当前位置:文档之家› 基于PLC的PID温度闭环控制器设计

基于PLC的PID温度闭环控制器设计

基于PLC的PID温度闭环控制器设计
基于PLC的PID温度闭环控制器设计

本科毕业论文

论文题目:基于PLC的PID温度闭环控制器设计

姓名:史路涛

学号:2010341306

院(系、部):物理与电子工程学院

专业:自动化

班级: 3

指导教师:胡红林

完成时间: 2014 年 2 月

摘要

随着现代工业的逐步发展,在工业生产中,温度、压力、流量和液位是四种最常见的过程变量。其中,温度是一个非常重要的过程变量。例如:在冶金工业、化工工业、电力工业、机械加工和食品加工等许多领域。这方面的应用大多是基于单片机进行PID控制,然而单片机控制的DDC系统软硬件设计较为复杂,特别是涉及到逻辑控制方面更不是其长处,然而PLC在这方面却是公认的最佳选择。

随着PLC功能的扩充在许多PLC控制器中都扩充了PID控制功能,因此在逻辑控制与PID控制混合的应用场所中采用PLC控制是较为合理的,通过采用PLC来对它们进行控制不仅具有控制方便、简单和灵活性大的优点,而且可以大幅度提高被测温度的技术指标,从而能够大大提高产品的质量和数量。因此,PLC对温度的控制问题是一个工业生产中经常会遇到的控制问题。这也正是本课题所重点研究的内容。

本设计是利用西门子S7-200PLC来控制温度系统。首先研究了温度的PID调节控制,提出了PID的模糊自整定的设计方案,结合MCGS监控软件控制得以实现控制温度目的关键词:PLC;PID;闭环系统;温度控制

Abstract

With modern industrial development, in the industrial production, temperature, pressure, flow and level are the four most common process variables. Among them, the temperature is a very important process variables. For example: in metallurgical industry, chemical industry, power industry, machinery and food processing and many other fields, This application is mostly based on MCU PID control, however, SCM control system hardware and software design of DDC is relatively complex, especially relates to the logic control more than its strengths, however PLC in this regard is recognized as the best choice.

With the PLC function expansion in many PLC controllers are expanded PID control function, so the logic control and PID control in hybrid applications using PLC control is more reasonable, by using PLC to control them not only has the convenient control, simple and flexibility, and can greatly improve the measured the temperature of the technical indicators, which can greatly improve the quality and quantity of the products. Therefore, the PLC of the temperature control is a problem in industrial production often encountered control problems. This is the subject of the key research content.This paper discusses the working principle of control system of electric boiler, temperature transmitter selection, PLC configuration, configuration software design and so on several aspects.

This design is the use of Siemens S7-200 PLC to control temperature system. First studied the temperature PID control, puts forward the design scheme of the fuzzy self-tuning PID, combined with the MCGS monitor software control temperature control are realized. Keywords: PLC; PID; closed-loop system; temperature-control

目录

前言 (1)

1 PLC控制系统的硬件组成 (1)

1.1可编程序控制器的概述 (1)

1.2可编程控制器的基本结构和工作原理 (2)

1.3可编程控制器的分类及特点 (3)

2 PLC控制系统的硬件设计 (4)

2.1 PLC控制系统设计的基本原则和步骤 (4)

2.1.1PLC控制系统设计的基本原则 (4)

2.1.2 PLC控制系统设计的一般步骤 (4)

2.1.3 PLC程序设计的一般步骤 (5)

2.2PLC的选型和硬件配置 (6)

2.2.1 S7-200PLC选型 (6)

2.2.2温度传感器 (7)

2.2.3 EM235 模拟量输入/输出模块 (7)

3控制算法设计 (8)

3.1P-I-D控制 (8)

3.2PID回路指令 (10)

3.2.1 PID算法 (10)

3.2.2 PID回路指令 (13)

3.2.3 回路输入输出变量的数值转换 (14)

3.2.4 PID参数整定 (15)

4程序设计 (16)

4.1程序流程图 (16)

4.2梯形图 (17)

5 调试 (21)

5.1 程序调试 (21)

5.2 硬件调试 (21)

结论 (22)

参考文献 (23)

谢辞 (23)

前 言

温度控制的应用领域是非常广泛的,大到工业生产、航空航天,小到我们的生活。目前温度控制系统大都采用以微处理器为核心的计算机控制技术,不但提高设备的自动化程度而且可以提高设备的控制精度。

PLC 的飞速发展发生在20世纪80年代至90年代中期。在这期间,PLC 在人机接口能力、数字运算能力、处理模拟量能力等得到了很大的发展和提高。PLC 逐渐进入过程控制领域,在许多应用上取代了 统治地位的DCS 系统。PLC 具有使用方便、通用性强、可靠性高、编程简单、适应面广、抗干扰能力强等特点。

PID 控制是迄今为止最通用的控制方法之一。因为其算法简单、鲁棒性好、可靠性高,所以能被非常广泛应用于过程控制中,特别适用于可建立精确数学模型的确定性系统。PID 控制的效果完全取决于其四个参数,即采样周期s T 、比例系数P K 、积分系数I K 、微分系数

D K 。所以,PID 参数的优化与整定一直是自动控制领域研究的重要课题。PID 在工业过程

控制中的应用已有差不多百年的历史,在此期间虽然有许多控制算法问世,但由于PID 算法以它自身的优点,并且加上人们在长期使用过程中积累了丰富的经验,使它在工业控制中得到广泛的应用。在PID 算法中,针对P 、I 、D 三个参数的优化和整定问题成为至关重要的问题。

现代社会要求制造业市场做出迅速的反应,要求生产出小批量、多规格、多品种、高质量和低成本的产品。为了满足这一要求,生产设备的控制系统必须具有极高的可靠性和灵活性,可编程控制器就运应而生。随着三大技术(微处理器、计算机和数字通信技术)的飞速发展,计算机控制已扩展到几乎所有控制领域。在钢铁、建材、煤矿、机械、化工、食品等工业生产中都有广泛应用。

本文介绍了以锅炉为被控对象,以锅炉出口温度为被控参数,以PLC 为控制器,构成锅炉温度控制系统,采用PID 算法,运用PLC 梯形图编程语言进行编程,实现锅炉温度的自动控制。通过电热锅炉的控制系统具有响应快、稳定性好、可靠性高,控制精度好等特点,对工业控制有现实意义。

1 PLC 控制系统的硬件组成

1.1 可编程序控制器的概述

随着微处理器、计算机和数字通信技术的迅速发展,计算机控制已经广泛应用在几乎所有的工业领域。现代社会要求制造业对市场这一需求迅速做出反应,生产出小批量、多品种、多规格、低成本和高质量的产品。可编程控制器就是顺应这一需要出现的,它是以微处理器为基础的通用工业控制装置。编程控制器不仅可以按事先编好的程序进行各种逻辑控制,还具有随意编程、自动诊断、通用性好、体积小、可靠性高的特点。因此,可编

程控制器正逐步取代着继电器-接触器控制系统。

1.2 可编程控制器的基本结构和工作原理

可编程控制器的组成:PLC包括CPU模块、输入模块、输出模块和编程器组成。

1.CPU

CPU是PLC的核心,它按PLC的系统程序赋予的功能接收并存贮用户程序和数据,用扫描的方式采集由现场输入装置送来的状态或数据,并存入规定的寄存器中,同时,诊断电源和PLC内部电路的工作状态和编程过程中的语法错误等。CPU主要由运算器、控制器、寄存器及实现它们之间联系的数据、控制及状态总线构成,CPU 单元还包括外围芯片、总线接口及有关电路。内存主要用于存储程序及数据,是PLC 不可缺少的组成单元。CPU速度和内存容量是PLC的重要参数,它们决定着PLC的工作速度,IO数量及软件容量等,因此限制着控制规模。

2.I/O模块

PLC与电气回路的接口,是通过输入输出部分(I/O)完成的。I/O模块集成了PLC的I/O电路,其输入暂存器反映输入信号状态,输出点反映输出锁存器状态。输入模块将电信号变换成数字信号进入PLC系统,输出模块相反。I/O分为开关量输入(DI),开关量输出(DO),模拟量输入(AI),模拟量输出(AO)等模块。常用的I/O分类如下:

开关量:按电压水平分,有220VAC、110VAC、24VDC,按隔离方式分,有继电器隔离和晶体管隔离。

模拟量:按信号类型分,有电流型(4-20mA,0-20mA)、电压型(0-10V,0-5V,-10-10V)等,按精度分,有12bit,14bit,16bit等。除了上述通用I/O外,还有特殊I/O模块,如热电阻、热电偶、脉冲等模块。按I/O点数确定模块规格及数量,I/O模块可多可少,但其最大数受CPU所能管理的基本配置的能力,即受最大的底板或机架槽数限制。

3.编程器

编程器的作用是用来供用户进行程序的输入、编辑、调试和监视的。编程器一般分为简易型和智能型两类。简易型只能联机编程,且往往需要将梯形图转化为机器语言助记符后才能送入。而智能型编程器(又称图形编程器),不但可以连机编程,而且还可以脱机编程。操作方便且功能强大。

4.电源

PLC电源用于为PLC各模块的集成电路提供工作电源。同时,有的还为输入电路提供24V的工作电源。电源输入类型有:交流电源(220VAC或110VAC),直流电源(常用的为24VDC)。

可编程控制器的工作原理:

PLC的工作方式是一个不断循环的顺序扫描工作方式。每一次扫描所用的时间称为扫

描周期。CPU 从第一条指令开始,按顺序逐条地执行用户程序直到用户程序结束,然后返回第一条指令开始新的一轮扫描。PLC就是这样周而复始地重复上述循环扫描的。

PLC工作的全过程可用图1-1 所示的运行框图来表示。

图1-1 可编程控制器运行框图

1.3 可编程控制器的分类及特点

(一)小型PLC

小型PLC的I/O点数一般在128点以下,其特点是体积小、结构紧凑,整个硬件融为一体,除了开关量I/O以外,还可以连接模拟量I/O以及其他各种特殊功能模块。它能执行包括逻辑运算、计时、计数、算术、运算数据处理和传送通讯联网以及各种应用指令。

(二)中型PLC

中型PLC采用模块化结构,其I/O点数一般在256~1024点之间,I/O的处理方式除了采用一般PLC通用的扫描处理方式外,还能采用直接处理方式即在扫描用户程序的过程中直接读输入刷新输出,它能联接各种特殊功能模块,通讯联网功能更强,指令系统更丰富,内存容量更大,扫描速度更快。

(三)大型PLC

一般I/O点数在1024点以上的称为大型PLC,大型PLC的软硬件功能极强,具有极强的自诊断功能、通讯联网功能强,有各种通讯联网的模块可以构成三级通讯网实现工厂生产管理自动化,大型PLC还可以采用冗余或三CPU构成表决式系统使机器的可靠性更高。

2 PLC控制系统的硬件设计

本章主要从系统设计结构和硬件设计的角度,介绍该项目的PLC控制系统的设计步骤、PLC的硬件配置、外部电路设计以及PLC控制器的设计参数的整定。

2.1 PLC控制系统设计的基本原则和步骤

2.1.1 PLC控制系统设计的基本原则

1.充分发挥PLC功能,最大限度地满足被控对象的控制要求。

2.在满足控制要求的前提下,力求使控制系统简单、经济、使用及维修方便。

3.保证控制系统安全可靠。

4.应考虑生产的发展和工艺的改进,在选择PLC的型号、I/O点数和存储器容量等内容时,应留有适当的余量,以利于系统的调整和扩充。

2.1.2 PLC控制系统设计的一般步骤

设计PLC应用系统时,首先是进行PLC应用系统的功能设计,即根据被控对象的功能和工艺要求,明确系统必须要做的工作和因此必备的条件。然后是进行PLC应用系统的功能分析,即通过分析系统功能,提出PLC控制系统的结构形式,控制信号的种类、数量,系统的规模、布局。最后根据系统分析的结果,具体的确定PLC的机型和系统的具体配置。PLC控制系统设计可以按以下步骤进行:

1.熟悉被控对象,制定控制方案分析被控对象的工艺过程及工作特点,了解被控对象机、电、液之间的配合,确定被控对象对PLC控制系统的控制要求。

2.确定I/O设备根据系统的控制要求,确定用户所需的输入(如按钮、行程开关、选择开关等)和输出设备(如接触器、电磁阀、信号指示灯等)由此确定PLC的I/O点数。

3.选择PLC选择时主要包括PLC机型、容量、I/O模块、电源的选择。

4.分配PLC的I/O地址根据生产设备现场需要,确定控制按钮,选择开关、接触器、电磁阀、信号指示灯等各种输入输出设备的型号、规格、数量;根据所选的PLC的型号列出输入/输出设备与PLC输入输出端子的对照表,以便绘制PLC外部I/O接线图和编制程序。

5.设计软件及硬件进行PLC程序设计,进行控制柜(台)等硬件的设计及现场施工。由于程序与硬件设计可同时进行,因此,PLC控制系统的设计周期可大大缩短,而对于继电器系统必须先设计出全部的电气控制线路后才能进行施工设计。

6.联机调试联机调试是指将模拟调试通过的程序进行在线统调。

2.1.3 PLC程序设计的一般步骤

1.绘制系统的功能图。

2.设计梯形图程序。

3.根据梯形图编写指令表程序。

4.对程序进行模拟调试及修改,直到满足控制要求为止。调试过程中,可采用分段调试的方法,并利用编程器的监控功能。

PLC控制系统的设计步骤可参考图2-1:

图2-1 PLC控制系统的设计步骤

2.2PLC的选型和硬件配置

PLC的选型与配置可分为:编程器选型、开关量I/O模块的选择、编程器与外部设备的选择和通信功能的选择。

2.2.1 S7-200PLC选型

S7-200 系列PLC 是由德国西门子公司生产的一种超小型系列可编程控制器,它能够满足多种自动化控制的需求,其设计紧凑,价格低廉,并且具有良好的可扩展性以及强大的指令功能,可代替继电器在简单的控制场合,也可以用于复杂的自动化控制系统。由于它具有极强的通信功能,在大型网络控制系统中也能充分发挥作用。

S7-200系列可以根据对象的不同, 可以选用不同的型号和不同数量的模块。并可以将这些模块安装在同一机架上。

SiemensS7-200 主要功能模块介绍:

(1)CPU 模块S7-200的CPU 模块包括一个中央处理单元,电源以及数字I/O 点,这些都被集成在一个紧凑,独立的设备中。CPU 负责执行程序,输入部分从现场设备中采集信号,输出部分则输出控制信号,驱动外部负载.从CPU 模块的功能来看, CPU 模块为CPU22型,它具有如下五种不同的结构配置CPU 单元:①CPU221 它有 6 输入/4 输出,I/0 共计10 点.无扩展能力,程序和数据存储容量较小,有一定的高速计数处理能力,非常适合于少点数的控制系统。②CPU222 它有8 输入/6 输出,I/0 共计14 点,和CPU 221 相比,它可以进行一定的模拟量控制和2个模块的扩展,因此是应用更广泛的全功能控制器。③CPU224 它有14 输入/10 输出,I/0 共计24 点,和前两者相比,存储容量扩大了一倍,它可以有7 个扩展模块,有内置时钟,它有更强的模拟量和高速计数的处理能力,是使用得最多S7-200 产品。④CPU226 它有24 输入/16 输出,I/0 共计40 点,和CPU224 相比,增加了通信口的数量,通信能力大大增强。它可用于点数较多,要求较高的小型或中型控制系统。⑤CPU226XM 它在用户程序存储容量和数据存储容量上进行了扩展,其他指标和CPU226相同。

(2)开关量 I/O 扩展模块当 CPU 的 I/0 点数不够用或需要进行特殊功能的控制时,就要进行 I/O 扩展,I/O 扩展包括 I/O 点数的扩展和功能模块的扩展。通常开关量 I/O 模块产品分 3 种类型:输入模块,输出模块以及输入/输出模块。为了保证 PLC 的工作可靠性,在输入模块中都采用提高可靠性的技术措施。如光电隔离,输入保护(浪涌吸收器,旁路二极管,限流电阻),高频滤波,输入数据缓冲器等。由于 PLC 要控制的对象有多种,因此输出模块也应根据负载进行选择,有直流输出模块, 交流输出模块和交直流输出模块。按照输出开关器件种类不同又分为 3 种:继电器输出型,晶体管输出型和双向晶闸管输出型。这三种输出方式中,从输出响应速度来看,晶体管输出型最快,继电器输出型最差,晶闸管输出型居中;若从与外部电路安全隔离角度看,继电器输出型最好。在实际使用时,亦应仔细查看开关量 I/O 模块的技术特性,按照实际情况进行选择。

S7-200 系列的PLC有CPU221、CPU222、CPU224、CPU226等类型。此系统选用的S7-200 CPU226,CPU 226集成24输入/16输出共40个数字量I/O 点。可连接7个扩展模块,

最大扩展至248路数字量I/O 点或35路模拟量I/O 点。13K字节程序和数据存储空间。6个独立的30kHz高速计数器,2路独立的20kHz高速脉冲输出,具有PID控制器。2个RS485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力。I/O端子排可很容易地整体拆卸。

2.2.2温度传感器

温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和 IC 温度传感器。

热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定,典型的有铜热电阻、铂热电阻等。其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪,它的阻值会随着温度的变化而改变,通常用PT100来表示。其中PT后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。

PT100是广泛应用的测温元件,在-50~600℃范围内具有其他任何温度传感器无可比拟的优势,包括高精度、稳定性好、抗干扰能力强等。由于铂电阻的电阻值与温度成非线性关系,所以需要进行非线性校正。校正分为模拟电路校正和微处理器数字化校正,模拟校正有很多现成的电路,其精度不高且易受温漂等干扰因素影响,数字化校正则需要在微处理系统中使用,将Pt电阻的电阻值和温度对应起来后存入EEPROM中,根据电路中实测的AD值以查表方式计算相应温度值。

常用的Pt电阻接法有三线制和两线制,其中三线制接法的优点是将PT100的两侧相等的的导线长度分别加在两侧的桥臂上,使得导线电阻得以消除。常用的采样电路有两种:一为桥式测温电路,一为恒流源式测温电路。本设计采用的就是三线制接线。

由于铂热电阻测出的是温度变化,需要在将信号输入PLC前加一个温度变送器,将温度信号转换成电压信号。本系统采用的温度变送器是DZ4130,使用过程中要加一个24V的电源,该电源可以从PLC上直接获得。

2.2.3 EM235 模拟量输入/输出模块

在温度控制系统中,传感器将检测到的温度转换成4-20mA的电流信号,系统需要配置模拟量的输入模块把电流信号转换成数字信号再送入PLC中进行处理。在这里我们选择西门子的EM235 模拟量输入/输出模块。EM235 模块具有4路模拟量输入/一路模拟量的输出。它允许S7-200连接微小的模拟量信号,±80mV范围。用户必须用DIP开关来选择热电偶的类型,断线检查,测量单位,冷端补偿和开路故障方向:SW1~SW3用于选择热电偶的类型,SW4没有使用,SW5用于选择断线检测方向,SW6用于选择是否进行断线检测,SW7用于选择测量方向,SW8用于选择是否进行冷端补偿。所有连到模块上的热电偶必须是相同类型。

3控制算法设计

在生产过程自动控制的发展历史过程中,PID 控制是历史最悠久,生命力最强的基本控制方式。PID 控制具有以下优点:原理简单,使用方便:适应性强,可以广泛应用于化工,热工,冶金,炼油及造纸,建筑等各种生产部门:鲁棒性强,控制品质对被控对象特性的变化不太敏感。

3.1P-I-D 控制

1.比例(P)调节

纯比例调节器是一种最简单的调节器,它对控制作用和扰动作用的响应都很快。由于比例调节只有一个参数,所以整定很方便。这种调节器的主要缺点是系统有静差存在。其传递函数为:

()c p G s K δ==

其中:δ:比例系数Kp 的倒数,即当调节机关的位置改变100% 时,偏差应有的改变量, 称为比例带,δ越大比例作用越弱 。 2.比例积分(PI)调节

PI 调节器就是利用P 调节快速抵消干扰的影响,同时利用I 调节消除残差,但I 调节会降低系统的稳定性,这种调节器在过程控制中是应用最多的一种调节器。

积分时间常数增大时,积分作用减弱,统的动态性能(稳定性)可能有所改善,但是,消除稳态误差的速度减慢。

动态方程式:001()t

t

C o C I

u K e s edt K e edt T =+=+

?? 传递函数为: ()(1)(1)C P I I G s K T s T s δ=+=+

其中:T I 为积分时间。积分时间常数增大时,积分作用减弱,统的动态性能(稳定性)可能有所改善,但是,消除稳态误差的速度减慢。 3.比例微分(PD)调节

这种调节器由于有微分的超前作用,能增加系统的稳定度,加快系统的调节过程,减小动态和静态误差,但微分抗干扰能力较差,且微分过大,易导致调节阀动作向两端饱和。因此一般不用于流量和液位控制系统。

动态方程为:21()()C C D D de de de

u K e S K e T e T dt dt dt

δ=+=+=+

传递函数为:()(1)(1)C P D D G s K T s T s δ=+=+

式中D T 为微分时间。微分时间越长 , 表示微分作用越强;比例带δ不但影响比例作用的强弱而且也影响微分作用的强弱 . 4.比例积分微分(PID )调节器

PID 是常规调节器中性能最好的一种调节器。由于它具有各类调节器的优点,因而使系统具有更高的控制质量。

动态方程为:00111()t t D d i i du de

udt T u e edt T T dt T dt

δ++=++??

传递函数为:()(1)(1)C P D D G s K T s T s δ=+=+

图3-1 几种调节器的响应曲线

5.各种调节比较

上图表示了同一对象在相同阶跃扰动下,采用不同控制规律时具有相同衰减率的响应过程。与PD 相比,PID 提高了系统的无差度;与PI 相比,PID 多了一个零点,为动态性能的改善提供了可能。PID 兼顾了静态和动态控制要求。 6.PID 控制原理---算法选择原则

1.广义过程控制通道时间常数较大或容积迟延较大时,引入微分调节。若工艺容许有静差,可选用PD 调节;若工艺要求无静差,可选用PID 调节。

2.广义过程控制通道时间常数较小、负荷变化不大、且工艺要求允许有静差时,可以选择P 调节。

3.广义过程控制通道时间常数较小、负荷变化不大、且工艺要求允许无静差时,可以选用PI 调节。

4.广义过程控制通道时间常数很大、且纯时延较大、负荷变化剧烈时,不宜采用PID 控制。

3.2PID 回路指令 3.2.1PID 算法

图3-2 带PID 控制器的闭控制系统框图

如图3-2所示,PID 控制器可调节回路输出,使系统达到稳定状态。偏差e(t)和输入量r(t)、输出量c(t)的关系:

e(t)=r(t)-c(t) (3-1)

控制器的输出为:

01()()()()t P d

de t u t K e t e t dt T T dt ??

=++????

? (3-2) 上式中, ()u t PID 回路的输出;

P K 比例系数P i T 积分系数I

d T 微分系数D

PID 调节器的传递函数为:

()1

()1()P d i U S D S K T s E S T S ??=

=++????

(3-3) 数字计算机处理这个函数关系式,必须将连续函数离散化,对偏差周期采样后,计算机输出值。其离散化的规律如表3-1所示:

表3-1 模拟与离散形式

所以PID 输出经过离散化后,它的输出方程为:

[]0

00

()()()()(1)()()()n

d p i i p i d T T u n K

e n e i e n e n u T T u n u n u n u =??=++--+????

=+++∑ (3-4)

为了能让数字计算机处理这个控制算式连续算式必须离散化为周期采样偏差算式才能用来计算输出值数字计算机处理的算式如下:

()11n n C n I j initial D n n j M K e K e M K e e -=??

=+++- ???

输出项=比例项+积分项+微分项 其中:

n M 在第 n 采样时刻PID 回路输出的计算值 C K PID 回路增益

n e 在第 n 采样时刻的偏差值

1n e -在第 n-1 采样时刻的偏差值 (偏差前项)

I K 积分项的比例常数 initial M PID 回路输出的初值 D K 微分项的比例常数

从这个公式可以看出积分项是从第 1 个采样周期到当前采样周期所有误差项的函,数微分项是当前采样和前一次采样的函数,比例项仅是当前采样的函数在数字计算机中不保存所有的误差项,其实也不必要。

由于计算机从第一次采样开始,每有一个偏差采样值必须计算一次输出值,只需要保存偏差前值和积分项前值。利用计算机处理的重复性可以化简以上算式为

1()n C n I n D n n M K e K e MX K e e -=+++-

输出项=比例项+积分项+微分项

其中:

n M 在第 n 采样时刻PID 回路输出的计算值 C K PID 回路增益

n e 在第 n 采样时刻的偏差值

1n e -在第 n-1 采样时刻的偏差值 (偏差前项)

I K 积分项的比例常数

MX 积分项前值

D K 微分项的比例常数

CPU 实际使用以上简化算式的改进形式计算 PID 输出。这个改进型算式是:

n n n n M MP MI MD =++

其中:

n M 第n 采样时刻的计算值

n MP 第n 采样时刻的比例项值 n MI 第n 采样时刻的积分项值

n MD 第n 采样时刻的微分项值

1、比例项

比例项n MP 是增益 (C K ) 和偏差 (e) 的乘积其中C K 决定输出对偏差的灵敏度, 偏差 (e) 是给定值(n SP ) 与过程变量值 (n PV ) 之差CPU 执行的求比例项算式是:

()n C n C n n MP K e K SP PV ==-

其中:

n MP 第n 采样时刻比例项的值 C K 增益

n SP 第n 采样时刻的给定值 n PV 第n 采样时刻的过程变量值

2、积分项

积分项值 MI 与偏差和成正比CPU 执行的求积分项算式是:

()()111()C D n D n n n n n n S K T

MD K e e MX SP PV SP PV T ---=-+=---???

? 其中:

n MI 第n 采样时刻的积分项值 C K 增益

S T 采样时间间隔 I T 积分时间

n SP 第n 采样时刻的给定值 n PV 第n 采样时刻的过程变量值

MX 第n-1 采样时刻的积分项 (积分项前值) (也称积分和或偏置)

积分和 (MX ) 是所有积分项前值之和.在每次计算出n MI 之后都要用n MI 去更新

MX 。其中n MI 可以被调整或限定。MX 的初值通常在第一次计算输出以前被设置initial M (初值)。 积分项还包括其他几个常数:增益 (C K ) ,采样时间间隔 (S T ) 和积分时间 (I T )。 其中采样时间是重新计算输出的时间间隔而积分时间控制积分项在整个输出结果中影响的大小。

3、微分项

微分项值 MD 与偏差的变化成正比其计算等式为:

()()111()C D n D n n n n n n S K T

MD K e e MX SP PV SP PV T ---=-+=---???

?

为了避免给定值变化的微分作用而引起的跳变假定给定值不变(1n n SP SP --) 。这样可

以用过程变量的变化替代偏差的变化计算算式可改进为:

[]1111()()C D C D n D n n n n n n n n S S

K T K T

MD K e e MX SP PV SP PV PV PV T T ----=-+=--+=-

其中:

1n SP -第 n-1 采样时刻的给定值 1n PV -第 n-1 采样时刻的过程变量值

为了下一次计算微分项值必须保存过程变量而不是偏差在第一采样时刻初始化为:

1n n PV PV -=

3.2.2PID 回路指令

现在很多PLC 已经具备了PID 功能,STEP 7 Micro/WIN 就是其中之一有的是专用模块,有些是指令形式。西门子S7-200系列PLC 中使用的是PID 回路指令。见表3-1。

表3-1PID 回路指令

使用方法:当EN 端口执行条件存在时候,就可进行PID 运算。指令的两个操作数TBL 和LOOP ,TBL 是回路表的起始地址,采用的是VB100,因为一个PID 回路占用了32个字节,所以VD100到VD132都被占用了。LOOP 是回路号,可以是0~7,不可以重复使用。PID 回路在PLC 中的地址分配情况如表3-2所示。

表3-2 PID 指令回路表

在P,I,D这三种控制作用中,比例部分与误差部分信号在时间上时一致的,只要误差一出现,比例部分就能及时地产生与误差成正比例的调节作用,具有调节及时的特点。比例系数越大,比例调节作用越强,系统的稳态精度越高;但是对于大多数的系统来说,比例系数过大,会使系统的输出振荡加剧,稳定性降低。

调节器中的积分作用与当前误差的大小和误差的历史情况都有关系,只要误差不为零,控制器的输出就会因积分作用而不断变化,一直要到误差消失,系统处于稳定状态时,积分部分才不再变化,因此,积分部分可以消除稳态误差,提高控制精度。但是积分作用的动作缓慢,可能给系统的动态稳定性代来不良影响,因此很少单独使用。

积分时间常数增大时,积分作用减弱,系统的动态性能(稳定性)可能有所改善,但是,消除稳态误差的速度减慢。

根据误差变化的速度(即误差的微分),微分部分提前给出较大的调节作用,微分部分反映了系统变化的趋势,它较比例调节更为及时,所以微分部分具有预测的特点。微分时间常数增大时,超调量减小,动态性能得到改善,但抑制高频干扰的能力下降。如果微分时间常数过大,系统输出量在接近稳态值时上升缓慢。

采样时间按常规来说应越小越好,但是时间间隔过小时,会增加CPU的工作量,相邻两次采样的差值几乎没有什么变化,所以也不易将此时间取的过小,另外,假如此项取比运算时间短的时间数值,则系统无法执行。

3.2.3回路输入输出变量的数值转换

1、回路输入输出变量的数值转换方法

在设计中,设定的温度是给定值SP,需要控制的变量是炉子的温度。但它不完全是过程变量PV,过程变量PV和PID回路输出有关。在论文中,经过测量的温度信号被转化为标准信号温度值才是过程变量,所以,这两个数不在同一个数量值,需要他们作比较,那就必须先作一下数据转换。温度输入变量的数10倍据转化。传感器输入的电压信号经过EM235转换后,是一个整数值,他的值大小是实际温度的把A/D模拟量单元输出的整数值

的10倍。但PID 指令执行的数据必须是实数型,所以需要把整数转化成实数。使用指令DTR 就可以了。论文是从AIW0读入温度被传感器转换后的数字量。其转换程序如下:

MOVW AIW0, AC1 DTR AC1, AC1 MOVR AC1, VD100

2、实数的归一化处理

因为PID 中除了采样时间和PID 的三个参数外,其他几个参数都要求输入或输出值0.0~1.0之间,所以,在执行PID 指令之前,必须把P V 和SP 的值作归一化处理。使它们的值都在0.0~1.0之间。归一化的公式如3-5:

()noum raw pan est R R S Off =+ (3-5)

式中, noum R —标准化的实数值;

raw R —未标准化的实数值;

pan S —补偿值或偏置,单极性为0.0,双极性为0.5;

est Off —值域大小,为最大允许值减去最小允许值,单极性为32000,双极性为6400。

设计中,采用的是单极性,故转换公式为:

(noum raw R R = (3-6) 因为温度经过检测和转换后,得到的值是实际温度的10倍,所以为了SP 值和PV 值在同一个数量值,我们输入SP 值的时候应该是填写一个是实际温度10倍的数,即想要设定目标控制温度为100℃时,需要输入一个1000。另外一种实现方法就是,在归一化的时候,值域大小可以缩小10倍,那么,填写目标温度的时候就可以把实际值直接写进去[19]。 3、回路输出变量的数据转换

在设计中,利用回路的输出值来设定下一个周期内的加热时间。回路的输出值是在0.0~1.0之间,是一个标准化了的实数,在输出变量传送给D/A 模拟量单元之前,必须把回路输出变量转换成相应的整数。这一过程是实数值标准化过程。

()scal n est R M Off Span =- (3-7)

S7-200不提供直接将实数一步转化成整数的指令,必须先将实数转化成双整数,再将双整数转化成整数。程序如下:

ROUN D AC1, AC1 DTI AC1, VW34

3.2.4PID 参数整定

PID 参数整定PID 参数整定方法就是确定调节器的比例系数P 、积分时间Ti 和和微分时间Td ,改善系统的静态和动态特性,使系统的过渡过程达到最为满意的质量指标要求。一般可以通过理论计算来确定,但误差太大。目前,应用最多的还是工程整定法:如经验

温度控制器的设计与制作共13页

温度控制器的设计与制作 一、功能要求 设计并制作一个温度控制器,用于自动接通或断开室内的电加热设备,从而使室内温度达到设定温度要求,并能实时显示室内温度。当室内温度大于等于设定温度时,控制器断 ?时,控制器接通电加热设备。 开电加热设备;当室内温度比设定温度小2C 控温范围:0~51C? 控温精度:≤1C? 二、硬件系统设计 1.硬件系统由七部分组成,即单片机及看门狗电路、温度检测电路、控制输出电路、键盘电路、显示电路、设置温度储存电路及电源电路。 (1)单片机及看门狗电路 根据设计所需的单片机的内部资源(程序存储器的容量、数据存储器的容量及I/O口数量),选择AT89C51-24PC较合适。为了防止程序跑飞,导致温度失控,进而引起可怕的后果,本设计加入了硬件看门狗电路IMP813L,如果它的WDI脚不处于浮空状态,在1.6秒内WDI不被触发(即没有检测到上什沿或下降沿),就说明程序已经跑飞,看门狗输出端WDO将输出低电平到手动复位端,使复位输出端RST发出复位信号,使单片机可靠复位,即程序重新开始执行。(注:如果选用AT89S51,由于其内部已具有看门狗电路,就不需外加IMP813L) (2)温度检测电路 温度传感器采用AD590,它实际上是一个与绝对温度成正比的电流源,它的工作电压为4~30V,感测的温度范围为-550C~+1500C,具有良好的线性输出,其输出电流与温度成正比,即1μA/K。因此在00C时的输出电流为273.2μA,在1000C时输出电流为373.2μA。温度传感器将温度的变化转变为电流信号,通过电阻后转变电压信号,经过运算放大器JRC4558运算处理,处理后得到的模拟电压信号传输给A/D转换部分。A/D转换器选用ADC0804,它是用CMOS集成工艺制成的逐次逼近型模数转换芯片,分辨率8位,转换时间100μs,基准电压0~5V,输入模拟电压0~5V。 (3)控制输出电路 控制信号由单片机的P1.4引脚输出,经过光耦TLP521-1隔离后,经三极管C8550直接驱动继电器WJ108-1C-05VDC,如果所接的电加热设备的功率≤2KW,则可利用继电器的常开触点直接控制加热设备,如果加热设备的功率>2KW,可以继电器控制接触器,由接触器直接控制加热设备。 (4)键盘电路 键盘共有四个按键,分别是S1(设置)、S2(+)、S3(-)、S4(储存)。通过键盘来设置室内应达到的温度,键盘采用中断方式控制。 (5)显示电路 显示电路由两位E10501_AR数码管组成,由两片74LS164驱动,实现静态显示,74LS164所需的串行数据和时钟由单片机的P3.0和P3.1提供。对于学过“串行口”知识的班级,实习时,可以采用串行口工作于方式0,即同步移位寄存器的输出方式,通过串行口输出显示数据(实时温度值或设置温度值);对于没学过“串行口”知识的班级,实习时,可以采用模拟串行口的输出方式,实现显示数据的串行输出。 (6)设置温度存储电路 为了防止设定温度在电源断电后丢失,此设计加入了储存电路,储存器选用具有I2C总线功能的AT24C01或FM24C01均可。每次通过键盘设置的室内设定温度都通过储存器储存起来,即使是电源断电,储存器存储的设定温度也不丢失,在电源来电后,单片机自动将设

基于PLC的温度控制闭环系统

1 绪论 1.1 课题背景 随着现代工业的逐步发展,在工业生产中,温度、压力、流量和液位是四种最常见的过程变量。其中,温度是一个非常重要的过程变量。例如:在冶金工业、化工工业、电力工业、机械加工和食品加工等许多领域,都需要对各种加热炉、热处理炉、反应炉和锅炉的温度进行控制[1]。这方面的应用大多是基于单片机进行PID控制,然而单片机控制的DDC系统软硬件设计较为复杂,特别是涉及到逻辑控制方面更不是其长处,然而PLC在这方面却是公认的最佳选择。 随着PLC功能的扩充在许多PLC控制器中都扩充了PID控制功能,因此在逻辑控制与PID控制混合的应用场所中采用PLC控制是较为合理的,通过采用PLC来对它们进行控制不仅具有控制方便、简单和灵活性大的优点,而且可以大幅度提高被测温度的技术指标,从而能够大大提高产品的质量和数量。因此,PLC对温度的控制问题是一个工业生产中经常会遇到的控制问题。这也正是本课题所重点研究的内容。 1.2 研究的主要内容 本课题的研究内容主要有: 1)温度的检测; 2)采用PLC进行恒温控制; 3)PID算法在PLC中如何实现; 4)PID参数对系统控制性能的影响; 5)温控系统人机界面的实现。

2 基于PLC的炉温控制系统的硬件设计 2.1系统控制要求 本PLC温度控制系统的具体指标要求是:对加热器加热温度调整范围为0℃—150℃,温度控制精度小于3℃,系统的超调量须小于15%。软件设计须能进行人机对话,考虑到本系统控制对象为电炉,是一个大延迟环节,且温度调节范围较宽,所以本系统对过渡过程时间不予要求。 2.2系统设计思路 根据系统具体指标要求,可以对每一个具体部分进行分析设计。整个控制系统分为硬件电路设计和软件程序设计两部分。 系统硬件框图结构如图所示: 图2.1系统硬件框图 被控对象为炉内温度,温度传感器检测炉内的温度信号,经温度变送器将温度值转换成0~10V的电压信号送入PLC模块。PLC把这个测量信号与设定值比较得到偏差,经PID运算后,发出控制信号,经调压装置输出交流电压用来控制电加热器的端电压,从而实现炉温的连续控制。 2.3系统的硬件配置 2.3.1 S7-200PLC选型 S7-200 系列 PLC 是由德国西门子公司生产的一种超小型系列可编程控制器,它能够满足多种自动化控制的需求,其设计紧凑,价格低廉,并且具有良好的可扩展性以及强大的指令功能,可代替继电器在简单的控制场合,也可以用于复杂的自动化控制系统。由于它具有极强的通信功能,在大型网络控制系统中也能充分发挥作用[2] S7-200系列可以根据对象的不同, 可以选用不同的型号和不同数量的模块。并可以将这些模块安装在同一机架上。 SiemensS7-200 主要功能模块介绍: (1)CPU 模块S7-200的CPU 模块包括一个中央处理单元,电源以及数字I/O 点,这些都被集成在一个紧凑,独立的设备中。CPU 负责执行程序,输入部分从现场设备中采集信号,输出部分则输出控制信号,驱动外部负载.从 CPU 模块的功能来看, CPU

温度控制器的设计

目录 第一章课程设计要求及电路说明 (3) 1.1课程设计要求与技术指标 (3) 1.2课程设计电路说明 (4) 第二章课程设计及结果分析 (6) 2.1课程设计思想 (6) 2.2课程设计问题及解决办法 (6) 2.3调试结果分析 (7) 第三章课程设计方案特点及体会 (8) 3.1 课程设计方案特点 (8) 3.2 课程设计心得体会 (9) 参考文献 (9) 附录 (9)

第一章课程设计要求及电路说明 1.1课程设计要求与技术指标 温度控制器的设计 设计要求与技术指标: 1、设计要求 (1)设计一个温度控制器电路; (2)根据性能指标,计算元件参数,选好元件,设计电路并画出电路图; (3)撰写设计报告。 2、技术指标 温度测量范围0—99℃,精度误差为0.1℃;LED数码管直读显示;温度报警指示灯。

1.2课程设计电路说明 1.2.1系统单元电路组成 温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。 1.2.2设计电路说明 主控制器:CPU是整个控制部分的核心,由STC89C52芯片连同附加电路构成的单片机最小系统作为数据处理及控制模块. 显示电路:显示电路采用4个共阳LED数码管,用于显示温度计的数值。报警电路:报警电路由蜂鸣器和三极管组成,当测量温度超过设计的温度时,该电路就会发出报警。 温度传感器:主要由DS18B20芯片组成,用于温度的采集。 时钟振荡:时钟振荡电路由晶振和电容组成,为STC89C52芯片提供稳定的时钟频率。

第二章课程设计及结果分析 2.1课程设计 2.1.1设计方案论证与比较 显示电路方案 方案一:采用数码管动态显示 使用一个七段LED数码管,采用动态显示的方法来显示各项指标,此方法价格成本低,而且自己也比较熟悉,实验室也常备有此元件。 方案二:采用LCD液晶显示 采用1602 LCD液晶显示,此方案显示内容相对丰富,且布线较为简单。 综合上述原因,采用方案一,使用数码管作为显示电路。 测温电路方案 方案一:采用模拟温度传感器测温 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。 方案二:采用数字温度传感器 经过查询相关的资料,发现在单片机电路设计中,大多数都是使用传感器,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 综合考虑,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。 2.1.2设计总体方案 根据上述方案比较,结合题目要可以将系统分为主控模块,显示模块,温度采集模块和报警模块,其框图如下:

5.2 闭环电子控制系统的设计与应用(1)

如图所示是JN6201集成电路鸡蛋孵化温度控制器电路图,根据该原理图完成1~3题。 1.该电路图作为控制系统的控制(处理)部分是IC JN6201,当JN6201集成输出9脚长时间处于高电平,三极管V2处于截止状态,继电器释放,电热丝通电加热。 2.安装好调试时,先将温度传感器Rt1放入37℃水中,调整电位器Rp1,使继电器触点J-2吸合,再将温度传感器Rt2放入39℃水中,调整Rp2,使继电器触点J-2释放。 3.调试时发现,不管电位器Rp1和Rp2怎么调,继电器J 始终吸合,检查电路元器件安装和接线都正确,用万用表测三极管V2集电极电位,在不同的调试状态分别为2.8V 和0V ,可知电路发生故障的原因是( B ) A.二极管V6内部断路 B.三极管V3内部击穿(短路) C.电阻R4与三极管V3基极虚焊 D.继电器线圈内部短路 如图所示是运算放大器鸡蛋孵化温度控制器电路图,根据该原理完成4~6题。 4.该电路作为控制系统的输出部分是继电器J 、电热丝等,当电路中集成运放2脚的电位低于3脚的电位,三极管V3处于饱和状态,继电器J 吸合,电热丝通电加热。 上限 V2饱和导通时候Uce 电压降0.2V ,所以留下来给集电极2.8V ,截止时候0V

5.安装好后调试时,将温度传感器Rt 放入39℃水中,调R4,使电压U2=U3,集成运放输出端6脚的电压为0V ,电路实现39℃单点温度控制。 6.调试时发现,将温度传感器Rt 放入高于39℃水中,继电器吸合;将温度传感器Rt 放入低于39℃水中,继电器释放,出现该故障现象的原因可能是( A ) A.集成运放2脚与3脚接反 B.二极管V4接反 C.电阻R2断路 D.三极管V3损坏 如图所示是晶体管组成的水箱闭环电子控制系统电路,根据该原理图完成7~9题。 7.该电路作为控制系统被控对象的是水箱内的水,水箱的水位从a 点降到b 点的过程中,三极管V1处于饱和状态,三极管V2处于截止状态,继电器触点J-1处于吸合状态。 8.安装调试时,将三个水位探头按图中的高低放入空玻璃杯中,如果电路正常,电路通电后,继电器J 吸合;向玻璃杯中加水,到达a 点时,继电器J 释放;接着将玻璃杯中的水排出,水位降到b 点以上时,继电器J 释放;水位降到b 点以下时,继电器J 吸合。 9.调试时发现,玻璃杯中的水位在b 点以下时,继电器J 就吸合;水位加到b 点,继电器J 就释放。出现该故障现象的原因是( D ) A.继电器J 没用 B.三极管V1损坏 C.二极管V3接反 D.电路没接J-1触点,b 点直接接到了电阻R1 如图所示是555集成电路组成的水箱水位闭环电子控制系统电路图, (第4~6题) (第7~9题) R4 10k ?R5 4.7k R3 4.7k

单片机温度控制系统PID设计

毕业论文(论文) 题目名称:单片机温度控制系统PID设计 题目类别:毕业设计 系(部): 专业班级: 学生姓名: 指导教师: 辅导教师: 时间:至 目录 任务书............................................................ I

毕业设计(论文)开题报告........................................... IV 毕业设计(论文)指导教师审查意见.................... 错误!未定义书签。教师评语.......................................... 错误!未定义书签。摘要............................................................. V Abstract ......................................................... VI 前言........................................................... VII 1 绪论 (1) 1.1选题背景 (1) 1.2 PID算法在控制领域中的应用 (2) 1.3 课题研究的目的及意义 (3) 2 总体方案论证与设计 (4) 2.1方案设计的要求与指标 (4) 2.2方案的可行性分析与方案选择 (4) 2.2.1方案可行性分析 (4) 2.2.2 方案的选择与确定 (6) 2.2.3系统结构框图 (6) 3 温度控制系统硬件设计和软件设计 (8) 3.1 系统硬件设计 (8) 3.1.1系统硬件组成 (8) 3.1.1.1AT89C51单片机的介绍 (8) 3.1.1.2测量温度元件的选择 (9) 3.1.1.3模数转换器ADC0809的介绍 (10) 3.1.1.4键盘和LED显示电路设计 (10) 3.1.1.5温度控制电路设计 (11) 3.2 系统软件设计 (11) 3.2.1主程序流程图及主程序 (11) 3.2.2 T0中断子程序 (15) 3.2.3 A/D转换子程序 (16) 3.2.4 数字滤波子程序 (18) 3.2.5温度标度变换子程序 (19) 3.2.6键盘显示子程序 (19) 3.2.7 PID算法介绍 (21) 4 系统仿真与调试分析 (21) 4.1系统仿真 (21) 4.2系统调试 (21) 5 结束语 (23) 参考文献 (23)

温度控制器课程设计要点

郑州科技学院 《模拟电子技术》课程设计 题目温度控制器 学生姓名 专业班级 学号 院(系)信息工程学院 指导教师 完成时间 2015年12月31日

郑州科技学院 模拟电子技术课程设计任务书 专业 14级通信工程班级 2班学号姓名 一、设计题目温度控制器 二、设计任务与要求 1、当温度低于设定温度时,两个加热丝同时通电加热,指示灯发光; 2、当水温高于设定温度时,两根加热丝都不通电,指示灯熄灭; 3、根据上述要求选定设计方案,画出系统框图,并写出详细的设计过程; 4、利用Multisim软件画出一套完整的设计电路图,并列出所有的元件清单; 5、安装调试并按规定格式写出课程设计报告书. 三、参考文献 [1]吴友宇.模拟电子技术基础[M]. 清华大学出版社,2009.52~55. [2]孙梅生.电子技术基础课程设计[M]. 高等教育出版社,2005.25~28. [3]徐国华.电子技能实训教程[M]. 北京航空航天大学出版社,2006.13 ~15. [4]陈杰,黄鸿.传感器与检测技术[M].北京:高等教育出版社,2008.22~25. [5]翟玉文等.电子设计与实践[M].北京:北京中国电力出版社,2005.11~13. [6]万嘉若,林康运.电子线路基础[M]. 高等教育出版社,2006.27 ~29. 四、设计时间 2015 年12月21 日至2015 年12 月31 日 指导教师签名: 年月日

本设计是一种结构简单、性能稳定、使用方便、价格低廉、使用寿命长、具有一定的实用性等优点的温度控制电路。本文设计了一种温度控制器电路,该系统采用模拟技术进行温度的采集与控制。主要由电源模块,温度采集模块,继电器模块组成。 现代社会科学技术的发展可以说是突飞猛进,很多传统的东西都被成本更低、功能更多、使用更方便的电子产品所替代,本课程设计是一个以温度传感器采用LM35的环境温度简易测控系统,用于替代传统的低精度、不易读数的温度计。但系统预留了足够的扩展空间,并提供了简单的扩展方式供参考,实际使用中可根据需要改成多路转换,既可以增加湿度等测控对象,也能减少外界因素对系统的干扰。 首先温度传感器把温度信号转换为电流信号,通过放大器变成电压信号,然后送入两个反向输入的运算放大器组成的比较器电路,让电位器来改变温度范围的取值,最后信号送入比较器电路,通过比较来判断控制电路是否需要工作。此方案是采用传统的模拟控制方法,选用模拟电路,用电位器设定给定值,反馈的温度值与给定的温度值比较后,决定是否加热。 关键词:温度传感器比较器继电器

基于-单片机的烘箱温度控制器设计

基于单片机的烘箱温度控制器设计 目录 1.项目概述 (1) 1.1.该设计的目的及意义 (1) 1.2.该设计的技术指标 (2) 2.系统设计 (3) 2.1.设计思想 (3) 2.2.方案可行性分析 (4) 2.3.总体方案 (5) 3.硬件设计 (6) 3.1.硬件电路的工作原理 (6) 3.2.参数计算 (7) 4.软件设计 (8) 4.1.软件设计思想 (8) 4.2.程序流程图 (9) 4.3.程序清单 (10) 5.系统仿真与调试 (11) 5.1.实际调试或仿真数据分析 (11) 5.2.分析结果 (13) 6.结论 (12) 7.参考文献 (13) 8.附录 (14)

1.项目概述: 1.1.该设计的目的及意义 温度的测量及控制,随着社会的发展,已经变得越来越重要。而温度是生产过程和科学实验中普遍而且重要的物理参数,准确测量和有效控制温度是优质,高产,低耗和安全生产的重要条件。在工业的研制和生产中,为了保证生产过程的稳定运行并提高控制精度,采用微电子技术是重要的途径。它的作用主要是改善劳动条件,节约能源,防止生产和设备事故,以获得好的技术指标和经济效益。 而本设计正是为了保证生产过程的稳定运行并提高控制精度,采用以51系列单片机为控制核心,对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标。 通过本设计的实践,将以往学习的知识进行综合应用,是对知识的一次复习与升华,让以往的那些抽象的知识点在具体的实践中体现出来,更是对自己自身的挑战。 1.2.该设计的技术指标 设计并制作一个基于单片机的温度控制系统,能够对炉温进行控制。炉温可以在一定围由人工设定,并能在炉温变化时实现自动控制。若测量值高于温度设定围,由单片机发出控制信号,经过驱动电路使加热器停止工作。当温度低于设定值时,单片机发出一个控制信号,启动加热器。通过继电器的反复开启和关闭,使炉温保持在设定的温度围。 (1) 1KW 电炉加热(电阻丝),最度温度为120℃(软件实现) (2)恒温箱温度可设定,温度控制误差≦±2℃(软件实现PID) (3)实时显示温度和设置温度,显示精度为1℃(LED)。 (4)温度超过设置温度±5℃,发出超限报警,升温和降温过程不作要求。 (5)升温过程采用PID算法,控制器输出方式为PWM输出方式,降温采用自然冷却。 (6)功率电路220 VAC供电,强弱电气电隔离 2.系统设计 2.1.设计思想 以87C51单片机为整个温度控制系统的核心,为解决系统出现一时的死机的问题,需构建复位电路,来重新启动整个系统。要想控制温度,首席必须能够测量温度,就需要一温度传感器,将测量得到的温度传给单片机,经单片机处理后,去控制继电器等器件实现电炉的断与通来达到温度期望值,当温度超过设定上下限值时,可以通过中断信号,控制指示灯的亮灭,来提醒温

模电课设—温度控制系统设计

目录 1.原理电路的设计 (11) 1.1总体方案设计 (11) 1.1.1简单原理叙述 (11) 1.1.2设计方案选择 (11) 1.2单元电路的设计 (33) 1.2.1温度信号的采集与转化单元——温度传感器 (33) 1.2.2电压信号的处理单元——运算放大器 (44) 1.2.3电压表征温度单元 (55) 1.2.4电压控制单元——迟滞比较器 (66) 1.2.5驱动单元——继电器 (88) 1.2.6 制冷部分——Tec半导体制冷片 (99) 1.3完整电路图 (1010) 2.仿真结果分析 (1111) 3 实物展示 (1313) 3.1 实物焊接效果图 (1313) 3.2 实物性能测试数据 (1414) 3.2.1制冷测试 (1414) 3.2.2制热测试 (1818) 3.3.3性能测试数据分析 (2020) 4总结、收获与体会 (2121) 附录一元件清单 (2222) 附录二参考文献. (2323)

摘要 本课程设计以温度传感器LM35、运算放大器UA741、NE5532P及电压比较器LM339 N为电路系统的主要组成元件,扩展适当的接口电路,制作一个温度控制系统,通过室温的变化和改变设定的温度,来改变电压传感器上两个输入端电压的大小,通过三极管开关电路控制继电器的通断,来控制Tec制冷片的工作。这样循环往复执行这样一个周期性的动作,从而把温度控制在一定范围内。学会查询文献资料,撰写论文的方法,并提交课程设计报告和实验成品。 关键词:温度;测量;控制。

Abstract This course is designed to a temperature sensor LM35, an operational amplifier UA741,NE5532P and a voltage comparator LM339N circuit system of the main components. Extending the appropriate interface circuit, make a temperature control system. By changing the temperature changes and set the temperature to change the size of the two input ends of the voltage on the voltage sensor, an audion tube switch circuit to control the on-off relay to control Tec cooling piece work. This cycle of performing such a periodic motion, thus controlling the temperature in a certain range. Learn to query the literature, writing papers, and submitted to the curriculum design report and experimental products. Key words: temperature ; measure ;control

基于单片机得温度控制器毕业设计说明书

引言 (1) 第一章系统方案论证 (2) 1.1 方案设计 (2) 1.2方案的对比论证 (2) 第二章系统硬件电路的设计 (4) 2.1电路总体原理框图 (4) 2.2单片机的选择 (5) 2.3单片机得管脚说明 (6) 2.4单片机的时钟电路 (8) 2.5复位电路及其复位状态 (9) 2.5.1 复位电路 (9) 2.5.2 复位状态 (10) 2.6.温度采集电路的设计 (11) 2.6.1 DS18B20特点介绍 (12) 2.7键盘接口电路的设计 (13) 2.8显示接口和报警电路的设计 (15) 2.9通信接口电路设计 (18) 2.9.1 max232原理 (18) 2.9.2 MAX232与单片机的接口电路 (18) 第三章软件系统的设计 (18) 3.1 主程序模块 (19) 3.2温度报警模块 (19) 3.3参考程序 (36) 3.4设计方案分析 (38) 3.4.1优点 (38) 3.4.2缺点 (38) 第四章硬、软件抗干扰技术 (39) 4.1 硬件抗干扰技术 (39) 4.1.1接地技术 (39) 4.1.2屏蔽系统 (40) 4.1.3隔离技术 (41) 4.1.4滤波技术 (41) 4.1.5 抑制反电势干扰技术 (41) 4.2 软件抗干扰技术 (42) 4.2.1 消除数据采集的干扰 (42) 4.2.2保持正常控制状态 (42) 第五章结论与前景分析 (46) 参考文献 (47) 致谢 (48) 附录 (49)

随着生产生活的需要,自动化控制越来越起到至关重要的作用。温度控制是工业生产过程中很普遍的过程控制,人们需要对各种加热炉,热处理炉,反应炉等锅炉中温度进行测量与控制。特别是冶金,化工、建材、食品、机械、石油等工业中,具有举足轻重的作用,其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的,工业生产中温度控制具有单向性、时滞性、大惯性和时变性的特征,同时要实现温度控制的快速性和准确性,对于对于提高产品质量具有很重要的意义。 对于不同的场所、不同的工艺、不同的产品所需要的温度范围不同、精度也不同,则采用的温度测量元件以及温度测量方法和控制方法都有所不同;产品工艺不同、温度控制的精度不同、时效不同,则对数据采集的精度和采用的控制算法也不同。因此对温度的控制方法要多种多样。随着电子技术和微型计算的迅速发展,微机测量和控制技术也得到了迅速的发展和广泛的应用。利用微机对温度进行测控的技术也随之而产生。现有的温度传感器大多为(热电偶)体积大,应用复杂,多为模拟信号,已经不在适合现代工业的灵活性要求了。 本设计是基于单片机的温度控制系统,为闭环系统,工作的可靠性高、精度高。本设计主要围绕单片机进行设计,从实际应用出发,选取了体积小、精度相对较高的数字式温度传感器件DS18B20作为温度采集装置,以单片机89S51作为主控芯片,1602作为显示输出,实现了对温度的实时测量,当温度超出设定范围系统将会自动调节加热或者降温系统,从而实现了实时恒温控制。

温度控制系统毕业设计

摘要 在日常生活及工农业生产中,对温度的检测及控制时常显得极其重要。因此,对数字显示温度计的设计有着实际意义和广泛的应用。本文介绍一种利用单片机实现对温度只能控制及显示方案。本毕业设计主要研究的是对高精度的数字温度计的设计,继而实现对对象的测温。测温系数主要包括供电电源,数字温度传感器的数据采集电路,LED显示电路,蜂鸣报警电路,继电器控制,按键电路,单片机主板电路。高精度数字温度计的测温过程,由数字温度传感器采集所测对象的温度,并将温度传输到单片机,最终由液晶显示器显示温度值。该数字温度计测温范围在-55℃~+125℃,精度误差在±0.5℃以内,然后通过LED数码管直接显示出温度值。数字温度计完全可代替传统的水银温度计,可以在家庭以及工业中都可以应用,实用价值很高。 关键词:单片机:ds18b20:LED显示:数字温度. Abstract In our daily life and industrial and agricultural production, the detection and control of the temperature, the digital thermometer has practical significance and a wide range of applications .This article describes a programmer which use a microcontroller to achieve and display the right temperature by intelligent control .This programmer mainly consists by temperature control sensors, MCU, LED display modules circuit. The main aim of this thesis is to design high-precision digital thermometer and then realize the object temperature measurement. Temperature measurement system includes power supply, data acquisition circuit, buzzer alarm circuit, keypad circuit, board with a microcontroller circuit is the key to the whole system. The temperature process of high-precision digital thermometer, from collecting the temperature of the object by the digital temperature sensor and the temperature transmit ted to the microcontroller, and ultimately display temperature by the LED. The digital thermometer requires the high degree is positive 125and the low degree is negative 55, the error is less than 0.5, LED can read the number. This digital thermometer could

计算机控制系统课设报告--数字温度PID控制器的设计

《计算机控制系统A》课程设计 任务书 一、目的与要求 1、通过本课程设计教学环节,使学生加深对所学课程内容的理解和掌握; 2、结合工程问题,培养提高学生查阅文献、相关资料以及组织素材的能力; 3、培养锻炼学生结合工程问题独立分析思考和解决问题的能力; 4、要求学生能够运用所学课程的基本理论和设计方法,根据工程问题和实际应用方案的要 求,进行方案的总体设计和分析评估; 5、报告原则上要求依据相应工程技术规范进行设计、制图、分析和撰写等。 二、主要内容 1、数字控制算法分析设计; 2、现代控制理论算法分析设计; 3、模糊控制理论算法分析设计; 4、过程数字控制系统方案分析设计; 5、微机硬件应用接口电路设计; 6、微机应用装置硬件电路、软件方案设计; 7、数字控制系统I/O通道方案设计与实现; 8、PLC应用控制方案分析与设计; 9、数据通信接口电路硬件方案设计与性能分析; 10、现场总线控制技术应用方案设计; 11、数控系统中模拟量过程参数的检测与数字处理方法; 12、基于嵌入式处理器技术的应用方案设计; 13、计算机控制系统抗干扰技术与安全可靠性措施分析设计; 14、计算机控制系统差错控制技术分析设计; 15、计算机控制系统容错技术分析设计; 16、工程过程建模方法分析; 三、进度计划 序号设计内容完成时间备注 1 选择课程设计题目,查阅相关文献资料7月13日 2 文献资料的学习,根据所选题目进行方案设计7月14日

3 讨论设计内容,修改设计方案7月15日 4 撰写课程设计报告7月16日 5 课程设计答辩7月17日 四、设计成果要求 1、针对所选题目的国内外应用发展概述; 2、课程设计正文内容包括设计方案、硬件电路和软件流程,以及综述、分析等; 3、课程设计总结或结论以及参考文献; 4、要求设计报告规范完整。 五、考核方式 通过系统设计方案、总结报告、图文质量和学习与设计态度综合考评,并结合学生的动手能力,独立分析解决问题的能力和创新精神等。 《计算机控制系统课程设计》成绩评定依据如下: 1、撰写的课程设计报告; 2、独立工作能力及设计过程的表现; 3、答辩时回答问题的情况。 优秀:设计认真,设计思路新颖,设计正确,功能完善,且有一定的独到之处,打印文档规范; 良好:设计认真,设计正确,功能较完善,且有一定的独到之处,打印文档规范; 及格:设计基本认真,设计有个别不完善,但完成基本内容要求,打印文档较规范; 不及格:设计不认真,未能完成设计任务,打印文档较乱或出现抄袭现象者。 说明: 同学选择题目要尽量分散,并且多位同学选同一个题目时,要求各自独立设计,避免相互参考太多,甚至抄袭等现象。 学生姓名:苏印广 指导教师:李士哲 2015年7月17日

单闭环温度控制系统

单闭环温度控制系统实验 姓名: 徐天富 学号: 0707030115 班级:2007级自动化1班 实验指导老师:___万敏___ 成绩:____________________ 一、实验目的 1.理解温度闭环控制的基本原理; 2.了解温度传感器的使用方法; 3. 学习温度PID 控制参数的配置。 二、实验数据或曲线 1.实验数据表 实际温度T 30℃ 35℃ 40℃ 45℃ 50℃ 电压pv -1.018066 -1.187744 -1.346436 -1.514893 -1.647949 偏差ei 0.661934 0.492256 0.333564 0.165107 0.032051 控制量op 3.500 3.500 3.500 3.500 3.500 2.参考程序 dim pv,sv,ei,ex,ey,k,ti,td,q0,q1,q2,op,x,Ts,ux,tv sub Initialize(arg) WriteData 0 ,1 end sub sub TakeOneStep (arg) pv = ReadData(1) '当前测量值 sv=50 '设置温度 k=20 ti=5 td=0 Ts=0.1 '采样时间100ms ei=((sv-35)/30+1.18) -abs(pv) '当前偏差 q0=k*(ei-ex) '比例项 if Ti=0 then q1=0 else q1=K*Ts*ei/Ti '当前积分项 end if q2=k*td*(ei-2*ex+ey) /Ts '微分项 ey=ex ex=ei op=op+q0+q1+q2 if op>=3.5 then op=3.5 end if if op<=1 then op=1 end if tv=35+30*(abs(pv)-1.18) TTTRACE "温度=%f",tv '输出温度 TTRACE "op=%f",op TTRACE "ei=%f",ei TTRACE "pv =%f",pv WriteData op ,1 end sub sub Finalize (arg) WriteData 0 ,1 end sub

PID温度控制系统的设计

PID温度控制系统的设计 介紹以单片机为核心的PID控制温度控制系统,并给出了系统的硬件与软件设计方案。实验结果显示该系统的先进性。 标签:温控系统单片机PID控制 0 引言 控制仪表性能指标对温度控制有很大的影响,因此,常采用高性能调节仪表组成温控系统对被控对象(温度)进行严格控制。本文介绍以单片机AT89C51为核心器件构成的温度控制系统,它具有测量、控制精度高、成本低、体积小、功耗低等优点,可制成单机,广泛应用于冶金、化工、食品加工等行业对温度进行精确控制。 1 温控系统结构与工作原理 温控系统的结构如图1所示。热电偶测量出电炉的实际温度(mv信号),经放大、线性化、A/D转换处理后送入单片机接口。由键盘敲入设定温度值,此值与经A/D转换过的炉温信号存在一差值(假如两者温度不一致),由单片机PID调节电路进行比例、微分及变速积分算法对温控箱进行恒温控制。该系统采用传统的AT89C52单片机,其硬、软件完全符合系统的要求,为满足测控精确度的要求,A/D 电路选用12位转换器,分辨率为2-12。本系统采用三相数字过零触发器对六只晶闸管(Y/△接法均可)进行输出功率控制,即在电源电压过零时触发晶闸管,利用PID信号产生的控制信号使电流每周期按规定的导通波头数导通负载,达到控制输出功率,也就是控制炉温的目的。采用过零触发可减少电网谐波的产生,触发器与单片机光电隔离,可减少电网对微机的干扰,调功方式下电加温炉的平均功率为:P=3nU2/NR(1) 式中:P为输入电炉的功率;R为电炉的等效电阻;U为电网相电压;n为允许导通的波头数;N为设定的波头数。 注:公式(1)为负载Y接法适用 2 系统控制软件设计 2.1 PID参数的优化系统采用遗传算法(Genetic Algorithm,简称GA)离线优化PID参数[1]。20世纪70年代由美国J.Holland教授提出的遗传算法(GA)[2]是一种模拟生物进化过程的随机化搜索方法。它采用多路径搜索,对变量进行编码处理,用对码串的遗传操作代替对变量的直接操作,从而可以更好的处理离散变量。GA用目标函数本身建立寻优方向,无需求导求逆等复导数数学运算,且可以方便的引入各种约束条件,更有利于得到最优解,适合于处理混合非线性规划和多目标优化。系统采用二进制编码选择来操作,我们称为染色体串(0或1),每个串表

温度控制器的设计汇总

2013 ~ 2014学年第2学期 《数字式温度控制器的设计》 课程设计报告 题目数字式温度控制器的设计 ____________ 专业: 11 电气工程及其自动化_______________________ 班级: ____________ 2 _________________________ 姓名: ____________________________________________ 指导教师: _________________________________________ 电气工程学院 2014年6月2日

数字式温度控制仪 摘要 温度是工业生产和科学实验中的重要参数之一。在化工、冶金、医药、航空等领域里,对温度的控制效果直接影响到许多产品的质量及使用寿命,因此,温度控制成为各个领域中的一项关键技术。温度控制的关键在于测温和控温两方面,温度测量是温度控制的基础。在温度测量方面,技术己经比较成熟,由于控制对象越来越复杂,而在温度控制方面,还存在着许多问题,人们还在寻找着更好的控制方法以提高控制性能,满足不同的控制要求。 随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,本文将介绍一种基于单片机控制的恒温锅炉烧水控制系统。 本系统以AT89C51单片机为控制核心,采用闭环控制装置,可自动控制要求环境下的温度,使被控对象温度保持在恒定的范围内。本系统温度信号由数字温度传感器DS18B2C采集,送AT89C51单片机进行处理,并通过数码管显示。当温度低于或者高于设定值后,单片机将发出控制信号控制温度控制系统的通断电状态,以实现将温度稳定在目标温度至附近的要求。 关键词:单片机;闭环控制QS18B20;温度;数码管

温度控制系统设计方案

温度控制系统设计方案 1引言 温度是工业过程控制中主要的被控参数之一,在冶金、化工、建材、食品、石油等工业中,工艺过程所要求的温度的控制效果直接影响着产品的质量。对于不同场所、不同工艺、所需温度高低范围不同、精度不同,则采用的测温元件、测温方法以及对温度的控制方法也将不同,随着电子技术和微型计算机的迅速发展,微机测量和控制技术得到了迅速的发展和广泛的应用。越来越显示出其优越性。 随着集成电路技术的发展,单片微型计算机的功能不断增强,许多高性能的新型机种不断涌现出来。单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点,成为自动化和各个测控领域中广泛应用的器件,在温度控制系统中,单片机更是起到了不可替代的核心作用。在工业生产中,如用于热处理的加热炉、用于融化金属的坩锅电阻炉等,都用到了电阻加热的原理。 鉴于单片机技术应用的广泛性和优越性,温度控制的重要性,因而设计一种较为理想的温度控制系统是非常有价值的。本文就是根据这一思想来展开的。 1.1 系统设计的目的和任务 1.1.1 系统设计的目的 通过本次毕业设计,主要想达到以下目的: 1. 增进对单片机的感性认识,加深对单片机理论方面的理解。 2. 掌握单片机的内部功能模块的应用,如定时器/计数器、中断、片内外存贮器、I/O口等。 3. 了解和掌握单片机应用系统的软硬件设计过程、方法及实现,为以后工作中设计和实现单片机应用系统打下基础。 4. 熟悉闭环控制系统的组成原理及单片机PID算法的实现方法。 1.1.2 系统设计的任务 1.查阅资料,弄清楚所要解决的问题的思路,确定设计方案。 2.系统硬件电路设计。 3.系统相关软件设计。 4.仿真实现温度参数设定、转换、显示等功能。 5.依据对象模型设计控制器参数, 6.系统调试与分析;并依据调试结果予以完善。 1.2毕业设计论文安排 1.论证系统设计方案,设计系统原理图。

计算机控制课程设计 基于PID算法电加热炉温度控制系统设计

成绩 《计算机控制技术》 课程设计 题目:基于数字PID的电加热炉温度控制系统设计 班级:自动化09-1 姓名: 学号: 2013 年 1 月 1 日

基于数字PID的电加热炉温度控制系统设计 摘要:电加热炉控制系统属于一阶纯滞后环节,具有大惯性、纯滞后、非线性等特点,导致传统控制方式超调大、调节时间长、控制精度低。本设计采用PID算法进行温度控制,使整个闭环系统所期望的传递函数相当于一个延迟环节和一个惯性环节相串联来实现温度的较为精确的控制。 电加热炉加热温度的改变是由上、下两组炉丝的供电功率来调节的,它们分别由两套晶闸管调功器供电。调功器的输出功率由改变过零触发器的给定电压来调节,本设计以AT89C51单片机为控制核心,输入通道使用AD590传感器检测温度,测量变送传给ADC0809进行A/D转换,输出通道驱动执行结构过零触发器,从而加热电炉丝。本系统PID算法,将温度控制在50~350℃范围内,并能够实时显示当前温度值。 关键词:电加热炉;PID ;功率;温度控制; 1.课程设计方案 1.1 系统组成中体结构 电加热炉温度控制系统原理图如下,主要由温度检测电路、A/D转换电路、驱动执行电路、显示电路及按键电路等组成。 系统采用可控硅交流调压器,输出不同的电压控制电阻炉温度的大小,温度通过热电偶检测,再经过变送器变成0 - 5 V 的电压信号送入A/D 转换器使之变成数字量,此数字量通过接口送到微机,这是模拟量输入通道。 2.控制系统的建模和数字控制器设计 2.1 数字PID控制算法 在电子数字计算机直接数字控制系统中,PID控制器是通过计算机PID控制算法程序实现的。计算机直接数字控制系统大多数是采样-数据控制系统。进入计算机的连续-时间信号,必须经过采样和整量化后,变成数字量,方能进入计算机的存贮器和寄存器,而在数字计算机中的计算和处理,不论是积分还是微分,只能用数值计算去逼近。

相关主题
文本预览
相关文档 最新文档