0()(lim )0(0200 ===-='→?→?→?x x x x x x f x f f x x x 当 ≠x 时, x x x x x x x x x x x x x x x f 1 cos 1sin 2)1cos 1(1sin 2)1(sin 1sin )()1sin ()(22222-=-+='+'='=' 说明:如果一个函数)(x g 在点0x 连续,则有)(lim )(0 0x g x g x x →=,但如 果我们不能断定)(x f 的导数)(x f '是否在点00=x 连续,不能认为 )(lim )0(0 x f f x →='. 指出函数的复合关系 例 指出下列函数的复合关系. 1.m n bx a y )(+=;2.32ln +=x e y ; 3.)32(log 322+-=x x y ;4.)1sin(x x y +=。 分析:由复合函数的定义可知,中间变量的选择应是基本函数的结构,解决这类问题的关键是正确分析函数的复合层次,一般是从最外层开始,由外及里,一层一层地分析,把复合函数分解成若干个常

见的基本函数,逐步确定复合过程. 解:函数的复合关系分别是 1.n m bx a u u y +==,; 2.2,3,ln +===x e v v u u y ; 3.32,log ,322+-===x x v v u y u ; 4..1,sin ,3x x v v u u y +=== 说明:分不清复合函数的复合关系,忽视最外层和中间变量都是基本函数的结构形式,而最内层可以是关于自变量x 的基本函数,也可以是关于自变量的基本函数经过有限次的四则运算而得到的函数,导致陷入解题误区,达不到预期的效果. 求函数的导数 例 求下列函数的导数. 1.43)12(x x x y +-=;2.2 211x y -= ; 3.)3 2(sin 2π +=x y ;4.21x x y +=。 分析:选择中间变量是复合函数求导的关键.必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系.要善于把一部分量、式子暂时当作一个整体,这个暂时的整体,就是中间变量.求导时需要记住中间变量,注意逐层求导,不遗漏,而其中特别要注意中间变量的系数.求导数后,要把中间变量转换成自变量的函数.

大学全册高等数学知识点(全)

大学高等数学知识点整理 公式,用法合集 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=?>?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () ()x x t y y t =??=? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→

高等数学各章知识要点及典型例题与习题详细精解

第一章 函数、极限、连续 第1节 函数 ★基本内容学习 一 基本概念和性质 1函数的定义 设有两个变量x 和y ,变量x 的变域为D ,如果对于D 中的每一个x 值,按照一定的法则,变量y 有一个确定的值与之对应,则称变量y 为变量x 的函数,记作:()y f x =。 2函数概念的两要素 ①定义域:自变量x 的变化范围②对应关系:给定x 值,求y 值的方法。 3函数的三种表示方法 ①显式:形如()y f x =的称作显式,它最直观,也是初等函数一般采用的形式。 ②隐式:有时有些关系用显式无法完全表达,这时要用到隐式,形如(,)0F x y =,如椭圆函数 22 221x y a b +=。 ③参数式:形如平抛运动的轨迹方程212 x vt y gt =???=??称作参数式。参数式将两个变量的问题转化为 一个变量的问题,从而使很多难以处理的问题简化。 4函数的四个基本性质 ①奇偶性:设函数()f x 在对称区间X 上有定义,如果对于x X ?∈恒有()()f x f x =- (或)()()f x f x =--,则称()f x 为偶函数(或()f x 奇函数)。注:偶函数()f x 图形关于y 轴对称,奇函数()f x 的图形关于坐标原点对称。 ②有界性:设函数()f x 在区间X 上有定义,如果0M ?>,使得对一切x X ∈,恒有:()f x M ≤,则称()f x 在区间X 上有界;若不存在这样的0M >,则称()f x 在区间X 上无界.注:函数()f x 有无界是相对于某个区间而言的。

③周期性:设函数()f x 在区间X 上有定义,若存在一个与x 无关的正数T ,使对任一x X ∈,恒有()()f x T f x += 则称()f x 是以T 为周期的周期函数,把满足上式的最小正数T 称为函数()f x 的周期。 ④单调性:设函数()f x 在区间X 上有定义,如果对1212,,x x X x x ?∈<,恒有:()()12f x f x ≤(或 ()()12f x f x ≥)则称()f x 在区间X 上是单调增加(或单调减少)的;如果对于1212,,x x X x x ?∈<,恒有: ()()12f x f x < (或()()12f x f x >)则称()f x 在区间X 上是严格单调增加(或严格单调减少)的。 5其它函数定义 ①复合函数:设函数()y f u =的定义域为f D ,而函数()u x ?=的定义域是D ?值域为Z ?,若 f D Z ??≠?,则称函数()y f x ?=????为x 的复合函数,它的定义域是{x ∣()}f x D x D ??∈∈且。这里?表 示空集。 ②反函数:设函数()y f x =的值域为f Z ,如果对于f Z 中任一y 值,从关系式()y f x =中可确定唯一的一个x 值,则称变量x 为变量y 的函数,记为:()x y ?=,其中()y ?称为函数()y f x =的反函数,习惯上()y f x =的反函数记为:()1y f x -=。 6初等函数 ①常值函数 C (C 为常数),x R ∈ ②幂函数 ()y x R αα=∈,定义域由α确定,但不论α如何,在(0,)∞内总有定义。 ③指数函数 x y a =(0a >且1a ≠) x R ∈ ④对数函数 log x a y =( 0a >且1a ≠) (0,)x ∈∞ ⑤三角函数 如sin ,y x =x R ∈;cos ,y x =x R ∈;tan y x =,(,),2 2 x k k k Z ππ ππ∈-+∈; cot ,x (,(1)),x k k ππ∈+k Z ∈等 ⑥反三角函数 arcsin ,y x =[1,1]x ∈-;arccos ,y x =[1,1]x ∈-;arctan y x =,x R ∈;arccot y x =,x R ∈. 以上六类函数称基本初等函数。 由基本初等函数经有限次加、减、乘、除、复合而成的函数称初等函数。 7分段函数 一个函数在其定义域内,对应于不同的区间段有着不同的表达式,则该函数称为分段函数。分段函数仅是说函数的表示形式,并不是说它是几个函数。 常见的分段函数:

高数下典型习题及参考答案

第八章典型习题 一、填空题、选择题 1、y x z += 1的定义域为 ; 2、1 1lim 0-+→→xy xy y x ; 3、设xy z 3=, x z ??= ; 4、 z z x ?==?设则 5、由方程z y x e xyz e =++确定了函数()y x z z ,=,求dz 。 6、函数()y x f z ,=在点()00,y x 处()00,y x f x ,()00,y x f y 存在,则()y x f ,在该点( ) A 、连续 B 、不连续 C 、不一定连续 D 、可微 二、解答题 1、求曲面632222=++z y x 在点P (1,1,1)的切平面方程和法线方程。 2、2,y z f x y f x ? ?= ?? ?已知 ,其中为可微函数,y z x z ????,求。 3、设()y x z z ,=是由方程 y z z x ln =确定,求x z ??,y z ??。 4、做一个表面积为12平方米的长方体无盖铁皮箱,问长、宽、高如何选取,才能使铁箱的容积为最大。 第九章、第十章典型习题 一、填空题、选择题 1、将二重积分()dxdy y x f D ??,化为二次积分,其中积分区域D 是由0,,42≥==x x y y 所围成,下列各式 中正确的是( )A 、()dy y x f dx x ??2 04 ,2 B 、()dy y x f dx ??4 4 , C 、()dx y x f dy y ??0 40 , D 、()dx y x f dy y ? ?0 40 , 2、设Ω是由1,0,1,0,1,0======z z y y x x 所围成的区域,则=???Ω xyzdxdydz 3、旋转抛物面2 2 2y x z +=在20≤≤z 那部分的曲面面积S=( )

专升本高等数学知识点汇总

专升本高等数学知识点汇总 常用知识点: 一、常见函数的定义域总结如下: (1) c bx ax y b kx y ++=+=2 一般形式的定义域:x ∈R (2)x k y = 分式形式的定义域:x ≠0 (3)x y = 根式的形式定义域:x ≥0 (4)x y a log = 对数形式的定义域:x >0 二、函数的性质 1、函数的单调性 当21x x <时,恒有)()(21x f x f <,)(x f 在21x x ,所在的区间上是增加的。 当21x x <时,恒有)()(21x f x f >,)(x f 在21x x ,所在的区间上是减少的。 2、 函数的奇偶性 定义:设函数)(x f y =的定义区间D 关于坐标原点对称(即若D x ∈,则有D x ∈-) (1) 偶函数)(x f ——D x ∈?,恒有)()(x f x f =-。 (2) 奇函数)(x f ——D x ∈?,恒有)()(x f x f -=-。 三、基本初等函数 1、常数函数:c y =,定义域是),(+∞-∞,图形是一条平行于x 轴的直线。 2、幂函数:u x y =, (u 是常数)。它的定义域随着u 的不同而不同。图形过原点。 3、指数函数

定义: x a x f y ==)(, (a 是常数且0>a ,1≠a ).图形过(0,1)点。 4、对数函数 定义: x x f y a log )(==, (a 是常数且0>a ,1≠a )。图形过(1,0)点。 5、三角函数 (1) 正弦函数: x y sin = π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。 (2) 余弦函数: x y cos =. π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。 (3) 正切函数: x y tan =. π=T , },2 )12(,|{)(Z R ∈+≠∈=k k x x x f D π , ),()(+∞-∞=D f . (4) 余切函数: x y cot =. π=T , },,|{)(Z R ∈≠∈=k k x x x f D π, ),()(+∞-∞=D f . 5、反三角函数 (1) 反正弦函数: x y sin arc =,]1,1[)(-=f D ,]2 ,2[)(π π- =D f 。 (2) 反余弦函数: x y arccos =,]1,1[)(-=f D ,],0[)(π=D f 。 (3) 反正切函数: x y arctan =,),()(+∞-∞=f D ,)2 ,2()(π π- =D f 。 (4) 反余切函数: x y arccot =,),()(+∞-∞=f D ,),0()(π=D f 。 极限 一、求极限的方法 1、代入法 代入法主要是利用了“初等函数在某点的极限,等于该点的函数值。”因此遇到大部分简单题目的时候,可以直接代入进行极限的求解。 2、传统求极限的方法 (1)利用极限的四则运算法则求极限。 (2)利用等价无穷小量代换求极限。 (3)利用两个重要极限求极限。 (4)利用罗比达法则就极限。

微积分知识点归纳

知识点归纳 1. 求极限 2.1函数极限的性质P35 唯一性、局部有界性、保号性 P34 A x f x x =→)(lim 0 的充分必要条件是 :A x f x f x f x f x x x x == +==-+-→→)()0()()0(lim lim 0 000 2.2 利用无穷小的性质P37: 定理1有限个无穷小的代数和仍是无穷小。 0)sin 2(30 lim =+→x x x 定理2有界函数与无穷小的乘积是无穷小。 0)1 sin (20 lim =→x x x 定理3无穷大的倒数是无穷小。反之,无穷小的倒数是无穷大。 例如:lim ∞→x 12132335-++-x x x x ∞= , lim ∞→x 131 23523+--+x x x x 0= 2.3利用极限运算法则P41 2.4利用复合函数的极限运算法则P45 2.4利用极限存在准则与两个重要极限P47 夹逼准则与单调有界准则,

lim 0→x x x tan 1=,lim 0→x x x arctan 1=,lim 0→x x x arcsin 1=, lim )(∞→x ?)())(11(x x ??+e =,lim 0 )(→x ?) (1 ))(1(x x ??+e = 2.6利用等价无穷小P55 当0→x 时, x x ~sin ,x x ~tan , x x ~arcsin ,x x ~arctan ,x x ~)1ln(+, x e x ~,221 ~cos 1x x -,x x αα++1~)1(,≠α0 为常数 2.7利用连续函数的算术运算性质及初等函数的连续性P64 如何求幂指函数)()(x v x u 的极限?P66 )(ln )()()(x u x v x v e x u =,)(ln )()(lim )(lim x u x v x v a x a x e x u →=→ 2.8洛必达法则P120 lim a x →)() (x g x f )() (lim x g x f a x ''=→ 基本未定式:00,∞∞ , 其它未定式 ∞?0,∞-∞,00,∞1,0∞(后三个皆为幂指函数) 2. 求导数的方法 2.1导数的定义P77: lim 00|)(→?==='='x x x dx dy x f y x x f x x f x y x ?-?+ =??→?) ()(000lim h x f h x f h ) ()(000lim -+=→

关于高等数学方法与典型例题归纳

关于高等数学方法与典 型例题归纳 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

2014年山东省普通高等教育专升本考试 2014年山东专升本暑期精讲班核心讲义 高职高专类 高等数学 经典方法及典型例题归纳 —经管类专业:会计学、工商管理、国际经济与贸易、电子商务 —理工类专业:电气工程及其自动化、电子信息工程、机械设计制造及其 自动化、交通运输、计算机科学与技术、土木工程 2013年5月17日星期五 曲天尧 编写 一、求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方;

(2) ???? ???=<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 3.分子(母)有理化求极限 例3:求极限)13(lim 22+-++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】1 3) 13)(13(lim )13(lim 2 2 22222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030+-+-=+-+→→ 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子........... 是解题的关 键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim ,第一个重 要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 +,最后凑指数部分。 【解】22 212 12112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→

高等数学(下)知识点总结

主要公式总结 第八章空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111 C B A n =ρ ,),,(2222C B A n =ρ , 22 22 22 21 21 21 2 12121cos C B A C B A C C B B A A ++?++++= θ ?∏⊥∏210212121=++C C B B A A ;? ∏∏21//2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: 2 2 2 000C B A D Cz By Ax d +++++= (三) 空间直线及其方程

考研高等数学知识点总结

高等数学知识点总结 导数公式: 基本积分表: 三角函数的有理式积分: 222 2 12211cos 12sin u du dx x tg u u u x u u x +==+-=+= , , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +- ='+= '--='-='? ?????????+±+ =±+=+=+= +-=?+=?+-== +==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 2 2 2 2 2 2 2 2 C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+= -++-=-+=++-=++=+=+-=? ???????arcsin ln 21ln 21 1csc ln csc sec ln sec sin ln cos ln 2 2 2 22 22 2 ? ????++ -= -+-+--=-+++++=+-= == -C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 2 2 ln 2 2)ln(2 21cos sin 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0π π

高数知识点总结(上册)

高数知识点总结(上册) 函数: 绝对值得性质: (1)|a+b|≤|a|+|b| (2)|a-b|≥|a|-|b| (3)|ab|=|a||b| (4)|b a |=)0(||||≠b b a 函数的表示方法: (1)表格法 (2)图示法 (3)公式法(解析法) 函数的几种性质: (1)函数的有界性 (2)函数的单调性 (3)函数的奇偶性 (4)函数的周期性 反函数: 定理:如果函数)(x f y =在区间[a,b]上是单调的,则它的反函数)(1 x f y -=存在,且是单 值、单调的。 基本初等函数: (1)幂函数 (2)指数函数 (3)对数函数 (4)三角函数 (5)反三角函数 复合函数的应用 极限与连续性: 数列的极限: 定义:设 {}n x 是一个数列,a 是一个定数。如果对于任意给定的正数ε(不管它多么小) , 总存在正整数N ,使得对于n>N 的一切n x ,不等式 ε <-a x n 都成立,则称数a 是数列 {}n x 的 极限,或称数列{}n x 收敛于a ,记做a x n n =∞ →lim ,或 a x n →(∞→n ) 收敛数列的有界性: 定理:如果数列 {}n x 收敛,则数列{}n x 一定有界 推论:(1)无界一定发散(2)收敛一定有界 (3)有界命题不一定收敛 函数的极限: 定义及几何定义 函数极限的性质: (1)同号性定理:如果A x f x x =→)(lim 0 ,而且A>0(或A<0),则必存在0x 的某一邻域,当x 在该邻域内(点0 x 可除外),有0)(>x f (或0)(

高等数学基础知识点大全(94页完美打印版)

高高等数学基本知识点

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A 中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。 ②补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集。简称为集合A的补集,记作C U A。 即C U A={x|x∈U,且x A}。 集合中元素的个数 ⑴、有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。 ⑵、用card来表示有限集中元素的个数。例如A={a,b,c},则card(A)=3。 ⑶、一般地,对任意两个集合A、B,有 card(A)+card(B)=card(A∪B)+card(A∩B) 我的问题: 1、学校里开运动会,设A={x|x是参加一百米跑的同学},B={x|x是参加二百米跑的同学},C={x|x是参加四百米跑的同学}。学校规定,每个参加上述比赛的同学最多只能参加两项,请你用集合的运算说明这项规定,并解释以下集合运算的含义。⑴、A∪B;⑵、A∩B。

(超级总结吐血推荐)考研数学二经典知识点题型技巧总结(高数线代)综合网上及个人线代心得

高等数学(数二> 一.重点知识标记 高等数学 科目大纲章节知识点题型重要度等级 高等数学 第一章函数、极限、连续 1 .等价无穷小代换、洛必达法则、泰勒展开式求函数的极限★★★★★ 2 .函数连续的概念、函数间断点的类型 3 .判断函数连续性与间断点的类型★★★ 第二章一元函数微分学 1 .导数的定义、可导与连续之间的关系 按定义求一点处的导数,可导与连续的关系★★★★ 2 .函数的单调性、函数的极值讨论函数的单调性、极值★★★★ 3.闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用★★★★★ 第三章一元函数积分学 1 .积分上限的函数及其导数变限积分求导问题★★★★★ 2 .有理函数、三角函数有理式、简单无理函数的积分 计算被积函数为有理函数、三角函数有理式、简单无理函数的不定积分和定积分★★ 第四章多元函数微分学 1 .隐函数、偏导数、的存在性以及它们之间的因果关系 2 .函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连 续性的讨论与它们之间的因果关系★★ 3 .多元复合函数、隐函数的求导法求偏导数,全微分★★★★★ 第五章多元函数积分学 1. 二重积分的概念、性质及计算 2.二重积分的计算及应用★★ 第六章常微分方程 1.一阶线性微分方程、齐次方程, 2.微分方程的简单应用,用微分方程解决一些应用问题★★★★ 一、函数、极限、连续部分:

极限的运算法则、极限存在的准则(单调有界准则和夹逼准则>、未定式的极限、主要的等价无穷小、函数间断点的判断以及分类,还有闭区间上连续函数的性质(尤其是介值定理>,这些知识点在历年真题中出现的概率比较高,属于重点内容,但是很基础,不是难点,因此这部分内容一定不要丢分。 二、微分学部分: 主要是一元函数微分学和多元函数微分学,其中一元函数微分学是基础亦是重点。 一元函数微分学,主要掌握连续性、可导性、可微性三者的关系,另外要掌握各种函数求导的方法,尤其是复合函数、隐函数求导。微分中值定理也是重点掌握的内容,这一部分可以出各种各样构造辅助函数的证明,包括等式和不等式的证明,这种类型题目的技巧性比较强,应多加练习。函数的凹凸性、拐点及渐近线,也是一个重点内容,在近几年考研中常出现。 多元函数微分学,掌握连续性、偏导性、可微性三者之间的关系,重点掌握各种函数求偏导的方法。多元函数的应用也是重点,主要是条件极值和最值问题。 三、积分学部分: 一元函数积分学 一个重点是不定积分与定积分的计算。在计算过程中,会用到不定积分/定积分的基本性质、换元积分法、分部积分法。其中,换元积分法是重点,会涉及到三角函数换元、倒代换,如何准确地进行换元从而得到最终答案,却是需要下一番工夫的。定积分的应用同样是重点,常考的是面积、体积的求解,多练掌握解题技巧。对于定积分在物理上的应用(数二有要求>,如功、引力、压力、质心、形心等,近几年考试基本都没有涉及,考生只要记住求解公式即可。 多元函数积分学的一个重点是二重积分的计算,其中要用到二重积分的性质,以及直角坐标与极坐标的相互转化。这部分内容,每年都会考到,考生要引起重视,需要明白的是,二重积分并不是难点。 四、微分方程: 这里有两个重点:一阶线性微分方程。二阶常系数齐次/非齐次线性微分方程。 线性 第一章行列式 1.行列式的运算 2.计算抽象矩阵的行列式★★★ 第二章矩阵 1. 矩阵的运算 2. 求矩阵高次幂等★★★ 3. 矩阵的初等变换、初等矩阵与初等变换有关的命题★★★★★ 第三章向量 1. 向量组的线性相关及无关的有关性质及判别法 2. 向量组的线性相关性★★★★★ 3. 线性组合与线性表示判定向量能否由向量组线性表示★★★★

相关主题
文本预览
相关文档 最新文档