当前位置:文档之家› 卫星通信试题

卫星通信试题

卫星通信试题
卫星通信试题

卫星通信天线简介

常用卫星通信天线简介 天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。 反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。下文对一些常用的天线 作简单介绍。 1.抛物面天线 抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。 图1 抛物面天线 抛物面天线的优点是结构简单,较双反射面天线便于装配。缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放重量带来的结构不稳定性必须被考虑。 2.卡塞格伦天线

卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。目前,大多数地球站采用的都是修正型卡塞格伦天线。 卡塞格伦天线的优点是天线的效率高,噪声温度低,馈源和低噪声放大器可以安装在天线后方的射频箱里,这样可以减小馈线损耗带来的不利影响。缺点是副反射面极其支干会造成一定的遮挡。 图2 卡塞格伦天线 3.格里高利天线 格里高利天线也是一种双反射面天线,也由主反射面、副反射面及馈源组成,如图3所示。与卡塞格伦天线不同的是,它的副反射面是一个椭球面。馈源置于椭球面的一个焦点F1上,椭球面的另一个焦点F2与主反射面的焦点重

车载卫星通信设备及操作简介

车载卫星通信设备及操作简介 3.1 卫星通信系统开通前应该注意的事项: 3.1.1 环境勘察 1)选择停放场所 ★选择较为平坦、坚实的空地作为停车场地。确保对卫星信号收发、微波信号收发不形成遮挡。 ★车辆上方应无遮挡物,以免阻碍天线桅杆正常升起。 ★应尽量避开高大的障碍物(陡坡、高大建筑、高大树木等),确保对卫星通信、微波通信、无线网桥通信的信号收发不形成遮挡。 ★如果采用市电则车辆停放地距最近的有效市电电源应在60M以内,且能打地桩以接地或能接入其他的接地系统。 ★车辆停放地还要考虑整车噪声对居民或环境的影响。 2)选择市电电源 ★车载系统原则上应尽量考虑采用目的现场的有效市电电源。 ★在车载系统到达现场前,应与提供电源的单位或供电部门做好协商。 3)确定传输方式 ★同相关单位协商拟采用的传输方式,传输方式应遵循方便接入的原则结合停放场所条件综合考虑。若距机房较近,可采用光纤直接连接的方式;否则可采用微波或者无线网桥传输方式;特殊情况可采用卫星传输方式。 ★采用微波或者无线网桥传输方式时,要预先选定好对端微波架设的位置,以最近的机房和视距传输来综合考虑。原则上在车载系统达到目的现场 前,应架设好对端微波天线,以尽量缩短系统开通的时间。 ★采用卫星传输方式时,应根据使用的卫星经度考虑对应方位无遮挡,且 避免使车头朝向卫星方位停放,以方便卫星天线接收。 ★车载卫星系统通过自动对星需要获取的信息:(1)GPS、(2)电子罗盘、(3)AGC(信标机电压)。

3.1.2 数据准备 确定BTS的相关数据 ★根据网络规划,确定车载BTS相关数据,如频点、邻区切换等,必要时,到目的现场测试移动网络的数据,了解频率干扰情况、话务量分配、切换等情况。同时与传输室确认应急车传输的接入基站,并在基站端对通传输电路,同BSC 核对每套应急传输电路所对应小区的关系、核对小区定义的设备数量、设备类型和软件版本等信息,确保BSC的数据定义与应急车安装的硬件完全对应; ★根据现场的网络状况,确定基站天线的覆盖范围和方向。 ★根据网络规划,确定车载BTS系统接入PLMN网的BTS的相关数据。 3.1.3 带卫星的小C车规范开通流程 1、停车、拉手刹 2、打地桩、接工作地、保护地 3、放支撑脚、启动联合供电 4、挂CDMA天线、升天线桅杆、接馈线 5、对星、核对工作频率、极化、标定功率、载波上星 6、开基站、数据下载 7、开通测试、网络优化 3.2 卫星系统概述 3.2.1卫星系统业务需求简介 卫星传输作为小型应急通信车三种传输方式(微波传输、光纤传输、卫星传输)之一的传输手段解决从车载BTS到各省BSC的Abis接口的传输,实现1x 语音数据及EVDO数据业务的传输。 3.2.2卫星系统组成 根据系统设备配置和改装要求,小型应急通信车包括移动通信系统(不同厂商BTS和BSC设备)、传输系统(SDH、PDH、50M无线以太网桥、车载卫星)及天馈线系统(卫星天线、微波天线基站天线、桅杆等),其中卫星子系统主要由以下几种设备组成: 车载卫星天线、GPS天线、天线控制系统、信标接收机、MODEM、LNB、固态高功放。

卫星通信基础知识

卫星通信基础知识 一、电磁波 振动的电场和磁场在空间的传播叫做电磁波。 由收音机收到的无线电广播信号,由电视机收到的高频 电视信号,医院里物理治疗用的红外线,消毒和杀菌用的紫外线,透视照相用的X射线,以及各种可见光,都属于电磁波。 二、电磁波的频率、波长 人们用频率、波长和波速来描述电磁波的性质。 频率是指在单位时间内电场强度矢量E(或磁场强度矢量H)进行完全振动的次数,通常用f表示。波长是指在波的传播方向上相邻两个振动完全相同点之间的距离,通常用λ表示。波速是指电磁波在单位时间内传播的距离,通常用v 表示。频率f,波长λ,和波速v之间满足如下关系: v=λf 如果一电磁波在一秒内振动一次,该电磁波的频率就是1Hz ,在国际单位制中,波速的单位是m/s(米/秒) ,波长的单位是m(米) ,频率的单位是Hz. 对于无线电信号,它属于电磁波,它的传播速度为光速,即每秒约前进30万公里。 例如:对于一个频率为98MHz的调频广播节目,其波长为300,000,000米除98,000,000Hz,等于3.06米。 不同的频率的(或不同波长)电磁波具有不同的性质用途。人们按照其频率或波长的不同把电磁波分为不同的种类,频率在300GHz(1GHz=109Hz)以下的波称为无线电波,主要用于广播,电视或其他通讯。频率在3×1011Hz-4×1014Hz 之间的波称为红外线,它的显著特点是给人以“热”的感觉,常用于医学上的物理治疗或红外线加热,探测等,频率在3.84×1014HZ-7.69×1014Hz之间的波为可见光,它能引起人们的视觉,频率在8×1014Hz-3×1017Hz之间的波称为紫外线,具有较强的杀菌能力,常用于杀菌,消毒,频率在3×1017 Hz-5×1019Hz之间的波称为X射线(或伦琴射线)它的穿透能力很强,常用于金属探测,人体透视等,

卫星通信基础知识

卫星通信基础知识

卫星通信基础知识 第一节电磁波常识 一、电磁波 振动的电场和磁场在空间的传播叫做电磁波。 由收音机收到的无线电广播信号,由电视机收到的高频电视信号,医院里物理治疗用的红外线,消毒和杀菌用的紫外线,透视照相用的X射线,以及各种可见光,都属于电磁波。 二、电磁波的频率、波长 人们用频率、波长和波速来描述电磁波的性质。 频率是指在单位时间内电场强度矢量E(或磁场强度矢量H)进行完全振动的次数,通常用f表示。波长是指在波的传播方向上相邻两个振动完全相同点之间的距离,通常用λ表示。波速是指电磁波在单位时间内传播的距离,通常用v表示。频率f,波长λ,和波速v之间满足如下关系: v=λf 如果一电磁波在一秒内振动一次,该电磁波的频率就是 1Hz ,在国际单位制中,波速的单位是m/s(米/秒) ,波长的单位是m(米) ,频率的单位是Hz. 对于无线电信号,它属于电磁波,它的传播速度为光速,即每秒约前进30万公里。 例如:对于一个频率为98MHz的调频广播节目,其波长为300,000,000米除98,000,000Hz,等于3.06米。 不同的频率的(或不同波长)电磁波具有不同的性质用途。人们按照其频率或波长的不同把电磁波分为不同的种类,频率在

四、极化方式 当电磁波在空间传播时,其电场强度矢量E的方向具有确定的规律,这种现象称为电磁波的极化。在均匀无限空间中传播的电磁波是一种横波,其电场矢量E、磁场强度矢量H和波的传播方向三者之间,两两互相垂直,常用电场强度矢量E的变化来代表电磁波的变化。 极化方式即卫星电视信号的电磁场的振动方向的变化方式。按照极化方式的不同,电磁波可分为线极化波和圆极化波等各种不同的类型。 所谓线极化波就是其电场强度矢量E 沿一定角度方向的波,当E与地面垂直时,称为垂直极化波;当E与地面平行时,称为水平极化波。考虑到发射天线和接收天线的架设方便,减少重影,以及避开其他电波的干扰等因素,一般垂直极化波大多用于中波广播、移动通讯、卫星电视广播等,水平极化波大多用于短波广播、地面电视广播、调频广播和卫星电视广播等。 五、Ku波段卫星通信波段及其特点 卫星通信使用微波频段300MHz—30GHz,采用高频信号的目的是保证地面上发射的电磁波能够穿透电离层到达卫星。在卫星通信中,不同的卫星,或者同一颗卫星上的转发器所使用的频率范围不同,不同频率范围有不同的代号。如3.95-5.85GHz频率范围的代号是C,该频率范围简称C波段;12.24-18GHz频率范围的代号是Ku, 该频率范围简称Ku波段。 项目卫星通信所用的电磁波在12.24-18GHz频率范围,属于微波范围的Ku波段,极化方式为垂直线极化。 六、同步通信卫星简介 由于电视信号属于微波信号,早期的电视广播信号主要在地面传播,其传播方式为直线传播。由于地球本身是一个球体,传播距离受地球弯曲弧度的影响,一般传播距离为40-60公里。 要使电视信号传播的更远,就需要加高天线或增加中继站。天线高度的增加是有限的,中继站的增加会使信号衰减,成本加大。

第一章无线电管理基础介绍

第一章无线电管理基础知识介绍 1.无线电管理的核心目标 无线电管理的核心目标是在全国或全世界的无线电通信和其他无线电业务领域内以最合理、最公平、最有效和最经济的方式地使用、利用或保护有限的无线电频谱/卫星轨道资源,使得各种无线电通信网和各无线电台站能够经济、有效地在各种无线电环境下不受干扰地正常工作,为国家的经济建设、国防建设服务,保障人民的生命和财产安全,提高人们的物质和精神的生活水平,推动国家社会与经济的发展和科学技术的进步。 根据有关领导的讲话,我国无线电管理的指导思想是“为中央首脑机关服务,为国防建设和经济建设服务,中心是为经济建设服务”;指导方针是:“加强管理,保护资源,保障安全,健康发展”;指导原则是:“统一领导,统一规划,分工管理,分级负责”。 2.无线电管理的主要内容 要实现无线电管理的目标,无线电管理工作者必须采用行政、法规、经济和技术手段,主要做好以下四项工作:对无线电频谱/卫星轨道资源的管理,对无线电台站的管理,对无线电监测和监督检查,对无线电发射设备的管理。 3. 无线电频谱/卫星轨道资源的管理 3.1 无线电频谱资源 几千年来,从烽火报信、快马传书、驿站梨花,到发明电报、电话、互联网,人们追求完全时空通信自由的努力从未停止过。人们梦想有朝一日拥有在任何时间、任何地点与任何人的无束缚通信自由。要获得这种自由,利用无线电波进行通信必不可少。无线电通信又属于电信中的一种。根据国际电信联盟《无线电规则》,电信( telecommunication)定义为利用有线电、无线电、光或其他电磁系统对于符号、信号、文字、图像、声音或任何性质的信息的传输、发射或接收。无线电通信则为使用无线电波的电信。无线电波定义为频率在3000GHz以下,不用人工波导而在空间传播的电磁波。作为传输载体的无线电波都具有一定的频率和波长,即位于无线电频谱中的一定位置,并占据一定的宽度。无线电频谱(radio spectrum)一般指9KHz-3000GHz频率范围内发射无线电波的无线电频率的总称。无线电频谱可分为下面表1中的14个频带,无线电频率以Hz(赫兹)为单位,其表达方式为: ―― 3 000kHz以下(包括3 000kHz),以kHz(千赫兹)表示; ―― 3MHz以上至3 000MHz(包括3 000MHz),以MHz(兆赫兹)表示; ―― 3GHz以上至3 000GHz(包括3 000GHz),以GHz(吉赫兹)表示。

卫星通信基础知识37499

卫星通信基础知识 第一节电磁波常识 一、电磁波 振动的电场和磁场在空间的传播叫做电磁波。 由收音机收到的无线电广播信号,由电视机收到的高频电视信号,医院里物理治疗用的红外线,消毒和杀菌用的紫外线,透视照相用的X射线,以及各种可见光,都属于电磁波。 二、电磁波的频率、波长 人们用频率、波长和波速来描述电磁波的性质。 频率是指在单位时间内电场强度矢量E(或磁场强度矢量H)进行完全振动的次数,通常用f表示。波长是指在波的传播方向上相邻两个振动完全相同点之间的距离,通常用λ表示。波速是指电磁波在单位时间内传播的距离,通常用v表示。频率f,波长λ,和波速v之间满足如下关系: v=λf 如果一电磁波在一秒内振动一次,该电磁波的频率就是 1Hz ,在国际单位制中,波速的单位是m/s(米/秒) ,波长的单位是m(米) ,频率的单位是Hz. 对于无线电信号,它属于电磁波,它的传播速度为光速,即每秒约前进30万公里。 例如:对于一个频率为98MHz的调频广播节目,其波长为300,000,000米除98,000,000Hz,等于3.06米。 不同的频率的(或不同波长)电磁波具有不同的性质用途。人们按照其频率或波长的不同把电磁波分为不同的种类,频率在300GHz(1GHz=109Hz)以下的波称为无线电波,主要用于广播,电视

或其他通讯。频率在3×1011Hz-4×1014Hz之间的波称为红外线,它的显著特点是给人以“热”的感觉,常用于医学上的物理治疗或红外线加热,探测等,频率在3.84×1014HZ-7.69×1014Hz之间的波为可见光,它能引起人们的视觉,频率在8×1014Hz-3×1017Hz之间的波称为紫外线,具有较强的杀菌能力,常用于杀菌,消毒,频率在3×1017 Hz-5×1019Hz之间的波称为X射线(或伦琴射线)它的穿透能力很强,常用于金属探测,人体透视等,在原子核物理中还有频率为1018Hz-1022Hz以上的射线,其穿透能力就更强了。 三、波段与频道 由于利用频率可以计算出波长,一个频率范围将对应一个波长范围,所以频段与波段具有同样的意思。两个叫法是对应的,也是通用的,在电视广播领域中,更多使用波段。 微波是指波长在微米级的无线电信号。 按照波长和用途不同,人们把无线电波又分成许多波段,如表1.1所示。 表1.1 无线电波波段的划分 频道是指传送一个信号源节目所使用的频率(或波长)范围。通常一个频段(或波段)能够再分成多个频道。 四、极化方式

卫星通信的基础知识

卫星通信的基础知识

卫星通信概述 1.卫星通信的基本概念与特点 定义:卫星通信是指利用人造地球卫星作为中继站,转发或反射无线电波,在两个或多个地球站之间进行的通信。卫星通信又是宇宙无线电通信形式之一,而宇宙通信是指以宇宙飞行体为对象的无线电通信,它有三种形式: (1)宇宙站与地球站之间的通信;(直接通信) (2)宇宙站之间的通信;(直接通信) (3)通过宇宙站转发或反射而进行的地球站间的通信。(间接通信) 第三种通信方式通常称为卫星通信,当卫星为静止卫星时称为静止卫星通信。 大多数通信卫星是地球同步卫星(静止卫星:轨道在一定高度时卫星与地球相对静止)。静止卫星是指卫星的运行轨道在赤道平面内。轨道离地面高度约为35800km (为简单起见,经常称36000km)。 静止卫星通信的特点 (1)静止卫星通信的优点 a 通信距离远,且费用与通信距离无关(只要在卫星波束范围内两站之间的传 输与距离无关) b 覆盖面积大(三颗卫星即可覆盖所有地方),可进行多址通信(一发多收) c 通信频带宽(带宽为500M),传输容量大 d 信号传输质量高,通信线路稳定可靠 e 建立通信电路灵活、机动性好(只要卫星覆盖到,均可建立地面站进行通信) f 可自发自收进行监测 (2)静止卫星通信的缺点 a 静止卫星的发射与控制技术比较复杂(所以国内做卫星发射的很少)。 b 地球的两极地区为通信盲区(轨道与赤道平行,切线方向下来无法到达两 极),而且地球的高纬度地区通信效果不好。 c 存在星蚀(卫星在地球和太阳之间)和日凌(地球在太阳和卫星之间)中断 现象。——(现今可通过处理缩短这种现象)

卫星通信链路计算过程

卫星通信链路计算过程 星通信载波的链路计算方法为,先分别计算上行和下行链路的载波功率与等效噪声温度比CrT或者载波与噪声功率比C/N、以及载波与干扰功率比CzI ,再求出考虑干扰因素的系统载噪比C/(N+I) 和载波的系统余量。 上下行C/T 上行和下行C/T 的计算公式分别为 CZT u= EIRP E - LOSS U + G/T Sat C/T D = EIRP S - Loss D + GZT E/S 式中的EIRF E和EIRF S分别为载波的上行和下行EIRP, Loss u和L OSS D分别为总的上行和下行传输衰耗,G/T sat和G/T E/S分别为卫星转发器和地球站的接收系统品质因数。上式中的数据均为对数形式。 C/N 与C/T 的关系 C/N 与C/T 的关系式为 C/N = C/T - k - BW N = CZT + 228.6 - BW N 式中的k 为波兹曼常数, BW N 为载波噪声带宽。式中的数据均为对数形式。 C/I 与C/IM 卫星通信载波需要考虑的干扰因素主要有,上行和下行反极化干扰C/I XP_U^n C/I XP_D、以及上行和下行邻星干扰C/I ASJU和C/I AS_Do此外,还需考虑转发器在多载波工作条件下的交调干扰C/IM 。 C/N 与C/I 的合成 由多项C/N 和C/I 求取总的C/N、C/I 、以及C/(N+I) 的算式为 (C/N Total ) -1 = (C/N U ) -1 + (C/N D ) T (C/I Total ) -1 = (C/I XPJU) -1 + (C/I ASJU) -1 + (C∕IM) -1 + (C/I XPJD)-I + (C/I ASJD)-I -1 -1 - 1 (C/(N+I)) -1 = (C/N Total ) -1 + (C/I Total ) 上述三个算式中的数据均为真数形式。 由多项C/N 和C/I 求取总的C/(N+I) 的步骤也可为

《卫星通信技术》完全

《卫星通信技术》 卫星通信:是指利用人造地球卫星作为中继站转发无线电波,在两个或多个地球站之间进行的通信 通信卫星:由一颗或多颗通信卫星组成,在空中对发来的信号起中继放大和转发作用。每颗通信卫星都由收发天线、通信转发器、跟踪遥测指令、控制和电源等分系统。 卫星轨道按卫星离地面的高度分为: ●HEO P14.高椭圆轨道,最近点为1000-21000km,最远点为39500-50600km ●MEO P14.中轨道,h≈10000km ●LEO P14.低轨道,700-1500km ●GEO P14.地球同步轨道,h≈35786km ●EIRP :(P115)把卫星和地球站发射天线在波束中心轴向上辐射的功率称为发送设备 的有效全向辐射功率(EIRP),即天线发射功率PT与天线增益GT的乘积,表征地球站或转发器的发射能力的重要指标 ●S-ALOHA:(P108)是以卫星转发器的输入端为参考点的埋在时间上等间隔的划分为 若干时隙,而每个站多发射的分组就必须进入指定的时隙,每个分组的持续时间将占满一个时隙。 ●P-ALOHA:(P107)纯ALOHA方式,在该系统中,各个地球站共用一个卫星转发器 的频段,各站在时间上随机地发射其数据分组。在发生碰撞,就会使数据分组丢失,各站将随机延迟一定时间后,再重发这个数据分组。 ●VSAT:即甚小口径天线终端,指一类具有甚小口径天线的小型地球站与一个大站协调 工作构成的卫星通信网 ●G/T :(P118)地面站性能指数(G:接收天线增益、T:等效噪声温度) ●GNSS :P213,即全球导航卫星系统,它是所有在轨工作的卫星导航定位系统的总称。 ●GMDSS:全球海上遇险与安全系统。该系统主要由卫星通信系统— INMARSAT (海事 卫星通信系统) 和COS-PAS/SARSAT(极轨道卫星搜救系统)、地面无线电通信系统(即海岸电台)以及海上安全信息播发系统三大部分构成 ●INMARSAT-A:(INMARSAT是国际移动通信卫星系统)P194,它属于模拟系统,其 终端通过直径大约为1m的抛物面天线提供话音,数据,电传,传真以及高速数据。提供一个话音和电传信道,可连接电传机或小型交换机等外设。

卫星通信知识点

卫星通信 卫星通信:是指利用人造地球卫星作为终极辗转发或发射无线电信号,在两个或多个地球站之间进行的通信。(特点:它覆盖面积大、不受地理条件的限制、通信频带宽、容量大、机动灵活,因而在国际和国内通信领域中,成为不可缺少的通信手段) 卫星通信系统:由空间分系统、通信地球站、跟踪遥测及指令分系统、监控管理分系统四大功能部分组成。(①跟踪遥测及指令系统对卫星进行跟踪测量控制其准确进入静止轨道上的指定位置,并对在轨卫星的轨道位置及姿态进行监视和校正。②监控管理分系统对在轨卫星的通信性能及参数进行业务开通前的监测和业务开通后的例行监测和控制,以便保证通信卫星的正常运行和工作。③空间分系统指通信卫星) 卫星转发器:装在卫星上的收、发系统称为转发器,作用是接受由各地面站发来的信号,经变换频率和放大后,再发给各收端站。它主要是由天线、接收设备、发射设备和双工器组成。(主要的功能收到地面发来的信号(上行信号)后,进行低噪声发大,然后混频,混频后的信号再进行功率放大,然后发射回地面(下行信号)。上行信号和下行信号的频率是不同的,这是为了避免在卫星天线中产生同频率信号干扰) 卫星通信频率选择中考虑的损耗(电波传播的特点) 工作频段的选择主要考虑电离层的反射、吸收;对流层的吸收、散射损耗等因数与频率的关系。常用波段:L波段(1.6/1.5GHz)C波段(6.0/4.0GHz )Ku波段(14.0/12.0GHz 14.0/11.0GHz)Ka波段30/20GHz)一般工作频率选择在1-10GHz,最理想为4-6GHz。 考虑的传播损耗:1.自由空间的传播损耗。2.大气损耗(对流层的影响和电离层的影响) 3.移动卫星通信电波的衰落现象(多径传播和多径衰落) 4.多普勒频移(由于通信双方相对位置在移动时,由多普勒效应引起的附加频移) 同步卫星:如果卫星的轨道是圆形且在赤道轨道上,卫星离地面约35860km时,其飞行的方向与地球自转的方向相同,则从地面上任何一点看去,卫星都是相对静止的,这种对地静止的同步卫星简称为静止卫星。(利用静止卫星作为中继站的通信系统,称为静止卫星通信系统。) 信道:目前常用的多址方式有FDMA/TDMA/CDMA/SDMA在信道分配技术中,信道的含义,在FDMA中是指各地球站占用的频段;在TDMA中指各地球站占用的时隙;在CDMA中是指各地球站使用的码型。 信道利用率问题 编码方式选择的原则:①保证话音质量-数码率越高越好②有较高的信道利用率-数码率越低越好 两类编码技术:①波形编码(将时域信号直接编为数字代码如PCM、ADPCM等。)②参量编码(抽取频域特征参量或其它参量进行数字编码的方式,如线性预测声编码器 LPC 等。一般常用 ADPCM 方式) 卫星通信中的差错控制与扰码 差错控制 (1)前向纠错(FEC)码是一种无反馈的差错控制方式,依靠在编码过程中选用适当的纠错码,在接收端进行识别纠错。特点:不需要重发,适合于传输时延大的白噪声信道。 前向纠错码(FEC)分为分组码和卷积码两大类。①分组码主要采用:循环冗长校验(CRC)码和循环(BCH)码②卷积码主要采用:代数译码和概率译码两种方法。 (2)重传技术 是一种反馈差错控制方式,采用双向信道,当接收端收到信号被判有误时,反NAK信号要求重发,直到信号被确认,反馈ACK(acknowledge)信号时,再发送下一组信号。 特点:由于卫星信道时延太长(单边时延为0.27秒),重传方式适合于非实时的数据信息传输。重传技术(ARQ)分三种类型(停止与等待ARQ/连续ARQ/有选择的ARQ) 信道的分配方式:①预分配方式(PA)②按需分配方式(DAMA)③随机分配方式(RA) 多径传播和多径衰落:①高频电波在传播过程中,往往经过了反射、散射、绕射等途径,最后以合成波的形式到达接收天线,这种传输方式称为多径传播。 ②在多径传播的过程中,由于传播途径变化引起的衰落现象称为多径衰落。 信道的预分配方式(PA):每个地球站预先分配一个专用的上行和下行载波频率,其他地球站要接收某一地球站信号时,必须具备接收该站频率的条件。 优点:技术成熟、工作可靠等,适合用于站少而容量大的场合。 缺点:转发器同时放大多个载波,存在互调干扰。①采用最多的方式:模拟制—频分多路复用—调频—频分多址—预分配(FDM/FM/FDMA/PA)②当前发展最快的一种方式为:数字制—时分多路复用—数字调相—频分多址—预分配(TDM/PSK/FDMA/PA) 卫星通信体制:是指卫星通信系统的工作方式(即采用的信号传输方式,信号处理方式和信号交换方式等)指以下两方面内容:①卫星通信采用的信号传输方式-多路复用方式②信号处理和交换方式(调制方式/编码方式/多址连接方式) 卫星通信采用的多路复用和调制方式 广泛采用的多路复用方式为频分多路(FDM)和时分多路(TDM)两种。 调制方式:由于不同的数字调制方式具有不同的功率利用率和频带利用率,综合两方面考虑,现在主要采用二相移相键控和四相移相键控调制方式。随着转发器线性技术的发展,也有采用正交调幅QAM方式,以提高频率利用率。 互调干扰:由于放大器存在非线性,在放大过程中不可避免地要产生谐波,而FDMA方式卫星转发器要同时

卫星通信地基础知识

卫星通信概述 1.卫星通信的基本概念与特点 定义:卫星通信是指利用人造地球卫星作为中继站,转发或反射无线电波,在两个或多个地球站之间进行的通信。卫星通信又是宇宙无线电通信形式之一,而宇宙 (1)宇宙站与地球站之间的通信;(直接通信) (2(直接通信) (3)通过宇宙站转发或反射而进行的地球站间的通信。(间接通信) 第三种通信方式通常称为卫星通信,当卫星为静止卫星时称为静止卫星通信。 大多数通信卫星是地球同步卫星(静止卫星:轨道在一定高度时卫星与地球相对静止)。静止卫星是指卫星的运行轨道在赤道平面内。轨道离地面高度约为 35800km(为简单起见,经常称36000km)。 静止卫星通信的特点 (1 a 通信距离远,且费用与通信距离无关(只要在卫星波束范围内两站之间的传 输与距离无关) b 覆盖面积大(三颗卫星即可覆盖所有地方),可进行多址通信(一发多收) c 通信频带宽(带宽为500M d 信号传输质量高,通信线路稳定可靠 e 建立通信电路灵活、机动性好(只要卫星覆盖到,均可建立地面站进行通信) f 可自发自收进行监测 (2 a 静止卫星的发射与控制技术比较复杂(所以国内做卫星发射的很少)。 b 地球的两极地区为通信盲区(轨道与赤道平行,切线方向下来无法到达两 c 存在星蚀(卫星在地球和太阳之间)和日凌(地球在太阳和卫星之间)中断 ——(现今可通过处理缩短这种现象)

d 有较大的信号传输时延(发射和接受时间)和回波干扰。 2. 卫星通信系统的组成 (1 通常卫星通信系统是由地球站、通信卫星(前两个为主要组成,负责卫星收发)、跟踪遥测及指令系统和监控管理系统(后两个提供辅助功能,监测卫星、姿态调整等)4大部分组成的,如图所示。 (2 两个地球站通过通信卫星进行通信的卫星通信线路的组成如图所示,是由发端地球站,上、下行无线传输路径和收端地球站组成的。

第一章 通信电缆线路概述

第1章 通信电缆线路概述 本章内容 1.现代通信网及其传输技术 2.通信线路简介 3.全塑电缆线路的传输衰减及传输方式 本章重点 1.现代通信网的构成、我国电话网的结构和本地电话网的概念及其类型 2.现代通信传输技术和全塑电缆线路的传输衰减及传输方式 本章难点 全塑电缆线路的传输衰减及传输方式 本章学时数 4学时(理论教学) 学习本章目的和要求 1.了解现代通信网的构成、树立全程全网概念 2.掌握我国电话网的结构、本地电话网的概念及类型、现代通信传输技术及全塑电缆线路的传输衰减和传输方式 1.1 现代通信网及其传输技术 本节简要介绍通信网、电话网和现代通信传输技术(电缆、光缆、微波和卫星通信)。树立“全程全网”概念,为学习后续章节奠定基础。 1.1.1现代通信网简介 1.通信网的基本概念 通信网是由一定数量的节点(Node)和连接节点的传输链路(Link)组成,以实现两个或多个规定点之间信息传输的通信体系。一个简单的通信网络如图1—1所示。 2.通信网的构成和分类  (1)通信网的构成

一个完整的通信网包括硬件和软件。通信网的硬件一般由终端设备、传输系统和转接交换系统等三部分电信设备构成,是构成通信网的物理实体;为了使全网协调合理地工作,还要有各种规定,如信令方案、各种协议、网路结构、路由方案、编号方案、资费制度与质量标准等,这些均属于软件。 (2)通信网的分类 ①按电信业务的种类分为:电话网、电报网、用户电报网、数据通信网、传真通信网、图像通信网、有线电视网等。 ②按服务区域范围分为:本地电信网、农村电信网、长途电信网、移动通信网、国际电信网等。 ③按传输媒介种类分为:架空明线网、电缆通信网、光缆通信网、卫星通信网、用户光纤网、低轨道卫星移动通信网等。 ④按交换方式分为:电路交换网、报文交换网、分组交换网、宽带交换网等。 ⑤按结构形式分为:网状网、星形网、环形网、栅格网、总线网等。 ⑥按信息信号形式分为:模拟通信网、数字通信网、数字/模拟混合网等。 ⑦按信息传递方式分为:同步转移模式(STM)的综合业务数字网(ISDN)和异步转移模式(ATM)的宽带综合业务数字网(B-ISDN)等。 图1—1 简单通信网图1—2 通信网的基本结构形式 3.通信网的基本结构 通信网的基本结构主要有网型、星形、复合型、环型和总线型等,如图1—2所示。 (1)网型网 有代表性的网型网是完全互连网结构。具有N个节点的互连结构需要N(N-1)/2条传输链路。N值较大时传输链路将很大,链路利用率将很低。这种网络结构经济性较差,但接续质量和网络稳定性较好。 (2)星型网 具有N个节点的星型网共需(N-1)条传输链路。显然,N值较大时它会较网型网节省大量的链路。但这种网络因需要设置转接中心而增加费用。 (3)复合型网 由网型网和星型网复合而成。它以星型网为基础,在通信量较大的地区构成网型网。这种网络结构兼取了上述两种网络的优点。 (4)环型网和总线型网 这两种网络在计算机通信中应用较多,在这种网中一般传输速率较高。它要求各节点和总线终端节点有较强的信息识别和处理能力。 4.通信网的质量要求

卫星通信相关系统和业务介绍

中国电信卫星通信相关系统和业务介绍 中国电信集团公司 2009-8-12

目录 第一章现有卫星通信业务及相关网络资源 (3) 1.1卫星通信业务介绍 (3) 1.1.1C网基站卫星中继业务 (3) 1.1.2应急通信业务 (4) 1.1.3村通及信息下乡业务 (4) 1.1.4个人卫星移动通信业务 (5) 1.1.5卫星宽带接入业务 (7) 1.1.6国际专线业务 (7) 1.1.7卫星数据广播业务 (9) 1.1.8卫星通信系统系统集成业务 (9) 1.1.9政府应急信息服务业务 (9) 1.2卫星通信资源介绍 (11) 1.2.1LINKSTAR系统介绍 (11) 1.2.2IPSTAR系统介绍 (16) 1.2.3数据广播系统介绍 (25) 1.2.4卫星移动通信系统介绍 (26)

第一章现有卫星通信业务及相关网络资源 目前中国电信卫星通信网络和业务分为三类,即卫星固定通信和广播、卫星移动通信和卫星移动广播。 卫星通信应用主要包括:C网基站卫星中继、应急通信、村通和信息下乡、个人卫星移动通信、卫星宽带接入、国际专线、卫星数据广播、政府应急信息服务等。 中国电信卫星通信资源包括电信集团和卫星公司的相关资源。电信集团的卫星通信资源主要分布在各省,包括应急、村通、国际国内卫星电路等;卫星公司拥有的卫星通信资源包括:linkstar系统、ipstar系统、卫星数据广播系统、卫星移动通信系统。 1.1卫星通信业务介绍 1.1.1C网基站卫星中继业务 C网基站卫星中继目前主要是指通过卫星链路连接C网基站(BTS)与基站控制器(BSC)。 CDMA系统Abis接口支持多种传输方式,包括E1/T1电缆传输、常规光纤传输、微波传输、BWA传输和卫星传输等。对于一些光纤连接不到、地面电路铺设困难、微波传输施工困难的站点,Abis接口卫星传输是最有效的解决方案。 C网基站卫星中继适合的应用场景包括: 1) 地域开阔的高原、草原、戈壁地区、沙漠中的油田基地和偏远地区的矿区,对于 这类站点,由于光传输无法得到及时有效、成本低廉地覆盖,且微波传输系统存 在干扰和视距传输以及费用昂贵,卫星中继传输可以实现快速、低成本覆盖; 2) 地形复杂的山区,以及正在建设中的铁路沿线,这类站点由于地面传输 以及微波传输施工困难,卫星中继传输可以有效地摆脱空间和时间上的 约束; 3)沿海区域、岛屿以及海洋钻井平台,这类站点的覆盖由于传输制约不能 有效解决,目前采用的方式是靠海边的超远覆盖基站进行覆盖,通常覆 盖距离为80Km以内,而钻井平台及岛屿位于70海里以外的海域,只 能通过卫星中继传输来解决;

卫星通信链路计算过程

卫星通信链路计算过程 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

卫星通信链路计算过程 星通信载波的链路计算方法为,先分别计算上行和下行链路的载波功率与等效噪声温度比C/T或者载波与噪声功率比C/N、以及载波与干扰功率比C/I,再求出考虑干扰因素的系统载噪比C/(N+I)和载波的系统余量。 上下行C/T 上行和下行C/T的计算公式分别为 C/T U = EIRP E – Loss U + G/T Sat C/T D = EIRP S – Loss D + G/T E/S 式中的EIRP E 和EIRP S 分别为载波的上行和下行EIRP,Loss U 和Loss D 分别为总的上行和下行 传输衰耗,G/T Sat 和G/T E/S 分别为卫星转发器和地球站的接收系统品质因数。上式中的数据 均为对数形式。 C/N与C/T 的关系 C/N与C/T的关系式为 C/N = C/T – k – BW N = C/T + – BW N 式中的k为波兹曼常数,BW N 为载波噪声带宽。式中的数据均为对数形式。C/I与C/IM 卫星通信载波需要考虑的干扰因素主要有,上行和下行反极化干扰C/I XP_U 和C/I XP_D 、以及 上行和下行邻星干扰C/I AS_U 和C/I AS_D 。此外,还需考虑转发器在多载波工作条件下的交调干 扰 C/IM 。 C/N与C/I的合成 由多项 C/N和C/I求取总的C/N、C/I、以及C/(N+I)的算式为 (C/N Total )-1 = (C/N U )-1 + (C/N D )–1 (C/I Total )-1 = (C/I XP_U )-1 + (C/I AS_U )–1 + (C/IM)-1 + (C/I XP_D )-1 + (C/I AS_D )-1 (C/(N+I))-1 = (C/N Total )-1 + (C/I Total )–1 上述三个算式中的数据均为真数形式。 由多项C/N和C/I求取总的C/(N+I)的步骤也可为

卫星通信原理

The Principal of Satellite Communication 卫星通信原理 张珏10211155 电子信息工程学院 北京交通大学 摘要(Abstract) 交大没有笨学生只有懒学生 卫星通信简单地说就是地球上的无线电通信站间利用卫星作为中继而进行的通信。本论文将介绍直播卫星、卫星通信的原理、卫星通信系统等。近年来卫星通信新技术的发展层出不穷。卫星通信也是未来全球信息高速公路的重要组成部分,成为中国当代远距离通信的支柱。 关键字卫星通信系统多址联接直播卫星 一、前言(Introduction) 卫星通信简单地说就是地球上(包括地面和低层大气中)的无线电通信站间利用卫星作为中继而进行的通信。卫星通信系统由卫星和地球站两部分组成。卫星通信的特点是:通信范围大;只要在卫星发射的电波所覆盖的范围内,从任何两点之间都可进行通信;不易受陆地灾害的影响(可靠性高);只要设置地球站电路即可开通(开通电路迅速);同时可在多处接收,能经济地实现广播、多址通信(多址特点);电路设置非常灵活,可随时分散过于集中的话务量;同一信道可用于不同方向或不同区间(多址联接)。 本文从以下结构来介绍卫星通信:第二部分讲述了现代卫星通信技术的背景以为卫星通信的优缺点;第三部分介绍了卫星通信的基本原理;第四部分介绍了卫星通信的基本概念;第五部分主要介绍了卫星通信系统的构成;第六部分介绍了卫星通信的特点和它所需要的关键技术;第七部分则介绍了有关直播卫星的相关知识;第八部分着重讲解了多址联接方式的内容;第九和第十部分总结了我国卫星通信的发展以及思考。 二、背景(Background) 近年来卫星通信新技术的发展层出不穷。例如甚小口径天线地球站(VSAT)系统,中低轨道的移动卫星通信系统等都受到了人们广泛的关注和应用。卫星通信也是未来全球信息高速公路的重要组成部分。它以其覆盖广、通信容量大。通信距离远、不受地理环境限制、质量优、经济效益高等优点,1972年在中国首次应用,并迅速发展,与光纤通信、数字微波

卫星通信链路计算过程

卫星通信链路计算过程 星通信载波得链路计算方法为,先分别计算上行与下行链路得载波功率与等效噪声温度比C/T或者载波与噪声功率比C/N、以及载波与干扰功率比C/I,再求出考虑干扰因素得系统载噪比C/(N+I)与载波得系统余量。 上下行C/T 上行与下行C/T得计算公式分别为 C/T U= EIRP E –Loss U + G/T Sat C/T D= EIRP S – Loss D + G/T E/S 式中得EIRP E 与EIRP S 分别为载波得上行与下行EIRP,Loss U 与Loss D 分别为总 得上行与下行传输衰耗,G/T Sat 与G/T E/S 分别为卫星转发器与地球站得接收系统 品质因数。上式中得数据均为对数形式. C/N与C/T 得关系 C/N与C/T得关系式为 C/N= C/T –k– BW N = C/T +228、6 –BW N 式中得k为波兹曼常数,BW N 为载波噪声带宽.式中得数据均为对数形式. C/I与C/IM 卫星通信载波需要考虑得干扰因素主要有,上行与下行反极化干扰C/I XP_U 与C/ I XP_D、以及上行与下行邻星干扰C/I AS_U 与C/I AS_D .此外,还需考虑转发器在多 载波工作条件下得交调干扰 C/IM。 C/N与C/I得合成 由多项C/N与C/I求取总得C/N、C/I、以及C/(N+I)得算式为 (C/N Total )—1= (C/N U )—1 + (C/N D )–1 (C/I Total )-1 = (C/I XP_U )—1 + (C/I AS_U )–1 + (C/IM)-1+ (C/I XP_D ) -1 + (C/I AS_D )-1 (C/(N+I))-1 = (C/N Total )—1+ (C/I Total )–1 上述三个算式中得数据均为真数形式。

卫星通信链路计算过程图文稿

卫星通信链路计算过程集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

卫星通信链路计算过程 星通信载波的链路计算方法为,先分别计算上行和下行链路的载波功率与等效噪声温度比C/T或者载波与噪声功率比C/N、以及载波与干扰功率比C/I,再求出考虑干扰因素的系统载噪比C/(N+I)和载波的系统余量。 上下行C/T 上行和下行C/T的计算公式分别为 C/T U = EIRP E – Loss U + G/T Sat C/T D = EIRP S – Loss D + G/T E/S 式中的EIRP E 和EIRP S 分别为载波的上行和下行EIRP,Loss U 和Loss D 分别 为总的上行和下行传输衰耗,G/T Sat 和G/T E/S 分别为卫星转发器和地球站 的接收系统品质因数。上式中的数据均为对数形式。C/N与C/T 的关系 C/N与C/T的关系式为 C/N = C/T – k – BW N = C/T + 228.6 – BW N 式中的k为波兹曼常数,BW N 为载波噪声带宽。式中的数据均为对数形式。

C/I 与C/IM 卫星通信载波需要考虑的干扰因素主要有,上行和下行反极化干扰C/I XP_U 和C/I XP_D 、以及上行和下行邻星干扰C/I AS_U 和C/I AS_D 。此外,还需考虑转发器在多载波工作条件下的交调干扰 C/IM 。 C/N 与C/I 的合成 由多项 C/N 和C/I 求取总的C/N 、C/I 、以及C/(N+I)的算式为 (C/N Total )-1 = (C/N U )-1 + (C/N D )–1 (C/I Total )-1 = (C/I XP_U )-1 + (C/I AS_U )–1 + (C/IM)-1 + (C/I XP_D )-1 + (C/I AS_D )-1 (C/(N+I))-1 = (C/N Total )-1 + (C/I Total )–1 上述三个算式中的数据均为真数形式。 由多项C/N 和C/I 求取总的C/(N+I)的步骤也可为 (C/(N+I)U )-1 = (C/N U )-1 + (C/I XP_U )–1 + (C/I AS_U )–1 (C/(N+I)D )-1 = (C/N D )-1 + (C/I XP_D )-1 + (C/I AS_D )-1 + (C/IM)-1 (C/(N+I))-1 = (C/(N+I)U )-1 + (C/(N+I)D )–1 上述两种不同计算步骤所得到的结果是相同的。

相关主题
文本预览
相关文档 最新文档