当前位置:文档之家› 数控机床伺服系统概述

数控机床伺服系统概述

数控机床伺服系统概述
数控机床伺服系统概述

教案

章节

课题

数控机床伺服系统概述

课型新课课时 2 教具学具

电教设施

教学目标

知识

教学点

1、伺服系统的概念与组成。

2、伺服系统的分类。

3、数控机床对伺服系统的要求。

4、进给伺服系统的组成及工作原理。能力

培养点

1、增强对理性知识的学习。

2、培养学生严谨的工作和学习作风。德育

渗透点

提高学生学习兴趣,增强学生责任心。

学重点难点重点伺服系统的相关知识

难点进给伺服系统的工作原理

学法引导

1、讨论法(积极参与,总结规律)

2、引导法(举一反三)

3、例举法

4、归纳法

5、图解法

教学内容

更新、补

充、删节

补充:进给伺服系统的工作原理

参考资料《数控原理》、《数控技术》、《先进制造技术》等课后体会

导入新课

下面我们来复习以下上节课所学的内容:

1、什么叫逐点比较法?它的四个工作节拍分别是什

么?

2、叙述逐点比较法有哪些优点?

讲授新课

一、伺服系统的概念与组成

?主要采用图解法、讨论法、引导法。

1、概念

2、作用

3、组成

注意

(1)伺服系统直接影响数控机床的精度和速度

等技术指标。

(2)半闭环控制精度介于开环和全闭环之间。

(3)速度环常用检测元件:测速发电机、高分

辨率脉冲编码器

位置环常用检测元件:光栅、码盘等。二、伺服系统的分类

?主要采用讲解法、图解法和归纳法。

1、主轴伺服系统

伺服系统

进给伺服系统

2、通过用练习的方式

检测学生掌握情况

通过分析图解使学

生思考伺服系统的

组成及各部分的作

采用图解法,学生

认真听讲,参与讨

6分

25

5分

15

12

3、根据反馈控制方式分类

三、数控机床对伺服系统的要求

?主要采用讲解法和引导法。

四、进给伺服系统的组成及工作原理

?主要采用讨论法、图解法和归纳法。

1、开环伺服系统

2、闭环伺服系统

课堂总结

1、伺服系统的概念与组成;

2、伺服系统的分类;

3、数控机床对伺服系统的要求;

4、进给伺服系统的组成及工作原理。

布置作业和辅导答疑

1、伺服系统的概念、分类和作用分别是什么?

2、数控机床对伺服系统的要求有哪些?

3、简单叙述开环、闭环伺服系统的工作原理和精度决定

因素分别是什么?学生通过思考,理

解开环与闭环原理

10

15

5分

3分

数控机床的伺服系统发展应用

数控机床的伺服系统发展应用 20世纪50年代出现数控机床以来,作为数控机床重要组成部分的伺服系统,随着新材料、电子电力、控制理论等相关技术的发展,经历了从步进伺服系统到直流伺服系统再到今天的交流伺服系统的过程。交流伺服技术的日益发展,交流伺服系统将逐步全面取代直流伺服系统。 数控(Numerical Control)是数控技术的简称。它是利用数字化的信息对机床及加工过程进行控制的一种方法。数控系统是数控机床的重要部分,它随着计算机技术的发展而发展。现在的数控系统都是由计算机完成以前硬件数控所做的工作,为特别强调,有时也称为计算机数字控制系统。计算机数字控制CNC(Computer Numerical Control)系统是以微处理器技术为特征,并随着电子技术、计算机技术、数控技术、通讯技术以及精密测量技术的发展而不断发展完善的一种先进加工制造系统。CNC系统框图见图1所示,它由数控程序、输入输出设备、操作面板、CNC装备、可编程控制器(PLC)、主轴伺服系统、进给伺服系统、检测装备和一些电气辅助装置等组成。 伺服系统是以驱动装置—电机为控制对象,以控制器为核心,以电力电子功率变换装置为执行机构,在自动控制理论的指导下组成的电气传动自动控制系统,它包括伺服驱动器和伺服电机。数控机床伺服系统的作用在于接受来自数控装置的指令信号,驱动机床移动部件跟随指令脉冲运动,并保证动作的快速和准确,这就要求高质量的速度和位置伺服。数控机床的精度和速度等技术指标往往主要取决于伺服系统。 数控机床的伺服系统发展与分类 数控机床的伺服系统应满足以下基本要求: 精度高 数控机床不可能像传统机床那样用手动操作来调整和补偿各种误差,因此它要求很高的定位精度和重复定位精度。 图1 CNC系统框图 快速响应特性好 快速响应是伺服系统动态品质的标志之一。它要求伺服系统跟随指令信号不仅跟随误差小,而且响应要快,稳定性要好。在系统给定输入后,能在短暂的调节之后达到新的平衡或是受到外界干扰作用下能迅速恢复原来的平衡状态。 调速范围大 由于工件材料、刀具以及加工要求不同,要保证数控机床在任何情况下都能得到最佳的切削条件,伺服系统就必须有足够的调速范围,既能满足高速加工要求,又能满足低速进给要求。调速范围一般大于1:10000。而且在低速切削时,还要求有较大稳定的转矩输出。

液压伺服系统工作原理

液压伺服系统工作原理 1.1 液压伺服系统工作原理 液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。 电液伺服系统通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。 液压伺服系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。液压伺服系统的工作原理可由图1来说明。 图1所示为一个对管道流量进行连续控制的电液伺服系统。在大口径流体管道1中,阀板2的转角θ变化会产生节流作用而起到调节流量qT的作用。阀板转动由液压缸带动齿轮、齿条来实现。这个系统的输入量是电位器5的给定值x i。对应给定值x i,有一定的电压输给放大器7,放大器将电压信号转换为电流信号加到伺服阀的电磁线圈上,使阀芯相应地产生一定的开口量x v。阀开口x v使液压油进入液压缸上腔,推动液压缸向下移动。液压缸下腔的油液则经伺服阀流回油箱。液压缸的向下移动,使齿轮、齿条带动阀板产生偏转。同时,液压缸活塞杆也带动电位器6的触点下移x p。当x p所对应的电压与x i所对应的电压相等时,两电压之差为零。这时,放大器的输出电流亦为零,伺服阀关闭,液压缸带动的阀板停在相应的qT位置。 图1 管道流量(或静压力)的电液伺服系统 1—流体管道;2—阀板;3—齿轮、齿条;4—液压缸;5—给定电位器;6—流量传感电位器;7—放大器;8—电液伺服 阀 在控制系统中,将被控制对象的输出信号回输到系统的输入端,并与给定值进行比较而形成偏差信号以产生对被控对象的控制作用,这种控制形式称之为反馈控制。反馈信号与给定信号符号相反,即总是形成差值,这种反馈称之为负反馈。用负反馈产生的偏差信号进行调节,是反馈控制的基本特征。而对图1所示的实例中,电位器6就是反馈装置,偏差信号就是给定信号电压与反馈信号电压在放大器输入端产生的△u。 图2 给出对应图1实例的方框图。控制系统常用方框图表示系统各元件之间的联系。上图方框中用文字表示了各元件,后面将介绍方框图采用数学公式的表达形式。 液压伺服系统的组成 液压伺服系统的组成 由上面举例可见,液压伺服系统是由以下一些基本元件组成;

伺服控制系统(设计)

第一章伺服系统概述 伺服系统是以机械参数为控制对象的自动控制系统。在伺服系统中,输出量能够自动、快速、准确地跟随输入量的变化,因此又称之为随动系统或自动跟踪系统。机械参数主要包括位移、角度、力、转矩、速度和加速度。 近年来,随着微电子技术、电力电子技术、计算机技术、现代控制技术、材料技术的快速发展以及电机制造工艺水平的逐步提高,伺服技术已迎来了新的发展机遇,伺服系统由传统的步进伺服、直流伺服发展到以永磁同步电机、感应电机为伺服电机的新一代交流伺服系统。 目前,伺服控制系统不仅在工农业生产以及日常生活中得到了广泛的应用,而且在许多高科技领域,如激光加工、机器人、数控机床、大规模集成电路制造、办公自动化设备、卫星姿态控制、雷达和各种军用武器随动系统、柔性制造系统以及自动化生产线等领域中的应用也迅速发展。 1.1伺服系统的基本概念 1.1.1伺服系统的定义 “伺服系统”是指执行机构按照控制信号的要求而动作,即控制信号到来之前,被控对象时静止不动的;接收到控制信号后,被控对象则按要求动作;控制信号消失之后,被控对象应自行停止。 伺服系统的主要任务是按照控制命令要求,对信号进行变换、调控和功率放大等处理,使驱动装置输出的转矩、速度及位置都能灵活方便的控制。

1.1.2伺服系统的组成 伺服系统是具有反馈的闭环自动控制系统。它由检测部分、误差放大部分、部分及被控对象组成。 1.1.3伺服系统性能的基本要求 1)精度高。伺服系统的精度是指输出量能复现出输入量的精确程度。 2)稳定性好。稳定是指系统在给定输入或外界干扰的作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。 3)快速响应。响应速度是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。 4)调速范围宽。调速范围是指生产机械要求电机能提供的最高转速和最低转速之比。 5)低速大转矩。在伺服控制系统中,通常要求在低速时为恒转矩控制,电机能够提供较大的输出转矩;在高速时为恒功率控制,具有足够大的输出功率。 6)能够频繁的启动、制动以及正反转切换。 1.1.4 伺服系统的种类 伺服系统按照伺服驱动机的不同可分为电气式、液压式和气动式三种;按照功能的不同可分为计量伺服和功率伺服系统,模拟伺服和功率伺服系统,位置

最新液压传动技术发展现状与前景展望

液压传动技术发展现状与前景展望 摘要:对液压传动技术及其优缺点进行描述;将其发展现状、工业应用情况作了一个简要的总结归纳;并根据其自身的特点对其发展趋势在液压现场总线技术、自动化控制软件技术、纯水液压传动、电液集成块等四方面做了合理的展望。关键词:液压传动;工业应用;发展趋势 1 液压传动的定义及其地位 液压传动是以流体(液压油液)为工作介质进行能量传递和控制的一种传动形式。它们通过各种元件组成不同功能的基本回路,再由若干基本回路有机地组合成具有一定控制功能的传动系统[1]。液压传动,是机械设备中发展速度最快的技术之一,特别是近年来,随着机电一体化技术的发展,与微电子、计算机技术相结合,液压传动进入了一个新的发展阶段[2]。 2 液压传动的发展简史 液压传动是根据17 世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,1795 年英国约瑟夫?布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905 年将工作介质水改为油,又进一步得到改善。第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920 年以后,发展更为迅速。1925 液压元件大约在19 世纪末20 世纪初的20 年间,才开始进入正规的工业生产阶段[2]。年维克斯(F.Vikers)发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。20 世纪初康斯坦丁?尼斯克(G?Constantimsco)对能量波动传递所进行的理论及实际研究;1910 年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展[3]。第二次世界大战(1941-1945)期间,在美国机床中有30%应用了液压传动。应该指出,日本液压传动的发展较欧美等国家晚了近20 多年。在1955 年前后, 日本迅速发展液压传动,1956 年成立了“液压工业会”。近20~30 年间,日本液压传动发展之快,居世界领先地位。液压技术主要是由武器装备对高质量控制装置的需要而发展起来的。随着控制理论的出现和控制系统的发展,液压技术与电子技术的结合日臻完善,电液控制系统具有高响应、高精度、高功率-质量比和大功率的特点,从而广泛运用于武器和各工业部门及技术领域[4]。 3 液压传动的优缺点 3.1 与机械传动、电气传动相比,液压传动具有以下优点 1.液压传动的各种元件,可以根据需要方便、灵活地来布置。 2.重量轻、体积小、运动惯性小、反应速度快。 3.操纵控制方便,可实现大范围的无级调速(调速范围达2000:1)。 4.可自动实现过载保护。

数控机床中伺服系统现状

数控机床中伺服系统的现状分析 一、概述 伺服系统是以机械运动的驱动设备,电动机为控制对象,以控制器为核心,以电力电子功率变换装置为执行机构,在自动控制理论的指导下组成的电气传动自动控制系统。这类系统控制电动机的转矩、转速和转角,将电能转换为机械能,实现运动机械的运动要求。具体在数控机床中,伺服系统接收数控系统发出的位移、速度指令,经变换、放调与整大后,由电动机和机械传动机构驱动机床坐标轴、主轴等,带动工作台及刀架,通过轴的联动使刀具相对工件产生各种复杂的机械运动,从而加工出用户所要求的复杂形状的工件。 作为数控机床的执行机构,伺服系统将电力电子器件、控制、驱动及保护等集为一体,并随着数字脉宽调制技术、特种电机材料技术、微电子技术及现代控制技术的进步,经历了从步进到直流,进而到交流的发展历程。数控机床中的伺服系统种类繁多,本文通过分析其结构及简单归分,对其技术现状及发展趋势作简要探讨。 二、伺服系统的结构及分类 从基本结构来看,伺服系统主要由三部分组成:控制器、功率驱动装置、反馈装置和电动机(图1)。控制器按照数控系统的给定值和通过反馈装置检测的实际运行值的差,调节控制量;功率驱动装置作为系统的主回路,一方面按控制量的大小将电网中的电能作用到电动机之上,调节电动机转矩的大小,另一方面按电动机的要求把恒压恒频的电网供电转换为电动机所需的交流电或直流电;电动机则按供电大小拖动机械运转。 图1 伺服系统的结构 图1 伺服系统的结构 图1中的主要成分变化多样,其中任何部分的变化都可构成不同种类的伺服系统。如根据驱动电动机的类型,可将其分为直流伺服和交流伺服;根据控制器实现方法的不同,可将其分为模拟伺服和数字伺服;根据控制器中闭环的多少,可将其分为开环控制系统、单环控制系统、双环控制系统和多环控制系统。考虑伺服系统在数控机床中的应用,本文首先按机床中传动机械的不同将其分为进给伺服与主轴伺服,然后再根据其它要素来探讨不同伺服系统的技术特性。 三、进给伺服系统的现状与展望

液压传动与气压传动技术

第一章液压传动基础知识 教学目的与要求: 1.掌握液压传动的概念。 2.掌握液压传动的优点、缺点。 3.了解液压传动在现代工业生产中的应用。 4.了解液压传动的发展概况。 5.掌握液压传动工作原理。 6.掌握液压传动系统各组成部分及在系统中的作用。 7.了解液压系统图的表达方式。 8.了解液压油的性能指标与选用原则。 课题重点: 1.掌握液压传动的概念及其优点、缺点。 2.掌握液压传动工作原理及液压传动系统各组成部分及在系统中的作用。 课题难点: 液压传动工作原理及液压传动系统各组成部分及在系统中的作用。 学时安排:

§1—1液压传动概述 教学目的知识目标使同学们掌握液压传动的概念及其优点、缺点。能力目标能够准确熟练阐述什么是液压传动 德育目标通过学习培养同学们做事要态度认真 教学重点掌握液压传动的概念及其优点、缺点。教学难点同上 教学过程与方法通过讲授、演示、任务驱动等强化知识重点;通过小组讨论、交流、合作,完成练习任务; 教学器材多媒体 教学时数2学时;备课时间8月18 日授课时间教学过程 教学环节 及 学时分配教学内容 教学 活动 组织教学师生问好、清点人数、填写日志1' 知识回顾为什么液压千斤顶体积小巧,却可以将人力放大到足够抬起沉重的汽车?学生思考 并回答,教师辅助3' 导入新课揭示课题 液压千斤顶体积小巧,却可以将人力放大到足够抬起沉重的汽车。究其 根源主要是液压千斤顶所采用的放大力的工作原理与杠杆不同。它是怎么样 将力传递放大的呢? 观察、 思考。 明确教学课题。 1' 教学内容一、液压传动的概念 利用液体作为工作介质来进行能量传递和进行控制的一种传动方式。 20' 利用多媒体和黑 板

液压伺服系统(DOC)

液压伺服系统 液压伺服系统是以高压液体作为驱动源的伺服系统,是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。 一、液压伺服系统的基本组成 液压伺服系统无论多么复杂,都是由一些基本元件组成的。如图就是一个典型的伺服系统,该图表示了各元件在系统中的位置和相互间的关系。 (1)外界能源—为了能用作用力很小的输入信号获得作用力很大的输出信号,就需要外加能源,这样就可以得到力或功率的放大作用。外界能源可以是机械的、电气的、液压的或它们的组合形式。 (2)液压伺服阀—用以接收输入信号,并控制执行元件的动作。它具有放大、比较等几种功能,如滑阀等。 (3)执行元件—接收伺服阀传来的信号,产生与输入信号相适应的输出信号,并作用于控制对象上,如液压缸等。 (4)反馈装置—将执行元件的输出信号反过来输入给伺服阀,以便消除原来的误差信号,它构成闭环控制系统。 (5)控制对象—伺服系统所要操纵的对象,它的输出量即为系统的被调量(或被控制量),如机床的工作台、刀架等。 二、液压伺服系统的分类 液压伺服系统是由液压动力机构和反馈机构组成的闭环控制系统,分为机械液压伺服系统和电气液压伺服系统(简称电液伺服系统)两类。 电液伺服系统 电液伺服系统是一种由电信号处理装置和液压动力机构组成的反馈控制系统。最常见的有电液位置伺服系统、电液速度控制系统和电液力(或力矩)控制系统。 如图是一个典型的电液位置伺服控制系统。图中反馈电位器与指令电位器接成桥式电路。反馈电位器滑臂与控制对象相连,其作用是把控制对象位置的变化转换成电压的变化。反馈电位器与指令电位器滑臂间的电位差(反映控制对象位置与指令位置的偏差)经放大器放大后,加于电液伺服阀转换为液压信号,以推动液压缸活塞,驱动控制对象向消除偏差方向运动。当偏差为零时,停止驱动,因而使控制对象的位置总是按指令电位器给定的规律变化。 电液伺服系统中常用的位置检测元件有自整角机、旋转变压器、感应同步器和差动变压器等。伺服放大器为伺服阀提供所需要的驱动电流。电液伺服阀的作用是将小功率的电信号转换为阀的运动,以控制流向液压动力机构的流量和压力。因此,电液伺服阀既是电液转换元件又是功率放大元件,它的性能对系统的特性影响很大,是电液伺服系统中的关键元件。液压动力机构由液压控制元件、执行机构和控制对象组成。液压控制元件常采用液压控制阀或伺服变量泵。常用的液压执行机构有液压缸和液压马达。液压动力机构的动态特性在很大程度上决定了电液伺服系统的性能。 为改善系统性能,电液伺服系统常采用串联滞后校正来提高低频增益,降低系统的稳态误差。此外,采用加速度或压力负反馈校正则是提高阻尼性能而又不降低效率的有效办法。

(完整版)液压传动系统的概论.

液压传动技术的历史进展与趋势 从公元前200多年前到17世纪初,包括希腊人发明的螺旋提水工具和中国出现的水轮等,可以说是液压技术最古老的应用。 自17世纪至19世纪,欧洲人对液体力学、液体传动、机构学及控制理论与机械制造做出了主要贡献,其中包括:1648年法国的B.帕斯卡(B.Pascal)提出的液体中压力传递的基本定律;1681年D.帕潘(D.Papain)发明的带安全阀的压力釜;1850年英国工程师威廉姆.乔治.阿姆斯特朗(William George Armstrong)关于液压蓄能器的发明;19世纪中叶英国工程师佛莱明?詹金(F.Jinken)所发明的世界上第一台蒸气喷射器差压补偿流量控制阀;1795年英国人约瑟夫?布瑞玛(Joseph Bramah)登记的第一台液压机的英国专利;这些贡献与成就为20世纪液压传动与控制技术的发展奠定了科学与工艺基础。 19世纪工业上所使用的液压传动装置是以水作为工作介质,因其密封问题一直未能很好解决以及电气传动技术的发展和竞争,曾一度导致液压技术停滞不前,卷板机。此种情况直至1905年美国人詹涅(Janney)首先将矿物油代替水作液压介质后才开始改观,折弯机。20世纪30年代后,由于车辆、航空、舰船等功率传动的推动,相继出现了斜轴式及弯轴式轴向柱塞泵、径向和轴向液压马达;1936年Harry Vickers发明了先导控制压力阀为标志的管式系列液压控制元件。第二次世界大战期间,由于军事上的需要,出现了以电液伺服系统为代表的响应快、精度高的液压元件和控制系统,从而使液压技术得到了迅猛发展。 20世纪50年代,随着世界各国经济的恢复和发展,生产过程自动化的不断增长,使玻璃冷却器技术很快转入民用工业,在机械制造、起重运输机械及各类施工机械、船舶、航空等领域得到了广泛发展和应用。同期,德国阿亨工业大学(TH Aachen)在仿形刀架

液压传动技术的发展状况及发展趋势

液压传动技术的发展状况及发展趋势 班级:模具2班 姓名:蔡腾飞 学号:130101020071

液压传动技术的发展状况及发展趋势 摘要:液压传动有许多突出的优点,因此它的应用非常广泛.如一般工业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等关键词:液压传动工业应用发展方向优点及缺点 一、液压传动的发展概况 液压传动是一门新的学科,虽然从17世纪中叶帕斯卡提出静压传动原理,18世纪末英国制成世界上第一台水压机算起,液压传动技术已有两三百年的历史,但直到20世纪30 年代它才较普遍地用于起重机、机床及工程机械。在第二次世界大战期间,由于战争需要,出现了由响应迅速、精度高的液压控制机构所装备的各种军事武器。第二次世界大战结束后,液压技术迅速转向民用工业,液压技术不断应用于各种自动机及自动生产线。20世纪60年代以后,液压技术随着原子能、空间技术、计算机技术的发展而迅速发展。因此,液压传动真正的发展也只是近三四十年的事。液压传动技术广泛应用了如自动控制技术、计算机技术、微电子技术、及新工艺和新材料等高技术成果,使传统技术有了新的发展,也使液压系统和元件的质量、水平有一定的提高。尽管如此,走向二十一世纪的液压技术不可能有惊人的技术突破,应当主要靠现有技术的改进和扩展,不断扩大其应用领域以满足未来的要求 二、液压传动的工业应用 液压传动有许多突出的优点,因此它的应用非常广泛,如一般工。业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等国;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。 目前, 它们分别在实现高压、高速、大功率、高效率、低噪声、长寿命、高度集成化、小型化与轻量化、一体化和执行件柔性化等方面取得了很大的进展。同时, 由于与微电子技术密切配合, 能在尽可能小的空间内传递尽可能大的功率并加以准确的控制, 从而更使得它们在各行各业中发挥出了巨大作用。 应该特别提及的是, 近年来, 世界科学技术不断迅速发展, 各部门对液压传动提出了更高的要求。液压传动与电子技术配合在一起, 广泛应用于智能机器人、海洋开发、宇宙航行、地震予测及各种电液伺服系统, 使液压传动的应用提高到一个崭新的高度。 三、液压传动的发展方向 1.减少能耗,充分利用能量 液压技术在将机械能转换成压力能及反转换方面,已取得很大进展,但一直存在能量损耗,主要反映在系统的容积损失和机械损失上。如果全部压力能都能得到充分利用,则将使能量转换过程的效率得到显著提高。为减少压力能的损失,必须解决下面几个问题:①减少元件和系统的内部压力损失,以减少功率损失。主要表现在改进元件内部流道的压力损失,

纯水液压传动概述

纯水液压传动概述 摘要纯水液压以其绿色环保等特性成为液压界的重要研究方向。本文论述了纯水液压传动的含义,讨论了其研究内容和应用趋势,分析了纯水液压传动的优势和劣势,然后介绍了国内外纯水液压传动的基本状况和发展趋势,并相应展开分析了纯水液压传动的主要研究方向。最后,本文提出了一些新的解决纯水液压传动缺点的思路。 关键词纯水液压油压应用优势关键技术 1 引言 现代液压传动技术在工业生产和其他领域应用十分广泛,而纯水液压传动技术是现代液压研究领域的前沿方向之一。由于纯水具有来源广泛、无污染、阻燃性好等优点,在我国积极开展纯水液压传动的研究与开发,对节约能源,保护环境,可持续发展及开发绿色液压产品,都具有十分重要的意义。因此如何利用纯水作为液压传动工作介质的课题引起了人们的普遍关注,纯水液压传动课题的研究已经成为当今液压界的一大热点。在纯水液压传动发展的20多年中,人们逐步发现了纯水液压传动的很多优点。这也使纯水液压传动受到了极大的重视,成为液压传动的新的热点技术。然而,由于纯水液压传动是一项新兴的技术,所以还存在很多不足和缺点。 2 什么是纯水液压传动 纯水液压传动是指以纯水(不含任何添加剂的天然水,含海水和淡水)为工作介质的液压传动。 a)纯水的含义 纯水液压传动中的纯水是指纯粹的天然水(natural water),即不含任何添加剂的水。不同文献中用不同的词语来表达,如纯水(pure water)、自来水(tap water)、生水(raw water)、普通水(plane water)。纯水的分类如表1所示。 b)纯水液压传动的研究内容 由于水固有的物理特性,纯水液压传动技术的研究主要集中在介质、材料、元件、控制等方面,如图1所示。

液压伺服系统

第十章液压伺服系统 一、名词解释 1、伺服控制 2、液压伺服控制系统 3、滑阀的压力-流量特性 4、滑阀的流量放大系数 5、滑阀的压力放大系数 二、问答题 1、液压伺服系统有由哪几部分组成?各部分的功能是什么? 2、伺服系统的基本类型有哪些? 3、为什么说伺服阀是液压伺服系统的最关键元件? 4、液压伺服阀有哪几种?滑阀式液压伺服阀与换向滑阀有什么本质区别? 5、滑阀式液压伺服阀的阀口与换向阀的阀口有什么不同? 6、电液伺服阀由哪几部分组成(以二级放大式为例)?各部分的作用是什么 7、液压仿形刀架的液压伺服系统为何将伺服滑阀的阀体和液压缸的缸体固连成一体?若将它们分成 两部分,仿形刀架能否工作?为什么? 8、何为伺服阀的零位特性?为什么零位阀系数对液压伺服系统的稳定性是至关重要的? 9、在力反馈电液伺服阀中,什么叫力反馈?力反馈是通过什么元件实现的? 三、计算题 1、已知一电液伺服阀在线性区内工作,当输入电流为20mA、伺服阀的压降为5Mpa时,输出的负载流量为60L/min,则当输入电流为100mA、伺服阀的压降为10Mpa时,其输出流量为多少? 2、如图所示的电液位置控制系统为轧机辊缝调节控制系统,它由辊缝调节螺钉1、支撑辊2、轧辊 3、板材 4、电液伺服阀 5、调整油缸 6、伺服放大器 7、同位素测厚仪8等组成。板材经轧机连轧后由厚板变为薄板,轧后板材的厚度由测厚仪检测出来,若加工后板材的厚度与要求不符,则由电液伺服阀控制调整油缸驱动支撑辊和轧辊,调节轧辊间的距离。写出其控制原理方块图,标明控制信号的传递过程,并说明系统工作原理。如图所示的电液位置控制系统为轧机辊缝调节控制系统,它由辊缝调节螺钉1、支撑辊2、轧辊3、板材4、电液伺服阀5、调整油缸6、伺服放大器7、同位素测厚仪8等组成。板材经轧机连轧后由厚板变为薄板,轧后板材厚度由测厚仪检测出来,若加工后板材的厚度与要求不符,则由电液伺服阀控制调整油缸驱动支撑辊和轧辊,调节轧辊间的距离。写出 其控制原理方块图,标明控制信号的传递过程,并说明系统工作原理。速度均为0.075m/s,工作进 - 1 -

数控机床伺服系统

第6章 数控机床伺服系统 进给伺服系统是数控系统主要的子系统。如果说CNC 装置是数控系统的“大脑”,是发布“命 令”的“指挥所”,那么进给伺服系统则是数控系统的“四肢”,是一种“执行机构”。它忠实地 执行由CNC 装置发来的运动命令,精确控制执行部件的运动方向,进给速度与位移量。 第一节 概述 . 进给伺服系统的定义及组成 . 定义:进给伺服系统(Feed Servo System)——以移动部件的位置和速度作为控制量的自动 控制系统。 一、进给伺服系统的定义及组成 组成: 进给伺服系统主要由以下几个部分组成:位置控制单元;速度控制单元;驱动元 件(电机);检测与反馈单元;机械执行部件。 3、进给伺服驱动系统由进给伺服系统中的 驱动电机及其控制和驱动装置组成。 4、驱动电机是进给系统的动力部件,它提供执行部分运动所需的动力,在数控机床上常用 的电机有: 步进电机 直流伺服电机 交流伺服电机 直线电机。 5 、速度单元是上述驱动电机及其控制和驱动装置,通常驱动电机与速度控制单元是相 互配套供应的,其性能参数都是进行了相互匹配,这样才能获得高性能的系统指标。 6、速度控制单元主要作用:接受来自位置控制单元的速度指令信号,对其进行适当的调节 运算(目的是稳速),将其变换成电机转速的控制量(频率,电压等),再经功率放大部件将其 变换成电机的驱动电量,使驱动电机按要求运行。简言之:调节、变换、功放。 7、进给驱动系统的特点(与主运动(主轴)系统比较): ? 功率相对较小; ? 控制精度要求高; ? 控制性能要求高,尤其是动态性能。 二、NC 机床对数控进给伺服系统的要求 1.调速范围要宽且要有良好的稳定性(在调速范围内) 调速范围: 一般要求: 稳定性:指输出速度的波动要少,尤其是在低速时的平稳性显得特别重要。 调速范围: 一般要求: 2.稳定性:指输出速度的波动要少,尤其是在低速时的平稳性显得特别重要。 输出位置精度要高 静态:定位精度和重复定位精度要高,即定位误差和重复定位误差要小。(尺寸精度) 动态:跟随精度,这是动态性能指标,用跟随误差表示。 (轮廓精度) 灵敏度要高,有足够高的分辩率。 3.负载特性要硬 在系统负载范围内,当负载变化时,输出速度应基本不变。即△F 尽可能小;当负载突变 时,要求速度的恢复时间短且无振荡。即△t 尽可能短; 应有足够的过载能力,以满足低速大转矩的要求。(高速恒功率,低速恒转矩) 这是要求伺服系统有良好的静态与动态刚度。 4. 响应速度快且无超调 这是对伺服系统动态性能的要求,即在无超调的前提下,执行部件的运动速度的建立时间 tp 应尽可能短。 通常要求从 0→Fmax (Fmax →0),其时间应小于200ms ,且不能有超调, min max F F R N =m in 1m in 1.010000min mm F mm R N <≤>且

液压传动简介

哈尔滨铁道职业技术学院毕业论文 毕业题目:液压传动论文 学生:傅立金 指导教师:卜昭海 专业:工程机械 班级:08机械一班 年月

目录 摘要 (3) 一.绪论 (3) 二.液压传动技术的应用简单介绍(行走驱动) (5) 三.液压传动的特点和基本原理 (6) 四.液压传动的常见故障及排除方法 (8) 五.液压传动的广阔前景 (10) 六.总结 (11)

液压传动论文 摘要 液压传动是用液体作为工作介质来传递能量和进行控制的传动方式。液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。如今,流体传动技术水平的高低已成为一个国家工业发展水平的重要标志。 一.绪论 ----社会需求永远是推动技术发展的动力,降低能耗,提高效率,适应环保需求,机电一体化,高可靠性等是液压气动技术继续努力的永恒目标,也是液压气动产品参与市场竞争是否取胜的关键。 ----由于液压技术广泛应用了高技术成果,如自动控制技术、计算机技术、微电子技术、磨擦磨损技术、可靠性技术及新工艺和新材料,使传统技术有了新的发展,也使液压系统和元件的质量、水平有一定的提高。尽管如此,走向二十一世纪的液压技术不可能有惊人的技术突破,应当主要靠现有技术的改进和扩展,不断扩大其应用领域以满足未来的要求。综合国内外专家的意见,其主要的发展趋势将集中在以下几个方面: 1.减少能耗,充分利用能量 ----液压技术在将机械能转换成压力能及反转换方面,已取得很大进展,但一直存在能量损耗,主要反映在系统的容积损失和机械损失上。如果全部压力能都能得到充分利用,则将使能量转换过程的效率得到显著提高。为减少压力能的损失,必须解决下面几个问题: ①减少元件和系统的内部压力损失,以减少功率损失。主要表现在改进元件内部流道的压力损失,采用集成化回路和铸造流道,可减少管道损失,同时还可减少漏油损失。 ②减少或消除系统的节流损失,尽量减少非安全需要的溢流量,避免采用节流系统来调节流量和压力。 ③采用静压技术,新型密封材料,减少磨擦损失。 ④发展小型化、轻量化、复合化、广泛发展3通径、4通径电磁阀以及低功率电磁阀。 ⑤改善液压系统性能,采用负荷传感系统,二次调节系统和采用蓄能器回路。 ⑥为及时维护液压系统,防止污染对系统寿命和可靠性造成影响,必须发展新的污染检测方法,对污染进行在线测量,要及时调整,不允许滞后,以免由于处理不及时而造成损失。 2.主动维护 ----液压系统维护已从过去简单的故障拆修,发展到故障预测,即发现故障苗头时,预先进行维修,清除故障隐患,避免设备恶性事故的发展。 ----要实现主动维护技术必须要加强液压系统故障诊断方法的研究,当前,凭有

数控车床的伺服系统介绍

4、简述采用的数控铣床伺服系统的组成、原理及作用 数控机床伺服系统是以机床运动部件的位置和速度作为控制量的自动控制系统,又称位置 随动系统,简称伺服系统。 数控机床伺服系统包括进给伺服系统和主轴伺服系统。 1、进给伺服系统用于控制机床各坐标轴的切削进给运动,是一种精密的位置跟踪、定位 系统,它包括速度控制和位置控制,是一般概念的伺服驱动系统;数控机床的进给伺服系 统与一般的机床的进给系统有本质的差异,它能根据指令信号自动精确的控制执行部件运 动的位移、方向和速度,以及数个执行部件按一定的规律运动以合成一定的运动轨迹。 2、主轴伺服系统用于控制机床主轴的旋转运动和切削过程中的转矩和功率,一般只以速 度控制为主。 伺服控制系统分为开环伺服系统和闭环伺服系统,开环伺服系统由驱动控制单元、执行原 件和机床组成。闭环伺服系统由执行元件、驱动控制单元、机床及反馈检测元件、比较环 节组成。 图4-1数控伺服系统的组成 伺服系统的作用是接受数控系统发出的进给位移和速度指令信号,由伺服驱动电路作一定 的转换和放大后,经伺服驱动装置和机械传动机构,驱动机床的工作台等执行部件进行运动。 5、分析所采用数控铣床所需的主运动、进给运动、换刀与刀库原理结构,并画出数控机 床总体方案草图,简述其尺寸、动力、运动参数范围。 5.1数控机床CK6140主轴运动 主轴部件是机床的重要部件之一,其精度、抗振性和热变形对加工质量有直接影响。特别 是如果数控机床在加工过程中不进行人工调整,这些影响将更为严重。数控机床主轴部件 在结构上要解决好主轴的支承、主轴内刀具自动装夹、主轴的定向停止等问题。 数控机床主轴的支承主要采用图1所示的三种主要形式。图5-1a所示结构的前支承采用 双列短圆柱滚子轴承和双向推力角接触球轴承组合,后支承采用成对向心推力球轴承。这 种结构的综合刚度高,可以满足强力切削要求,是目前各类数控机床普遍采用的形式。图 5-1b所示结构的前支承采用多个高精度向心推力球轴承,后支承采用单个向心推力球轴承。这种配置的高速性能好,但承载能力较小,适用于高速、轻载和精密数控机床。图5-1c所示结构为前支承采用双列圆锥滚子轴承,后支承为单列圆锥滚子轴承。这种配置的径向和

第九章 液压伺服系统.

第九章液压伺服系统 第一节概述 伺服系统又称随机系统或跟踪系统,是一种自动控制系统。在这种系统中,执行元件能以一定的精度自动地按照输入信号的变化规律动作。液压伺服系统是以液压为动力的自动控制系统,由液压控制和执行机构所组成。 一、液压伺服系统的工作原理 图9-1为一简单的机液位置伺服系统的原理图。 当伺服滑阀处于中间位置(xv=0)时,各阀口均关闭,阀没有流量输出,液压缸不动,系统处于静止状态。给伺服滑阀阀芯一个输入位移xi,阀口a、b便有一个相应的开口量xv,使压力油经阀口b进入液压缸的右腔,其左腔油液经阀口a回油池,液压缸在液压力的作用下右移x0,由于滑阀阀体与液压缸体固连在一起,因而阀体也右移x0,则阀口a、b的开口量减小(xv=xi-x0),直到x0=xi时,xv=0,阀口关闭,液压缸停止运动,从而完成液压缸输出位移对伺服滑阀输入位移的跟随运动。若伺服滑阀反向运动,液压缸也作反向跟随运动。由上可知,只要给伺服滑阀以某一规律的输入信号,执行元件就自动地、准确地跟随滑阀按照这个规律运动。 图9-1机液位置伺服系统原理图 1-溢流阀 2-泵 3-阀芯 4-阀体(缸体) 由此可以看出,液压伺服系统有如下特点: 1.跟踪系统的输出量能够自动地、快速而准确地跟踪输入量的变化规律。 2.放大移动阀芯所需的力很小,只需要几牛顿到几十牛顿,但液压缸输出的力却很大,可达数千到数万牛顿。功率放大所需要的能量是由液压泵供给的。 3.反馈把输出量的一部分或全部按一定方式回送到输入端,和输入信号作比较,这就是反馈。回送的信号称为反馈信号。若反馈信号不断地抵消输入信号的作用,则称为负反馈。负反馈是自动控制系统具有的主要特征。图9-1中的负反馈是通过阀体和缸体的刚性连接来实现的,液压缸的输出位移y连续不断地回送到阀体上,与阀芯的输入位移x相比较,其结果使阀的开口减小。此例中的反馈是一种机械反馈。反馈

数控机床伺服系统概述

教案 章节 课题 数控机床伺服系统概述 课型新课课时 2 教具学具 电教设施 无 教学目标 知识 教学点 1、伺服系统的概念与组成。 2、伺服系统的分类。 3、数控机床对伺服系统的要求。 4、进给伺服系统的组成及工作原理。能力 培养点 1、增强对理性知识的学习。 2、培养学生严谨的工作和学习作风。德育 渗透点 提高学生学习兴趣,增强学生责任心。 教 学重点难点重点伺服系统的相关知识 难点进给伺服系统的工作原理 学法引导 1、讨论法(积极参与,总结规律) 2、引导法(举一反三) 3、例举法 4、归纳法 5、图解法 教学内容 更新、补 充、删节 补充:进给伺服系统的工作原理 参考资料《数控原理》、《数控技术》、《先进制造技术》等课后体会

导入新课 下面我们来复习以下上节课所学的内容: 1、什么叫逐点比较法?它的四个工作节拍分别是什 么? 2、叙述逐点比较法有哪些优点? 讲授新课 一、伺服系统的概念与组成 ?主要采用图解法、讨论法、引导法。 1、概念 2、作用 3、组成 注意 (1)伺服系统直接影响数控机床的精度和速度 等技术指标。 (2)半闭环控制精度介于开环和全闭环之间。 (3)速度环常用检测元件:测速发电机、高分 辨率脉冲编码器 位置环常用检测元件:光栅、码盘等。二、伺服系统的分类 ?主要采用讲解法、图解法和归纳法。 1、主轴伺服系统 伺服系统 进给伺服系统 2、通过用练习的方式 检测学生掌握情况 通过分析图解使学 生思考伺服系统的 组成及各部分的作 用 采用图解法,学生 认真听讲,参与讨 论 6分 25 分 5分 15 分 12 分

3、根据反馈控制方式分类 三、数控机床对伺服系统的要求 ?主要采用讲解法和引导法。 四、进给伺服系统的组成及工作原理 ?主要采用讨论法、图解法和归纳法。 1、开环伺服系统 2、闭环伺服系统 课堂总结 1、伺服系统的概念与组成; 2、伺服系统的分类; 3、数控机床对伺服系统的要求; 4、进给伺服系统的组成及工作原理。 布置作业和辅导答疑 1、伺服系统的概念、分类和作用分别是什么? 2、数控机床对伺服系统的要求有哪些? 3、简单叙述开环、闭环伺服系统的工作原理和精度决定 因素分别是什么?学生通过思考,理 解开环与闭环原理 10 分 15 分 5分 3分

数控机床中伺服系统现状分析(doc 5)

数控机床中伺服系统现状分析(doc 5)

数控机床中伺服系统的现状分析 一、概述 伺服系统是以机械运动的驱动设备,电动机为控制对象,以控制器为核心,以电力电子功率变换装置为执行机构,在自动控制理论的指导下组成的电气传动自动控制系统。这类系统控制电动机的转矩、转速和转角,将电能转换为机械能,实现运动机械的运动要求。具体在数控机床中,伺服系统接收数控系统发出的位移、速度指令,经变换、放调与整大后,由电动机和机械传动机构驱动机床坐标轴、主轴等,带动工作台及刀架,通过轴的联动使刀具相对工件产生各种复杂的机械运动,从而加工出用户所要求的复杂形状的工件。 作为数控机床的执行机构,伺服系统将电力电子器件、控制、驱动及保护等集为一体,并随着数字脉宽调制技术、特种电机材料技术、微电子技术及现代控制技术的进步,经历了从步进到直流,进而到交流的发展历程。数控机床中的伺服系统种类繁多,本文通过分析其结构及简单归分,对其技术现状及发展趋势作简要探讨。 二、伺服系统的结构及分类 从基本结构来看,伺服系统主要由三部分组成:控制器、功率驱动装置、反馈装置和电动机(图1)。控制器按照数控系统的给定值和通过反馈装置检测的实际运行值的差,调节控制量;功率驱动装置作为系统的主回路,一方面按控制量的大小将电网中的电能作用到电动机之上,调节电动机转矩的大小,另一方面按电动机的要求把恒压恒频的电网供电转换为电动机所需的交流电或直流电;电动机则按供电大小拖动机械运转。 图1 伺服系统的结构 图1 伺服系统的结构 图1中的主要成分变化多样,其中任何部分的变化都可构成不同种类的伺服系统。如根据驱动电动机的类型,可将其分为直流伺服和交流伺服;根据控制器实现方法的不同,可将其分为模拟伺服和数字伺服;根据控制器中闭环的多少,可将其分为开环控制系统、单环控制系统、双环控制系统和多环控制系统。考虑伺服系统在数控机床中的应用,本文首先按机床中传动机械的不同将其分为进给伺服与主轴伺服,然后再根据其它要素来探讨不同伺服系统的技术特性。

液压伺服系统设计

液压伺服系统设计 液压伺服系统设计 在液压伺服系统中采用液压伺服阀作为输入信号的转换与放大元件。液压伺服系统能以小功率的电信号输入,控制大功率的液压能(流量与压力)输出,并能获得很高的控制精度和很快的响应速度。位置控制、速度控制、力控制三类液压伺服系统一般的设计步骤如下: 1)明确设计要求:充分了解设计任务提出的工艺、结构及时系统各项性能的要求,并应详细分析负载条件。 2)拟定控制方案,画出系统原理图。 3)静态计算:确定动力元件参数,选择反馈元件及其它电气元件。 4)动态计算:确定系统的传递函数,绘制开环波德图,分析稳定性,计算动态性能指标。 5)校核精度和性能指标,选择校正方式和设计校正元件。 6)选择液压能源及相应的附属元件。 7)完成执行元件及液压能源施工设计。 本章的内容主要是依照上述设计步骤,进一步说明液压伺服系统的设计原则和介绍具体设计计算方法。由于位置控制系统是最基本和应用最广的系统,所以介绍将以阀控液压缸位置系统为主。 4.1 全面理解设计要求 4.1.1 全面了解被控对象 液压伺服控制系统是被控对象—主机的一个组成部分,它必须满足主机在工艺上和结构上对其提出的要求。例如轧钢机液压压下位置控制系统,除了应能够承受最大轧制负载,满足轧钢机轧辊辊缝调节最大行程,调节速度和控制精度等要求外,执行机构—压下液压缸在外形尺寸上还受轧钢机牌坊窗口尺寸的约束,结构上还必须保证满足更换轧辊方便等要求。要设计一个好的控制系统,必须充分重视这些问题的解决。所以设计师应全面了解被控对象的工况,并综合运用电气、机械、液压、工艺等方面的理论知识,使设计的控制系统满足被控对象的各项要求。 4.1.2 明角设计系统的性能要求 1)被控对象的物理量:位置、速度或是力。 2)静态极限:最大行程、最大速度、最大力或力矩、最大功率。 3)要求的控制精度:由给定信号、负载力、干扰信号、伺服阀及电控系统零飘、非线性环节(如摩擦力、死区等)以及传感器引起的系统误差,定位精度,分辨率以及允许的飘移量等。 4)动态特性:相对稳定性可用相位裕量和增益裕量、谐振峰值和超调量等来规定,响应的快速性可用载止频率或阶跃响应的上升时间和调整时间来规定; 5)工作环境:主机的工作温度、工作介质的冷却、振动与冲击、电气的噪声干扰以及相应的耐高温、防水防腐蚀、防振等要求; 6)特殊要求;设备重量、安全保护、工作的可靠性以及其它工艺要求。 4.1.3 负载特性分析 正确确定系统的外负载是设计控制系统的一个基本问题。它直接影响系统的组成和动力元件参数的选择,所以分析负载特性应尽量反映客观实际。液压伺服系统的负载类型有

数控伺服系统组成及原理介绍

数控伺服系统组成及原理介绍 伺服系统是指以机械位置或角度作为控制对象的自动控制系统。它接受来自数控装置的进给指令信号,经变换、调节和放大后驱动执行件,转化为直线或旋转运动。伺服系统是数控装置(计算机)和机床的联系环节,是数控机床的重要组成部分。 数控机床伺服系统又称为位置随动系统、驱动系统、伺服机构或伺服单元。 该系统包括了大量的电力电子器件,结构复杂,综合性强。 进给伺服系统是数控系统主要的子系统。如果说C装置是数控系统的“大脑”,是发布“命令”的“指挥所”,那么进给伺服系统则是数控系统的“四肢”,是一种“执行机构”。它忠实地执行由CNC装置发来的运动命令,精确控制执行部件的运动方向,进给速度与位移量。 一、伺服系统的组成 组成:伺服电机 驱动信号控制转换电路 电子电力驱动放大模块 位置调节单元 速度调节单元 电流调节单元 检测装置 一般闭环系统为三环结构:位置环、速度环、电流环。 位置、速度和电流环均由:调节控制模块、检测和反馈部分组成。电力电子驱动装置由驱动信号产生电路和功率放大器组成。 严格来说:位置控制包括位置、速度和电流控制;速度控制包括速度和电流控制。 位置、速度和电流环均由:调节控制模块、检测和反馈部分组成。电力电子驱动装置由驱动信号产生电路和功率放大器组成。 严格来说:位置控制包括位置、速度和电流控制;速度控制包括速度和电流控制。

二、对伺服系统的基本要求 1.精度高 伺服系统的精度是指输出量能复现输入量的精确程度。包括定位精度和轮廓加工精度。2.稳定性好 稳定是指系统在给定输入或外界干扰作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。直接影响数控加工的精度和表面粗糙度。 3.快速响应 快速响应是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。 4.调速范围宽 调速范围是指生产机械要求电机能提供的最高转速和最低转速之比。0~24m / min。 5.低速大转矩 进给坐标的伺服控制属于恒转矩控制,在整个速度范围内都要保持这个转矩;主轴坐标的伺服控制在低速时为恒转矩控制,能提供较大转矩。在高速时为恒功率控制,具有足够大的输出功率。 对伺服电机的要求: (1)调运范围宽且有良好的稳定性,低速时的速度平稳性 (2)电机应具有大的、较长时间的过载能力,以满足低速大转矩的要求。 (3)反应速度快,电机必须具有较小的转动惯量、较大的转矩、尽可能小的机电时间常数和很大的加速度 (400rad / s2以上)。 (4)能承受频繁的起动、制动和正反转。 三、伺服系统的分类 1.按调节理论分类

相关主题
文本预览
相关文档 最新文档