2020-2021学年内蒙古包头市青山区九年级(上)期中数学试卷
- 格式:docx
- 大小:168.98 KB
- 文档页数:11
专题03解一元一次不等式(组)及参数问题八种模型【类型一解一元一次不等式模型】例题:(2022·陕西·模拟预测)解不等式3136x x-<-,并在如图所示的数轴上表示出该不等式的解集.【变式训练1】(2022·陕西·西安市西光中学二模)解不等式7132184x x->--,并把它的解集在如图所示的数轴上表示出来.【变式训练2】(2021·上海徐汇·期中)解不等式38236x x---≤,把解集在数轴上表示出来,并求出最小整数解.【变式训练3】(2022·福建·三明一中八年级阶段练习)解不等式:(1)2(41)58x x -≥-(2)261136x x +-≤【变式训练4】(2022·河南驻马店·八年级阶段练习)解下列一元一次不等式,并把它们的解集表示在数轴上:(1)2﹣5x <8﹣6x ;(2)53-x +1≤32x .【类型二解一元一次不等式组模型】例题:(2022·福建·三明一中八年级阶段练习)解不等式组52331132x xx x -≤⎧⎪-+⎨<-⎪⎩,并把不等式组的解集在数轴上表示出来:【变式训练1】(2022·广东·汕头市龙湖实验中学九年级阶段练习)解不等式组:1011122x x -≥⎧⎪⎨--<⎪⎩,并写出它的所有整数解.【变式训练2】(浙江省温州市2020-2021学年八年级上学期3月月考数学试题)解一元一次不等式组523(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩,并把解集在数轴上表示出来.【变式训练3】(2022·广东揭阳·八年级阶段练习)解不等式组:12(1)2235xx x x ⎧+<-⎪⎪⎨+⎪>⎪⎩,并把它的解集在数轴上表示出来.【变式训练4】(2022·湖南岳阳·八年级期末)(1)解不等式121132x x+++≥;(2)解不等式组:3242(1)31x x x -<⎧⎨-≤+⎩,并把它的解集在数轴上表示出来.【类型三一元一次不等式的定义时含参数问题】例题:(2021·全国·七年级课时练习)已知不等式||1(2)20n n x --->是一元一次不等式,则n =____.【变式训练1】(2022·山东·枣庄市第十五中学八年级阶段练习)已知()3426m m x --+>是关于x 的一元一次不等式,则m 的值为______.【变式训练2】(2021·黑龙江·肇源县超等蒙古族乡学校八年级期中)若21(2)15m m x --->是关于x 的一元一次不等式,则m 的值为______________.【类型四一元一次不等式整数解中含参数问题】例题:(2022·上海·七年级期中)如果不等式2x ﹣3≤m 的正整数解有4个,则m 的取值范围是_____.【变式训练1】(2020·全国·八年级单元测试)已知不等式30x m -≤有5个正整数解,则m 的取值范围是________.【类型五一元一次方程组与不等式间含参数问题】例题:(2022·全国·八年级)关于x 的方程42158x m x -+=-的解是负数,则满足条件的m 的最小整数值是_____.【变式训练1】(2021·四川成都·八年级期末)已知关于x 的方程35x a x +=-的解是正数,则实数a 的取值范围是______.【变式训练2】(2021·全国·七年级课时练习)如果关于x 的方程2435x a x a++=的解不是负数,那么a 的取值范围是________.【变式训练3】(2021·全国·七年级课时练习)当m________时,关于x的方程222x m xx---=的解为非负数.【类型六二元一次方程组与不等式间含参数问题】例题:(2021·内蒙古呼和浩特·七年级期末)已知关于x、y的二元一次方程组231231x y kx y k+=+⎧⎨+=-⎩的解满足x+y<4,则满足条件的k的最大整数为____.【变式训练1】(2021·四川绵阳·x,y的二元一次方程组221x yx y k+=⎧⎨+=+⎩的解为正数,则k的取值范围为__.【变式训练2】(2021·江苏江苏·七年级期末)已知关于x,y的二元一次方程组231323x y mx y m+=+⎧⎨-=+⎩,且x,y满足x+y>3.则m的取值范围是___.【变式训练3】(2021·四川南充·七年级期末)已知关于x,y的方程组24223x y kx y k+=⎧⎨+=-+⎩,的解满足x﹣y>0,则k的最大整数值是______________.【变式训练4】(2021·甘肃·九年级专题练习)若关于x,y的二元一次方程组3331x yx y a+=⎧⎨+=+⎩的解满足x+y<2,则a的取值范围为_______.【类型七解一元一次不等式组中有无解集求参数问题】例题:(2021·内蒙古·包头市青山区教育教学研究中心八年级期中)关于x的不等式组352x ax a->⎧⎨-<⎩无解,则a的取值范围是_____.【变式训练1】(2022·广西贵港·八年级期末)若关于x的不等式组33235x xx m-<⎧⎨->⎩有解,则m的取值范围是______.【变式训练2】(2021·四川凉山·七年级期末)已知关于x的不等式组5122x ax x->⎧⎨->-⎩无解,则a的取值范围是_________.【变式训练3】(2021·河南南阳·三模)已知关于x的不等式组3xx m>⎧⎨≤⎩有实数解,则m的取值范围是____.【变式训练4】(2022·江苏南通·九年级阶段练习)如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则常数a的取值范围是______________.【类型八解一元一次不等式组中有整数解求参数问题】例题:(2021·宁夏中卫·八年级期末)不等式组,3x ax>⎧⎨<⎩的整数解有三个,则a的取值范围是_________.【变式训练1】(2021·安徽·马鞍山二中实验学校七年级期中)已知不等式组211x x a-<⎧⎨-≤⎩,只有三个整数解,则a 的取值范围是_________.【变式训练2】(2021·黑龙江佳木斯·模拟预测)不等式组2312x ax -⎧⎨-≤⎩<有3个整数解,则a 的取值范围是_____.【变式训练3】(2020·内蒙古·北京八中乌兰察布分校一模)关于x 的不等式组3x ax <⎧⎨≥⎩只有两个整数解,则a 的取值范围是_____.【变式训练4】(2022·湖南湘潭·八年级期末)已知关于x 的不等式组3010x a x -≤⎧⎨-≤⎩①②,有且只有3个整数解,则a 的取值范围是______________。
2024年内蒙古包头市青山区二机一中中考数学三模试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列4个数中,最小的数是( )A.﹣(﹣2)B.|﹣2|C.(﹣2)0D.(﹣2)﹣12.眼下正值春耕备耕关键时期,中国人民银行运城市中心支行指导辖内银行业金融机构将“支持春耕备耕”作为重点工作,多措并举,加大信贷投放力度.截至目前,辖内银行业金融机构共向春耕备耕领域投放贷款5.68万户共计27.87亿元,数据“27.87亿”用科学记数法表示为( )A.27.87×108B.27.87×109C.2.787×109D.2.787×10103.下列计算正确的是( )A.a2•a3=a5B.(﹣a2)3=a6C.a2+a2=2a4D.a3÷a2=14.下面几何体都是由6个大小相同的小正方体组成的,其中主视图和左视图相同的几何体是( )A.B.C.D.5.一个含30°的直角三角尺和一把直尺按如图所示的位置摆放,若∠1=20°,则∠2的度数为( )A.20°B.30°C.40°D.50°6.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC'∥AB,划∠BAB′的度数是( )A.35°B.40°C.50°D.70°7.如图,AB为⊙O的直径,C,D是⊙O上两点,且OD∥BC,若∠BAC=α,则∠BAD的度数可以表示为( )A.2αB.90°﹣αC.D.8.如图,在平面直角坐标系中,抛物线经过平移后得到抛物线y2,则抛物线y2的表达式为( )A.y=﹣2x2﹣4x B.y=﹣2x2﹣4x+1C.y=﹣2x2+4x D.y=﹣2x2+4x+19.如图,在△ABC中,CA=CB,AB=4,点D是AB的中点,分别以点A、B、C为圆心,AD的长为半径画弧,交线段AC、BC于点E、F、G、H,若点E、F是线段AC的三等分点时,图中阴影部分的面积为( )A.8B.16﹣4πC.8﹣4πD.16﹣2π10.黄金分割由于其美学性质,受到摄影爱好者和艺术家的喜爱,摄影中有一种拍摄手法叫黄金构图法.其原理是:如图,将正方形ABCD的底边BC取中点E,以E为圆心,线段DE为半径作圆,其与底边BC 的延长线交于点F,这样就把正方形ABCD延伸为矩形ABFG,称其为黄金矩形.若CF=4a,则AB=( )A.(﹣1)a B.(﹣2)a C.(+1)a D.(+2)a二、填空题:本题共6小题,每小题3分,共18分。
2020-2021学年湖北省武汉市青山区九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.将方程x2−8x=10化成一元二次方程的一般形式,其中二次项系数为1,常数项为()A. −8B. 8C. 10D. −102.下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是()A. B. C. D.3.若将抛物线y=2x2向上平移3个单位,所得抛物线的解析式为()A. y=2x2+3B. y=2x2−3C. y=2(x−3)2D. y=2(x+3)24.如图,在⊙O中,∠BOC=100°,则∠A等于()A. 100°B. 50°C. 40°D. 25°5.抛物线y=−3(x−1)2−2的顶点坐标是()A. (1,2)B. (−1,2)C. (−1,−2)D. (1,−2)6.用配方法解方程x2+10x+9=0,配方正确的是()A. (x+5)2=16B. (x+5)2=34C. (x−5)2=16D. (x+5)2=257.如图,Rt△ABC中,∠BAC=30°,∠C=90°,将△ABC绕点A旋转,使得点C的对应点C′落在AB上,则∠BB′C′的度数为()A. 12°B. 15°C. 25°D. 30°8.要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排15场比赛,则参赛球队的个数是()A. 5个B. 6个C. 7个D. 8个9.如图,四边形ABCD为⊙O的内接四边形,∠AOD+∠BOC=180°.若AD=2,BC=6,则△BOC的面积为()A. 3B. 6C. 9D. 1210.抛物线y=ax2+bx+c的顶点为D(−1,2),与x轴的一个交点A在点(−3,0)和(−2,0)之间,其部分图象如图,则以下结论:①b2−4ac<0;②a+b+c<0;③c−a=2;④方程ax2+bx+c−2=0有两个相等的实数根.其中正确结论的个数为()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)11.已知方程x2−4x+1=0的两个根是x1和x2,则x1+x2=______.12.已知点A(−2,a)与点B(b,3)关于原点对称,则a−b=______13.已知点A(−2,y1),点B(1,y2)在抛物线y=3x2−2上,则y1,y2的大小关系是:y1______y2.(填“>”或“<”)14.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程是______.15.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,则水面下降1m时,水面宽度增加______m.16.如图,矩形ABCD中,AB=2,AD=√3,O为AB的中点,将OA绕着点O旋转得到OE,连接DE.以DE为边作等边△DEF(点D、E、F按顺时针方向排列),连接CF,则CF的最小值为______.三、计算题(本大题共1小题,共8.0分)17.解方程:x2−x−1=0.四、解答题(本大题共7小题,共64.0分)18.二次函数y=ax2−2x+c中的x,y满足如表:x…−10123…y…0−3−4−3m…(1)求抛物线的解析式;(2)求m的值.19.小明在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,求金色纸边的宽度.20.请用无刻度直尺画出下列图形,并保留作图痕迹.(1)将线段AB绕点B顺时针旋转90°,得到线段BD;(2)过C作线段AB的垂线段CE,垂足为E;(3)作∠ABD的角平分线BF.21.如图,AB为⊙O的直径,C是⊙O上的一点,连接AC,BC.D是BC⏜的中点,过D作DE⊥AB于点E,交BC于点F.(1)求证:BC=2DE;(2)若AC=6,AB=10,求DF的长.22.某超市销售一种成本为每千克40元的水产品,若按每千克50元销售,一个月可售出500千克,销售价每涨价1元,月销售量就减少10千克.(1)直接写出月销售量y(千克)与售价x(元/千克)之间的函数关系式:______;月销售利润w(元)与售价x(元/千克)之间的函数关系式:______;(2)该超市想在月销售量不低于250千克的情况下,使月销售利润达到8000元,销售单价应定为每千克多少元?(3)售价定为每千克多少元时会获得最大利润?求出最大利润.23.[学习概念]有一组对角互余的凸四边形称为对余四边形.[理解运用](1)如图1,在对余四边形ABCD中,连接AC,∠D=30°,∠ACD=105°,AB=AC,求∠BAD的度数;(2)如图2,在凸四边形ABCD中,DA=DB,DA⊥DB,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形?并证明你的结论;(3)[拓展提升]如图3,在对余四边形ABCD中,∠A=45°.∠ABD+∠BDC=180°,BC=4.求AB+CD的长.24.已知抛物线y=ax2经过点A(2,1).(1)求抛物线的解析式;(2)如图1,直线l经过点A且与抛物线对称轴右侧交于点B,若△ABO的面积为6,求直线l的解析式;(3)如图2,直线CD与抛物线交于C、D两点,与y轴交于点(0,m),直线PC、PD与抛物线均只有一个公共点,点P的纵坐标为n,求m与n的数量关系.答案和解析1.【答案】D【解析】解:方程整理得:x2−8x−10=0,其中二次项系数为1,常数项为−10.故选:D.方程整理后为一般形式,找出二次项系数与一次项系数即可.此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c= 0(a,b,c是常数且a≠0).在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.【答案】C【解析】解:A、B、D中图形都不是中心对称图形,C中图形是中心对称图形,故选:C.根据中心对称图形的概念判断即可.本题考查的是中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.3.【答案】A【解析】解:由“上加下减”的原则可知,将二次函数y=2x2向上平移3个单位可得到函数y=2x2+3,故选:A.直接根据“上加下减、左加右减”的原则进行解答即可.本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.4.【答案】B∠BOC=50°.【解析】解:∵∠BOC=100°,∴∠A=12故选:B.根据圆周角定理可求得∠A=50°.本题利用了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.【答案】D【解析】解:∵y=−3(x−1)2−2是抛物线的顶点式,∴顶点坐标为(1,−2).故选:D.直接根据顶点式的特点求顶点坐标.本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−ℎ)2+k中,对称轴为x=ℎ,顶点坐标为(ℎ,k).6.【答案】A【解析】解:x2+10x+9=0,x2+10x=−9,x2+10x+52=−9+52,(x+5)2=16.故选:A.移项,配方(方程两边都加上一次项系数的一半的平方),即可得出答案.本题考查了用配方法解一元二次方程的应用,关键是能正确配方.7.【答案】B【解析】解:由旋转的性质可知,∠B′AB=∠BAC=30°,AB=AB′,(180°−30°)=75°,∴∠ABB′=∠AB′B=12∵∠BCB=90°,∴∠BB′C=90°−75°=15°,故选:B.利用旋转的性质,三角形面积和定理求解即可.本题考查旋转变化的性质,三角形内角和定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.8.【答案】B【解析】解:设参赛球队的个数是x,每个队都要赛(x−1)场,但两队之间只有一场比赛,由题意得:x(x−1)2=15,解得:x1=6,x2=−5(不合题意,舍去),则参赛球队的个数是6个;故选:B.根据赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数=x(x−1)2,由此列出方程,然后求解即可.本题考查了由实际问题抽象一元二次方程的应用,读懂题意,得到总场数与球队之间的关系是解决本题的关键.9.【答案】A【解析】解:延长BO交⊙O于E,连接CE,则∠COE+∠BOC=180°,∠BCE=90°,即CE⊥BC,∵∠AOD+∠BOC=180°,∴∠AOD=∠COE,∴AD⏜=CE⏜,∴AD=CE=2,∵BC=6,∴△BEC的面积为12BC⋅CE=12×6×2=6,∵OB=OE,∴△BOC的面积=12△BEC的面积=12×6=3,故选:A.延长BO交⊙O于E,连接CE,可得∠COE+∠BOC=180°,∠BCE=90°,由∠AOD+∠BOC=180°,∠AOD=∠COE,推出AD=CE=2,根据三角形的面积公式可求得△△BEC的面积.BEC的面积为6,由OB=OE,可得△BOC的面积=12本题主要考查了圆心角所对弧、弦的关系,圆周角定理,三角形面积公式,正确作出辅助线是解决问题的关键.10.【答案】C【解析】【分析】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为;抛物线与y轴的交点坐标抛物线,当a>0,抛物线开口向上;对称轴为直线x=−b2a为(0,c);当b2−4ac>0,抛物线与x轴有两个交点;当b2−4ac=0,抛物线与x轴有一个交点;当b2−4ac<0,抛物线与x轴没有交点.由抛物线与x轴有两个交点得到b2−4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=−1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(−1,2)得a−b+c=2,由抛物线的对称轴为直=−1得b=2a,所以c−a=2;根据二次函数的最大值问题,当x=−1时,线x=−b2a二次函数有最大值为2,即只有x=−1时,ax2+bx+c=2,所以说方程ax2+bx+c−2=0有两个相等的实数根.【解答】解:∵抛物线与x轴有两个交点,∴b2−4ac>0,所以①错误;∵顶点为D(−1,2),∴抛物线的对称轴为直线x=−1,∵抛物线与x轴的一个交点A在点(−3,0)和(−2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,所以②正确;∵抛物线的顶点为D(−1,2),∴a−b+c=2,∵抛物线的对称轴为直线x=−b2a=−1,∴b=2a,∴a−2a+c=2,即c−a=2,所以③正确;∵当x=−1时,二次函数有最大值为2,即只有x=−1时,ax2+bx+c=2,∴方程ax2+bx+c−2=0有两个相等的实数根,所以④正确.故选C.11.【答案】4【解析】解:根据题意得x1+x2=−−41=4.故答案为4.根据根与系数的关系求解.本题考查了根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1x2=ca.12.【答案】−5【解析】解:由题意,得:a=−3,b=2,a−b=−3−2=−5,故答案为:−5.根据关于原点对称的点的坐标,可得答案.本题考查了关于原点对称的点的坐标,利用关于原点对称的点的坐标规律得出a,b是解题关键.13.【答案】>【解析】解:∵点A(−2,y1),点B(1,y2)在抛物线y=3x2−2上,∴当x=−2时,y1=12−2=10,当x=1时,y2=3−2=1,∴y1>y2,故答案为>.将点A(−2,y1),点B(1,y2)分别代入y=3x2−2,求出相应的y1、y2,即可比较大小.本题考查二次函数的图象上点的特点;能够用代入法求二次函数点的坐标是解题的关键.14.【答案】36(1−x)2=25【解析】【分析】本题考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.可先表示出第一次降价后的价格,那么第一次降价后的价格×(1−降低的百分率)=25,把相应数值代入即可求解.【解答】解:第一次降价后的价格为36×(1−x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为36×(1−x)×(1−x),则列出的方程是36(1−x)2=25.故答案为:36(1−x)2=25.15.【答案】(2√6−4)【解析】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C 点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(−2,0),到抛物线解析式得出:a=−0.5,所以抛物线解析式为y=−0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=−1时,对应的抛物线上两点之间的距离,也就是直线y=−1与抛物线相交的两点之间的距离,可以通过把y=−1代入抛物线解析式得出:−1=−0.5x2+2,解得:x=±√6,所以水面宽度增加到2√6米,比原先的宽度当然是增加了2√6−4,故答案为:(2√6−4).根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=−1代入抛物线解析式得出水面宽度,即可得出答案.此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.16.【答案】2√3−1【解析】解:如图,连接DO,延长OA到T,使得AT=OA,连接DT,FT,CT.∵四边形ABCD是矩形,∴∠OAD=90°,∵AD=√3,OA=OB=1,=√3,∴tan∠AOD=ADAO∴∠AOD=60°,∠ADO=30°,∴OD=2AO,∵AO=AT,∴OT=2AO,∴OT=OD,∴△ODT 是等边三角形,∵△DEF 是等边三角形,∴∠ODT =∠EDF =60°,DO =DT ,DE =DF ,∴∠DEO =∠FDT ,∴△DEO≌△FDT(SAS),∴FT =OE =OA =1,∵∠B =90°,BT =2+1=3,BC =√3,∴CT =√BT 2+BC 2=√32+(√3)2=2√3,∵CF ≥CT −TF ,∴CF ≥2√3−1,∴CF 的最小值为2√3−1.故答案为:2√3−1.如图,连接DO ,延长OA 到T ,使得AT =OA ,连接DT ,FT ,CT.证明△DEO≌△FDT(SAS),推出FT =OE =OA =1,利用勾股定理求出CT ,根据CF ≥CT −TF ,可得CF ≥2√3−1,由此即可解决问题.本题考查旋转变换的性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.17.【答案】解:x 2−x −1=0,x =−b±√b 2−4ac 2a=1±√1+42×1=1±√52, ∴x 1=1+√52,x 2=1−√52.【解析】本题考查了公式法解一元二次方程,解题时要注意将方程化为一般形式.确定a ,b ,c 的值,然后检验方程是否有解,若有解,代入公式即可求解.解此题的关键是熟练应用求根公式,要注意将方程化为一般形式,确定a 、b 、c 的值.18.【答案】解:(1)由题意可知,抛物线y =ax 2−2x +c 经过(−1,0),(0,−3), ∴{a +2+c =0c =−3, 解得:{a =1c =−3, 所以抛物线的解析式为:y =x 2−2x −3;(2)把x=3代入y=x2−2x−3,可得y=9−6−3=0,所以m=0.【解析】(1)取两组对应值代入y=ax2−2x+c得到关于a、c的方程组,然后解方程组即可;(2)把x=3代入二次函数的解析式求解即可.本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.19.【答案】解:设金色纸边的宽度为xcm,则挂图的长为(80+2x)cm,宽就为(50+ 2x)cm,根据题意得:(80+2x)(50+2x)=5400,解得:x1=−70(不符合题意,舍去),x2=5.答:金色纸边的宽度为5cm.【解析】设金色纸边的宽度为xcm,则挂图的长为(80+2x)cm,宽就为(50+2x)cm,根据题目条件列出方程,求出其解就可以.本题考查了根据矩形的面积公式的列一元二次方程解决实际问题的运用及一元二次方程解法的运用.解答时检验根是否符合题意是容易被忽略的地方.20.【答案】解:(1)如图,线段BD即为所求.(2)如图,线段CE即为所求.(3)如图,射线BF即为所求.【解析】(1)根据旋转变换的性质画出图形即可.(2)取格点T,连接CT交AB于点E,线段CE即为所求.(3)取格点,G,H,连接GH,AD交于点F,作射线BF,射线BF即为所求.本题考查作图−旋转变换,角平分线,垂线段等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.21.【答案】(1)证明:延长DE交⊙O于点G,如图所示:∵AB为⊙O的直径,DE⊥AB,∴DE=GE,BD⏜=BG⏜,∵D是BC⏜的中点,∴CD⏜=BD⏜=BG⏜,∴BC⏜=DG⏜,∴BC=DG=2DE;(2)解:连接BD、OD,如图所示:∵CD⏜=BG⏜,∴∠DBC=∠BDF,∴DF=BF,∵AB为⊙O的直径,AB=10,∴∠ACB=90°,OB=OD=5,∴BC=√AB2−AC2=√102−62=8,BC=4,由(1)得:DE=12∵DE⊥AB,∴OE=√OD2−DE2=√52−42=3,∴BE=OB−OE=2,设DF=BF=a,则EF=4−a,在Rt△BEF中,由勾股定理得:22+(4−a)2=a2,,解得:a=52∴DF=5.2【解析】(1)延长DE交⊙O于点G,先由垂径定理得DE=GE,BD⏜=BG⏜,再证出BC⏜=DG⏜,由圆心角、弧、弦的关系即可得出结论;(2)连接BD、OD,先由圆周角定理得∠DBC=∠BDF,得DF=BF,由圆周角定理得BC=4,再由勾股定理求出OE=3,则BE=∠ACB=90°,勾股定理得BC=8,则DE=12OB−OE=2,设DF=BF=a,则EF=4−a,然后在Rt△BEF中,由勾股定理得出方程,解方程即可.本题考查了圆周角定理、垂径定理、圆心角、弧、弦的关系、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.22.【答案】y=−10x+1000w=−10x2+1400x−40000【解析】解:(1)月销售量y(千克)与售价x(元/千克)之间的函数关系式:y=500−10(x−50)=−10x+1000,即y=−10x+1000;月销售利润w(元)与售价x(元/千克)之间的函数关系式:w=(x−40)y=(x−40)(−10x+1000)=−10x2+1400x−40000,即w=−10x2+1400x−40000,故答案为:y=−10x+1000,w=−10x2+1400x−40000;(2)根据题意得:−10x2+1400x−40000=8000,解得:x1=80,x2=60,又∵月销售量不低于250千克,则有:−10x+1000≥250,解得:x≤75,∴x1=80>75(舍去),答:销售单价应定为60元时,月销售利润达到8000元;(3)由(2)得:w=−10x2+1400x−40000=−10(x−70)2+9000,∵a=−10<0,∴抛物线的开口向下,抛物线有最高点,函数有最大值,当x=70时,w取最大值,最大值为9000元,答:售价定为每千克70元时会获得最大利润?最大利润为9000元.(1)根据一个月可售出500千克,减去因涨价而减少的数量得到月销售量y(千克)与售价x(元/千克)之间的函数关系式,根据(售价−成本)×月销售量得到月销售利润w(元)与售价x(元/千克)之间的函数关系式;(2)将月销售利润8000元代入w=−10x2+1400x−40000,解方程即可得到结果;(3)将w=−10x2+1400x−40000化为顶点式就可以求出结果.本题考查了二次函数的应用,一元二次方程的运用,解答时求出函数的解析式是解题的关键.23.【答案】解:(1)∵四边形ABCD是对余四边形,依题意得,∠B+∠D=90°,∵∠D=30°,∴∠B=90°−∠D=60°,∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠ACD=105°,∴∠BCD=∠ACB+∠ACD=165°,在四边形ABCD中,∠BAD=360°−∠B−∠ACD−∠D=360°−60°−165°−30°= 105°;(2)四边形ABCD为对余四边形,证明:∵AD⊥BD,∴∠ADB=90°,∵DA=DB,∴∠BAD=∠ABD=45°,如图2,过点D作DM⊥CD,使CD=CM,连接CM,BM,∴∠DMC=∠DCM=45°,∵∠ADB=∠CDM=90°,∴∠ADB+∠BDC=∠CDM+∠BDC,∴∠ADC=∠BDM.在△ADC和△BDM中,{DA=DB∠ADC=∠BDM DC=DM,∴△ADC≌△BDM(SAS),∴AC=BM.在Rt△MDC中,根据勾股定理得,CM2=CD2+DM2=2CD2,∵2CD2+CB2=AC2,∴CM2+CB2=BM2,∴△BCM是直角三角形,且∠BCM=90°,∵∠DCM=45°,∴∠DCB=∠BCM−∠DCM=45°,∴∠DCB+∠DAB=90°,∴四边形ABCD为对余四边形;(3)如图3,过点B作BE⊥BC交CD的延长线于点E,∵四边形ABCD为对余四边形,依题意得,∠A+∠C=90°,∵∠A=45°,∴∠C=∠E=45°=∠A,∵∠ABD+∠BDC=180°,∠BDE+BDC=180°,∴∠ABD=∠EDB,在△ABD和△EDB中,{∠A=∠E∠ABD=∠EDB BD=DB,∴△ABD≌△EDB(AAS),∴AB =ED ,EB =BC =4,在Rt △EBC 中,根据勾股定理得,BE 2+BC 2=CE 2,∴CE =4√2, 即AB +CD =4√2.【解析】(1)先根据对余四边形求出∠B =60°,进而得出∠ACB =60°,∠BCD =165°,最后用四边形内角和定理,即可得出结论;(2)先判断出∠BAD =∠ABD =45°,进而判断出∠ADC =∠BDM ,即可判断出△ADC≌△BDM(SAS),得出AC =BM.再根据勾股定理得出CM 2=CD 2+DM 2=2CD 2,进而判断出∠BCM =90°,即可得出结论;(3)先判断出∠C =∠E =45°=∠A ,再判断出∠ABD =∠EDB ,进而得出△ABD≌△EDB(AAS),得出AB =ED ,EB =BC =4,最后用勾股定理求出CE =4√2,即可得出结论.此题是四边形综合题,主要考查了新定义,等边三角形的判定和性质,勾股定理,全等三角形的判定和性质,直角三角形的判定和性质,构造出全等三角形是解本题的关键.24.【答案】解:(1)∵抛物线y =ax 2经过点A(2,1). ∴1=4a ,解得a =14,∴抛物线解析式为y =14x 2;(2)∵点A(2,1).∴直线OA 为y =12x ,如图1,过B 作BE//OA 交y 轴于E ,连接AE ,则S △AOB =S △AOE =6,∴12OE ×2=6,∴OE =6,∴点E(0,6),设直线BE 为y =12x +6,解{y =12x +6y =14x2得{x =6y =9或{x =−4y =4,∴B(6,9),设直线l 的解析式为y =kx +b ,∴{2k +b =16k +b =9,解得{k =2b =−3, ∴直线l 的解析式为y =2x −3;(3)设直线CD 的解析式为y =kx +m ,由{y =kx +m y =14x2去掉y 整理得14x 2−kx −m =0. 设C 、D 的坐标分别为(x C ,y C ),(x D ,y D ),∴x C ⋅x D =−4m ,设直线CP 的解析式为y =ax +c ,由{y =ax +c y =14x 2整理得,14x 2−ax −c =0. ∵CP 与抛物线只有一个公共点,∴△=a 2+c =0,∴c =−a 2,∴14x 2−ax +a 2=0,解得x C =2a ,同理:设直线DP 的解析式为y =bx +d ,可得x D =2b ,∴2a ⋅2b =−4m ,∴ab =−m ,联立{y =ax +c y =bx +d ,即{y =ax −a 2y =bx −b 2, 解得{x =a +b y =ab, ∴P(a +b,ab),∵点P 的纵坐标为n ,∴n =ab =−m .【解析】(1)利用待定系数法求抛物线解析式解答即可;(2)求得直线OA 的解析式,过B 作BE//OA 交y 轴于E ,连接AE ,则S △AOB =S △AOE =6,根据三角形面积求得OE ,得到E 的坐标,进而求得直线BE 的解析式,与抛物线解析式联立,解方程组求得B 的坐标,然后根据待定系数法即可求得直线l 的解析式;(3)设直线CD 的解析式为y =kx +m ,与抛物线解析式联立整理得14x 2−kx −m =0.根据根与系数的关系得到x C ⋅x D =−4m ,设直线CP 的解析式为y =ax +c ,联立抛物线x2−ax−c=0.根据题意△=a2+c=0,解析式得到14x2−ax+a2=0,解得x C=2a,同理:设直线DP的解析式求得c=−a2,即可得到14为y=bx+d,可得x D=2b,所以4ab=−m,直线CP和直线DP联立,解方程求得交点P((a+b,ab),即可求得n=−m.本题考查了待定系数法求二次函数的解析式,待定系数法求一次函数的解析式,两条直线相交或平行问题,直线与抛物线的交点问题,方程思想的运用是解题的关键.。
2020-2021学年九年级第一学期期中考试数学试卷(含答案)一、选择题(每小题4分,共10小题,满分40分)1、抛物线y = 2(x+1)2-3的顶点坐标是( )A. (-1,-1)B. (1,3)C. (-1,3)D. (1,-3)2、在平面直角坐标系中,抛物线y=(x+5)(x-3)经变换后得到抛物线y=(x+3(x-5),则这个变化可以是( )A. 向左平移2个单位B. 向右平移2个单位C. 向左平移8个单位D. 向右平移2个单位3、已知点A(1,-3)关于y 轴的对称点A ′在反比例函数y=k x 的图象上,则实数k 的值为( ) A. 3 B. 31 C. -3 D. - 314、已知学校航母组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数关系式h=-t 2+24t+1,则下列说法中正确的是( )A. 点火后9s 点火后13s 的升空高度相同B. 点火后24s 火箭落于地面C. 点火后10S 的升空高度为139mD. 火箭升空的最大高度为145m5、已知y=x 2+(t-2)x-2,当x>1时y 随x 的增大而增大,则t 的取值范围是( )A. t > 0B. t = 0C. t < 0D. t ≥ 06、如图,已知D 、E 分别为AB 、AC 上的两点,且DE ∥BC ,AE=3CE ,AB=8,则AD 的长为( )A. 3B. 4C. 5D. 6第6题 第7题 第8题 第9题7、如图,一张矩形纸片ABCD 的长AB=a ,宽BC=b ,将纸片对折,折痕为EF ,所得矩形AFED 与矩形ABCD 相似,则a :b=( )A. 2:1B. 2:1C. 3:3D. 3:28、如图,二次函数y=ax 2+bx+c(a ≠0)的图象的对称轴是直线x=1,则以下四个结论中:① abc>0,② 2a+b=0, ③ 4a+b 2< 4ac ,④ 3a+c< 0.正确的个数是( )A. 1B. 2C. 3D. 49、孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则这个小孔的水面宽度为( )A. 52米B. 43米C. 7米D. 213米10、若一次函数y=ax+b 与反比例函数y=c x的图象在第二象限内有两个交点,且其中一个交点的横坐标为-1,则二次函数y=ax 2+bx+c 的图像可能是( )A B C D二、填空题(每小题5分,满分20分)11、若35a b b -=,则a b = . 12、已知二次函数y=ax 2+bx+c 的部分图象如图所示,则关于x 的方程y=ax 2+bx+c 的两个根的和为 .第12题 第13题13、如图,点C 在反比例函数y=k x(x>0)的图像上,过点C 的直线与x 轴、y 轴分别交于点A 、B ,且AB=BC , 已知△AOB 的面积为1,则k 的值为 .14、已知抛物线y=ax 2+bx-1a与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛线上. (1)此抛物线的对称轴是直线 ;(2)已知点P (12,-1a),Q (2,2),若抛物线与线段PQ 恰有一个公共点,则a 的取值范围是 . 三、(每小题8分,满分16分)15、已知二次函数y=x 2+bx+c 的图象经过点(4,3),(2,-1),求此二次函数的表达式,并求出当0≤x ≤3时, y 的最值.16、已知234a b c ==,且a+3b-2c=15,求4a-3b+c 的值 四、(每小题8分,满分16分)17、如图,二次函数y=(x+2)2+m 的图像与y 轴交于点C ,点B 在抛物线上,且点B 与点C 关于该二次函数图象的对称轴对称,已知一次函数y=kx+b 的图象经过该二次函数图象上点A(-1,0)及点B.(1)求二次函数的解析式;(2)根据图像,写出满足kx+b ≥(x+2)2+m 的x 的取值范围.18、如图是反比例函数y=k x的图象,当-4≤x ≤-1时,-4≤y ≤-1. (1)求该反比例函数的解析式;(2)若M 、N 分别在反比例函数图象的两个分支上,请直接写出线段MN 长度的最小值五、(每小题10分,满分20分)19、如图,点R 是正方形ABCD 的边AB 边上的黄金分割点,且AR> RB ,S 1表示AR 为边长的正方形面积,S 2表示以BC 为长,BR 为宽的矩形面积,S 3表示正方形ABCD 除去S 1和S 2剩余的面积,求S 3:S 2的值20、如图,在△ABC 中,AB=12cm ,AE=6cm ,EC=4cm ,且EC AE BD AD =.(1)求AD 的长; (2)求证:ACEC AD BD =.六、本题12分21、如图,函数y 1=k 1x+b 的图象与函数22k y x=的图象交于点A(2,1)、B ,与y 轴交于点C (0,3). (1)求函数y 1的表达式和点B 的坐标; (2)观察图像,比较当x>0时y 1与y 2的大小.七、本题12分22、如图,开口向下的抛物线与x 轴交于点A (-1,0)、B (2,0),与y 轴交于点C(0,4),点P 是第一象限内抛物线上的一点.(1)求该抛物线所对应的函数解析式;(2)设四边形CABP 的面积为S 求S 的最大值.八、本题14分x(1≤x≤80)天的售价与销量的相关信息如下表:时间x(天)1≤x≤40 41≤x≤80售价(元/件)x+40 90每天销量(件) 200-2x已知该商品的进价为每件30元,设销售该商品每天的利润为y元。
内蒙古包头市青山区中考数学二模试卷一、选择题(本大题共12小题,每小题3分,共36分)1.计算2﹣(﹣1)2等于()A.1 B.0 C.﹣1 D.32.下列计算中,不正确的是()A.﹣2x+3x=x B.6xy2÷2xy=3yC.(﹣2x2y)3=﹣6x6y3 D.2xy2•(﹣x)=﹣2x2y23.函数y=的自变量x的取值范围为()A.x>2 B.x<2 C.x≤2 D.x≠24.某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起坐次数在30~35次之间的频率是()A.0.2 B.0.17 C.0.33 D.0.145.下列方程中,没有实数根的是()A.2x+3=0 B.x2﹣1=0C. =﹣3 D.x2+x﹣1=06.如图,过点C(﹣2,5)的直线AB分别交坐标轴于A(0,2),B两点,则tan∠OAB=()A.B.C.D.7.如图是一个直三棱柱的立体图和主视图、俯视图,根据立体图上的尺寸标注,它的左视图的面积为()A.24 B.30 C.18 D.14.48.时,代数式的值是()A.B.C.D.9.已知⊙O的半径是4,P是⊙O外的一点,且PO=8,从点P引⊙O的两条切线,切点分别是A,B,则AB=()A.4 B. C. D.10.随机掷一枚质地均匀的硬币三次,则至少有一次反面朝上的概率是()A.B.C.D.11.已知下列命题:(1)16的平方根是±4(2)若x=3,则x2﹣3x=0(3)六边形的内角和是外角和的2倍(4)顺次连接菱形四边中点的线段组成的四边形是矩形其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个12.如图,抛物线y=﹣x2+x+与x轴交于A,B两点,与y轴交于点C.若点P是线段AC上方的抛物线上一动点,当△ACP的面积取得最大值时,点P的坐标是()A.(4,3)B.(5,)C.(4,)D.(5,3)二、填空题(本大题共8小题,每小题3分,共24分)13.分解因式:a2b+2ab2+b3= .14.如图,已知直线a∥b,△ABC的顶点B在直线b上,∠C=90°,∠1=36°,则∠2的度数是.15.在综合实践课上,六名同学做的作品的数量(单位:件)分别是:5,7,3,x,6,4;若这组数据的平均数是5,则这组数据的中位数是件.16.若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.17.如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O恰好落在上的点D处,折痕交OA于点C,则的长为.18.如图,在Rt△AOB中,直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后,得到△A′O′B,且反比例函数y=的图象恰好经过斜边A′B的中点C,若S ABO=4,tan∠BAO=2,则k= .19.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,若S△DEC=3,则S△BCF= .20.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG ⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是.三、解答题(本大题共6小题,共60分)21.在“书香八桂,阅读圆梦”读书活动中,某中学设置了书法、国学诵读、演讲、征文四个比赛项目(每人只参加一个项目),九(2)班全班同学都参加了比赛,该班班长为了了解本班同学参加各项比赛的情况,收集整理数据后,绘制以下不完整的折线统计图(图1)和扇形统计图(图2),根据图表中的信息解答下列各题:(1)请求出九(2)全班人数;(2)请把折线统计图补充完整;(3)南南和宁宁参加了比赛,请用“列表法”或“画树状图法”求出他们参加的比赛项目相同的概率.22.甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离;(2)甲轮船后来的速度.23.某批发市场有中招考试文具套装,其中A品牌的批发价是每套20元,B品牌的批发价是每套25元,小王需购买A、B两种品牌的文具套装共1000套.(1)若小王按需购买A、B两种品牌文具套装共用22000元,则各购买多少套?(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000套文具套装,共用了y元,设A品牌文具套装买了x包,请求出y与x之间的函数关系式.(3)若小王购买会员卡并用此卡按需购买1000套文具套装,共用了20000元,他计划在网店包邮销售这两种文具套装,每套文具套装小王需支付邮费8元,若A品牌每套销售价格比B品牌少5元,请你帮他计算,A品牌的文具套装每套定价不低于多少元时才不亏本(运算结果取整数)?24.已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:∠DAC=∠DBA;(2)求证:P是线段AF的中点;(3)连接CD,若CD﹦3,BD﹦4,求⊙O的半径和DE的长.25.如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.(1)求证:AE⊥BF;(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP到BA的延长线于点Q,求sin∠BQP的值;(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.26.如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在边OA上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.(1)求OE的长及经过O,D,C三点抛物线的解析式;(2)一动点P从点C出发,沿CB以每秒2个单位长度的速度向点B运动,同时动点Q从E点出发,沿EC 以每秒1个单位长度的速度向点C运动,当点P到达点B时,两点同时停止运动,设运动时间为t秒,当t 为何值时,DP=DQ;(3)若点N在(1)中抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使M,N,C,E 为顶点的四边形是平行四边形?若存在,请求出M点坐标;若不存在,请说明理由.内蒙古包头市青山区中考数学二模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.计算2﹣(﹣1)2等于()A.1 B.0 C.﹣1 D.3【考点】1E:有理数的乘方.【分析】先乘方,再加减计算即可.【解答】解:2﹣(﹣1)2=2﹣1=1.故选A.2.下列计算中,不正确的是()A.﹣2x+3x=x B.6xy2÷2xy=3yC.(﹣2x2y)3=﹣6x6y3 D.2xy2•(﹣x)=﹣2x2y2【考点】4H:整式的除法;35:合并同类项;47:幂的乘方与积的乘方;49:单项式乘单项式.【分析】根据同类项、同底数幂的除法、积的乘方以及整式的乘法计算即可.【解答】解:A、﹣2x+3x=x,正确;B、6xy2÷2xy=3y,正确;C、(﹣2x2y)3=﹣8x6y3,错误;D、2xy2•(﹣x)=﹣2x2y2,正确;故选C.3.函数y=的自变量x的取值范围为()A.x>2 B.x<2 C.x≤2 D.x≠2【考点】E4:函数自变量的取值范围.【分析】根据当函数表达式的分母中含有自变量时,自变量取值要使分母不为零,判断求解即可.【解答】解:∵函数表达式y=的分母中含有自变量x,∴自变量x的取值范围为:x﹣2≠0,即x≠2.故选D.4.某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起坐次数在30~35次之间的频率是()A.0.2 B.0.17 C.0.33 D.0.14【考点】V8:频数(率)分布直方图.【分析】根据频率=频数÷总数,代入数计算即可.【解答】解:利用条形图可得出:仰卧起坐次数在30~35次的频数为5,则仰卧起坐次数在30~35次的频率为:5÷30≈0.17.故选B.5.下列方程中,没有实数根的是()A.2x+3=0 B.x2﹣1=0C. =﹣3 D.x2+x﹣1=0【考点】AA:根的判别式;B2:分式方程的解.【分析】A、解一元一次方程,可得出方程有解;B、由方程的系数结合根的判别式,可得出△=4>0,即方程x2﹣1=0有两个不相等的实数根;C、解分式方程求出x=2,经检验,x=2是方程的增根,即原分式方程没有实数根;D、由方程的系数结合根的判别式,可得出△=5>0,即方程x2+x﹣1=0有两个不相等的实数根.此题得解.【解答】解:A、∵2x+3=0,∴x=﹣;B、在方程x2﹣1=0中,△=02﹣4×1×(﹣1)=4>0,∴方程x2﹣1=0有两个不相等的实数根;C、解分式方程=﹣3,得:x=2,∵分母x﹣2=0,∴原分式方程无解;D、在方程x2+x﹣1=0中,△=12﹣4×1×(﹣1)=5,∴方程x2+x﹣1=0有两个不相等的实数根.故选C.6.如图,过点C(﹣2,5)的直线AB分别交坐标轴于A(0,2),B两点,则tan∠OAB=()A.B.C.D.【考点】T7:解直角三角形;D5:坐标与图形性质.【分析】利用待定系数法求得直线AB的解析式,然后求得B的坐标,进而利用正切函数定义求解.【解答】解:设直线AB的解析式是y=kx+b,根据题意得:,解得,则直线AB的解析式是y=﹣x+2.在y=﹣x+2中令y=0,解得x=.则B的坐标是(,0),即OB=.则tan∠OAB===.故选B.7.如图是一个直三棱柱的立体图和主视图、俯视图,根据立体图上的尺寸标注,它的左视图的面积为()A.24 B.30 C.18 D.14.4【考点】U3:由三视图判断几何体;KS:勾股定理的逆定理;U1:简单几何体的三视图.【分析】根据主视图、俯视图,根据立体图上的尺寸标注,求得左视图为长方形,其长为6,宽为,进而得到左视图的面积.【解答】解:如图所示,根据俯视图中三角形的三边分别为3,4,5,∴俯视图为直角三角形,且斜边为5,故斜边上的高为=∵左视图为长方形,其长为6,宽为,∴左视图的面积=6×=14.4,故选:D.8.时,代数式的值是()A.B.C.D.【考点】6D:分式的化简求值.【分析】先把括号内通分得到原式=﹣•,然后约分得原式=﹣,最后把x=代入,利用二次根式的分母有理化计算即可.【解答】解:原式=•(﹣)=﹣•=﹣,当x=,原式=﹣=﹣=.故选B.9.已知⊙O的半径是4,P是⊙O外的一点,且PO=8,从点P引⊙O的两条切线,切点分别是A,B,则AB=()A.4 B. C. D.【考点】MG:切线长定理;KL:等边三角形的判定;KQ:勾股定理.【分析】在Rt△POA中,用勾股定理,可求得PA的长,进而可根据∠APO的正弦值求出AC的长,即可求出AB的长.【解答】解:如图所示,PA、PB切⊙O于A、B,因为OA=4,PO=8,则AP==4,∠APO=30°,∵∠APB=2∠APO=60°故△PAB是等边三角形,AB=AP=4故选C.10.随机掷一枚质地均匀的硬币三次,则至少有一次反面朝上的概率是()A.B.C.D.【考点】X6:列表法与树状图法.【分析】根据题意可以写出所有的可能性,从而可以求得至少有一次反面朝上的概率.【解答】解:由题意可得,所有的可能性为:(正,正,正)、(正,正,反)、(正,反,正)、(正,反,反)、(反,正,正)、(反,正,反)、(反,反,正)、(反,反,反),∴至少有一次反面朝上的概率是:,故选A.11.已知下列命题:(1)16的平方根是±4(2)若x=3,则x2﹣3x=0(3)六边形的内角和是外角和的2倍(4)顺次连接菱形四边中点的线段组成的四边形是矩形其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个【考点】O1:命题与定理.【分析】利用平方根的定义、一元二次方程的根、多边形的内角和与外角和及矩形的判定分别判断后即可确定正确的选项.【解答】解:(1)16的平方根是±4,正确,为真命题;(2)若x=3,则x2﹣3x=0,正确,为真命题;(3)六边形的内角和是外角和的2倍,正确,为真命题;(4)顺次连接菱形四边中点的线段组成的四边形是矩形,正确,为真命题,故选D.12.如图,抛物线y=﹣x2+x+与x轴交于A,B两点,与y轴交于点C.若点P是线段AC上方的抛物线上一动点,当△ACP的面积取得最大值时,点P的坐标是()A.(4,3)B.(5,)C.(4,)D.(5,3)【考点】HA:抛物线与x轴的交点;H7:二次函数的最值.【分析】连接PC、PO、PA,设点P坐标(m,﹣),根据S△PAC=S△PCO+S△POA﹣S△AOC构建二次函数,利用函数性质即可解决问题.【解答】解:连接PC、PO、PA,设点P坐标(m,﹣)令x=0,则y=,点C坐标(0,),令y=0则﹣x2+x+=0,解得x=﹣2或10,∴点A坐标(10,0),点B坐标(﹣2,0),∴S△PAC=S△PCO+S△POA﹣S△AOC=××m+×10×(﹣)﹣××10=﹣(m﹣5)2+,∴x=5时,△PAC面积最大值为,此时点P坐标(5,).故点P坐标为(5,).二、填空题(本大题共8小题,每小题3分,共24分)13.分解因式:a2b+2ab2+b3= b(a+b)2.【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式,再利用公式法把原式进行因式分解即可.【解答】解:原式=b(a+b)2.故答案为:b(a+b)2.14.如图,已知直线a∥b,△ABC的顶点B在直线b上,∠C=90°,∠1=36°,则∠2的度数是54°.【考点】JA:平行线的性质.【分析】过点C作CF∥a,由平行线的性质求出∠ACF的度数,再由余角的定义求出∠BCF的度数,进而可得出结论.【解答】解:过点C作CF∥a,∵∠1=36°,∴∠1=∠ACF=36°.∵∠C=90°,∴∠BCF=90°﹣36°=54°.∵直线a∥b,∴CF∥b,∴∠2=∠BCF=54°.故答案为:54°.15.在综合实践课上,六名同学做的作品的数量(单位:件)分别是:5,7,3,x,6,4;若这组数据的平均数是5,则这组数据的中位数是 5 件.【考点】W4:中位数;W1:算术平均数.【分析】本题可先算出x的值,再把数据按从小到大的顺序排列,根据中位数定义求解.【解答】解:由平均数的定义知,得x=5,将这组数据按从小到大排列为3,4,5,5,6,7,由于有偶数个数,取最中间两个数的平均数,其中位数为.故答案为:5.16.若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.【考点】AB:根与系数的关系;H7:二次函数的最值.【分析】由题意可得△=b2﹣4ac≥0,然后根据不等式的最小值计算即可得到结论.【解答】解:由题意知,方程x2+2mx+m2+3m﹣2=0有两个实数根,则△=b2﹣4ac=4m2﹣4(m2+3m﹣2)=8﹣12m≥0,∴m≤,∵x1(x2+x1)+x22=(x2+x1)2﹣x1x2=(﹣2m)2﹣(m2+3m﹣2)=3m2﹣3m+2=3(m2﹣m+﹣)+2=3(m﹣)2 +;∴当m=时,有最小值;∵<,∴m=成立;∴最小值为;故答案为:.17.如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O恰好落在上的点D处,折痕交OA于点C,则的长为5π.【考点】MN:弧长的计算;PB:翻折变换(折叠问题).【分析】如图,连接OD.根据折叠的性质、圆的性质推知△ODB是等边三角形,则易求∠AOD=110°﹣∠DOB=50°;然后由弧长公式弧长的公式l=来求的长.【解答】解:如图,连接OD.根据折叠的性质知,OB=DB.又∵OD=OB,∴OD=OB=DB,即△ODB是等边三角形,∴∠DOB=60°.∵∠AOB=110°,∴∠AOD=∠AOB﹣∠DOB=50°,∴的长为=5π.故答案是:5π.18.如图,在Rt△AOB中,直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后,得到△A′O′B,且反比例函数y=的图象恰好经过斜边A′B的中点C,若S ABO=4,tan∠BAO=2,则k= 6 .【考点】R7:坐标与图形变化﹣旋转;G5:反比例函数系数k的几何意义;T7:解直角三角形.【分析】先根据S△ABO=4,tan∠BAO=2求出AO、BO的长度,再根据点C为斜边A′B的中点,求出点C的坐标,点C的横纵坐标之积即为k值.【解答】解:设点C坐标为(x,y),作CD⊥BO′交边BO′于点D,∵tan∠BAO=2,∴=2,∵S△ABO=•AO•BO=4,∴AO=2,BO=4,∵△ABO≌△A'O'B,∴AO=A′O′=2,BO=BO′=4,∵点C为斜边A′B的中点,CD⊥BO′,∴CD=A′O′=1,BD=BO′=2,∴x=BO﹣CD=4﹣1=3,y=BD=2,∴k=x•y=3•2=6.故答案为6.19.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,若S△DEC=3,则S△BCF= 4 .【考点】S9:相似三角形的判定与性质;L5:平行四边形的性质.【分析】根据平行四边形的性质得到AD∥BC和△DEF∽△BCF,由已知条件求出△DEF的面积,根据相似三角形的面积比是相似比的平方得到答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴, =()2,∵E是边AD的中点,∴DE=AD=BC,∴=,∴△DEF的面积=S△DEC=1,∴=,∴S△BCF=4;故答案为:4.20.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG ⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是①②③④.【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质.【分析】由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB=FB•FG=S四边形CBFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.【解答】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠GAF+∠AFG=90°,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB=FB•FG=S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故答案为:①②③④.三、解答题(本大题共6小题,共60分)21.在“书香八桂,阅读圆梦”读书活动中,某中学设置了书法、国学诵读、演讲、征文四个比赛项目(每人只参加一个项目),九(2)班全班同学都参加了比赛,该班班长为了了解本班同学参加各项比赛的情况,收集整理数据后,绘制以下不完整的折线统计图(图1)和扇形统计图(图2),根据图表中的信息解答下列各题:(1)请求出九(2)全班人数;(2)请把折线统计图补充完整;(3)南南和宁宁参加了比赛,请用“列表法”或“画树状图法”求出他们参加的比赛项目相同的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VD:折线统计图.【分析】(1)由演讲人数12人,占25%,即可求得九(2)全班人数;(2)首先求得书法与国学诵读人数,继而补全折线统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他们参加的比赛项目相同的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵演讲人数12人,占25%,∴出九(2)全班人数为:12÷25%=48(人);(2)∵国学诵读占50%,∴国学诵读人数为:48×50%=24(人),∴书法人数为:48﹣24﹣12﹣6=6(人);补全折线统计图;(3)分别用A,B,C,D表示书法、国学诵读、演讲、征文,画树状图得:∵共有16种等可能的结果,他们参加的比赛项目相同的有4种情况,∴他们参加的比赛项目相同的概率为: =.22.甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离;(2)甲轮船后来的速度.【考点】TB:解直角三角形的应用﹣方向角问题.【分析】(1)根据题意画出图形,再根据平行线的性质及直角三角形的性质解答即可.(2)根据甲乙两轮船从港口A至港口C所用的时间相同,可以求出甲轮船从B到C所用的时间,又知BC 间的距离,继而求出甲轮船后来的速度.【解答】解:(1)作BD⊥AC于点D,如图所示:由题意可知:AB=30×1=30海里,∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵AB=30海里,∠BAC=30°,∴BD=15海里,AD=ABcos30°=15海里,在Rt△BCD中,∵BD=15海里,∠BCD=45°,∴CD=15海里,BC=15海里,∴AC=AD+CD=15+15海里,即A、C间的距离为(15+15)海里.(2)∵AC=15+15(海里),轮船乙从A到C的时间为=+1,由B到C的时间为+1﹣1=,∵BC=15海里,∴轮船甲从B到C的速度为=5(海里/小时).23.某批发市场有中招考试文具套装,其中A品牌的批发价是每套20元,B品牌的批发价是每套25元,小王需购买A、B两种品牌的文具套装共1000套.(1)若小王按需购买A、B两种品牌文具套装共用22000元,则各购买多少套?(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000套文具套装,共用了y元,设A品牌文具套装买了x包,请求出y与x之间的函数关系式.(3)若小王购买会员卡并用此卡按需购买1000套文具套装,共用了20000元,他计划在网店包邮销售这两种文具套装,每套文具套装小王需支付邮费8元,若A品牌每套销售价格比B品牌少5元,请你帮他计算,A品牌的文具套装每套定价不低于多少元时才不亏本(运算结果取整数)?【考点】FH:一次函数的应用.【分析】(1)设小王需购买A、B两种品牌文具套装分别为x套、y套,则,据此求出小王购买A、B两种品牌文具套装分别为多少套即可.(2)根据题意,可得y=500+0.8×[20x+25],据此求出y与x之间的函数关系式即可.(3)首先求出小王购买A、B两种品牌文具套装分别为多少套,然后设A品牌文具套装的售价为z元,则B 品牌文具套装的售价为z+5元,所以125z+875(z+5)≥20000+8×1000,据此求出A品牌的文具套装每套定价不低于多少元时才不亏本即可.【解答】解:(1)设小王够买A品牌文具x套,够买B品牌文具y套,根据题意,得:,解得:,答:小王够买A品牌文具600套,够买B品牌文具400套.(2)y=500+0.8[20x+25]=500+0.8=500+20000﹣4x=﹣4x+20500,∴y与x之间的函数关系式是:y=﹣4x+20500.(3)根据题意,得:﹣4x+20500=20000,解得:x=125,∴小王够买A品牌文具套装为125套、够买B品牌文具套装为875套,设A品牌文具套装的售价为z元,则B品牌文具套装的售价为(z+5)元,由题意得:125z+875(z+5)≥20000+8×1000,解得:z≥23.625,答:A品牌的文具套装每套定价不低于24元时才不亏本.24.已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:∠DAC=∠DBA;(2)求证:P是线段AF的中点;(3)连接CD,若CD﹦3,BD﹦4,求⊙O的半径和DE的长.【考点】MR:圆的综合题.【分析】(1)利用角平分线的性质得出∠CBD=∠DBA,进而得出∠DAC=∠DBA;(2)利用圆周角定理得出∠ADB=90°,进而求出∠PDF=∠PFD,则PD=PF,求出PA=PF,即可得出答案;(3)利用勾股定理得出AB的长,再利用三角形面积求出DE即可.【解答】(1)证明:∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA;(2)证明:∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠DEB=90°,∴∠1+∠3=∠5+∠3=90°,∴∠1=∠5=∠2,∴PD=PA,∵∠4+∠2=∠1+∠3=90°,且∠ADB=90°,∴∠3=∠4,∴PD=PF,∴PA=PF,即P是线段AF的中点;(3)解:连接CD,∵∠CBD=∠DBA,∴CD=AD,∵CD﹦3,∴AD=3,∵∠ADB=90°,∴AB=5,故⊙O的半径为2.5,∵DE×AB=AD×BD,∴5DE=3×4,∴DE=2.4.即DE的长为2.4.25.如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.(1)求证:AE⊥BF;(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP到BA的延长线于点Q,求sin∠BQP的值;(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN的面积.【考点】LO:四边形综合题.【分析】(1)运用Rt△ABE≌Rt△BCF,再利用角的关系求得∠BGE=90°求证;(2)△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB,解出BP,QB求解;(3)先求出正方形的边长,再根据面积比等于相似边长比的平方,求得S△AGN=,再利用S四边形GHMN=S△AHM﹣S△AGN求解.【解答】(1)证明:如图1,∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在Rt△ABE和Rt△BCF中,∴Rt△ABE≌Rt△BCF(SAS),∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF.(2)解:如图2,根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x=,∴sin∠BQP===.(3)解:∵正方形ABCD的面积为4,∴边长为2,∵∠BAE=∠EAM,AE⊥BF,∴AN=AB=2,∵∠AHM=90°,∴GN∥HM,∴=,∴=,∴S△AGN=,∴S四边形GHMN=S△AHM﹣S△AGN=1﹣=,∴四边形GHMN的面积是.26.如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在边OA上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.(1)求OE的长及经过O,D,C三点抛物线的解析式;(2)一动点P从点C出发,沿CB以每秒2个单位长度的速度向点B运动,同时动点Q从E点出发,沿EC 以每秒1个单位长度的速度向点C运动,当点P到达点B时,两点同时停止运动,设运动时间为t秒,当t 为何值时,DP=DQ;(3)若点N在(1)中抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使M,N,C,E 为顶点的四边形是平行四边形?若存在,请求出M点坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)由折叠的性质可求得CE、CO,在Rt△COE中,由勾股定理可求得OE,设AD=m,在Rt△ADE中,由勾股定理可求得m的值,可求得D点坐标,结合C、O两点,利用待定系数法可求得抛物线解析式;(2)用t表示出CP、BP的长,可证明△DBP≌△DEQ,可得到BP=EQ,可求得t的值;(3)可设出N点坐标,分三种情况①EN为对角线,②EM为对角线,③EC为对角线,根据平行四边形的性质可求得对角线的交点横坐标,从而可求得M点的横坐标,再代入抛物线解析式可求得M点的坐标.【解答】解:(1)∵CE=CB=5,CO=AB=4,∴在Rt△COE中,OE===3,设AD=m,则DE=BD=4﹣m,∵OE=3,∴AE=5﹣3=2,在Rt△ADE中,由勾股定理可得AD2+AE2=DE2,即m2+22=(4﹣m)2,解得m=,∴D(﹣,﹣5),∵C(﹣4,0),O(0,0),∴设过O、D、C三点的抛物线为y=ax(x+4),∴﹣5=﹣a(﹣+4),解得a=,∴抛物线解析式为y=x(x+4)=x2+x;(2)∵CP=2t,∴BP=5﹣2t,∵BD=,DE==,∴BD=DE,在Rt△DBP和Rt△DEQ中,,∴Rt△DBP≌Rt△DEQ(HL),∴BP=EQ,∴5﹣2t=t,∴t=;(3)∵抛物线的对称轴为直线x=﹣2,∴设N(﹣2,n),又由题意可知C(﹣4,0),E(0,﹣3),设M(m,y),①当EN为对角线,即四边形ECNM是平行四边形时,则线段EN的中点横坐标为=﹣1,线段CM中点横坐标为,∵EN,CM互相平分,∴=﹣1,解得m=2,又M点在抛物线上,∴y=×22+×2=16,∴M(2,16);②当EM为对角线,即四边形ECMN是平行四边形时,则线段EM的中点横坐标为,线段CN中点横坐标为=﹣3,∵EM,CN互相平分,∴=﹣3,解得m=﹣6,又∵M点在抛物线上,∴y=×(﹣6)2+×(﹣6)=16,∴M(﹣6,16);③当CE为对角线,即四边形EMCN是平行四边形时,则M为抛物线的顶点,即M(﹣2,﹣).综上可知,存在满足条件的点M,其坐标为(2,16)或(﹣6,16)或(﹣2,﹣).。
2020-2021学年初一(上)期中考试数 学(考试时间90分钟 满分100分)18分)1.如图是加工零件尺寸的要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )A .Φ45.02B .Φ44.9C .44.98D .Φ45.012.下列运算中正确的是( )A .2(2)4-=- B .224-= C .3(3)27-=- D .236= 3.若37x =是关于x 的方程70x m +=的解,则m 的值为( ) A .3- B .13- C .3 D .134.若单项式12m a b -与212n a b 是同类项,则mn 的值是( ) A .3 B .6 C .8 D .95.下列各式中,是一元一次方程的是( )A .852020x y -=B .26x -C .212191y y =+D .582x x +=6.下列计算正确的是( )A .8(42)8482÷+=÷+÷B .1(1)(2)(1)(1)12-÷-⨯=-÷-= C .3311311636624433434⎛⎫⎛⎫⎛⎫-÷=-⨯=-⨯+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ D .[](2)(2)40--+÷= 7.下列方程的解法,其中正确的个数是( ) ①14136x x ---=,去分母得2(1)46x x ---= ②24132x x ---=,去分母得2(2)3(4)1x x ---= ③2(1)3(2)5x x ---=,去括号得22635x x ---=④32x =-,系数化为1得32x =- A .3 B .2 C .1 D .08.2020年国庆档电影《我和我的家乡》上映13天票房收入达到21.94亿元,并连续10天拿下票房单日冠军.其中21.94亿元用科学记数法可表示为( )A .821.9410⨯元B .82.19410⨯元C .100.219410⨯元D .92.19410⨯元9.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个有理数中,绝对值最小的一个是( )A .pB .qC .mD .n二、填空题(本题共有9小题,每小题3分,共27分)10.如果数轴上A 点表示3-,那么与点A 距离2个单位的点所表示的数是 .11.比较大小:78- 89-(填“>”“<”或“=”) 12.历史上,数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示,例如多项式2()25f x x x =+-,则(1)f -= .13.用四舍五入法将3.694精确到0.01,所得到的近似值为 .14.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如()2222153x x x x --+=-+-,则所捂住的多项式为 .15.“☆”是新规定的某种运算符号,设a ☆b =ab a b +-,若2 ☆8n =-,则n = .16.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:已知2m n +=-,4mn =-,则2(3)3(2)mn m n mn ---的值为 .17.某校为学生购买名著《三国演义》100套、《西游记》80套,共用12 000元,《三国演义》每套比《西游记》每套多16元,求《三国演义》和《西游记》每套各多少元?设西游记每套x 元,可列方程为 .18.观察下列一组算式:2231881-==⨯,22531682-==⨯,22752483-==⨯,22973284-==⨯……根据你所发现的规律,猜想22201920178-=⨯ .三、按要求解答(第19小题8分,第20小题5分,第21小题10分,共23分)19.计算题(每小题4分,共8分) ①3511114662⎛⎫---- ⎪⎝⎭ ②[]31452(3)5211⎛⎫-⨯-÷-+ ⎪⎝⎭20.(本题5分)化简并求值:222212(2)()2x xy y xy x y ⎡⎤⎛⎫---+- ⎪⎢⎥⎝⎭⎣⎦,其中x 、y 的取值如图所示.21.解方程(每小题5分,共10分)①3(202)10y y --= ②243146x x --=-四、解答题(第22、23小题4分,第24小题5分,共13分)22.(本题4分)解一元一次方程的过程就是通过变形,把一元一次方程转化为x a =的形式.下面是解方程20.30.410.50.3x x -+-=的主要过程,请在如图的矩形框中选择与方程变形对应的依据,并将它前面的序号填入相应的括号中.解:原方程可化为4153x +-=( ) 去分母,得3(203)5(104)15x x --+=( )去括号,得609502015x x ---=( )移项,得605015920x x -=++( )合并同类项,得1044x =(合并同类项法则) 系数化为1,得 4.4x =(等式的基本性质2)23.(本题4分)阅读材料,回答问题.计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭解:原式的倒数为211213106530⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭ =2112(30)31065⎛⎫-+-⨯- ⎪⎝⎭=203512-+-+=10-故原式=110- 根据材料中的方法计算113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭. 24.(本题5分)在某地住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图形如图所示). (1)用含m ,n 的代数式表示该广场的面积S ;(2)若m ,n 满足2(6)50m n -+-=,求出该广场的面积.五、解答题(第25、26小题6分,第27小题7分,共19分)25.(本题6分)列代数式或一元一次方程解应用题请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场都销售该水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打8折;乙商场规定:买一个水瓶赠送两个水杯,单独购买的水杯仍按原价销售.若某单位想在一家商场买5个水瓶和20个水杯,请问选择哪家商场更合算?请说明理由.26.(本题6分)下表中的字母都是按一定规律排列的.我们把某格中的字母的和所得多项式称为特征多项式,例如第1格的“特征多项式”为62x y +,第2格的“特征多项式”为94x y +,回答下列问题.(1)第3格的“特征多项式”为 ,第4格的“特征多项式”为 ,第n 格的“特征多项式”为 ;(n 为正整数)(2)求第6格的“特征多项式”与第5格的“特征多项式”的差.27.(本题7分)在数轴上,对于不重合的三点A,B,C,给出如下定义:若点C到点A的距离是点C到点B的距离的13倍,我们就把点C叫做【A,B】的理想点.例如:图中,点A表示的数为-1,点B表示的数为3.表示数0的点C到点A的距离是1,到点B的距离是3,那么点C是【A,B】的理想点;又如,表示数2的点D到点A的距离是3,到点B的距离是1,那么点D 就不是【A,B】的理想点,但点D是【B,A】的理想点.(1)当点A表示的数为-1,点B表示的数为7时,①若点C表示的数为1,则点C(填“是”或“不是”)【A,B】的理想点;②若点D是【B,A】的理想点,则点D表示的数是;(2)若A,B在数轴上表示的数分别为-2和4,现有一点C从点B出发,以每秒1个单位长度的速度向数轴负半轴方向运动,当点C到达点A时停止.请直接写出点C运动多少秒时,C,A,B中恰有一个点为其余两点的理想点?参考答案一、选择题(每小题2分,共18分)二、填空题(每小题3分,共27分)19.计算题(每小题4分,共8分)①原式=3511114662--+┈┈┈┈┈┈┈┈┈┈1分 =5131116642--++ =1224-+┈┈┈┈┈┈┈┈┈┈3分 =14┈┈┈┈┈┈┈┈┈┈4分 ②原式=14582211⎛⎫-⨯-÷ ⎪⎝⎭┈┈┈┈┈┈┈┈┈┈2分 =24--┈┈┈┈┈┈┈┈┈┈3分=6-┈┈┈┈┈┈┈┈┈┈4分20.解:原式=22221242x xy y xy x y ⎛⎫---+- ⎪⎝⎭┈┈┈┈┈┈┈┈┈┈1分 =22221242x xy y xy x y --+-+┈┈┈┈┈┈┈┈┈┈2分 =272x xy -┈┈┈┈┈┈┈┈┈┈3分 当2x =,1y =-时┈┈┈┈┈┈┈┈┈┈4分原式=2722(1)112-⨯⨯-=┈┈┈┈┈┈┈┈┈┈5分21.解方程(每小题5分,共10分)①3(202)10y y --=解:60610y y -+=┈┈┈┈┈┈┈┈┈┈2分61060y y +=+┈┈┈┈┈┈┈┈┈┈3分770y =┈┈┈┈┈┈┈┈┈┈4分10y =┈┈┈┈┈┈┈┈┈┈5分 ②243146x x --=- 解:3(2)122(43)x x -=--┈┈┈┈┈┈┈┈┈┈1分361286x x -=-+┈┈┈┈┈┈┈┈┈┈2分361286x x -=-+┈┈┈┈┈┈┈┈┈┈3分310x -=┈┈┈┈┈┈┈┈┈┈4分103x =-┈┈┈┈┈┈┈┈┈┈5分 四、解答题(第22、23小题4分,第24小题5分,共13分)22.③;②;④;①┈┈┈┈┈┈┈┈┈┈4分23.解:原式的倒数为132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭┈┈┈┈┈┈┈┈┈┈1分 1322(42)61437⎛⎫=-+-⨯- ⎪⎝⎭792812=-+-+14=-┈┈┈┈┈┈┈┈┈┈3分故原式=114-┈┈┈┈┈┈┈┈┈┈4分 24.解:(1)S 7220.52m n n m mn =⋅-⋅=┈┈┈┈┈┈┈┈┈┈2分 (2)由题意得6050m n -=⎧⎨-=⎩,解得65m n =⎧⎨=⎩┈┈┈┈┈┈┈┈┈┈3分当6m =,5n =时 S 7651052=⨯⨯=┈┈┈┈┈┈┈┈┈┈5分五、解答题(第25、26小题6分,第27小题7分,共19分)25.解:(1)设一个水瓶x 元,则一个水杯是(48)x -元┈┈┈┈┈┈┈┈┈┈1分34(48)152x x +-=┈┈┈┈┈┈┈┈┈┈2分40x =┈┈┈┈┈┈┈┈┈┈3分∴4848408x -=-=┈┈┈┈┈┈┈┈┈┈4分答:一个水瓶40元,一个水杯8元.(2)甲商场需付款:80%(540208)288⨯⨯+⨯=(元)┈┈┈┈┈┈┈┈┈┈5分 乙商场需付款:5408(2052)280⨯+⨯-⨯=(元)┈┈┈┈┈┈┈┈┈┈6分 ∴选择乙商场更划算.26.解:(1)126x y +;158x y +;3(1)2n x ny ++┈┈┈┈┈┈┈┈┈┈3分(2)(2112)(1810)x y x y +-+┈┈┈┈┈┈┈┈┈┈5分32x y =+┈┈┈┈┈┈┈┈┈┈6分27.(1)①是┈┈┈┈┈┈┈┈┈┈1分②5或11┈┈┈┈┈┈┈┈┈┈3分(2)设运动时间为t 秒,则BC t =,6AC t =-依题意,得C 是【A ,B 】的理想点时有16=3t t -,∴92t = C 是【B ,A 】的理想点时有1(6)3t t =-,∴32t = A 是【C ,B 】的理想点时有16=63t -⨯,∴4t =B 是【C ,A 】的理想点时有1=6=23t ⨯ 答:点C 运动92秒、32秒、4秒、2秒时,C ,A ,B 中恰有一个点为其余两点的理想点.┈┈┈┈┈┈┈┈┈┈7分。
九 年 · 物 理 ( 省 命 题 ) ( 六 十 ) 九年 ·物理(省命题) (六十)学 校姓 名班 级考 号名校调研系列卷 ·九年级期中测试物理(人教版) 题 号 二三四五 总 分得 分一、单项选择题(每题2分,共12分)1.一般情况下,下列物体中容易导电的是 ( )A.玻璃杯B.塑料尺C.铅笔芯D.橡胶轮胎2.植物油燃料是一种新型燃料,可用来替代传统燃料。
它不易燃、不易爆、无烟无异味,在节能方面比传统燃料更胜一筹,进行同样的工作消耗的燃料更少,这是因为该燃料具有 较大的 ( ) A. 热值 B.比热容 C.内能 D. 质量3.下列用电器正常工作时,所需电压最小的是 ( ) A.电饭锅 B.电子计算器 C. 电冰箱 D.电熨斗4.如图是一款热销的仿真猫咪玩具,其工作原理为:闭合开关S, 电源指示灯 亮,当触摸玩具猫咪头部时,开关S ₂ 闭合,玩具猫咪就会吐舌头(电动机工 作)开启撤娇卖萌模式;当断开开关S ₁ 时,电源指示灯不亮,无论是否触摸 其头部,玩具猫咪都不会吐舌头。
下列电路设计符合上述要求的是( )A B C D5.两只定值电阻,甲标有“1000.8A”字样,乙标有“1500.4A”字样,把它们串联起来, 两端允许加的最大电压是 ( ) A.14V B.10V C.8V D.6V6.小晨同学准备用如图所示的电路测量两个电阻的阻值,但当开关S 闭合时,他发现电流表有示数,电压表V ₁ 、V ₁ 有 示 数 且 示 数 相 同 , 则电路故障的原因可能是 ( ) A.R ₁ 短路 B.R ₁ 断 路 C.R ₂ 短路 D.R ₁ 断路二、填空题(每空1分,共18分)7.在暗朗无风的天气,小明的爸爸给爷爷家的院门刷油漆时,在院子里玩的小明闻到了油漆 的气味儿,这是 现象;油漆能附着在院门上,这利用了分子间的 8.腊月,东北农村有蒸粘豆包的习俗。
将蒸熟的粘豆包放在寒冷的室外晾凉,这是通过的方式来 粘豆包的内能。
2023-2024学年内蒙古包头市青山区八年级上学期期中数学试题及答案一、选择题1.在实数2,0,,,,0.1010010001…(每两个1之间依次多1个0)中,无理数的个数是( )A.1个B.2个C.3个D.4个2.若点P的坐标是(﹣3,1),点P到x轴的距离是( )A.3B.1C.D.3.下列曲线中不能表示y是x的函数的是( )A.B.C.D.4纽带之一.如图,踏板离地的垂直高度BE=1m,将它往前推4m至C处时(即水平距离CD=4m),它的绳索始终拉直,则绳索AC的长是( )A.4m B.5m C.6m D.8m5.如图,四个全等的直角三角形围成一个大正方形,中间是个小正方形,人们称它为“赵爽弦图”.连接四条线段得到如图2的新的图案.如果图1中的直角三角形的长直角边为8,短直角边为5,那么S的值为( )A.39B.48C.56D.756.如图,以数轴的单位长度为边作一个正方形,以表示数﹣1的点为圆心,交数轴正半轴于点A,则点A 表示的数是( )A.1.5B.C.D.7.在Rt△ABC中,∠C=90°,AC=9,则点C到AB的距离是( )A.B.C.D.8.下列结论:①若P1(x1,y1),P2(x2,y2)在直线y=kx+b(k<0)上,且x1>x2,则y1>y2;②若直线y=kx+b经过第一、二、三象限,则k>0,b>0(m﹣1)x+m2+2的图象交y轴于点A(0,3),则m=±1.其中正确结论的个数是( )A.0B.1C.2D.3二、填空题9.若点A(a,b)在第二象限,则点B(b,a) 象限.10.的算术平方根是 .11.若二次根式在实数范围内有意义,则x的取值范围是 .12.若点A(1,y1),B(﹣1,y2)在直线y=﹣3x+2上,且满足x1>x2,则y1 y2.(选填“>”或“<”)13.若a=2,b=3,则a、b之间的大小关系是a b.14.已知x为实数,且|2x﹣1|=﹣1 .15.如图,在平面直角坐标系中,B,C两点的坐标分别为(﹣3,0)和(7,0),则点A的坐标为( )A.(2,12)B.(3,13)C.(5,12)D.(5,13)16.如图,已知动点P从B点出发,以每秒2cm的速度在图①的边(相邻两边互相垂直),相应的△ABP的面积S(cm2)与点P的运动时间t(s)的图象如图②所示,且AB=6cm.当S=30cm2时,t= .三、解答题.17.计算:(1);(2).18.如图,在平面直角坐标系中,每个方格的边长均为1个单位长度(1,4),B(4,2),C(3,5).(1)在网格图中画出△ABC关于x轴的对称图形△A1B1C1;(2)直接写出A1、B1、C1的坐标.A1 、B1 、C1 .(3)若点M的坐标为(﹣3,2m﹣1),线段MA与y轴垂直,求m的值.B前进,1.5小时后,此时,他们相距15海里20.在河道A,B两个码头之间有客轮和货轮通行.一天,客轮从A码头匀速行驶到B码头,运送一批物资匀速行驶到A码头,两船距B码头的距离y(km)(min)之间的函数关系如图所示,请根据图象解决下列问题:(1)A,B两个码头之间的距离是 km;(km)与时间x(min)之间的函数表达式;(2)求客轮距B码头的距离y2(3)请问两船出发多久相距35km?21.(1)操作思考:如图1,在平面直角坐标系中,等腰Rt△ACB的直角顶点C在原点(1,2)处,则点B的坐标为 ;(2)感悟应用:如图2,一次函数y=﹣2x+2的图象与y轴交于点A,与x轴交于点B,直线AC交x轴于点D.①点A的坐标为 ,点B的坐标为 ;②直接写出点C的坐标 ;(3)拓展研究:如图3,在平面直角坐标系中,△ABC的顶点A、C分别在y轴、x轴上,AC=BC.若点C的坐标为(4,0),点A的坐标为(0,2),请求出点B的坐标.2023-2024学年内蒙古包头市青山区八年级(上)期中数学试卷参考答案与试题解析一、选择题1.在实数2,0,,,,0.1010010001…(每两个1之间依次多1个0)中,无理数的个数是( )A.1个B.2个C.3个D.4个【分析】根据无理数是无限不循环小数,可得答案.【解答】解:是无理数;是无理数,3,0,是整数,0.1010010001…(每2个4之间依次多一个0)是无限不循环小数,属于无理数,无理数有,,0.1010010001…(每2个6之间依次多一个0).故选:C.【点评】本题主要考查了无理数的定义,无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.2.若点P的坐标是(﹣3,1),点P到x轴的距离是( )A.3B.1C.D.【分析】根据点P的坐标是(﹣3,1),那么点P到x轴的距离为1,点P到y轴的距离为3,即可作答.【解答】解:∵点P的坐标是(﹣3,1),∴点P到x轴的距离为7.故选:B.【点评】本题考查了点的坐标,若一个点的坐标为(x,y),那么它到x轴的距离为|y|,到y轴的距离为|x|,难度较小.3.下列曲线中不能表示y是x的函数的是( )A.B.C.D.【分析】在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,由此即可判断.【解答】解:根据函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,那么就说y是x的函数,因此不能表示y是x的函数的是选项D中的曲线,故D符合题意;表示y是x的函数的是选项A、B、C中的曲线、B、C不符合题意.故选:D.【点评】本题考查了函数的定义,掌握函数的定义是解答本题的关键.4.勾股定理是人类数学文化的一颗璀璨明珠,是用代数思想解决几何问题最重要的工具,也是数形结合的纽带之一.如图,踏板离地的垂直高度BE=1m,将它往前推4m至C处时(即水平距离CD=4m),它的绳索始终拉直,则绳索ACA.4m B.5m C.6m D.8m【分析】设AC的长为x,则AB=AC=xm,故AD=AB﹣BD=(x﹣2)m.在直角△ADC中利用勾股定理即可求解.【解答】解:由题意可知,CF=3m,∴BD=2m.设AC的长为xm,则AB=AC=x(m),所以AD=AB﹣BD=(x﹣5)m.在直角△ADC中,AD2+CD2=AC5,即(x﹣2)2+32=x2,解得:x=5.故选:B.【点评】本题考查勾股定理的实际应用.找到直角三角形,利用勾股定理即可.5.如图,四个全等的直角三角形围成一个大正方形,中间是个小正方形,人们称它为“赵爽弦图”.连接四条线段得到如图2的新的图案.如果图1中的直角三角形的长直角边为8,短直角边为5,那么S的值为( )A.39B.48C.56D.75【分析】如解答图,易得BD=3,则图中阴影部分是由中间的小正方形和四个全等三角形组成的,利用三角形和正方形的面积公式计算即可.【解答】解:如图,由题意可知,AB=CD=5,∴BD=BC﹣CD=8﹣7=3,则中间小正方形的面积为3×5=9,=7××7×5=30,小正方形的外阴影部分的4S△ABD∴阴影部分的面积为9+30=39.故选:A.【点评】本题主要考查勾股定理中的赵爽弦图模型、三角形和正方形面积公式,将图中阴影部分的面积分割成一个正方形的面积加上四个全等三角形的面积是解题关键.6.如图,以数轴的单位长度为边作一个正方形,以表示数﹣1的点为圆心,交数轴正半轴于点A,则点A 表示的数是( )A.1.5B.C.D.【分析】根据数轴,可以得到正方形的边长,然后根据勾股定理即可得到对角线的长,然后即可在数轴上表示出点A表示的数.【解答】解:由图可得,正方形的边长为1,则正方形的对角线长为=,∴点A表示的数是﹣1,故选:C.【点评】本题考查勾股定理、实数与数轴,解答本题的关键是明确题意,利用数形结合的思想解答.7.在Rt△ABC中,∠C=90°,AC=9,则点C到AB的距离是( )A.B.C.D.【分析】有勾股定理可知AB的长度,点C到AB的距离是斜边上的高,用等面积法即可.【解答】解:由题意可知,AB为斜边,AC=9=3×6,BC=12=3×4,由常见勾股弦7,4,5可知,AB=5×5=15,点C到AB的距离===,故选:A.【点评】本题考查勾股定理,熟练运用常见勾股弦是关键.8.下列结论:①若P1(x1,y1),P2(x2,y2)在直线y=kx+b(k<0)上,且x1>x2,则y1>y2;②若直线y=kx+b经过第一、二、三象限,则k>0,b>0(m﹣1)x+m2+2的图象交y轴于点A(0,3),则m=±1.其中正确结论的个数是( )A.0B.1C.2D.3【分析】根据一次函数的图象和性质,这个选项进行判断,最后得出答案.【解答】解:①∵k<0,∴y随x的增大而减小,又∵若P1(x5,y1),P2(x3,y2)在直线y=kx+b(k<0)上,且x3>x2,∴y1<y4,∴①不正确;②当直线y=kx+b经过第一、三象限时,b=0;当直线y=kx+b经过第一、二、三象限时,b>0,∴②正确;③∵一次函数y=(m﹣8)x+m2+2的图象交y轴于点A(3,3),∴,解得:m=﹣1,∴结论③不正确.∴正确的结论只有1个.故选:B.【点评】本题考查了一次函数图象上点的坐标特征、一次函数图象与系数的关系、一次函数的性质以及一次函数的定义,逐一分析各个结论的正误是解题的关键.二、填空题9.若点A(a,b)在第二象限,则点B(b,a) 四 象限.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数判断出a、b的正负情况,再根据各象限内点的坐标特征解答.【解答】解:∵点A(a,b)在第二象限,∴a<0,b>0,∴点B(b,a)在第四象限.故答案为:四.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).10.的算术平方根是 3 .【分析】如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为,由此即可得到答案.【解答】解:∵=9,∴的算术平方根是3.故答案为:7.【点评】本题考查算术平方根,关键是掌握算术平方根的定义.11.若二次根式在实数范围内有意义,则x的取值范围是 x≥1 .【分析】根据二次根式有意义的条件:被开方数为非负数求解即可.【解答】解:由题意知x﹣1≥0,解得x≥3.故答案为:x≥1.【点评】本题主要考查二次根式有意义的条件,二次根式中的被开方数是非负数.12.若点A(1,y1),B(﹣1,y2)在直线y=﹣3x+2上,且满足x1>x2,则y1 < y2.(选填“>”或“<”)【分析】先根据函数的解析式判断出函数的增减性,再由x1>x2即可得出结论.【解答】解:∵直线y=﹣3x k=﹣2<0,∴y随x的增大而减小,∵x1>x5,∴y1<y2.故答案为:<.【点评】本题考查的是一次函数图象上点的坐标特点,先根据题意判断出函数的增减性是解题的关键.13.若a=2,b=3,则a、b之间的大小关系是a < b.【分析】先比较a2与b2的大小,再根据算术平方根的定义比较a与b的大小即可.【解答】解:a2=(2)2=28,b2=(2)2=45,则a3<b2,又知a,b均大于0,故a<b,故答案为:<.【点评】本题考查实数大小比较和算术平方根,掌握算术平方根的定义是解题的关键.14.已知x为实数,且|2x﹣1|=﹣1 或 .【分析】首先根据绝对值的意义得2x﹣1=﹣1或2x﹣1=﹣(﹣1),然后分别解方程2x﹣1=﹣1和2x﹣1=﹣(﹣1)即可得出答案.【解答】解:根据绝对值的意义得:2x﹣1=﹣1或2x﹣5=﹣(,由2x﹣7=﹣1解得:x=,由2x﹣3=﹣(﹣1)解得:x=.∴当|6x﹣1|=﹣4或x=.故答案为:或.【点评】此题主要考查了绝对值的意义,解一元一次方程,理解绝对值的意义,熟练掌握解一元一次方程的方法是解答此题的关键.15.如图,在平面直角坐标系中,B,C两点的坐标分别为(﹣3,0)和(7,0),则点A的坐标为( )A.(2,12)B.(3,13)C.(5,12)D.(5,13)【分析】过点A作AD⊥BC于点D,由等腰三角形的性质可得出BD=5,根据勾股定理得出AD=12,则点A的坐标可求出.【解答】解:过点A作AD⊥BC于点D,∵B(﹣3,0),6),∴OB=3,BC=10,∵AC=AB=13,∴BD=CD=BC=5,∴==12.∴OD=BD﹣OB=6,∴A(2,12).故选:A.【点评】本题考查了等腰三角形的性质,勾股定理,正确作出辅助线是解题的关键.16.如图,已知动点P从B点出发,以每秒2cm的速度在图①的边(相邻两边互相垂直),相应的△ABP的面积S(cm2)与点P(s)的图象如图②所示,且AB=6cm.当S=30cm2时,t= 7s或11s .【分析】从图象上分析可知,由于速度是2cm/s,图中0~4的过程为P点在线段BC上,故BC=4×2=8cm ,4~6为CD=4,6~9为DE=6,9~10为EF=2,10到b为FA,FA=BC+DE=14,b=10+14÷2=17,根据△ABP的面积为30cm2,底边AB=6cm可知高为10cm,也就是P点距离AB的距离是10cm,从数据上可知,P在线段DE上有一个符合条件的点,在线段AF上有一个符合条件的点,求出对应的t值.【解答】解:由图可知,∵P点的运动速度为2cm/s,∴BC=4×5=8(cm),CD=2×5=4(cm),EF=1×5=2(cm),∵S=30cm2,AB=7cm,∴点P到AB的距离为30×2÷6=10(cm),故可知P在线段DE上和线段AF上各有一个P点满足条件,D+BC=10,当P在线段DE上时:P2D=10﹣8=5(cm),∴P1∴t=(BC+CD+DP)÷2=3(s),1F=AF﹣10,当P在线段AF上时:P2F=14﹣10=8(cm),∴P2t=(BC+CD+DE+EF+FP)÷2=12(s),2故答案为:2s或12s.【点评】本题考查了动点问题的图象,一次函数和动点问题的应用,三角形的面积公式.三、解答题.17.计算:(1);(2).【分析】(1)先根据二次根式的性质化简,再进行加减运算即可;(2)先根据二次根式的性质化简,再进行加减运算即可.【解答】解:(1)===;(2)==.【点评】本题考查二次根式的混合运算,正确计算是解题的关键.18.如图,在平面直角坐标系中,每个方格的边长均为1个单位长度(1,4),B (4,2),C (3,5).(1)在网格图中画出△ABC 关于x 轴的对称图形△A 1B 1C 1;(2)直接写出A 1、B 1、C 1的坐标.A 1 (1,﹣4) 、B 1 (4,﹣2) 、C 1 (3,﹣5) .(3)若点M 的坐标为(﹣3,2m ﹣1),线段MA 与y 轴垂直,求m 的值.【分析】(1(2)由图可得出答案.(3)由题意可得,2m ﹣1=4,求出m 的值即可.【解答】解:(1)如图,△A 1B 1C 5即为所求.(2)由图可得,A 1(1,﹣2),B 1(4,﹣8),C 1(3,﹣2).故答案为:(1,﹣4),﹣4),﹣5).(3)∵A (1,3),2m ﹣1),∴2m ﹣1=4,解得m =,∴m 的值为.【点评】本题考查作图﹣旋转变换、中心对称,熟练掌握旋转的性质、中心对称的性质是解答本题的关键.19.如图,在海面上有两个疑似漂浮目标A、B,接到消息后,同时另一艘搜救艇以8海里/时的速度向目标B前进,1.5小时后,此时,他们相距15海里【分析】根据题意可得OA=9OB=12海里,AB=15海里,即可得OB2+OA2=AB2,则∠AOB=90°,进而可得∠BOD=30°,从而可得出答案.【解答】解:根据题意得,OA=6×1.4=9(海里),∴OB2+OA8=122+97=225,∵AB=15海里,∴AB2=152=225,∴OB3+OA2=AB2,∴∠AOB=90°.∵∠AOD=60°,∴∠BOD=30°,即第二艘搜救艇的航行方向是北偏西30°.【点评】本题考查解直角三角形的应用﹣方向角问题、勾股定理的逆定理,熟练掌握勾股定理的逆定理、方向角是解答本题的关键.20.在河道A ,B 两个码头之间有客轮和货轮通行.一天,客轮从A 码头匀速行驶到B 码头,运送一批物资匀速行驶到A 码头,两船距B 码头的距离y (km )(min )之间的函数关系如图所示,请根据图象解决下列问题:(1)A ,B 两个码头之间的距离是 80 km ;(2)求客轮距B 码头的距离y 2(km )与时间x (min )之间的函数表达式;(3)请问两船出发多久相距35km ?【分析】(1)根据函数图象即可解答;(2)利用待定系数法求解即可;(3)利用待定系数法求出货轮距B 码头的距离y 1(km )与时间x (min )之间的函数表达式.按照自变量的取值范围,分别令|y 1﹣y 2|=35,求出对应x 的值即可.【解答】解:(1)根据函数图象可知,A ,B 两个码头之间的距离是80km ,故答案为:80.(2)根据题意可知,DE 设y 2=k 2x +b 5,将坐标D (0,80)和E (40,得,解得.∴y 3与x 之间的函数表达式为y 2=﹣2x +80(4≤x ≤40).(3)OC 为货轮行驶的函数图象,其函数表达式设y 1=k 1x ,将坐标C (160,得80=160k 5,解得k 1=.∴y 2与x 之间的函数表达式为y 1=x (0≤x ≤160).若两船相距35km :①当3≤x ≤40时,|y 1﹣y 2|=35,即|,解得x =18或46(不符合题意;②当40<x ≤160时,|y 1﹣y 6|=x =35.综上,两船出发18min 或70min 时相距35km .【点评】本题考查一次函数的应用,熟练掌握待定系数法求函数的表达式是解题的关键.21.(1)操作思考:如图1,在平面直角坐标系中,等腰Rt△ACB的直角顶点C在原点(1,2)处,则点B 的坐标为 (﹣2,1) ;(2)感悟应用:如图2,一次函数y=﹣2x+2的图象与y轴交于点A,与x轴交于点B,直线AC交x轴于点D.①点A的坐标为 (0,2) ,点B的坐标为 (1,0) ;②直接写出点C的坐标 (3,1) ;(3)拓展研究:如图3,在平面直角坐标系中,△ABC的顶点A、C分别在y轴、x轴上,AC=BC.若点C的坐标为(4,0),点A的坐标为(0,2),请求出点B的坐标.【分析】(1)作BE⊥x轴于点E,AF⊥x轴于点F,由A(1,2)可得,OF=1,AF=2,易证△BEO≌△OFA ,BE=OF=1,OE=AF=2,因此B(﹣2,1);(2)①一次函数y=﹣2x+2x=0,y=0,即可得点A,点B的坐标;②过点C作CM⊥x轴于M,由△AOB≌△BMC,根据全等三角形的性质即可解决问题;(3)过点B作BN⊥x轴于N,由△AOC≌△CNB,根据全等三角形的性质即可解决问题,即可求出点B的坐标.【解答】解:(1)如图1,作BE⊥x轴于点E,∴∠BEO=∠AFO=∠AOB=90°,∴∠AOF+∠BOE=90°=∠AOF+∠FAO,∴∠BOE=∠FAO,∵AO=OB,∴△BEO≌△OFA(AAS),∴BE=OF=1,OE=AF=4,∴B(﹣2,1).故答案为:(﹣4,1);(2)①一次函数y=﹣2x+2,令x=0,∴A(0,3),令y=0,则0=﹣4x+2,∴B(1,8),故答案为:(0,2),3);②如图2,由(1)知,2),4),∴OA=2,OB=1,过点C作CM⊥x轴于M,∴∠AOB=∠BMC=90°,∵AB⊥BC,∴∠ABC=90°,∴∠ABO+∠CBM=90°,∵∠ABO+∠OAB=90°,∴∠OAB=∠CBM,∵BC=AB,∴△AOB≌△BMC(AAS),∴BM=OA=8,CM=OB=1,∴OM=3,∴点C的坐标为(8,1),故答案为:(3,6);(3)如图3,过点B作BN⊥x轴于N,∴∠BNC=∠COA=∠ACB=90°,∴∠ACO+∠NCB=90°=∠ACO+∠OAC,∴∠NCB=∠OAC,∵AC=CB,∴△AOC≌△CNB(AAS),∴NC=OA=2,BN=CO=6,∴ON=CO﹣NC=2,∴B(2,﹣5).【点评】本题是一次函数综合题,考查了一次函数性质,全等三角形的判定和性质,等腰直角三角形的性质,熟练掌握一次函数的性质与三角形全等的判定是解题的关键.。
2020-2021学年内蒙古包头市青山区九年级(上)期中英语试卷一、单选题(本大题共15小题,共15.0分)1.Mr.Wu is popular with students,because he is patient ________ us and polite ________everyone.()A. with;atB. to;onC. with;toD. to;with2.—How do you like the movie?—Well,I ____________ you not to see it.It is not as good as the poster says.()A. suggestB. hopeC. considerD. advise3.-What did Tina say?-Sorry,I didn't what she said.()A. pay attention toB. get on withC. hold on toD. look forward to4.—I'm afraid I can't do well in the running race.I might let my classmates down.—________.You don't need to push yourself too hard.()A. What a pityB. Take it easyC. Good luckD. Don't mention it5.So far, the number of people using 5G mobile phones __________ a lot.()A. is increasingB. are increasingC. has increasedD. have increased6.- Excuse me, do you know________?I've just missed my train.-Yes. There is one in 10 minutes.()A. how I can get to the train stationB. if there's another train laterC. when I should arrive at the train stationD. how much a train ticket costs7. A break between classes is a good time for students to play sports and talk with theirclassmates. So it _________ helps with students' health, ________improves their social skills.()A. either; orB. neither; norC. not only; but alsoD. between; and8.Annie,remember to learn ________ and well because everything that you learn becomes apart of you.()A. happilyB. easilyC. loudlyD. wisely9.-Excuse me, sir. You to smoke here. Look at the sign "No smoking".-Sorry. I it.()A. aren't allowed; wasn't seenB. aren't allowed; didn't seeC. don't allow; wasn't seenD. don't allow; didn't see10.—You haven't said a ______ word since last Friday. What's wrong?—Nothing. Just leave me alone.A. simpleB. singleC. similarD. silent11.We ________ breathe the same breath and share the same future as Chinese people.()A. mightB. shouldC. couldD. would12.—My father _______ to his workplace by bus,but now he _______there by bike.—Really?You have an environmentally-friendly father.A. used to go; is used to goB. used to going; is used to goC. is used to go; is used to goingD. used to go; is used to going13.—What is the ______ of your excellent spoken English?—Practice makes perfect!A. resultB. influenceC. dutyD. secret14.If you read a sentence and ________ each new word in the dictionary,you'll understandthe meaning of the sentence.()A. pick upB. cut upC. look upD. mix up15.---I think keeping dogs will not make you feel lonely.---_________. In my opinion, dogs sometimes bring you a lot of trouble.()A. Not exactlyB. Take it easyC. I agree with youD. That's a good idea二、完形填空(本大题共15小题,共15.0分)Whenever my child caused me to change my schedule(行程),I thought to myself. "We don't have time for this."So the two(16).I most commonly spoke to my child were:"Hurry up".But I made my promise to(17) almost three years ago,and I began my journey to pay more attention to what(18) in life.In fact,my younger daughter often reminds me of(19) I must keep trying to slow down.One day,the two of us had taken a bike ride to the(20).After buying an ice cream,my daughter sat down at a table(21)enjoying it.Suddenly a look of(22) came across her face."Do I have to rush,mama?"I nearly cried.Perhaps the pains of a(23) life didn't ever completely disappear,I thought sadly.At the moment,I knew I could sit there(24) about the number of times when I rushed my child through life...or I could celebrate the fact that today I'm trying to do things(25).I chose to live in today."You don't have to rush,my dear,"I said in a(n)(26)way.Her whole face immediately brightened and her shoulders relaxed.Then we sat side by side talking about things that interests us.There were even moments when we sat in(27),just smiling at each other.When she got to the last bite(咬最后一口),she held out the ice cream for me. "I(28)the last bite for you,mama",my daughter said proudly.I realized I just gave my child a little time...and in(29),she gave me her last bite and reminded me that things taste sweeter and love comes(30)when you stop rushing through life.16. A. sentences B. words C. answers D. plans17. A. speed up B. slow down C. give up D. keep on18. A. gives B. wins C. loses D. matters19. A. why B. when C. what D. where20. A. church B. park C. supermarket D. hospital21. A. sadly B. carelessly C. politely D. happily22. A. worry B. fun C. humor D. relax23. A. excited B. interested C. hurried D. pleased24. A. thinking B. complaining C. worrying D. talking25. A. perfectly B. politely C. warmly D. differently26. A. angry B. shy C. gentle D. wise27. A. trouble B. pride C. advance D. silence28. A. saved B. threw C. rushed D. bought29. A. fact B. return C. danger D. style30. A. harder B. better C. quicker D. easier三、阅读理解(本大题共15小题,共30.0分)AWorld Poetry Day is celebrated on 21 March.Its purpose is to improve people's ability to read,write,and teach poems all over the world.This year,the International Poetry Centre is holding a poetry competition to celebrate the festival.The competition is open to all the poets aged 18 and over from all over the world,and they will be divided into two groups:*Open Group (open to all the poets aged 18 and over)*ESL Group (open to all the poets aged 18 and over who can write in English as a Second Language)The winners of each group will receive £1000.RULES:*All the poems must be unpublished (未出版的)works.*Poems will not be returned,so please keep a copy.*The poem(s)must be in English and created by the poet himself/herself.*Poems can be written on any proper subject.No subject on violence (暴力)or drugs (毒品).*The competition begins on 3 March,2017 and ends on 28 August,2017.To enter the competition,please visit the Centre Shop to pay £5 for each poem.Once the payment is made,please email the poem(s)to poetrycomp@.Remember to mark Open or ESL in the top right-hand corner of the document (文档)to show which group to enter before emailing your poem(s).Questions about the competition can be emailed to poetrycomp@31.The World Poetry Day is on ______ .A. March 28thB. March 3rdC. March 21stD. August 28th32.The rules for the competition include the following EXCEPT ______ .A. that poets must use their unpublished poemsB. that poets can write poems in any languageC. that poems can't be taken back after the competitionD. that poems can't be written on the subject of violence or drugs.33.After finishing the payment,which address should the poems be emailed to?______A. poetrycomp@.B. poetryforum@.C. poetryforum@.D. poetrycomp@.BDad never tried to hug or kiss me when I was a child.And of course,he never said "I love you"to me,either.But whenever I felt sad or lonely,dad was always there.When I was in high school,dad left work and set up a food stand on the street near my school.Every day when I finished school,my classmates and I would pass his food stand.But I really hated talking to dad in front of his food stand.One night,I couldn't stand it any more and shouted,"Dad,could you stop selling your silly noodles?I don't need a father who sells noodles on the street!"At that moment,dad was shocked.He tried to say something but didn't.His eyes were filled with tears and sadness.It was the first time that I saw dad crying.My mom later told me dad sold noodles to save money for my college education.I was so silly and even today I still feel guilty (内疚的)for that night. Time really flies.I finished college and then left my home.For the past ten years,whenever I have visited home,dad was always there meeting me and seeing me off quietly at the railway station.Whenever he saw me off,he never tried to hug me.When I was away from home,dad never wrote to me or called me,but he always asked my mom to call me.That's how dad shows his love to me.34.Dad left work when the writer was ______ .A. a childB. in primary schoolC. in middle schoolD. in high school35.The writer hated talking to dad in front of his food stand because ______ .A. dad's food wasn't delicious at allB. dad never tried to hug or kiss himC. selling food couldn't save any money for his college educationD. he didn't want other students to know dad was selling food36.The underlined word "stand" means ______ .A. 站立B. 忍受C. 货摊D. 位置37.The best title for this passage would be ______ .A. The Story of My FatherB. Silent Love of a FatherC. My Parents and ID. Father,Please Hug MeCEnglish is becoming more and more popular in China.It can be used in every field,such as on some signs and restaurant menus.But there are some problems when people use it.Perhaps you've seen the English letters "WC" in your city.They show public toilets.But do you know it is far from native(地道的)English?In fact,foreigners from English-speaking countries seldom use the letters.Workers in our city are changing"WC" signs all over the city.The government is spending much money changing all the bad English on signs and restaurant menus.Many other places in China are following our steps."WC,or water closet,is old-fashioned English.It sounds dirty to me," says Nancy,a young woman from the US.The old sign will become "Gents/Men" and "Ladies/Women". "I see much poor English in everyday life,and not only on signs,"she says. "I know what they mean.But they are Chinglish,not real English.For example,when someone says to me"My hometown is Guizhou Province',I know he or she should say"My hometown is in GuizhouProvince'.Hometown is a smaller place in a province."The common mistakes that Nancy picked up include "Not Entry",which should be "No Entry","Direction of Airport" should be changed to "To the Airport".And remember to "Keep off the grass",rather than "Care of the green".The next time you walk on the street or eat in the restaurant,you can go and see if the expressions are right.38.Who seldom uses letters of "WC" according to the passage?______A. Chinese students.B. Teachers in China.C. English-speaking foreigners.D. Foreigners from other countries.39.What's the attitude (态度)of the government towards the bad English on signs?______A. It's native.B. It should be changed.C. It doesn't matter.D. It can be used on signs.40.What does Nancy think of much poor English in everyday life?______A. She thinks it should be corrected.B. She likes to use it.C. She thinks it is proper.D. She thinks it is dirty.41.What is the main idea of the passage?______A. Chinglish on menus.B. Money spent on Chinglish.C. Usages of native English.D. Letters of "WC".DFrench and American doctors have done an operation(手术)together in which the doctors were outside the operating room.This kind of operation is known as robotic operation.Doctor Marescaux did the operation in an office in New York City last month,while asixty-eight-year-old woman patient was in a hospital in Strasbourg,France.A doctor in Strasbourg got the patient ready.He placed medical tools and a small video camera in her stomach area.Doctor Marescaux in New York watched the patient on a video screen.Then he used the computer to send messages to the robot machine.The robot moved the tools that cut the woman's gallbladder(胆囊)away.The woman got well soon after the operation and left the hospital two days later.Experts say the main problem with such a robotic operation is based on high-speed telecommunications(通讯系统)between the doctor and the robot.Technology must be able to send a doctor's order to a robot to move the tool quickly.Experts also say a successful robotic operation will improve an operation.For example,the robot can make such smaller movements than a person can.A robot machine can turn tools in ways that a doctor's hand cannot.Doctors say such a robotic operation will make possible safer and better operations in the future.They say it will improve doctor training.It will also mean that doctors could do an operation on people in dangerous places far away.And it could mean that people could have operations done by top doctors without having to travel to the city where the doctors work.42.The underlined phrase " robotic operation" means " ______ ."A. a special kind of robot invented by doctorsB. something done to mend a robot.C. an operation done by French and American doctorsD. an operation done far away with the help of a robot.43.If we want to use the robot in the operation,we must solve the problem of ______ .A. top doctorsB. high-speed telecommunicationsC. doctor trainingD. smaller movement44.We use the robot in the operation because ______ .A. it can send messages in a high speedB. even a top doctor can't do the operation himselfC. it can make the operation safer and betterD. operations can be done without and doctors45.Which of the following is NOT right?______A. Robotic operation has been used in the USA.B. Robotic operation is good for doctor training.C. Experts speak highly of robotic operation.D. The robot is used to watch the patient clearly.四、单词拼写/单词释义(本大题共1小题,共15.0分)46.Paper Cutting is one of China's most popular traditional folk arts.Chinese paper cuttinghas a history of (1) (多于)1,500 years.It was w (2) spread during the Ming and Qing dynasties.People often beautify their homes (3) paper cuttings.During the Spring Festival and wedding celebrations,paper cuttings (4) (被用做)decorate doors,windows and rooms.Paper cutting sounds very easy but it can be d (5) to do.It is usually folded before it is (6) with scissors.As red is closely related with good l (7) in traditional Chineseculture,paper cutting works are usually made of red paper.In the past,women in the countryside gathered (8) (在她们空闲时间)to make paper cutting,which is a way to practice their skills.As society develops,fewer and fewer people l (9) this skill while there are some who still regard it (10) a profession. (11) (毫无疑问),paper cutting has changed into a kind of art at present. (12) (同时),paper cutting also appears in cartoons,on stage,in magazines or in TV series.Nowadays,Chinese paper cutting is very p (13) around the world and it is often given as a(14) [gɪft] to foreign friends.We need to learn more about these traditional arts,becausebehind the small things (15) the cultural values of the Chinese people.五、单句语法填空(本大题共10小题,共10.0分)47.Could you please give some ______ on my listening and writing?(suggest)48.The teenage girls should try to avoid ______ out alone at night. (go)49.Lucy is a sunshine student.She often takes an ______ part in school life. (act)50.It will sound more ______ if you begin with "Excuse me,Mr /Mrs / Ms…" . (impolite)51.Gina works even harder in school,and her parents are ______ of her. (pride)52.______ is a developed country in Europe.It has made a lot of high-technology products.(German)53.Work hard at your lessons,or you can hardly answer all the questions ______. (correct)54.The fire ______ quickly from building to building,but fire fighting was difficult becauseof strong winds. (spread)55.It ______(say)that a Chinese ruler called Shen Nong was the first to discover tea as adrink.56.Three scientists who played important roles in the ______ of the virus have been awardedthe Nobel Prize in 2020. (discover)六、书面表达(本大题共1小题,共15.0分)57.假如国外中学生来你校交流学习,你校计划下周组织学生到养老院去慰问老人,拟邀请国际学生参加。
九年级期中考试数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.观察下列图形,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.2.若x=1是方程x2+ax-2=0的一个根,则a的值为()A. 0B. 1C. 2D. 33.将二次函数y=2(x-1)2+2的图象向左平移2个单位长度得到的新图象的表达式为()A. B. C. D.4.在平面直角坐标系中,将点P(a,b)关于原点对称得到点P1,再将点P1向左平移2个单位长度得到点P2,则点P2的坐标是()A. (b−2,−a)B. (b+2,−a)C. (−a+2,−b)D. (−a−2,−b)5.同一坐标系中,抛物线y=(x-a)2与直线y=a+ax的图象可能是( )A. B. C. D.6.一元二次方程x2-6x+5=0的两根分别是x1、x2,则x1+x2的值是( )A. 6B. -6C. 5D. -57.如图,已知在△ABC中,∠ABC=90°,AB=8,BC=6,将线段AC绕点A顺时针旋转得到AD,且∠DAC=∠BAC,连接CD,且△ACD的面积为()A. 24B. 30C. 36D. 408.有一人患了流感,经过两轮传染后共有64人患了流感,则每轮传染中平均一个人传染的人数是()A. 5人B. 6人C. 7人D. 8人9.已知关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则k的取值范围是()A. B. C. D. 且10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c >b;④2a+b=0;⑤△=b2-4ac<0;⑥3a+c>0;⑦(m2-1)a+(m-1)b≥0(m为任意实数)中成立式子()A. ②④⑤⑥⑦B. ①②③⑥⑦C. ①③④⑤⑦D. ①③④⑥⑦二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分)11.如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为________.12.某乡村种的水稻2018年平均每公顷产3200kg ,2020年平均每公顷产5000kg ,则水稻每公顷产量的年平均增长率为________.13.一抛物线的形状,开口方向与y=3x2−3x+1相同,顶点在(-2,3),则此抛物线的解析式为2________.14.如图,是抛物线y=ax2+bx+c(a≠0)的一部分,已知抛物线的对称轴为x=2,与x轴的一个交点是(-1,0),则方程ax2+bx+c=0(a≠0)的两根是________15.如图,四边形ABCD是正方形,P在CD上,△ADP旋转后能够与△ABP′重合,若AB=3,DP=1,则PP′=________.16.如图,已知AB⊥BC,AB=12cm,BC=8cm.一动点N从C点出发沿CB方向以1cm/s的速度向B 点运动,同时另一动点M由点A沿AB方向以2cm/s的速度也向B点运动,其中一点到达B点时另一点也随之停止,当△MNB的面积为24cm2时运动的时间t为________秒.17.如图,在边长为6的等边△ABC中,AD是BC边上的中线,点E是△ABC内一个动点,且DE=2,将线段AE绕点A逆时针旋转60°得到AF,则DF的最小值是________.18.如图,抛物线y=−14x2+12x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于X轴,与拋物线相交于P、Q两点,则线段PQ的长为________.三、解答题(本大题共8小题,共90分.解答时应写出必要的计算过程、推演步骤或文字说明)19.如图,AC是正方形ABCD的对角线,△ABC经过旋转后到达△AEF的位置.(1)指出它的旋转中心;(2)说出它的旋转方向和旋转角是多少度;(3)分别写出点A,B,C的对应点.20.已知关于x的一元二次方程x2+(k−1)x+k−2=0.(1)求证:方程总有两个实数根;(2)任意写出一个k值代入方程,并求出此时方程的解.21.已知二次函数y=x2-4x+3,设其图象与x轴的交点分别是A、B(点A在点B的左边),与y轴的交点是C,求:(1)A、B、C三点的坐标;(2)△ABC的面积.22.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?23.跳绳时,绳甩到最高处时的形状是抛物线. 正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0. 9米,身高为1. 4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E. 以点O为原点建立如图所示的平面直角坐标系, 设此抛物线的解析式为y=ax2+bx+0.9.(1)求该抛物线的解析式;(2)如果身高为1. 85米的小华也想参加跳绳,问绳子能否顺利从他头顶越过?请说明理由;(3)如果一群身高在1. 4米到1. 7米之间的人站在OD之间,且离点O的距离为t米, 绳子甩到最高处时必须超过他们的头顶,请结合图像,写出t的取值范围________.24.将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)连接BF,求证:CF=EF.(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,如图②,求证:AF+EF=DE.(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③,你认为(2)中的结论还成立吗?若成立,写出证明过程;若不成立,请直接写出AF、EF与DE之间的数量关系.25.如图,已知抛物线y=1x2+bx与直线y=2x交于点O(0,0),A(a,12),点B是抛物线上2O、A之间的一个动点,过点B分别作x轴和y轴的平行线与直线OA交于点C、E,(1)求抛物线的函数解析式;(2)若点C为OA的中点,求BC的长;(3)以BC、BE为边构造矩形BCDE,设点D的坐标为(m,n),求出m、n之间的关系式.26.在一-次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F 重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4 cm,并进行如下研究活动。
2020-2021学年内蒙古包头市青山区九年级(上)期中数学试卷一.选择题(共12小题,每题3分,共36分)1.(3分)如图所示的立体图形是一个圆柱被截去四分之一后得到的几何体,它的左视图是()A.B.C.D.2.(3分)下列函数中,y是x的反比例函数的是()A.y=2x B.y=﹣x﹣1C.y=D.y=﹣x3.(3分)一元二次方程x2﹣x=0的解是()A.x1=﹣1,x2=0B.x1=1,x2=0C.x1=﹣1,x2=1D.x1=x2=14.(3分)对于线段a,b,如果a:b=2:3,那么下列四个选项一定正确的是()A.2a=3b B.b﹣a=1C.D.5.(3分)用配方法解方程x2+4x=3,下列配方正确的是()A.(x﹣2)2=1B.(x﹣2)2=7C.(x+2)2=7D.(x+2)2=16.(3分)如图是一棵小树一天内在太阳下不同时刻的照片,将它们按时间先后顺序进行排列正确的是()A.③﹣④﹣①﹣②B.②﹣①﹣④﹣③C.④﹣①﹣②﹣③D.④﹣①﹣③﹣②7.(3分)如图,在正方形网格上有两个相似三角形△ABC和△DEF,则∠BAC的度数为()A.105°B.115°C.125°D.135°8.(3分)某口罩加工厂今年一月口罩产值达80万元,第一季度总产值达340万元,问二,三月份的月平均增长率是多少?设月平均增长率的百分数为x,则由题意可得方程为()A.80(1+x)2=340B.80+80(1+x)2=340C.80(1+x)+80(1+x)2=340D.80+80(1+x)+80(1+x)2=3409.(3分)如图所示,在▱ABCD中,BE交AC,CD于G,F,交AD的延长线于E,则图中的相似三角形有()A.3对B.4对C.5对D.6对10.(3分)如图,函数y=与y=﹣kx+2(k≠0)在同一平面直角坐标系中的大致图象是()A.B.C.D.11.(3分)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF 的面积与△DAF的面积之比为()A.9:16B.3:4C.9:4D.3:212.(3分)如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于()A.4.5米B.6米C.7.2米D.8米二.填空题(共8小题,每题3分,共24分)13.(3分)反比例函数y=图象的每一条曲线上,y随x的增大而减小,则k的取值范围是.14.(3分)已知一元二次方程x2﹣3x﹣1=0的两个根是x1、x2,则x1+x2=,x1x2=,=.15.(3分)一个多边形的边长依次为1,2,3,4,5,6,与它相似的另一个多边形的最大边长为8,那么另一个多边形的周长是.16.(3分)若关于x的方程x2+2(k﹣1)x+k2=0有两个不等实根,则k的取值范围是.17.(3分)如图,已知△ABC中,D为边AC上一点,P为边AB上一点,AB=12,AC=8,AD=6,当AP的长度为时,△ADP和△ABC相似.18.(3分)已知(﹣2,y1),(﹣1,y2),(3,y3)是反比例函数y=的图象上的三个点,则y1,y2,y3的大小关系是.19.(3分)在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为x人,则根据题意可列方程为.20.(3分)如图,△ABC、△DCE、△GEF都是正三角形,且B、C、E、F在同一直线上,A、D、G也在同一直线上,设△ABC、△DCE、△GEF的面积分别为S1、S2、S3.当S1=4,S2=6时,S3=.三.解答题(共6小题,共60分)21.(8分)解方程:(1)2x2﹣x﹣1=0(2)3(x﹣3)2=4(x﹣3)22.(8分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A,B两点,与x轴交于点P,过点A 作AE⊥x轴于点E,AE=3.(1)求点A的坐标;(2)若P A:PB=3:1,求一次函数的解析式.23.(10分)如图,在平面直角坐标系中,△OAB的顶点坐标分别为O(0,0),A(1,2),B(3,1)(每个方格的边长均为1个单位长度).(1)将△OAB向右平移1个单位后得到△O1A1B1,请画出△O1A1B1;(2)请以O为位似中心画出△O1A1B1的位似图形,使它与△O1A1B1的相似比为2:1;(3)点P(a,b)为△OAB内一点,请直接写出位似变换后的对应点P′的坐标为.24.(10分)商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?25.(12分)如图①是一张长为18cm,宽为12cm的长方形硬纸板.把它的四个角都剪去一个边长为xcm的小正方形,然后把它折成一个无盖的长方体盒子(如图②),请回答下列问题:(1)折成的无盖长方体盒子的容积V=cm3;(用含x的代数式表示即可,不需化简)(2)请完成下表,并根据表格回答,当x取什么正整数时,长方体盒子的容积最大?x/cm12345V/cm316021680(3)从正面看折成的长方体盒子,它的形状可能是正方形吗?如果是正方形,求出x的值;如果不是正方形,请说明理由.26.(12分)如图,AD、BE是△ABC的两条高,过点D作DF⊥AB,垂足为F,FD交BE于M,FD、AC的延长线交于点N.(1)求证:△BFM∽△NF A;(2)试探究线段FM、DF、FN之间的数量关系,并证明你的结论;(3)若AC=BC,DN=12,ME:EN=1:2,求线段AC的长.2020-2021学年内蒙古包头市青山区九年级(上)期中数学试卷试题解析一.选择题(共12小题,每题3分,共36分)1.【解答】解:从左边看外边是一个矩形,矩形中间有一条纵向的虚线,故选:C.2.【解答】解:A、y=2x是正比例函数,故本选项不符合题意.B、y是x的反比例函数,故本选项符合题意;C、y不是x的反比例函数,故本选项不符合题意;D、y=﹣x是正比例函数,故本选项不符合题意;故选:B.3.【解答】解:x2﹣x=0,x(x﹣7)=0,∴x1=0,x8=1.故选:B.4.【解答】解:∵a:b=2:3,∴3a=2b,=,∴=﹣2,故选:D.5.【解答】解:x2+4x+4=8,(x+2)2=2.故选:C.6.【解答】解:根据影子的位置和长度,可以判断照片的先后顺序,早晨太阳再东方,树的影子在树的西方,影长较长,随时间的推移,影子的位置依次经过西北、北、东北、东,故顺序为:②①④③,故选:B.7.【解答】解:∵△ABC∽△EDF,∴∠BAC=∠DEF,又∠DEF=90°+45°=135°,所以∠BAC=135°,故选:D.8.【解答】解:设月平均增长率的百分数为x,80+80(1+x)+80(1+x)8=340.故选:D.9.【解答】解:AD∥BC,可知△AGE∽△CGB,△DFE∽△CFB,△ABC∽△CDA,AB∥CD,可知△ABG∽△CFG,△ABE∽△CFB,△EDF∽△EAB.故选:D.10.【解答】解:在函数y=和y=﹣kx+2(k≠0)中,当k>0时,函数y=的图象在第一、三象限,函数y=﹣kx+2的图象在第一、二、四象限,故选项A、D错误,选项B正确,故选:B.11.【解答】解:∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∴DE:AB=DE:DC=3:4,∴△DEF∽△BAF,∴△DEF的面积与△DAF的面积之比=EF:AF=3:4.故选:B.12.【解答】解:如图,GC⊥BC,AB⊥BC,∴GC∥AB,∴,同理,得,∴x=4,∴AB=6.故选:B.二.填空题(共8小题,每题3分,共24分)13.【解答】解:根据题意,得3k﹣2009>0,故答案为:k>.14.【解答】解:∵x1+x2=﹣(﹣3)=3,x2x2=﹣1,∴+==﹣3.故本题答案为:3,﹣1,﹣3.15.【解答】解:设另一个多边形的周长是x.依题意,有x:(1+2+3+4+6+6)=8:6,故另一个多边形的周长是28.16.【解答】解:根据题意得△=4(k﹣1)2﹣2k2>0,解得k<.故答案为k<.17.【解答】解:当△ADP∽△ACB时,∴=,解得:AP=9,∴=,解得:AP=4,故答案为:4或9.18.【解答】解:∵反比例函数y=的k=6>0,∴函数图象的两个分式分别位于一、三象限,且在每一象限内y随x的增大而减小.∴点(﹣2,y5),(﹣1,y2)位于第三象限,∵﹣2<﹣6<0,∵2>0,∴y3>0,故答案为:y2<y1<y5.19.【解答】解:设有x人参加聚会,则每人送出(x﹣1)件礼物,由题意得,x(x﹣1)=110.故答案是:x(x﹣1)=110.20.【解答】解:∵△ABC、△DCE、△GEF都是正三角形,∴△ABC、△DCE、△GEF相似,∠ACB=∠DCE=60°,∴∠ACD=∠DEG,∴DE∥GF,又∵∠CDE=∠EGF,∴△ACD∽△DEG,∴S3:S2=S2:S1=4:4故答案为:9.三.解答题(共6小题,共60分)21.【解答】解:(1)2x2﹣x﹣1=0,b2﹣4ac=(﹣)7﹣4×2×(﹣1)=11,x8=,x2=;(2)移项得:3(x﹣3)2﹣4(x﹣3)=0,(x﹣3)[3(x﹣6)﹣4]=0,x1=3,x2=.22.【解答】解:(1)当y=3时,3=,解得x=2,∴点A的坐标为(6,3);(2)作BF⊥x轴于F,如图,∵AE∥BF,∴BF=1,∴B(﹣6,﹣1),∴一次函数解析式为y=x+2.23.【解答】解:(1)如图,△O1A1B1即为所求作三角形;(2)如图,△O7A2B2即为所求作三角形;(3)点P(a,b)为△OAB内一点,位似变换后的对应点P′的坐标为(2a+2,5b)或(﹣2a﹣2,﹣2b),故答案为:(2a+2,2b)或(﹣7a﹣2,﹣2b).24.【解答】解:(1)降价1元,可多售出2件,降价x元,可多售出2x件,盈利的钱数=50﹣x,故答案为5x;50﹣x;(2)由题意得:(50﹣x)(30+2x)=2100(0≤x<50)解得:x2=15,x2=20∴降的越多,越吸引顾客,答:每件商品降价20元,商场日盈利可达2100元.25.【解答】解:(1)由题意得,长方体盒子的长(18﹣2x)、宽(12﹣2x)、高x,因此体积为:(18﹣2x)•(12﹣2x)•x,故答案为:(18﹣2x)•(12﹣2x)•x,(4)把x=2代入(18﹣2x)•(12﹣2x)•x得,(18﹣2x)•(12﹣2x)•x=14×8×2=224,把x=4代入(18﹣2x)•(12﹣2x)•x得,(18﹣2x)•(12﹣2x)•x=10×4×4=160,(3)它的形状不可能是正方形,当18﹣3x=x时,即x=6,而当x=6时,图①的长边变为0,因此折不成长方体,故从正面看是正方形是不可能的.26.【解答】(1)证明:∵DF⊥AB,AD、BE是△ABC的高,∴∠BFD=∠AFD=∠AEB=∠ADB=90°,∴∠FBM=∠N,∴△BFM∽△NF A;(2)解:DF2=FM•FN,理由为:证明:∵△BFM∽△NF A,∴FM•FN=FB•F A,∴∠FDB=∠F AD,∴△BFD∽△DF A,∴DF2=FM•FN;(3)解:∵AC=BC,∴∠BAC=∠ABC,∴∠FDB=∠N=∠FBM,易证△ENM∽△FBM∽△FDB,∴FB=2FM,FD=2FB=2FM,∴(4FM)2=FM•(7FM+12),∴FB=2,FD=4,FN=FD+DN=16,∴AF=8,AB=AF+BF=10,在Rt△ADB和Rt△ADC中,AD2=AB2﹣BD2=AC6﹣CD2,解得:AC=5.。