当前位置:文档之家› 肠道微生物抗肿瘤:双歧杆菌的抗肿瘤免疫反应

肠道微生物抗肿瘤:双歧杆菌的抗肿瘤免疫反应

肠道微生物抗肿瘤:双歧杆菌的抗肿瘤免疫反应
肠道微生物抗肿瘤:双歧杆菌的抗肿瘤免疫反应

Harnessing the host immune system constitutes a promising cancer therapeutic because of its potential to specifically target tumor cells while limiting harm to normal tissue. Enthusiasm has been fueled by recent clinical success, particularly with antibodies that block immune inhibitory pathways, specifically CTLA-4 and the PD-1/PD-L1 axis (1, 2). Clinical responses to these immunotherapies are more frequent in patients who show evidence of an endogenous T

cell response ongoing in the tumor microenvironment prior

to therapy (3–6). However, the mechanisms that govern the

presence or absence of this phenotype are not well

understood. Theoretical sources of inter-patient

heterogeneity include host germline genetic differences,

variability in patterns of somatic alterations in tumor cells,

and environmental differences.

The gut microbiota plays an important role in shaping systemic immune responses (7–9). I n the cancer context, a role for intestinal microbiota in mediating immune activa-tion in response to chemotherapeutic agents has been demonstrated (10, 11). However, whether commensal micro-immune responses against tu-mors, thereby impacting thera-peutic activity of immunotherapeutic interven-tions such as anti–PD-1/PD-L1 monoclonal antibodies, is un-known.

To address this question, we compared subcutaneous B16.SI Y melanoma growth in genetically similar C57BL/6 mice derived from two different mouse facili-ties, Jackson Laboratory (JAX) and Taconic Farms (TAC), which have been shown to differ in

their commensal microbes (12).

We found that JAX and TAC mice exhibited significant differ-ences in B16.S I Y melanoma growth rate, with tumors grow-ing more aggressively in TAC mice (Fig. 1A). This difference was immune-mediated: Tumor-specific T cell responses (Fig. 1, B and C) and intratumoral CD8+ T cell accumulation (Fig. 1D) were significantly higher in JAX com-pared to TAC mice. To begin to address whether this difference

could be mediated by commen-sal microbiota, we cohoused JAX and TAC mice prior to tumor implantation. We found that

cohousing ablated the differences in tumor growth (Fig. 1E) and immune responses (Fig. 1, F to H) between the two mouse populations, arguing for an environmental influence. TAC mice appeared to acquire the JAX phenotype upon co-housing, suggesting that JAX mice may be colonized by commensal microbes that dominantly facilitate antitumor immunity. To directly test the role of commensal bacteria in regu-lating antitumor immunity, we transferred JAX or TAC fecal

suspensions into TAC and JAX recipients by oral gavage

prior to tumor implantation (fig. S1A). We found that

prophylactic transfer of JAX fecal material, but not saline or

TAC fecal material, into TAC recipients was sufficient to

delay tumor growth (Fig. 2A) and to enhance induction and

infiltration of tumor-specific CD8+ T cells (Fig. 2, B and C,

and fig. S1B), supporting a microbe-derived effect. Recipro-cal transfer of TAC fecal material into JAX recipients had a minimal effect on tumor growth rate and antitumor T cell responses (Fig. 2, A to C, and fig. S1B), consistent with the JAX-dominant effects observed upon cohousing.

antitumor immunity and facilitates anti–PD-L1 efficacy

Ayelet Sivan,1* Leticia Corrales,1* Nathaniel Hubert,2 Jason B. Williams,1 Keston Aquino-Michaels,3 Zachary M. Earley,2 Franco W. Benyamin,1 Yuk Man Lei,2 Bana Jabri,2 Maria-Luisa Alegre,2 Eugene B. Chang,2 Thomas F. Gajewski 1,2?

1

Department of Pathology, University of Chicago, Chicago, IL, USA. 2Department of Medicine, University of Chicago,

Chicago, IL, USA. 3Section of Genetic Medicine, University of Chicago, Chicago, IL, USA.

*These authors contributed equally to this work.

*Corresponding author. E-mail: tgajewsk@https://www.doczj.com/doc/8814446680.html, T cell infiltration of solid tumors is associated with favorable patient

outcomes, yet the mechanisms underlying variable immune responses

between individuals are not well understood. One possible modulator could

be the intestinal microbiota. We compared melanoma growth in mice

harboring distinct commensal microbiota and observed differences in

spontaneous antitumor immunity, which were eliminated upon cohousing

or following fecal transfer. 16S ribosomal RNA sequencing identified

Bifidobacterium as associated with the antitumor effects. Oral

administration of Bifidobacterium alone improved tumor control to the

same degree as anti–PD-L1 therapy (checkpoint blockade), and

combination treatment nearly abolished tumor outgrowth. Augmented

dendritic cell function leading to enhanced CD8+ T cell priming and

accumulation in the tumor microenvironment mediated the effect. Our data suggest that manipulating the microbiota may modulate cancer

immunotherapy.

o n N o v e m b e r 9, 2015

w w w .s c i e n c e m a g .o r g D o w n l o a d e d f r o m O

h a n g e V i

e w

e o

b u y

N W

!

r

m

ty could be effective as a therapy, we administered JAX fecal material alone or in combination with antibodies targeting PD-L1 (αPD-L1) to TAC mice bearing established tumors. Transfer of JAX fecal material alone resulted in significantly slower tumor growth (Fig. 2D), accompanied by increased tumor-specific T cell responses (Fig. 2E) and infiltration of antigen-specific T cells into the tumor (Fig. 2F), to the same degree as treatment with systemic αPD-L1 mAb. Combina-tion treatment with both JAX fecal transfer and αPD-L1 mAb improved tumor control (Fig. 2D) and circulating tu-mor antigen-specific T cell responses (Fig. 2E), while there was little additive effect on accumulation of activated T cells within the tumor microenvironment (Fig. 2F). Consistent with these results, αPD-L1 therapy alone was significantly more efficacious in JAX mice compared to TAC mice (Fig. 2G), which paralleled improved antitumor T cell responses (fig. S1C). These data indicate that the commensal microbial composition can influence spontaneous antitumor immuni-ty as well as response to immunotherapy with αPD-L1 mAb.

To identify specific bacteria associated with improved antitumor immune responses, we monitored the fecal bacte-rial content over time of mice that were subjected to admin-istration of fecal permutations, using the 16S ribosomal RNA (rRNA) miSeq Illumina platform. Principal coordinate analysis revealed that fecal samples analyzed from TAC mice that received JAX fecal material gradually separated from samples obtained from sham- and TAC feces-inoculated TAC mice over time (P= 0.001 and P= 0.003, respectively, ANOSI M) and became similar to samples ob-tained from sham- and JAX feces-inoculated JAX mice (Fig. 3A). I n contrast, TAC-inoculated TAC mice did not change in community diversity relative to sham-inoculated TAC mice (P= 0.4, ANOSI M). Reciprocal transfer of TAC fecal material into JAX hosts resulted in a statistically significant change in community diversity (P= 0.003, ANOSI M), yet the distance of the microbial shift was smaller (Fig. 3A).

Comparative analysis showed that 257 taxa were of sig-nificantly different relative abundance in JAX mice relative to TAC mice (FDR < 0.05, nonparametric t-test) (Fig. 3B and table S1). Members belonging to several of these groups were similarly altered in JAX-fed TAC mice relative to sham- or TAC-inoculated TAC mice (Fig. 3C and tables S1 and S2). To further identify functionally relevant bacterial taxa, we asked which genus-level taxa were significantly associated with accumulation of activated antigen-specific T cells within the tumor microenvironment across all permu-tations (Fig. 2C). The only significant association was Bifidobacterium(P= 5.7 × 10?5, FDR = 0.0019, univariate regression) (table S3), which showed a positive association with antitumor T cell responses and increased in relative abundance over 400-fold in JAX-fed TAC mice (Fig. 3C). Stimulatory interactions between bifidobacteria and the host immune system, including those associated with inter-feron (I FN)-γ, have been described previously (13–16

thus hypothesized that members of this genus could repre-sent a major component of the beneficial antitumor im-mune effects observed in JAX mice.

At the sequence level, Bifidobacterium operational taxo-nomic unit OTU_681370 showed the largest increase in rela-tive abundance in JAX-fed TAC mice (table S1) and the strongest association with antitumor T cell responses across all permutations (Fig. 3D and table S3). We further identi-fied this bacterium as most similar to B. breve, B. longum and B. adolescent i s(99% identity). To test whether Bifidobacterium spp. may be sufficient to augment protec-tive immunity against tumors, we obtained a commercially available cocktail of Bifidobacterium species, which includ-ed B. breve and B. longum and administered this by oral gavage, alone or in combination with αPD-L1, to TAC recipi-ents bearing established tumors. Analysis of fecal bacterial content revealed that the most significant change in re-sponse to Bifidobacterium inoculation occurred in the Bifidobacterium genus (P = 0.0009, FDR = 0.015, nonpara-metric t test), with a 120-fold increase in OTU_681370 (fig. S2A and table S4), suggesting that the commercial inoculum contained bacteria that were at least 97% identical to the taxon identified in JAX and JAX-fed TAC mice. An increase in Bifidobacterium could also be detected by quantitative PCR (fig. S2B).

Bifidobacterium-treated mice displayed significantly im-proved tumor control in comparison to non-Bifidobacterium treated counterparts (Fig. 3E), which was accompanied by robust induction of tumor-specific T cells in the periphery (Fig. 3F) and increased accumulation of antigen-specific CD8+ T cells within the tumor (Fig. 3G and fig. S2C). These effects were durable for several weeks (fig. S2, D and E).

The therapeutic effect of Bifidobacterium feeding was abrogated in CD8-depleted mice (fig. S3A), arguing that the mechanism was not direct but rather through host anti-tumor T cell responses. Heat inactivation of the bacteria prior to oral administration also abrogated the therapeutic effect on tumor growth and reduced tumor-specific T cell responses to baseline (fig. S3, B to D), suggesting that the antitumor effect requires live bacteria. As an alternative strategy, we tested the therapeutic effect of B. breve and B. longum strains obtained from the ATCC, which also showed significantly improved tumor control (fig. S4A). Administra-tion of Bifidobacterium to TAC mice inoculated with B16 parental tumor cells or MB49 bladder cancer cells also re-sulted in delayed tumor outgrowth (fig. S4, B and C, respec-tively). Oral administration of Lactobacillus murinus to TAC mice, which was not among the overrepresented taxa in JAX-fed mice, had no effect on tumor growth (fig. S4D) or on tumor-specific T cell responses (fig. S4E), suggesting that modulation of antitumor immunity depends on the specific bacteria administered. Collectively, these data point to

as a positive regulator of antitumor im-munity in vivo.

Upon inoculation with Bifidobacterium, a small set of species were altered in parallel with Bifidobacterium (ANOSIM, P= 0.003) (fig. S5A, table S4), however, they largely did not resemble the changes observed with JAX-feces administration. Although we observed reductions (~2- to 10-fold) in members of the order Clostridiales as well as in butyrate-producing species upon Bifidobacterium inocu-lation, which could point to an inhibitory effect on the regu-latory T cell compartment (17–19), we did not observe any difference in the frequency of CD4+ Foxp3+ T cells in tumors isolated from JAX and TAC mice (fig. S5B). Thus, while we cannot definitively rule out an indirect effect, it is unlikely that Bifidobacterium is acting primarily through modula-tion of the abundance of other bacteria.

We next assessed whether translocation of Bifidobacte-rium was occurring into the mesenteric lymph nodes, spleen or tumor, however no Bifidobacterium was detected in any of the organs isolated from Bifidobacterium-gavaged tumor-bearing mice (fig. S5C). We thus concluded that the observed systemic immunological effects are likely occur-ring independently of bacterial translocation.

We subsequently interrogated the immunologic mecha-nisms underlying the observed differences in T cell respons-es between TAC, JAX, and Bifidobacterium-treated TAC mice (fig. S6A). CD8+ SIY-specific 2C TCR Tg T cells exposed to tumors in JAX and Bifidobacterium-treated TAC mice exhibited greater expansion in the tumor-draining lymph node as compared to their counterparts in TAC mice (fig. S6B). However, they produced markedly greater I FN-γin both the tumor draining lymph node and the spleen of JAX and Bifidobacterium-fed TAC tumor-bearing mice (Fig. 4A), consistent with our analyses of the endogenous T cell re-sponse (Figs. 1C, 2E, and 3F). These data pointed to an im-provement in immune responses upstream of T cells, at the level of host dendritic cells (DCs). Consistent with this hy-pothesis, we found an increased percentage of major histo-compatibility complex (MHC) Class II hi DCs in the tumors of JAX and Bifidobacterium-treated TAC mice (Fig. 4B).

We therefore employed genome-wide transcriptional profiling of early tumor-infiltrating DCs isolated from TAC, JAX and Bifidobacterium-treated TAC mice (fig. S7A and table S5). Pathway analysis of 760 gene transcripts upregu-lated in both JAX and Bifidobacterium-treated TAC-derived DCs relative to DCs from untreated TAC mice identified cy-tokine-cytokine receptor interaction, T cell activation, and positive regulation of mononuclear cell proliferation as sig-nificantly enriched pathways (Fig. 4C and fig. S7B). Many of these genes have been shown to be critical for antitumor responses including those involved in CD8+ T cell activation and costimulation [H2-m2(MHC-I), Cd40, Cd70, Icam1)] (20–22); DC maturation (Relb, Ifngr2) (23, 24); antigen pro-cessing and cross presentation (Tapbp, Rab27a, Slc11a1) (–27); chemokine-mediated recruitment of immune cells to the tumor microenvironment (Cxcl9, Cx3cl1, Cxcr4) (28–30); and type I interferon signaling (Irf1, Ifnar2, Oas2, Ifi35, Ifitm1) (31, 32) (Fig. 4D and fig. S7C). Expression of these genes was also increased in murine bone marrow–derived DCs stimulated with Bi fi dobacteri um i n vi tro(table S6), consistent with previous reports that these species of Bifidobacterium can directly elicit DC maturation and cyto-kine production (13).

To test whether functional differences in DCs isolated from TAC, JAX, and Bifidobacterium-treated TAC mice could be sufficient to explain the differences in T cell prim-ing observed in vivo, we purified DCs from lymphoid tissues of na?ve TAC, JAX, and Bifidobacterium-treated TAC mice and tested their ability to induce CFSE-labeled CD8+SIY-specific 2C TCR Tg T cell proliferation and acquisition of IFN-γproduction in vitro. DCs purified from JAX and Bifidobacterium-treated TAC mice induced 2C T cell prolif-eration at lower antigen concentration compared to DCs purified from na?ve TAC mice (fig. S8, A and B). Further-more, at all antigen concentrations, JAX-derived DCs elicit-ed elevated levels of T cell I FN-γproduction (Fig. 4E and fig. S8A). We observed similar effects upon oral administra-tion of Bifidobacterium to TAC mice prior to DC isolation (Fig. 4E and fig. S8A). Taken together, these data suggest that commensal Bifidobacterium-derived signals modulate the activation of DCs in the steady state, which in turn sup-ports improved effector function of tumor-specific CD8+T cells.

Our studies demonstrate an unexpected role for com-mensal Bifidobacterium in enhancing antitumor immunity in vivo. Given that beneficial effects are observed in multi-ple tumor settings, and that alteration of innate immune function is observed, this improved antitumor immunity could be occurring in an antigen-independent fashion. The necessity for live bacteria may imply that Bifidobacterium colonizes a specific compartment within the gut that ena-bles it to interact with host cells that are critical for modu-lating DC function, or to release soluble factors that disseminate systemically leading to improved DC function.

Our results do not rule out a contribution of other com-mensal bacteria species in having the capability to regulate antitumor immunity, either positively or negatively. Our data support the idea that one source of intersubject heter-ogeneity with regard to spontaneous antitumor immunity and therapeutic effects of antibodies targeting the PD-1/PD-L1 axis may be the composition of gut microbes, which could be manipulated for therapeutic benefit. These princi-ples could apply to other immunotherapies such as antibod-ies targeting the CTLA-4 pathway. Similar analyses can be performed in humans using 16S rRNA sequencing of stool samples from patients receiving checkpoint blockade or

with clinical benefit.

REFERENCES AND NOTES

1. F. S. Hodi, S. J. O’Day, D. F. McDermott, R. W. Weber, J. A. Sosman, J. B. Haanen,

R. Gonzalez, C. Robert, D. Schadendorf, J. C. Hassel, W. Akerley, A. J. van den Eertwegh, J. Lutzky, P. Lorigan, J. M. Vaubel, G. P. Linette, D. Hogg, C. H.

Ottensmeier, C. Lebbé, C. Peschel, I. Quirt, J. I. Clark, J. D. Wolchok, J. S. Weber, J. Tian, M. J. Yellin, G. M. Nichol, A. Hoos, W. J. Urba, I mproved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med.363, 711–723 (2010). Medline doi:10.1056/NEJMoa1003466

2. O. Hamid, C. Robert, A. Daud, F. S. Hodi, W. J. Hwu, R. Kefford, J. D. Wolchok, P.

Hersey, R. W. Joseph, J. S. Weber, R. Dronca, T. C. Gangadhar, A. Patnaik, H.

Zarour, A. M. Joshua, K. Gergich, J. Elassaiss-Schaap, A. Algazi, C. Mateus, P.

Boasberg, P. C. Tumeh, B. Chmielowski, S. W. Ebbinghaus, X. N. Li, S. P. Kang, A.

Ribas, Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Eng l. J. Med.369, 134–144 (2013).Medline doi:10.1056/NEJMoa1305133

3. P. C. Tumeh, C. L. Harview, J. H. Yearley, I. P. Shintaku, E. J. Taylor, L. Robert, B.

Chmielowski, M. Spasic, G. Henry, V. Ciobanu, A. N. West, M. Carmona, C. Kivork,

E. Seja, G. Cherry, A. J. Gutierrez, T. R. Grogan, C. Mateus, G. Tomasic, J. A.

Glaspy, R. O. Emerson, H. Robins, R. H. Pierce, D. A. Elashoff, C. Robert, A. Ribas, PD-1 blockade induces responses by inhibiting adaptive immune resistance.

Nature515, 568–571 (2014). Medline doi:10.1038/nature13954

4. S. Spranger, R. M. Spaapen, Y. Zha, J. Williams, Y. Meng, T. T. Ha, T. F. Gajewski,

Up-regulation of PD-L1, I DO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci. Transl. Med.5, 200ra116 (2013). Medline doi:10.1126/scitranslmed.3006504

5. R. R. Ji, S. D. Chasalow, L. Wang, O. Hamid, H. Schmidt, J. Cogswell, S. Alaparthy,

D. Berman, M. Jure-Kunkel, N. O. Siemers, J. R. Jackson, V. Shahabi, An immune-

active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol. Immunother.61, 1019–1031 (2012). Medline doi:10.1007/s00262-011-1172-6

6. T. F. Gajewski, J. Louahed, V. G. Brichard, Gene signature in melanoma associated

with clinical activity: A potential clue to unlock cancer immunotherapy. Cancer J.

16, 399–403 (2010). Medline doi:10.1097/PPO.0b013e3181eacbd8

7. L. V. Hooper, D. R. Littman, A. J. Macpherson, Interactions between the microbiota

and the immune system. Science336, 1268–1273 (2012).Medline doi:10.1126/science.1223490

8. I. I. I vanov I I, K. Honda, I ntestinal commensal microbes as immune modulators.

Cell Host Microbe12, 496–508 (2012). Medline doi:10.1016/j.chom.2012.09.009 9. J. P. McAleer, J. K. Kolls, Maintaining poise: Commensal microbiota calibrate

interferon responses. Immunity37, 10–12 (2012).Medline doi:10.1016/j.immuni.2012.07.001

10. N. Iida, A. Dzutsev, C. A. Stewart, L. Smith, N. Bouladoux, R. A. Weingarten, D. A.

Molina, R. Salcedo, T. Back, S. Cramer, R. M. Dai, H. Kiu, M. Cardone, S. Naik, A.

K. Patri, E. Wang, F. M. Marincola, K. M. Frank, Y. Belkaid, G. Trinchieri, R. S.

Goldszmid, Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science342, 967–970 (2013).

Medline doi:10.1126/science.1240527

11. S. Viaud, F. Saccheri, G. Mignot, T. Yamazaki, R. Daillère, D. Hannani, D. P. Enot, C.

Pfirschke, C. Engblom, M. J. Pittet, A. Schlitzer, F. Ginhoux, L. Apetoh, E.

Chachaty, P. L. Woerther, G. Eberl, M. Bérard, C. Ecobichon, D. Clermont, C.

Bizet, V. Gaboriau-Routhiau, N. Cerf-Bensussan, P. Opolon, N. Yessaad, E. Vivier,

B. Ryffel,

C. O. Elson, J. Doré, G. Kroemer, P. Lepage, I. G. Boneca, F. Ghiringhelli,

L. Zitvogel, The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science342, 971–976 (2013).Medline doi:10.1126/science.1240537

12. I. I. Ivanov II, K. Atarashi, N. Manel, E. L. Brodie, T. Shima, U. Karaoz, D. Wei, K. C.

Goldfarb, C. A. Santee, S. V. Lynch, T. Tanoue, A. Imaoka, K. Itoh, K. Takeda, Y.

Umesaki, K. Honda, D. R. Littman, I nduction of intestinal Th17 cells by segmented filamentous bacteria. Cell139, 485–498 (2009).Medline doi:10.1016/j.cell.2009.09.033

13. P. López, M. Gueimonde, A. Margolles, A. Suárez, Distinct Bifidobacterium strains

drive different immune responses in vitro. Int. J. Food Microbiol.138, 157–165 (2010). Medline doi:10.1016/j.ijfoodmicro.2009.12.023

14. O. Ménard, M.-J. Butel, V. Gaboriau-Routhiau, A.-J. Waligora-Dupriet, Gnotobiotic

mouse immune response induced by Bifidobacterium sp. strains isolated from

infants. App l. Environ. Microbio l.74, 660–666 (2008).Medline doi:10.1128/AEM.01261-07

15. P. Dong, Y. Yang, W. P. Wang, The role of intestinal bifidobacteria on immune

system development in young rats. Early Hum. Dev.86, 51–58 (2010). Medline doi:10.1016/j.earlhumdev.2010.01.002

16. T. Kawahara, T. Takahashi, K. Oishi, H. Tanaka, M. Masuda, S. Takahashi, M.

Takano, T. Kawakami, K. Fukushima, H. Kanazawa, T. Suzuki, Consecutive oral administration of Bifidobacterium l ongum MM-2 improves the defense system against influenza virus infection by enhancing natural killer cell activity in a murine model. Microbiol. Immunol.59, 1–12 (2015).Medline doi:10.1111/1348-0421.12210

17. N. Arpaia, C. Campbell, X. Fan, S. Dikiy, J. van der Veeken, P. deRoos, H. Liu, J. R.

Cross, K. Pfeffer, P. J. Coffer, A. Y. Rudensky, Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013). Medline doi:10.1038/nature12726

18. P. M. Smith, M. R. Howitt, N. Panikov, M. Michaud, C. A. Gallini, M. Bohlooly-Y, J.

N. Glickman, W. S. Garrett, The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science341, 569–573 (2013). Medline doi:10.1126/science.1241165

19. K. Atarashi, T. Tanoue, T. Shima, A. Imaoka, T. Kuwahara, Y. Momose, G. Cheng,

S. Yamasaki, T. Saito, Y. Ohba, T. Taniguchi, K. Takeda, S. Hori, I. I. Ivanov II, Y.

Umesaki, K. Itoh, K. Honda, Induction of colonic regulatory T cells by indigenous Clostridium species. Science331, 337–341 (2011).Medline doi:10.1126/science.1198469

20. M. F. Mackey, J. R. Gunn, C. Maliszewsky, H. Kikutani, R. J. Noelle, R. J. Barth Jr.,

Dendritic cells require maturation via CD40 to generate protective antitumor immunity. J. Immunol.161, 2094–2098 (1998). Medline

21. A. Scholer, S. Hugues, A. Boissonnas, L. Fetler, S. Amigorena, ntercellular

adhesion molecule-1-dependent stable interactions between T cells and dendritic cells determine CD8+ T cell memory. Immunity28, 258–270 (2008).

Medline doi:10.1016/j.immuni.2007.12.016

22. S. P. Bak, M. S. Barnkob, A. Bai, E. M. Higham, K. D. Wittrup, J. Chen, Differential

requirement for CD70 and CD80/CD86 in dendritic cell-mediated activation of tumor-tolerized CD8 T cells. J. Immuno l.189, 1708–1716 (2012).Medline doi:10.4049/jimmunol.1201271

23. J. Pan, M. Zhang, J. Wang, Q. Wang, D. Xia, W. Sun, L. Zhang, H. Yu, Y. Liu, X. Cao,

Interferon-gamma is an autocrine mediator for dendritic cell maturation.

Immunol. Lett.94, 141–151 (2004). Medline doi:10.1016/j.imlet.2004.05.003 24. A. R. Pettit, C. Quinn, K. P. MacDonald, L. L. Cavanagh, G. Thomas, W. Townsend,

M. Handel, R. Thomas, Nuclear localization of RelB is associated with effective antigen-presenting cell function. J. Immunol.159, 3681–3691 (1997). Medline 25. E. B. Compeer, T. W. H. Flinsenberg, S. G. van der Grein, M. Boes, Antigen

processing and remodeling of the endosomal pathway: Requirements for antigen cross-presentation. Front. Immuno

l.3, 37 (2012).Medline doi:10.3389/fimmu.2012.00037

26. C. Jancic, A. Savina, C. Wasmeier, T. Tolmachova, J. El-Benna, P. M. Dang, S.

Pascolo, M. A. Gougerot-Pocidalo, G. Raposo, M. C. Seabra, S. Amigorena, Rab27a regulates phagosomal pH and NADPH oxidase recruitment to dendritic cell phagosomes. Nat. Ce l l Bio l.9, 367–378 (2007).Medline doi:10.1038/ncb1552

27. C. B. Stober, S. Brode, J. K. White, J. F. Popoff, J. M. Blackwell, Slc11a1, formerly

Nramp1, is expressed in dendritic cells and influences major histocompatibility complex class II expression and antigen-presenting cell function. Infect. Immun.

75, 5059–5067 (2007). Medline doi:10.1128/IAI.00153-07

28. K. Kabashima, N. Shiraishi, K. Sugita, T. Mori, A. Onoue, M. Kobayashi, J. Sakabe,

R. Yoshiki, H. Tamamura, N. Fujii, K. I naba, Y. Tokura, CXCL12-CXCR4 engagement is required for migration of cutaneous dendritic cells. Am. J. Pathol.

171, 1249–1257 (2007). Medline doi:10.2353/ajpath.2007.070225

29. M. Nukiwa, S. Andarini, J. Zaini, H. Xin, M. Kanehira, T. Suzuki, T. Fukuhara, H.

Mizuguchi, T. Hayakawa, Y. Saijo, T. Nukiwa, T. Kikuchi, Dendritic cells modified to express fractalkine/CX3CL1 in the treatment of preexisting tumors. Eur. J.

Immunol.36, 1019–1027 (2006). Medline doi:10.1002/eji.200535549

30. L. Zhang, J. R. Conejo-Garcia, D. Katsaros, P. A. Gimotty, M. Massobrio, G.

Regnani, A. Makrigiannakis, H. Gray, K. Schlienger, M. N. Liebman, S. C. Rubin, G.

Coukos, ntratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Eng l. J. Med.348, 203–213 (2003).Medline doi:10.1056/NEJMoa020177

31. M. B. Fuertes, A. K. Kacha, J. Kline, S. R. Woo, D. M. Kranz, K. M. Murphy, T. F.

FN signals are required for antitumor CD8+ T cell

responses through CD8alpha+ dendritic cells. J. Exp. Med.208, 2005–2016 (2011). Medline doi:10.1084/jem.20101159

32. S.-R. Woo, M. B. Fuertes, L. Corrales, S. Spranger, M. J. Furdyna, M. Y. Leung, R.

Duggan, Y. Wang, G. N. Barber, K. A. Fitzgerald, M. L. Alegre, T. F. Gajewski, STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity41, 830–842 (2014).Medline doi:10.1016/j.immuni.2014.10.017

33. C. Blank, I. Brown, A. C. Peterson, M. Spiotto, Y. Iwai, T. Honjo, T. F. Gajewski, PD-

L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res.64, 1140–1145 (2004).Medline doi:10.1158/0008-5472.CAN-03-3259

34. J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K.

Costello, N. Fierer, A. G. Pe?a, J. K. Goodrich, J. I. Gordon, G. A. Huttley, S. T.

Kelley, D. Knights, J. E. Koenig, R. E. Ley, C. A. Lozupone, D. McDonald, B. D.

Muegge, M. Pirrung, J. Reeder, J. R. Sevinsky, P. J. Turnbaugh, W. A. Walters, J.

Widmann, T. Yatsunenko, J. Zaneveld, R. Knight, QIIME allows analysis of high-throughput community sequencing data. Nat. Methods7, 335–336 (2010).

Medline doi:10.1038/nmeth.f.303

35. D. McDonald, M. N. Price, J. Goodrich, E. P. Nawrocki, T. Z. DeSantis, A. Probst,

G. L. Andersen, R. Knight, P. Hugenholtz, An improved Greengenes taxonomy

with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J.6, 610–618 (2012). Medline doi:10.1038/ismej.2011.139

36. J. G. Caporaso, K. Bittinger, F. D. Bushman, T. Z. DeSantis, G. L. Andersen, R.

Knight, PyNAST: A flexible tool for aligning sequences to a template alignment.

Bioinformatics26, 266–267 (2010).Medline doi:10.1093/bioinformatics/btp636

37. Q. Wang, G. M. Garrity, J. M. Tiedje, J. R. Cole, Naive Bayesian classifier for rapid

assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ.

Microbiol.73, 5261–5267 (2007). Medline doi:10.1128/AEM.00062-07

38. C. Lozupone, R. Knight, UniFrac: A new phylogenetic method for comparing

microbial communities. Appl. Environ. Microbiol.71, 8228–8235 (2005). Medline doi:10.1128/AEM.71.12.8228-8235.2005

39. I. Letunic, P. Bork, Interactive Tree Of Life v2: Online annotation and display of

phylogenetic trees made easy. Nuc eic Acids Res.39(suppl.), W475–W478 (2011). Medline doi:10.1093/nar/gkr201

40. M. Barman, D. Unold, K. Shifley, E. Amir, K. Hung, N. Bos, N. Salzman, Enteric

salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract.

Infect. Immun.76, 907–915 (2008). Medline doi:10.1128/IAI.01432-07

41.

Hammer, N. L. Morris, X. Li, J. M. Eberhardt, R. L. Gamelli, R. H. Kennedy, M. A.

Choudhry, Burn injury alters the intestinal microbiome and increases gut permeability and bacterial translocation. PLOS ONE10, e0129996 (2015).

10.1371/journal.pone.0129996 Medline doi:10.1371/journal.pone.0129996

42. J.-P. Furet, O. Firmesse, M. Gourmelon, C. Bridonneau, J. Tap, S. Mondot, J.

Doré, G. Corthier, Comparative assessment of human and farm animal faecal microbiota using real-time quantitative PCR. FEMS Microbiol. Ecol.68, 351–362 (2009). Medline doi:10.1111/j.1574-6941.2009.00671.x ACKNOWLEDGMENTS

R code for gene expression analyses can be found at

https://https://www.doczj.com/doc/8814446680.html,/kipkeston/TG_Microbiota; microarray data can be found at https://www.doczj.com/doc/8814446680.html,/geo/query/acc.cgi?acc=GSE73475 and

https://www.doczj.com/doc/8814446680.html,/geo/query/acc.cgi?acc=GSE73476; 16S rRNA

sequencing data can be found at

https://www.doczj.com/doc/8814446680.html,/bioproject/297465. The data reported in this

manuscript are presented in the main paper and in the supplementary materials.

We would like to thank D. Ringus for anaerobic culture of bifidobacteria and

colony quantification, Y. Zhang for providing Lactobacillus murinus cultures, and R. Sweis for providing the MB49 bladder cancer cell line. This work was

supported by a Team Science Award from the Melanoma Research Alliance, an National Institute of Diabetes and Digestive and Kidney Diseases, NIH, P30

Digestive Disease Research Core Center Grant (DK42086), the University of

Chicago Cancer Biology training program (5T32CA009594-25), and the Cancer Research Institute fellowship program. The University of Chicago has filed a

patent application that relates to microbial community manipulation in cancer therapy.

SUPPLEMENTARY MATERIALS

https://www.doczj.com/doc/8814446680.html,/cgi/content/full/science.aac4255/DC1

Materials and Methods

Figs. S1 to S8

Tables S1 to S7

References (33–42)

25 April 2015; accepted 09 October 2015

Published online 5 November 2015

10.1126/science.aac4255

Fig. 1. Differences in melanoma outgrowth and tumor-specific immune responses between C57BL/6 JAX and TAC mice are eliminated upon cohousing. (A) B16.SIY tumor growth kinetics in newly arrived JAX and TAC mice. (B) IFN-γ ELISPOT in tumor-bearing JAX and TAC mice 7 days following tumor inoculation. (C) Mean size of IFN-γ spots (10?3 mm2). (D) Percentage of SIY+ T cells of total CD8+ T cells within the tumor of JAX and TAC mice as determined by flow cytometry 21 days post-tumor inoculation. Representative plots (left), quantification (right). (E) B16.SI Y tumor growth kinetics in JAX and TAC mice cohoused for 3 weeks prior to tumor inoculation. (F) Number of IFN-γ spots/106 splenocytes in tumor-bearing JAX and TAC mice cohoused for 3 weeks prior to tumor inoculation. (G) Mean size of IFN-γ spots (10?3 mm2). (H) Percentage of SIY+ T cells of total CD8+ T cells within the tumor of JAX and TAC mice cohoused for 3 weeks prior to tumor inoculation. Data show mean ± SEM combined from six independent experiments, analyzed by two-way analysis of variance (ANOVA) with Sidak’s correction for multiple comparisons [(A) and (E)], or individual mice with mean ± SEM combined from four [(B), (C), (F), (G)] or three [(D) and (H)] independent experiments, analyzed by Student’s t test; 5 mice per group per experiment; **P < 0.01, ****P < 0.0001, NS, not significant.

Fig. 2. Oral administration of JAX fecal material to TAC mice enhances spontaneous antitumor immunity and response to αPD-L1 mAb therapy. (A) B16.SIY tumor growth in newly arrived TAC mice, TAC and JAX mice orally gavaged with PBS, TAC or JAX fecal material prior to tumor implantation. (B) Number of IFN-γ spots × mean spot size (10?3 mm2), determined by ELISPOT 7 days following tumor inoculation. (C) Percentage of SIY+ CD8+ T cells within the tumor of TAC and JAX mice treated as in (A), 21 days post-tumor inoculation. Representative plots (left), quantification (right). (D) B16.SI Y tumor growth in TAC mice, untreated or treated with JAX fecal material 7 and 14 days post tumor implantation, αPD-L1 mAb 7, 10, 13 and 16 days post tumor implantation, or both regimens. (E) I FN-γELISPOT assessed 5 days after start of treatment. (F) Percentage of tumor-infiltrating S Y+CD8+T cells, determined by flow cytometry 14 days after start of treatment. (G) B16.SI Y tumor growth kinetics in TAC and JAX mice, untreated or treated with αPD-L1 mAb 7, 10, 13 and 16 days post tumor implantation. Data show means ± SEM analyzed by two-way ANOVA with Dunnett’s (A) or Tukey’s [(D) and (G)] correction for multiple comparisons; or individual mice with means ± SEM analyzed by one-way ANOVA with Holm-Sidak correction for multiple comparisons [(B), (C), (E), (F)]; data are representative of [(A) to (C), (F), and (G)] or combined from [(D) and (E)] two to four independent experiments; 5 mice per group per experiment; *P < 0.05, **P < 0.01, ****P < 0.0001, NS, not significant.

Fig. 3. Direct administration of Bifidobacterium to TAC recipients with established tumors improves tumor-specific immunity and response to αPD-L1 mAb therapy. (A) Principal coordinate analysis plot of bacterial β-diversity over time in groups treated as in Fig. 2A, each group is comprised of at least two cages, 3-4 mice per cage; data represent three independent experiments; **P< 0.01, ***P< 0.001

Fig. 3.(cont.) (ANOSI M). (B) Phylogenetic analysis of taxa that are of significantly different abundance in newly arrived JAX vs TAC mice FDR<0.05 (nonparametric t test); bars represent log-transformed fold changes, inner circle = log10(10); middle circle = log10(100); outer circle = log10(1000). (C) Heatmap demonstrating relative abundance over time of significantly altered genus-level taxa in JAX-fed TAC mice FDR<0.05 (nonparametric t test); columns depict individual mice; each timepoint shows mice from two separate cages, 3-4 mice per cage. (D) Correlation plot of relative abundance of Bifidobacterium OTU_681370 in fecal material obtained from groups as in (A) 14 days post arrival and frequency of SIY+ CD8+ T cells in tumor; P = 1.4 × 10?5, FDR = 0.0002, R2 = 0.86 (univariate regression). (E) B16.SIY tumor growth kinetics in TAC mice, untreated or treated with Bifidobacterium 7 and 14 days post tumor implantation, αPD-L1 mAb 7, 10, 13 and 16 days post tumor implantation, or both regimens. (F) IFN-γ ELISPOT assessed 5 days after start of treatment. (G) Percentage of tumor-infiltrating SIY+ CD8+ T cells, determined by flow cytometry 14 days following start of treatment. Data show means ± SEM analyzed by two-way ANOVA with Tukey’s correction (E) or individual mice with means ± SEM analyzed by one-way ANOVA with Holm-Sidak correction [(F) and (G)], and are combined from two independent experiments; 5 mice per group per experiment, *P <

0.05, ***P < 0.001 ****P < 0.0001.

Fig. 4. Dendritic cells isolated from JAX and Bifidobacterium-fed TAC mice show increased expression of genes associated with antitumor immunity and heightened capability for T cell activation. (A) Quantification of IFN-γ MFI (mean fluorescence intensity) of 2C CD8+ T cells in the tumor-draining lymph node (left) and spleen (right) of TAC, JAX, Bifidobacterium-fed TAC mice on day 7 post adoptive transfer. (B) Percentage of MHC Class II hi DCs in tumors isolated from TAC, JAX, and Bifidobacterium-fed TAC mice 40 hours post tumor implantation as assessed by flow cytometry. Data in [(A) and (B)] show individual mice with mean ± SEM, analyzed by one-way ANOVA with Holm-Sidak correction; representative of two to four independent experiments, 8-9 mice per group per experiment, *P< 0.05, **P< 0.01, ****P< 0.0001. (C) Enriched biological pathways and functions found within the subset of elevated genes in JAX and Bifidobacterium-treated TAC-derived DCs relative to untreated TAC DCs isolated from tumors 40hrs post tumor inoculation, as assessed by DAVI D pathway analysis. Red bars indicate the percent of genes in a pathway upregulated in DCs isolated from JAX and Bifidobacterium-fed TAC mice. Blue line indicates P values calculated by Fisher’s exact test. (D) Heat map of key antitumor immunity genes in DCs isolated from JAX, Bifidobacterium-treated TAC or untreated TAC mice. Mean fold-change for each gene transcript is shown on the right. (E) Quantification of IFN-γ+ 2C TCR Tg CD8+ T cells stimulated in vitro with DCs purified from peripheral lymphoid tissues of naive TAC, JAX, and Bifidobacterium-treated TAC mice in the presence of different concentrations of SIY peptide. Analyses in [(C) to (E)] were performed on data combined from two independent experiments, 5 mice pooled per group per experiment. Data in [(E)] show technical replicates of pooled samples from each experiment separately, and were analyzed by fitting a linear mixed model, with Bonferroni correction for multiple comparisons; *P < 0.05, ****P < 0.0001.

人体肠道微生物群落与疾病

人体肠道微生物群落与疾病 .82.公共卫生与临床医学201062J】JJPublicHealthandClinicalMedicineV olume6,Number2,May2010 人体肠道微生物群落与疾病 翁幸鐾,糜祖煌 术专家论坛术 通讯作者:糜祖煌(1962一),男(汉族),江苏省无锡市人;1982年毕业于镇江医学院(现改为江苏 大学),研究员,任无锡市克隆遗传技术研究所所长;任公共卫生与临床医学》常务编委,编辑委 员会副主任委员,中国优生与遗传杂志编委,中华检验医学杂志编审专家,现代实用医学杂志编委, 世界感染杂志常务编委,中国人兽共患病学报编委,中国抗生素杂志编委,中华流行病学杂志审稿专 家,中华医学会微免学会支原体学组成员,亚洲支原体组织(AOM)理事;先后在中华检验医学杂 志》,Ⅸ中华医院感染学杂志,中华流行病学杂志》,中国抗生素杂志》,世界感染杂志》 和国外专业期刊发表论着,述评,专家论坛栏目文章共200余篇;主持完成国家自然科学基金项目2

个,省市基金项目多个;参编专着3部.主要研究方向:从事微生物分子鉴定,耐药基因和毒力基因 及菌株亲缘性分析等. 摘要:人体肠道定植的微生物群落绝大多数是无害甚至是有益的,它们就像器官一样行使实质性功能. 一 旦肠道微生物群落异常,就会产生一系列疾病.本文阐述了人体肠道微生物群落的形成和影响因素, 以及微生物群落异常与疾病的关系,并探讨了治疗方案和研究前景 关键词:肠道;微生物群落;异常;疾病;治疗 中图分类号:Q939.121文献标识码:A HumanIntestinalMicrobiotaandDiseasesWENGXing-beM1Zu—huang2(| Departmentof MedicalLaboratory,NingboNO.Hospital,Ningbo,31501~China,2Departme ntofBioinformatics,Wuxi CloneGen—TechInstitu把.Wuxi,214026.Chma1 Abstract:Themajorityofhumanintestinalmicrobiotaareharmlessorevenbene ficialbyperforming functionsessentialforoursurviva1.Shiftsinthemicrobialspeciesthatresideino urintestineshavebeen associatedwi也alonglistofpathogenesis.Thereviewprovidedanoverviewontheformationof

肠道微生物与炎性相关疾病的免疫学研究新进展

Advances in Microbiology 微生物前沿, 2018, 7(1), 12-18 Published Online March 2018 in Hans. https://www.doczj.com/doc/8814446680.html,/journal/amb https://https://www.doczj.com/doc/8814446680.html,/10.12677/amb.2018.71002 Recent Advances in Immunological Studies of Intestinal Microbes and Inflammatory Related Diseases Zeqing Chen, Jianxin Wen* College of Veterinary Medicine, Qingdao Agriculture University, Qingdao Shandong Received: Mar. 2nd, 2018; accepted: Mar. 16th, 2018; published: Mar. 23rd, 2018 Abstract The relationship between the body’s own immune system and intestinal flora is not only coexist-ing, but also affecting each other. Recent studies have shown that metabolic diseases such as di-abetes, gout, hyperuricemia and other metabolic diseases are closely related to changes in intes-tinal flora. The detection of intestinal flora change may be helpful to the diagnosis and treatment of metabolic diseases. The intestinal microflora of the healthy population and patients with meta-bolic diseases are different, we can use the drugs and the role of diet, and readjust the distribution of intestinal microflora, which is conducive to disease remission and composition. This article re-viewed the pathogenesis of diabetes, hyperuricemia, inflammatory bowel disease and gout, the me-chanism of intestinal flora and the development of diagnosis and treatment strategy of the disease. Keywords Enteric Microbiota, Inflammatory Related Diseases, Immunological Study 肠道微生物与炎性相关疾病的免疫学 研究新进展 陈泽庆,温建新* 青岛农业大学动物医学院,山东青岛 收稿日期:2018年3月2日;录用日期:2018年3月16日;发布日期:2018年3月23日 *通讯作者。

微生物与人类健康2018

伤寒与细菌性痢疾 1 【单选题】(B)是细菌性痢疾的主要传播渠道。 A、唾液 B、食物 C、水源 D、体液 2 【单选题】通过(B)传播有可能会感染伤寒沙门氏菌。 A、空气 B、水源 C、唾液 D、接触 3 【单选题】伤寒可能首先出现的症状是引起(A)出血和穿孔。 A、肠道 B、胃 C、肾 D、肺 4 【判断题】采用抗生素治疗后,伤寒病死率可以降低到1%以下。(对)

【判断题】任意一种细菌与志贺氏菌结合都可以感染伤寒。(错) 1.2 霍乱与破伤风 1 【单选题】下列选项中,哪些不是霍乱可能引起的结果?(D) A、酸中毒 B、腹泻 C、反射性呕吐 D、血压上升 2 【单选题】下列不是关于破伤风杆菌说法的是(A)。 A、经飞沫传播感染 B、棒槌状 C、广泛分布与环境、土壤 D、厌氧细菌 3 【单选题】霍乱从1817年到1923年在世界范围内流行了(A)次。 A、6次 B、5次

C、4次 D、3次 4 【判断题】几乎不引起局部炎症症状,煮沸即可使之失活是破伤风感染。(错)5 【判断题】分泌外毒素,造成末端神经系统急性中毒的症状是破伤风感染。(错) 1.3 梅毒与幽门螺杆菌 1 【单选题】梅毒在不治疗的情况下,死亡率约达(D)。 A、50% B、30% C、40% D、20% 2 【单选题】由幽门螺杆菌引起的病症,(C)是十二指肠溃疡。 A、95% B、85% C、90% D、80%

3 【单选题】梅毒根据现有资料推测,(B)是其原发地。 A、亚洲 B、美洲 C、欧洲 D、大洋洲 4 【判断题】 梅毒病毒可能通过胎盘直接传染给胎儿。(对) 5 【判断题】存在于胃的上半部分幽门附近的病菌是幽门螺杆菌。(错) 1.4 黑死病 1 【单选题】通过(A)传播最容易得结核病。 A、空气 B、食物 C、水源 D、唾液 2

微生物与免疫学试题及答案

微生物与免疫学》试题及参考答案 一、选择题( 答题时选一个最准确的答案。( 20 小题*3=60) 1. 免疫是指( ) A 抗感染的作用 B 清除衰老死亡细胞的作用 C 抗肿瘤作用 D 清除一切抗原异物的作用 E 移植物被排斥的作用 2 半抗原是( ) A异种抗原B具有反应原性的物质C具有免疫原性的物质 D化学结构简单的物质E分子量大的物质 3 类毒素具有的特征为( ) A. 有毒性和免疫原性B 有免疫原性C. 无毒性 D 无免疫原性、无毒性 E 有免疫原性、无毒性 4. 人或动物体内代表个体特异性的能引起强烈而迅速排斥反应的抗原称为( ) A 组织相容性抗原 B 移植抗原 C 主要组织相容性复合体 D 主要组织相容性抗原E. 半抗原 5 免疫球蛋白与抗原特异性结合部位是( ) A. Fc 段段段段区 6 能直接产生抗体的细胞是( ) A、B 细胞细胞C. 浆细胞D. 巨噬细胞细胞 7. 在血清中含量最高的免疫球蛋白是( ) A. lgM 8. 在人类胎儿最早合成的免疫球蛋白是( ) A. IgE 9. 免疫应答的全过程包括( ) A.感应阶段和效应阶段 B.感应阶段和反应阶段 C.反应阶段和效应阶段 D.记忆阶段和效应阶段 E.感应阶段、反应阶段和效应阶段 10. 下述哪项不是细胞免疫现象( )

A.迟发型超敏反应 B.免疫复合物病 C.抗肿瘤免疫 D. 移植排斥反应 E. 对细胞内致病菌的抗感染作用 11. 能特异性杀伤靶细胞的免疫细胞是( ) 细胞细胞C.巨噬细胞 D. 单核细胞细胞 12. 机体抗感染的第—道防线是( ) A. 血脑屏障 B. 皮肤粘膜屏障 C. 胎盘屏障 D. 吞噬细胞 E. 补体 13. 下述哪项不是补体的生物学作用( ) A. 溶菌作用 B. 免疫粘附作用 C. 中和外毒索作用 D. 趋化作用 E. 中和病毒作用 14. 参与I 型超敏反应的细胞是( ) A. 中性粒细胞 B. 单核细胞 C. 肥大细胞 细胞细胞 15. 具致病作用的细菌的代谢产物是( ) A、毒素 B、热原质 C、侵袭性酶 D、色素 E、A+B+C 16. 免疫应答是指 A、免疫应答是B细胞对Ag分子的识别,自身的活化、分化及产生效应的过程 B、免疫应答是T细胞对Ag分子的识别,自身的活化、分化及产生效应的过程 C、免疫应答是机体准确识别自己和非己、维持自身稳定的过程 D免疫应答是机体免疫细胞准确识别病原微生物、发挥抗感染的过程 E、免疫应答是机体免疫细胞对Ag分子的识别,自身的活化、增殖分化和产生效应的过程 17. 抗原的异物性是指( ) A(外来物质B(异种物质C.异体物质 D(胚胎期淋巴细胞未曾接触过的物质E(隐蔽的自身物质 18. 病原菌进入血液,并在其中生长繁殖引起严重损害,出现全身中毒症状叫

特异性抗肿瘤免疫治疗

特异性抗肿瘤免疫治疗 一概述 特异性抗肿瘤免疫疗法"该疗法克服传统手术、放化疗,治疗缺点,做到更精、更准,更彻底。疗法通过体外培养患者自身的抗癌细胞,然后回输到患者体内,达到科学抗癌的目的。它借助生物制剂的作用,培养并输入人体内,利用人体内最高效的特异性免疫细胞DC、CIK、T、NK细胞共同作用,调动患者机体的防御机制,以调节患者机体的生物学反应,杀灭癌细胞,激活免疫细胞,杀灭体内残存的微小癌细胞,实现从根源治疗肿瘤为目的。 二原理 1、启动清除肿瘤的DC细胞:应用先进的监测技术在每个患者身上提取癌细胞和树突状细胞(DC),采用高新生物技术进行处理,修复其固有的癌细胞抗原提呈功能,给DC细胞配对相应的特异性肿瘤抗原(DC疫苗),体外大量培养后回输患者体内,从而激活机体启动特异性肿瘤免疫应答,促进局部肿瘤细胞凋亡、抑制肿瘤病灶生长,使患者体内肿瘤显着消退。 2、直接清除肿瘤的CIK细胞:细胞因子诱导的杀伤细胞(CIK细胞),是将人体外周血单个核细胞(PBMC)在体外通过遗传改造,将识别肿瘤相关抗原(TAA)的单链抗体(scFv)和T 细胞的活化序列转染这类免疫细胞,使其表达一种嵌合抗原受体(CAR),这种CIK细胞能够高效识别肿瘤抗原,从而直接杀死肿瘤细胞。 3、DC-CIK细胞增强机体免疫力:DC-CIK细胞的联合使用可相互促进增殖和功能,在提升杀伤癌细胞的能力同时增加患者的免疫力。成熟的DC表面的大量树枝状突起可使其负载肿瘤抗原并呈递给CIK细胞;激活后的DC细胞能分泌IL-12、IL-18及IFN-γ等细胞因子,这些细胞因子可以强化CIK细胞的功能。 4、反馈性恢复患者体质:DC-CIK细胞的联合治疗可改善放疗化疗的骨髓抑制,改善放疗中出现的放射性炎症,避免炎症区出现溃烂或组织纤维化,提高生活质量;另外,还可通过这些免疫细胞释放的免疫因子经神经-免疫-内分泌的网络系统改善患者的新陈代谢,恢复患者的体质,如改善临床症状、改善睡眠和精神状态、食欲和体力增加等。 三多细胞 特异性抗肿瘤免疫疗法是基于DC、CIK、T、NK、等杀伤性免疫细胞对肿瘤细胞的特异性靶向杀伤作用而研发的,这四类免疫细胞群在人类整个免疫系统中都发挥这至关重要的作用。DC细胞免疫群 多细胞

免疫与肿瘤

第章 免疫与肿瘤 在肿瘤发生与发展的过程中,机体免疫系统起重要作用,一方面,免疫系统对肿瘤细胞监视与清除作用,对预防肿瘤发生及发展起重要作用;另一方面,随着肿瘤的发展及多种因素作用下,免疫系统对肿瘤细胞清除作用降低,近年来,伴随着分子生物学、生物工程、免疫学基础理论的发展,肿瘤免疫学已成为最活跃的生命科学研究领域之一,其中揭示了人类肿瘤抗原,丰富了肿瘤抗原加工、呈递和识别的基础知识;T细胞、NK细胞、树突细胞的研究有了重要进展;细胞过继免疫治疗、细胞因子治疗、肿瘤疫苗的临床研究持续稳定发展。这些免疫疗法已显示出与传统常规手术、放疗、化疗3大疗法的互补性,能减少术后复发、转移,减轻化疗、放疗的不良反应,是一项具有巨大治疗潜力的疗法。出现对肿瘤细胞的免疫耐受,甚至在一定程度上促进肿瘤生长及转移。本篇首先阐述免疫系统对肿瘤细胞的清除机制以及免疫系统如何被肿瘤细胞“招安”的机制。其次,总结近年免疫治疗肿瘤的策略及方法的主要进展。 一免疫系统对肿瘤细胞的监视与清除 (一)参与肿瘤监视与清除的细胞及因子 1.树突状细胞(dentritic cell,DC) 树突状细胞广泛分布于全身组织和脏器,数量较少,仅占人外周血单个核细胞的1%,因具有许多分枝状突起而得名。DC根据来源可分为髓系树突状细胞(myeloid DC)和淋巴系树突状细胞(lymqhoid DC)。DC细胞为专职抗原提成细胞,其主要功能为摄取、加工和提成抗原,从而启动适应性免疫应答。未成熟DC高表达lgG Fc受体,C3b受体、甘露糖受体和某些Toll样受体;低表达MHCI、MHCⅡ类分子。成熟DC表面表达CD1a、CD11c、CD83,并高表达MHCI、MHCⅡ分子及B7、ICAM等,其摄取、加工抗原能力弱,而提呈抗原能力强。DC 是唯一能够诱导初始T细胞(na?ve T)活化的抗原提呈细胞,是适应性免疫应答的始动细胞。 2.T淋巴细胞 成熟T细胞表型主要为CD3+、CD2+、CD4+(或CD8+)、TCRαβ+。初始T细胞完全活化需要两种信号协同作用。一种由TCR识别抗原产生,经CD3将信号传入细胞内;另外一种称为协同刺激信号,由APC(antigen presenting cell)或靶细胞表面协同刺激分子与T细胞表面相应受体相互作用而产生。主要有CD28与-4,配体为B7,表达于专职APC细胞,但CTLA-4与B7结合产生抑制信号。 3.自然杀伤细胞(natural killer, NK) NK细胞来源于骨髓淋巴样干细胞,其分化、发育以来与骨髓或胸腺微环境,主要分布于外周血和脾脏,在淋巴结核其他组织中也有少量存在。占外周血淋巴细胞10-15%,含有高浓度溶细胞酶。NK细胞不表达特异性性抗原识别受体,是不同于T、B淋巴细胞的第三类淋巴细胞。NK细胞目前标志为TCR―、mIg―CD56+CD16+。NK细胞表面也表达lgG Fc受体,因此也可以借助ADCC作用杀伤靶细胞。NK细胞可以被INF-α、INF-β、IL-2、IL-12、IL-15、IL-18等细

肠道微生物与人类

肠道微生物与人类健康 很多人认为,显微镜下才能看到的微生物和人们的生活关系不大,即便有关也不是我们需要了解的。但事实上,微生物和人类健康有着密不可分的关系。在我们身体的表面和内部,尤其是在肠道里,不为人知地“居住”着许多微生物。在人体内,渺小的微生物最有“发言权”。 我们体内有2公斤重的细菌,但是其中只有大约20%可以被培养和研究。绝大多数的“人体房客”至今还不为人所知,它们对人体的健康也还不被理解。 1、基本概念及综述 1.1 肠道微生物的定义:是一类生长在动物肠道中的微生物,它们构成了一个独特、多变的生态系统。这是在已发现的生态系统中细胞密度最高的系统之一。该系统中积聚着大量的微生物,同时细菌与宿主细胞之间紧密地接触在一起。 人类肠道微生物:即生长在人体内的肠道微生物。 1.2 肠道微生物的类别:分为两种,第一种称为正常菌群,第二种称为过路菌群,又称为外籍菌群。 正常菌群:数量是巨大的,约为1014左右,在长期的进化过程中,通过个体的适应和自然选择,正常菌群中不同种类之间,正常菌群与宿主之间,正常菌群、宿主与环境之间,始终处于动态平衡状态中,形成一个互相依存,相互制约的系统,因此,人体在正常情况下,正常菌群对宿主表现不致病。 过路菌群:是由非致病性或潜在致病性细菌所组成,来自周围环境或宿主其它生境,在宿主身体存留数小时,数天或数周,如果正常菌群发生紊乱,过路菌群可在短时间内大量繁殖,引起疾病。 1.3 肠道微生物的分布:在人类胃肠道内的细菌可构成一个巨大而复杂的生态系统,一个人结肠内就有400个以上的菌种。从口腔进入胃的细菌绝大多数被胃酸杀灭,剩下的主要是革兰氏阳性需氧菌。小肠微生物的构成介于胃和结肠的微生物结构之间。近端小肠的菌丛与胃内相近,但常能分离出大肠杆菌和厌氧菌。远段回肠,厌氧菌的数量开始超过需氧菌,其中大肠杆菌恒定存在,厌氧菌如类杆菌属、双歧杆菌属、梭状芽孢杆菌属,都有相当数量。在回盲瓣的远侧,细菌浓度急剧上升,结肠细菌浓度高达1011~1012 CFU/mL(CFU即colony forming unit,菌落形成单位),细菌总量几乎占粪便干重的1/3。其中厌氧菌达需氧菌的103~

肠道菌群对动物免疫的影响

肠道菌群对动物免疫的影响 作者:李海国文章来源:猪病新干线点击数:85 更新时间:2009-12-5 9:26:05 在动物体内环境中通常有一层微生物或微生物层,在正常情况下即动物处于健康状态时,并未表现异常或致病现象,称这一层微生物为正常菌群或固有菌群和原籍菌群。这些菌群是动物机体内环境中不可缺少的组成部分,对动物宿主是有益无害的。 1 肠道菌群及其分布 肠道正常菌群的概念 在动物体内环境中通常有一层微生物或微生物层,在正常情况下即动物处于健康状态时,并未表现异常或致病现象,称这一层微生物为正常菌群或固有菌群和原籍菌群。这些菌群是动物机体内环境中不可缺少的组成部分,对动物宿主是有益无害的。 肠道菌群的分布 人和动物的胃肠道栖息着大约30属500多种细菌,主要由厌氧菌、兼性厌氧菌和需氧菌组成,其中专性厌氧菌占99%以上,而仅类杆菌及双歧杆菌就占细菌总数90%以上。 肠道个体菌群分为3个部分:⑴生理性细菌与宿主共生关系,为专性厌氧菌,是肠道的优势菌群,如双歧杆菌、类杆菌、优杆菌和消化球菌等是膜菌群的主要构成者,具有营养及免疫调节作用。⑵条件致病菌与宿主共栖,以兼性需氧菌为主,为肠道非优势菌群,如肠球菌、肠杆菌,在肠道微生态平衡时是无害的,在特定的条件下具有侵袭性,对人体有害。⑶病原菌多为过路菌,长期定植的机会少,生态平衡时,这些菌数量少,不会致病,如果数量超出正常水平,则可引起人体发病,如变形杆菌、假单胞菌和常为韦氏梭菌等。口腔内的菌群高度复杂,但经过胃被胃酸破坏,对胃肠道影响很小。 胃的酸性环境极大地抑制了微生物的繁殖,减少了进入小肠的微生物数目。在无酸的胃中细菌数会明显增多。胃内除了幽门螺杆菌或相关的菌种外,大多数是革兰氏阳性的需氧菌,如链球菌、葡萄球菌、奈瑟菌、乳酸杆菌和念珠菌,细菌浓度通常小于103/ml。幽门螺杆菌是真正的胃内细菌,它是引起胃炎的主要致病因子,是溃疡病的重要致病因子。 小肠是个过渡区,肠液流量大,足以将细菌在繁殖前冲洗到远端回肠和结肠,十二指肠和空肠相对无菌,含菌浓度为0~105/ml,主要菌种是革兰氏阳性的需氧菌,包括链球菌、葡萄球菌和乳酸杆菌。在远端回肠中,革兰氏阴性菌开始超过革兰氏阳性菌,经常存在大肠菌类和厌氧菌,含菌浓度为103~107/ml。 通过回盲瓣,细菌浓度急剧增加100倍以上,达1010~1012/ml,厌氧菌超过需氧菌102~104倍,主要的菌种是拟杆菌、真杆菌和双歧杆菌以及厌氧的革兰氏阳性球菌,正常人结肠中主要菌群是相同的,并且在一段时间内保持稳定状态。这些肠道固有细菌在维持肠道功能健康方面具有举足轻重的作用。 2 肠道菌群对动物免疫的影响及机理 肠道菌群形成一个庞大而复杂的微生态系统,有重要的生理意义。包括抵御病原体侵袭、刺激机体免疫器官的成熟、激活免疫系统及参与合成多种维生素、调节物质代谢等作用。 菌群屏障作用 动物的先天性或非特异性免疫应答,亦即机体免疫系统识别和排除各种异物,主要依靠机体的屏障作用,包括正常菌群、机体的皮肤黏膜、补体等体液因子抑菌、杀菌、溶菌等作用、吞噬细胞的吞噬作用等。从现代的研究不难看出,正常菌群在机体的屏障作用中是极为重要的一个方面。

肠道菌群与粘膜免疫系统

肠道菌群与粘膜免疫系统 Michael H.Chapman , Ian R.Sanderson 英国伦敦大学Barts & The London,圣玛丽医院成人及儿童胃肠病科, Turner Street, 伦敦 E1 2AD ,英国 前言 出生时胃肠道是无菌的,但很快有种类繁多的细菌定植,因此成为人体接触病原微生物的首要部位,甚至90%的微生物是通过胃肠道进入人体的。胃肠道最主要的功能在于摄取营养和维持体液的平衡以驱除有害的微生物和其它一些毒素物质。我们就胃肠道粘膜免疫系统的基本组成及病原微生物如何与其和肠道功能的其它方面相互作用进行综述。 肠道的正常菌丛 出生时胃肠道的粘膜免疫系统的活性较低,与成年人比较淋巴细胞和Payer斑都较少。出生后经口菌群定植很快发生。肠道菌群在不断地发生变化直到成年才变得稳定,且会随着饮食结构的改变而发生变化。例如,母乳中IgA水平在婴儿期就起着非常重要的作用。 胃肠道的菌群总量是非常大的,近50%的粪便是细菌,约为1012/克。随着胃肠道的长度发生变化,其细菌数目和种类也不同。除口腔外,菌落随着胃肠道的延伸而逐渐增多,而胃和近端小肠却只有少量的以革兰氏阳性为主的细菌。菌群在小肠远端和结肠变成一个非常复杂的微生物环境。这些区域也正是炎性肠疾病(IBD)最容易受累的部位,这使我们推测粘膜免疫系统对胃肠道菌群的无效或不正常的反应在这些疾病的发病机制中扮演了非常重要的角色。 胃肠道的菌群总量是非常大的,粪便中近50%是细菌,约为1012/克粪便 由于许多方面的原因定义正常的肠道菌群是非常困难的。已知有超过500种不同种类的微生菌群在肠道定植,在回肠末端及结肠部的主要定植菌群包括乳酸杆菌、双歧杆菌、肠球菌和拟杆菌[1-2]。由于许多菌群无法在体外进行培养因而对其研究也一度受到阻碍,近来,借助于新的研究方法如变性梯度凝胶电泳(DGGE)和荧光原位杂交(FISH,利用菌群特异性探针对其进行组织定位)使对这些菌群研究取得重大进展。肠腔和其相关联的粘膜上微生物菌群的数量和类型也是有差别的[3]。粘膜相关菌

肠道微生物与人类健康

肠道微生物与人类健康 转自中科院救星益生菌小组编辑 文章来源:武汉病毒研究所发布时间:2015-12-09 健康是人类永恒的话题。每个人都希望自己有一个健康的身体,但不可否认的现实却是各种各样的疾病一直困扰着大家,特别是由于饮食习惯的逐步变化及环境污染的影响,近年来各种慢性病更是呈井喷趋势。虽然人们常说吃五谷杂粮哪有不生病的,但问题是为什么我们吃的东西比以前营养丰富了,国人的健康水平却并没有明显改善,一些疾病特别是心脑血管疾病和恶性肿瘤已成为威胁人类健康的头 号杀手,医院往往是人满为患。大家不禁要问:健康的标准是什么?如何才能够拥有健康的身体?疾病特别是慢性疾病产生的真正原因 又是什么?真正健康的身体离我们究竟有多远? 微生物与健康的关系一直是人们关注的话题,但长期以来我们对肠道微生物与健康关系的了解却非常有限。一百多年前,诺贝尔医学奖获得者、被尊称为“乳酸菌之父”的梅契尼科夫就认为:肠道健康的人身体才健康,肠道菌群产生的毒素是人体衰老和疾病产生的主要原因。他提出的人体自身中毒学说认为人体垃圾因为某些原因过量沉积在体内,导致慢性中毒,从而引发多种疾病。但由于缺少直接的证据,肠道微生物与人类健康之间的关系一直没有得到很好的解释。 近年来,随着高通量测序和宏基因组学等新的研究方法的不断开发和应用,肠道微生物对人类健康的影响重新引起重视,成为当前生命科学和医学的研究热点,一些国家相继实施了人体微生物组计划并

取得了突破性进展。现有数据表明,肠道是人体最大的微生态系统,栖息着总数约10的14次方、1000-2000 余种、重量约为1-2 公斤 的微生物。这些肠道微生物编码基因的总数超过330 万,约为人类 编码基因总数的100倍,因此肠道微生物又被认为是人体的第二基因组。肠道微生物基因组与人体基因组一起,通过与环境因素的相互作用,通过不同方式影响我们的健康。 肠道微生物从功能上可以分为共生、益生和病原微生物三大类,其中主要是细菌,也包括真菌、病毒和噬菌体,它们在人体肠道中保持着一种动态的平衡。如此庞大的肠道微生物群体通过与宿主的长 期协同进化,已经成为一个与人体密不可分的后天获得的重要“器官”。肠道微生物这一“器官”发挥的功能多种多样,包括物质代谢、生物屏障、免疫调控及宿主防御等,肠道微生物不仅帮助人体从食物中吸收营养,还能够合成氨基酸、有机酸、维生素、抗生素等供我们利用,并可以将产生的毒素加以代谢,减少对人体的毒害。不同的饮食习惯和生活方式对人体肠道微生物种类有很大的影响,例如高脂肪的饮食可以导致有益的双歧杆菌减少甚至消失。因此,肠道微生物和人体存在着互利共生的关系,对于维持人的健康发挥着重要的作用。 除物质合成与代谢功能外,肠道复杂的微生物生态系统与机体免疫系统之间的关系也极为密切。肠道微生物不仅可以作为天然屏障维持肠上皮的完整性,防止病原微生物入侵,还通过调节肠道粘膜分泌抗体作用于肠道免疫系统,并进一步影响天然免疫和获得性免疫,因此肠道微生物又被认为是人体最大的“免疫器官”。肠道微生物维持

2020肠道微生物与免疫的研究进展

2020肠道微生物与免疫的研究进展 人体正常的肠道微生物数量达1012~1014,其平均质量约为1.5 kg[1-2],约6~10个类群(3 000种)微生物组成[2-3]。婴儿在出生之后不久就有微生物在肠道定植,直到肠道微生物达到一个稳定的共生群[4]。肠道微生物对于宿主是有益的,在过去10年的研究中,已经发现肠道微生物在人体发育、肠道屏障、免疫调节、物质代谢、营养吸收、毒素排出,以及疾病的发生、发展等方面发挥着巨大的作用。肠道菌群的紊乱可能导致肥胖、肝硬化、糖尿病、心血管疾病,以及孤独症等各种疾病的发生。肠道微生物的主要功能是帮助宿主代谢,使能量和营养物质更好地被利用,为肠道上皮细胞提供营养,增强宿主免疫功能,帮助寄主抵抗病原菌[5]。最近,大量的研究表明,肠道微生物的代谢功能是非常重要的,并且效率远远超过肝的代谢功能。例如肠道微生物不仅可以影响视网膜的脂肪酸组成和眼睛晶状体、骨骼的密度、肠道血管的形成[6];而且可以提供必需的营养物质(生物素、维生素K、丁酸等)和消化食用纤维素[7]。肠道微生物同脊柱动物已经一起进化了几千年,因此,免疫系统正常功能(抵抗细菌病原体)的实施需要依靠肠道微生物。同时,肠道微生物是刺激“黏膜免疫系统”(mucosal immune system)和“全身免疫系统”(systemic immune system)成熟的重要因子[8-9]。许多实验研究发现肠道微生物的组成及代谢产物对免疫和炎性反应有很重要的影响。如果肠内部免疫系统

崩溃就会引起慢性肠炎疾病,例如克罗恩病和溃疡性结肠炎[10],然而,由于共生肠道微生物的多样性和很难断定哪种细菌是共生菌还是条件致病菌,所以对于肠道微生物定植反应的免疫调控是复杂的。近几年,肠道菌群与免疫的研究受到越来越多人们的关注。因此,本文就肠道微生物与免疫系统的关系做一综述。 1 肠道微生物群相关的疾病 近年来,大量肠道微生物与肠道生理功能关系的研究表明,肠道微生物在宿主健康与疾病方面有重要的作用[11],通过对炎性反应动物模型的研究已经确定肠道微生物与肥胖、糖尿病、过敏和哮喘等疾病的发展和变化有重要关系[12]。目前,已经有许多实验发现肠道微生物与肥胖和糖尿病有关,其中一个最新的研究表明,在遗传或者饮食诱导的肥胖小鼠肠道内Akkermansia muciniphila(一种存在于黏液层的黏液素降解菌,在健康情况下,它占肠道微生物菌群总数量的3%~5%)菌急剧减少,在饮食诱导的肥胖小鼠肠道内A. muciniphila的丰度比对照组小鼠低100倍,在饮食诱导的肥胖小鼠口服A. muciniphila后发现小鼠的体质量降低和身体指数得到改良;进一步研究发现,A. muciniphila可以降低胰岛素耐受性,控制脂肪储存、脂肪代谢、甘油酯和葡萄糖的稳态[13]。另一个研究通过比较Ⅱ型糖尿(T2D)和正常70岁欧洲妇女的肠道微生物组成,发现在有糖尿病的群体中,4个乳酸

肿瘤免疫学复习题

肿瘤免疫学复习题 一.写出以下名词的英语并解释: 1.适应性免疫adaptive immunity 特异性免疫又称获得性免疫或适应性免疫,这种免疫只针对一种病原。是获得免疫经后天感染(病愈或无症状的感染)或人工预防接种(菌苗、疫苗、类毒素、免疫球蛋白等)而使机体获得抵抗感染能力。一般是在微生物等抗原物质刺激后才形成的(免疫球蛋白、免疫淋巴细胞),并能与该抗原起特异性反应。 分为三个阶段:1感应阶段是抗原处理、呈递和识别的阶段;2反应阶段是B 细胞、T细胞增殖分化,以及记忆细胞形成的阶段;3效应阶段是效应T细胞、抗体和淋巴因子发挥免疫效应的阶段。 2主要组织相容性复合体major histocompatibility complex (MHC) 指存在于脊椎动物某一染色体上的一组紧密连锁的基因群,其编码的产物(主要组织相容性抗原)与特异性免疫应答的发生密切相关。人类MHC位于第6号染色体,MHC可分为三类基因群。 1. Ⅰ类基因:对于人类而言,包括3个基因位点,即A、B、C。其编码产物为MHCⅠ分子或抗原。 2. Ⅱ类基因:DP、DQ、DR三个亚区,其编码的经典产物为MHC Ⅱ类分子或抗原,尚有与内源性抗原处理有关的LMP、TAP。 3. Ⅲ类基因:编码产物MHC Ⅲ类分子或抗原。 3免疫球蛋白immunoglobulin 简Ig,具有抗体活性的球蛋白。是机体受到病原微生物侵袭或抗原刺激后由浆细胞而产生的特异性抗体,存在于血浆及淋巴液等体液中,能和同一抗原发生特异性免疫反应。免疫球蛋白分为5种,即IgG、IgA、IgM、IgD、IgE等。它们有共同的基本结构,即由2条相同的重肽链和2条相同的轻肽链结合而成;并都有抗体的活性,即作用于抗原,激活补体系统,破坏带抗原的靶细胞。免疫球蛋白的功能:一、V区的功能:体内:中和作用:①中和细菌外毒素②中和病毒;二、C区的功能:1.激活补体:①经典途径:激活能力以IgM最强(高于IgG500倍以上)。IgM>IgG3> IgG1> IgG2。②替代途径:凝聚的IgA,IgG4,IgE。2.与细胞膜上的Fc受体结合:多种组织细胞膜上都有IgG等抗体的Fc 受体,使抗体与不同细胞结合,产生不同的免疫效应。①调理作用:IgG类抗体与相应细菌等颗粒性抗原特异性结合后,通过Fc段与巨噬细胞或中性粒细胞表面相应IgGFc受体结合,所产生的促进吞噬细胞对上述颗粒性抗原吞噬的作用称为抗体的调理作用。②抗体依赖性细胞介导的细胞毒作用:IgG类抗体与肿瘤或病毒感染细胞表面相应抗原表位特异性结合后,再通过其Fc段与NK细胞、Mφ和中性粒细胞表面相应IgGFc受体结合,增强或触发上述效应细胞对靶细胞杀伤破坏的作用。③介导I型超敏反应:IgE的Fc段可与肥大细胞和嗜碱性粒细胞上的FcεRI结合,促使其合成和释放生物活性介质,引起I型超敏反应。3.穿过胎盘和粘膜:①通过胎盘:IgG选择性地与FcRn结合,转移到滋养层细胞内,进入胎儿血循环。②穿过粘膜:SIgA可通过呼吸道、

第二十二章肿瘤免疫

第二十章肿瘤免疫一、选择题 A型题 1.最早发现的人类肿瘤特异性抗原是 A.MAGE-蛋白 B.T抗原 C.CEA D.E1A抗原 E.EBV蛋白 2.机体的抗肿瘤免疫效应机制中起主导作用的是 A.体液免疫 B.细胞免疫 C.巨噬细胞杀伤肿瘤 D.NK细胞杀伤肿瘤 E.细胞因子杀瘤作用 3.介导补体溶解肿瘤的主要抗体是 A.IgA B.IgM C.IgE D.IgG E.IgD 4.介导ADCC杀伤肿瘤细胞的抗体主要是 A.IgA B.IgM C.IgE D.IgG E.IgD 5.能直接杀伤肿瘤细胞的细胞因子是 A.INF-γ B.TNF-α C.TGF-β D.IL-2 E.CSF 6.在维持对肿瘤细胞免疫应答的免疫记忆中起重要作用的是 A.IgG NK细胞 B.CD4+T细胞 C.IgM巨噬细胞 D.CD8+T细胞 https://www.doczj.com/doc/8814446680.html,K 7.抗体抗肿瘤的机制不包括 A.CDC B.ADCC C.调理作用 D.增强抗体 E.封闭肿瘤细胞上的转铁蛋白受体 8.NK杀伤瘤细胞的机制不包括 A.ADCC B.释放穿孔素 C.诱导瘤细胞凋亡 D.CDC E.释放IL-1、IL-2、IFN-γ 9. 以下关于肿瘤的免疫诊断的叙述,哪项是错误的是?

A.检测血清抗AFP抗体,协助诊断原发性肝细胞癌(此项也是错的) B.检测抗EBV抗体有助于鼻咽癌诊断 C.用放射免疫显像诊断肿瘤所在部位 D.检测CEA有助于诊断直结肠癌 E.检测CA199有助于B淋巴细胞瘤诊断 10. 下列关于肿瘤免疫的叙述错误的是 A.细胞免疫是抗肿瘤免疫的主要机制 B.抗体在抗肿瘤中并不发挥主要作用 C.NK细胞是抗肿瘤的第一道防线 D.静止和活化的巨噬细胞均能杀瘤细胞 E.嗜酸性粒细胞参与抗肿瘤作用 11. 有关化学致癌剂诱导实验动物发生肿瘤的叙述,其错误的是 A.抗原具有个体特异性 B.同一宿主不同部位肿瘤具有相同抗原性 C.人类肿瘤中较少见 D.抗原性弱 E.免疫学诊断困难 12.以下对NK细胞杀瘤有关叙述,错误的是 A.无特异性 B.无需预先活化, 即可直接杀瘤 C.可依赖抗体通过ADCC方式杀瘤 D.依赖补体,通过CDC方式杀瘤 E.无MHC限制性 13.与宫颈癌发病有关的病原是: A.EBV B.HTLV-1 C.HPV D.HCV E.HIV 14.HTLV-1与下列哪种疾病有关: A.B细胞淋巴瘤 B.鼻咽癌 C.原发性肝癌 D.成人T细胞白血病 E.胰腺癌 15..关于肿瘤逃避免疫监视的机制,下列哪项是错误的? A.瘤细胞表面的转铁蛋白被封闭 B.增强抗体 C.瘤细胞的“漏逸” D.宿主抗原提呈细胞功能低下 E.某些细胞因子对机体免疫应答的抑制 16.由病毒编码的肿瘤抗原是: A.CEA B.E1A抗原 C.MAGE-1 D.AFP E.P53蛋白 17.肿瘤发生的主要机制是: A.免疫防御功能的障碍 B.免疫监视功能的障碍 C.免疫自稳功能的障碍

2020放疗、化疗及免疫治疗常见不良反应及处理

2020放疗、化疗及免疫治疗常见不良反应及处理 目前,不可切除的III期非小细胞肺癌患者的标准治疗是同步放化疗后免疫巩固治疗。不同的治疗类型会带来不同的不良反应,如何有效预防及管理这些不良反应,是大家关注的问题。接下来,让我们一起了解一下: 放疗的常见不良反应及管理 放疗最常见的不良反应是疲劳、皮肤变化和食欲缺乏,其他不良反应通常与放疗照射的部分有关。大多数不良反应都可以消除,如黏膜组织水肿、糜烂短期内可以恢复,放疗引起的脱发一般半年内可再生,唾液腺的损害则需要1-2年时间恢复。目前,临床已进入精准放疗时代,放疗相关的不良反应在大大减少,因此,患者不必对放疗产生恐惧和排斥心理。 放疗的护理细则:疲劳:大多是人放疗几个星期后都会感到疲倦,而且随着放疗的持续会感到疲倦加重。 皮肤变化:使用冷水和温和的肥皂,让水流过有变化的皮肤,不要摩擦;不要抓骚放疗照射后的敏感皮肤;不要在接受放疗的皮肤上冷敷或热敷;不要在接受放疗的部位擦药,包括护肤霜、药膏、洗液等。

食欲缺乏:少食多餐;放一些健康食品在身边,以便想吃时就吃;如果只能吃很少的食物,那就多注意食物的营养,譬如用喝牛奶代替喝水等;不想吃固体食物时,可以吃大量的液体食物,可以在饮料中加入奶粉、酸奶、蜂蜜或一些液体补品。 化疗的常见不良反应及管理 化疗是“敌我不分“的,在杀伤肿瘤细胞的同时,对人体正常细胞也会产生伤害,就会出现毒副作用和不良反应。常见的不良反应主要有恶心呕吐、便秘或腹泻、白细胞减少、静脉炎和口腔溃疡等。 化疗的护理细则: 恶心呕吐:化疗前充分了解可能出现的呕吐时间和程度,消除紧张情绪。可以在化疗前10-30分钟先使用止吐药物,预防和减轻呕吐的发生。饮食上少食多餐,避免吃强烈气味或过腻过辣食物,餐前餐后1小时内尽量不喝水。多吃豌豆苗、糯米和熟栗子等含色氨酸丰富的食物,少吃香蕉、核桃、茄子等含5-羟色胺丰富的食品。口含生姜片、冰块或薄荷可以帮助克服恶心呕吐,感到恶心时做深而慢的呼吸并尽量使头部少活动。 便秘:生活和排便要有规律,养成定时排便的习惯。避免久坐,适当活动,促进肠蠕动。多吃新鲜蔬菜,适当使用麦麸或全麦面粉,增

胃肠道微生物与人类健康

胃肠道微生物与人类健康 摘要胃肠道中的各种微生物存在着动态平衡,一旦打破这种平衡就可能会引起多种疾病。因此,胃肠道微生物与人类的健康生活息息相关。以下就胃肠道微生物的组成、影响因素以及饮食、胃肠道微生物与急性溃疡性结肠炎、急性坏死性胰腺炎、急性腹泻、慢性回肠末端炎、肠易激综合征、糖尿病、儿童孤僻症等急慢性疾病之间的联系进行详细地分析和阐述,从而引起人们对胃肠道微生物平衡的重视,也为预防和治疗这些疾病提供一个新的视角。关键词胃肠道微生物平衡:急性疾病:慢性疾病:预防和治疗 在正常情况下,肠道菌群、主与外部环境建立起一个动态平衡,而肠道菌群的种类和数量亦是相对稳定的,但它们易受饮食和生活环境等多种因素的影响而变动,引起肠道菌群失调,从而引发疾病或加重病情(1)。近20年的大量研究表明,人体内低度的、全身性的慢性炎症是肥胖、糖尿病、冠状动脉性心脏病、衰老和老年疾病以及很多癌症的重要诱发因素。最近有学者发现,饮食不当造成的肠道菌群结构失调可能是这些慢性炎症的根源(2)。由肠道菌群失调引发的疾病包括多种肠炎、肥胖、肠癌甚至肝癌。有数据显示,因肠道菌群失调而导致临床患病的概率约为2%-3%(1)。因此,饮食结构与人体肠道菌群之间存在一定的关系,并影响着人类的健康。以下我们拟队饮食结构或饮食中营养成分发生变化对人类肠道菌群的影响极其导致的人体健康变化进行探讨。 1 胃肠道微生物的组成 人体的消化道是一个通过食物与外部坏境频繁接触的器官,自口腔至直肠都有大量的微生物存在。从口腔接近中性的环境到胃的酸性环境(pH2.5-3.5)对多数微生物有破坏作用,此时每克消化道内容物中微生物的数量为10000,而且主要以革兰阳性的链球菌、乳杆菌和酵母菌为主。进入十二直肠后,由于消化液的增加(如胆汁、胰液)以及停留时间短,十二指肠的环境非常不利于各种微生物的生存,此时微生物的组成不稳定,仅以极低的限数存在(3)。进入空肠和回肠后,微生物的数量开始增加,而且种类也在不断增加。在小肠末端,除了乳酸菌,尤其是双歧杆菌的数量级增长外,其他一些革兰阳性兼性氧菌如大肠菌科的细菌以及专性厌氧菌群,如拟杆菌和梭杆菌也开始出现,甚至在回盲部之前严格厌氧微生物已开始出现,此后(即在盲肠之后)严格厌氧的微生物在数量上超出兼性厌氧的微生物100-1000倍,此时细菌的数量可达到10^12cfe/g(3)。研究表明,未成年人的肠道菌有7个门的细菌组成(4)。这种构成是肠道微生物群与其宿主(人)共同并且双向进化的结果。其中,宿主因自然选择压力要求肠道微生物群趋于稳定。这些压力包括宿主在生理方面的存活压力、外界生存条件形成的肠道环境压力等(5)。因此,人体成年后肠道中菌群的门类正常情况下都是相对稳定的,只是优势菌“种”存在个体差异。 2 食物中破坏胃肠道菌群平衡的因素 一些致病性微生物的摄入可能引起肠道菌群失衡,并致人体患病。目前,发现能引起食源性胃肠道疾病的致病菌有10种左右。另外,病毒也能引起肠道菌失衡。 残留在动植物产品中的兽药、抗生素、苯酚、对甲酚、吲哚等化学物质,也会对人体肠道的平衡长生影响,还会对肠道定植菌的屏障功能产生影响,从而引发肠道菌群失衡。Jeong等(5)研究表明,环丙沙星对大肠杆菌、芽孢杆菌均有一定的抑制效果。而梭杆菌和乳酸菌对黄霉素最为敏感,真菌和梭杆菌对奥奎多司最为敏感(奥奎多司为光谱抗菌药,对革兰阳性菌和格兰阴性菌中众多细菌

免疫力与肿瘤

免疫力与肿瘤 免疫,医学上的概念是机体识别和清除微生物等外来抗原物质和自身变性物质的一系列保护反应,简单地说,就是人体抵抗疾病的一种能力。免疫力的强弱与癌症的发生、发展、治疗关系至为重要。当人体处于正常情况下,人体免疫功能会及时将这些物质清除掉,排出体外;而当人体处于亚健康状态时,人体免疫力会随之下降。 现代医学研究证明,几乎所有的慢性病都与免疫功能低下有关。也就是说,得了慢性病,就证明我们的免疫力遭到了破坏。 得了肿瘤首先应该意识到的是自己的免疫力下降了。接下来是寻找降低免疫力的原因。一旦全面、正确地找到了原因,加上正确行动,就离健康不远了。 那么,是谁"动"了我们的免疫力呢?因素是多方面的。这里所说的,是我们日常生活当中的一些不正常的因素。这些不正常的因素,是人们在自觉或不自觉当中就形成的生活方式。世界卫生组织早就指出:"许多人不是死于疾病,而是死于自己的不健康的生活方式"。 不健康的生活方式主要有以下几个方面。 一、营养不良 说起营养不良,会有好多人说,"开玩笑吧,你看看我们每天吃的喝的,怎么会营养不良呢"?真的,在物质极为丰富的今天,到处都是满肚肥肠的饥饿人群。因为我说的营养不良包括营养不足、营养过剩和营养不合理三个方面。 在过去,在解放以前,我们的生活水平很低,生活物质极为贫乏。我们中国人面黄肌瘦,枯瘦如柴,被人称为"东亚病夫"。解放后,尤其是改革开放以来,我们的物质生活水平不断提高。人们再也不愿向祖辈父辈们那样面黄肌瘦、枯瘦如柴了,再也不能吃不好、吃不饱了,应该好好享受享受了,都希望自己白白胖胖,有一个"富态相"。以为这样才能说明自己健康。其实,正是这种心态,给我们带来了灾难,使很多人由于不正确的饮食,不知不觉走向疾病。有人说,我们每天所吃的东西,有三分之一在维持你自己的生命,另外的三分之二是维持医生的生命。这句话透露出,我们吃的东西,大多数是对我们的健康不利的。因此,我们可以不关心吃的食物如何在身体内变成肌肉、骨骼、头发、血液等等,但是,我们必须关心我们应该吃什么。因为这些关系到我们的健康和幸福。 人体需要的七大营养素蛋白质、脂肪、碳水化合物、矿物质、维生素、纤维素和水,前三项称为营养性营养素,后四项称为功能性营养素。身体对它们的需求,是有要求的,有比例的。应多少,就多少。不能相差太多。不能长时间进食过多或过少。这对我们的身体都是不利的,就会造成疾病。中国生物治疗网https://www.doczj.com/doc/8814446680.html,杨教授特别指出,现在大多数人是营养性营养素进食过多,功能性营养素进食太少。由于这样,营养性营养素只能在体内堆积,不但不能被吸收利用,反而会形成毒素和垃圾,天长日久就降低了我们的免疫力,使得我们百病丛生。正所谓好东西放着也白搭,好心办坏事。所以我说到处都是满肚肥肠的饥饿人群。 免疫力与"敌人"之间的战斗是马拉松式的,因此,供给均衡完整、及时足量的战略物资,就显得尤为重要。因此,我们必须把"及时、正确、足量的补充营养"放在极其重要的位置上,时时刻刻提起重视。 二、精神因素 致癌的因素十分复杂,而精神因素在癌症的发生和发展上起着重要作用。现代医学发现,癌症喜欢那些受到挫折后,长期处于精神压抑、焦虑、沮丧、苦闷、恐惧、悲哀等情绪紧张的人。专家介绍,在很多肿瘤病人身上有被称做"癌症性格"的致病因素,主要表现为:1、经常地自怜,惯于自我克制、压抑情绪,性格内向。2、缺乏自信心。对任何事情都感觉没有希望,自觉事事无能为力。3、经不住打击。失去伴侣或其他亲人时无法摆脱痛苦的折磨。

相关主题
文本预览
相关文档 最新文档