当前位置:文档之家› 浅谈物理学思想发展与文化关系

浅谈物理学思想发展与文化关系

浅谈物理学思想发展与文化关系
浅谈物理学思想发展与文化关系

浅谈物理学思想发展与文化关系

回顾过去二千多年人类社会的发展历史,为什么欧洲社会可以成为物理学思想萌芽的温床,而中国社会却只有强调应用技术的发展,个中原因必然有多种因素。在这里,我们试图从文化的角度和用科学的观点来了解这个社会的现象,从而表达对中国物理学未来发展的期待。一、中国与欧洲文化的对比1.中国文化是建基于黄河河谷的大农业社会,以“人本”的家族文化为主,“物本”的宗教文化为次。聚河谷而居,居有定所,多见

人邻,少见树木。人与人的关系比人与自然界的关系更为密切和重要,社会的主要问题和兴趣是在于人而不在于物。生活复杂的大农业社会,必须分工合作,自然要建立一个有组织和有权威的中央政府。家族文化是一个整体文化,个体有义务要支持整体的共同性,而整体亦有义务要照顾个体的特殊性。人是来自现实的祖先,必须对祖先负责。中国文化是强调整体、务实、内向、兼容、义务、约束、合作和相对性,重视对个人天赋欲念的自我克制和自我修养的人为能力,称之为“德”。人的问题只可以靠人自己去了解和处理,发展

了人本的“人理(伦理)学”。无论从《易经》、《道家》、《儒家》到《诸子百家》等,都

是以人本为基础来发展。特别是道家所重视以“顺其自然”人的“被动性”和“消极性”,而儒

家则重视以“事在人为”人的“主动性”和“积极性”。人性有别于物性在于它的辩证特性:失

败是成功之母,成功是失败之父;好事变坏事,坏事变好事;大乱之后必有大治,大治之后必有大乱等等相对而相反的大循环原理。复杂的河谷生活,促使物的应用技术发

展和宗教信仰发展的多极化。中国的四大发明是属于技术上的发明,而不是原理上的发现。中国数学的发展也是以实用,而不是以原理为基础。中国(汉)文字和欧洲数学文字同属于

符号文字。要描述和了解“人本事物”,促使中国文字学的发展;中国文字的对称和其他特

性也可以用来推到人本的可能新事物。当现有的文字不足以了解新事物情况下,自然要创造新的文字。要描述和了解“物本事物”,促使欧洲数学的发展。而数学的对称其他特性也

可以用来推测物本的可能新事物。不同系统的数学有不同的极限性。当现有的数学系统足以了解新事物的情况下,自然要创造新的数学。符号文字与拼音文字是有不同的思维逻辑。所以认识中国文字学的人要学习数学,是有逻辑上的优势。2.欧洲文化建基于游牧

文化。游牧人逐水草而居,多见树木,少见人邻。人与自然界的关系比人与人的关系更为密切和重要。生活的主要问题和兴趣是在于物而不在于人。由于自然界的存在和变化,并非人力可以改变和控制,认为所有自然现象都来自能力最高的主宰。摘食猎鱼的简单生活,各人的功能差别不大,分工制度弱,独立性强,自由性大,平等性高。生活环境的不断改变,只有天,才有永恒的意义,倾向上天单极宗教的信仰。欧洲文化是游牧文化和

地中海内海文化(希腊逻辑文化、罗马帝国文化和中东耶稣宗教文化)的综合文化,以“物本”的宗教文化为主,“人本”的家族文化为次。它是强调个体、理想、外向、对抗、自由、权利、信仰和绝对性,重视发挥个人天赋欲念的自由和权利。欧洲文化在物质世界的“物

性理论”发展,对人类物质生活巳作出了重要的贡献。中国文化在人类社会的“人性理论”

发展,对人类和二、科学技术科技科学是物质世界的了解,是一种思想系统,

也是一种顺其自然的思想活动,其探索的目标是“发现”。技术是物质世界的应用,是一种

行动系统,也是一种事在人为的行动活动,其运作的目标是“发明”。早期的技术发展主要

是靠尝试和经验,与科学的发展并没有一定的姻亲关系。后来的科技就是把科学与技术结合起来,利用科学知识来改进技术的发展,目标是“创新”。物理学是科学的基石。三、物理学的发展

半导体物理学试题库完整

一.填空题 1.能带中载流子的有效质量反比于能量函数对于波矢的_________.引入有效质量的意义在于其反映了晶体材料的_________的作用。(二阶导数.内部势场) 2.半导体导带中的电子浓度取决于导带的_________(即量子态按能量如何分布)和_________(即电子在不同能量的量子态上如何分布)。(状态密度.费米分布函数) 3.两种不同半导体接触后, 费米能级较高的半导体界面一侧带________电.达到热平衡后两者的费米能级________。(正.相等) 4.半导体硅的价带极大值位于空间第一布里渊区的中央.其导带极小值位于________方向上距布里渊区边界约0.85倍处.因此属于_________半导体。([100]. 间接带隙) 5.间隙原子和空位成对出现的点缺陷称为_________;形成原子空位而无间隙原子的点缺陷称为________。(弗仑克耳缺陷.肖特基缺陷) 6.在一定温度下.与费米能级持平的量子态上的电子占据概率为_________.高于费米能级2kT能级处的占据概率为_________。(1/2.1/1+exp(2)) 7.从能带角度来看.锗、硅属于_________半导体.而砷化稼属于_________半导体.后者有利于光子的吸收和发射。(间接带隙.直接带隙) 8.通常把服从_________的电子系统称为非简并性系统.服从_________的电子系统称为简并性系统。(玻尔兹曼分布.费米分布) 9. 对于同一种半导体材料其电子浓度和空穴浓度的乘积与_________有关.而对于不同的半导体材料其浓度积在一定的温度下将取决于_________的大小。(温度.禁带宽度) 10. 半导体的晶格结构式多种多样的.常见的Ge和Si材料.其原子均通过共价键四面体相互结合.属于________结构;与Ge和Si晶格结构类似.两种不同元素形成的化合物半导体通过共价键四面体还可以形成_________和纤锌矿等两种晶格结构。(金刚石.闪锌矿) 11.如果电子从价带顶跃迁到导带底时波矢k不发生变化.则具有这种能带结构的半导体称为_________禁带半导体.否则称为_________禁带半导体。(直接.间接) 12. 半导体载流子在输运过程中.会受到各种散射机构的散射.主要散射机构有_________、 _________ 、中性杂质散射、位错散射、载流子间的散射和等价能谷间散射。(电离杂质的散射.晶格振动的散射) 13. 半导体中的载流子复合可以有很多途径.主要有两大类:_________的直接复合和通过禁带内的_________进行复合。(电子和空穴.复合中心)

半导体物理学简答题及答案

第一章 1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同,原子中内层电子和外层电子参与共有化运动有何不同。答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。 2.描述半导体中电子运动为什么要引入"有效质量"的概念,用电子的惯性质量描述能带中电子运动有何局限性。 答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量 3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么? 答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。 4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么?答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。 5.简述有效质量与能带结构的关系;答:能带越窄,有效质量越大,能带越宽,有效质量越小。 6.从能带底到能带顶,晶体中电子的有效质量将如何变化?外场对电子的作用效果有什么不同; 答:在能带底附近,电子的有效质量是正值,在能带顶附近,电子的有效质量是负值。在外电F作用下,电子的波失K不断改变,f=h(dk/dt),其变化率与外力成正比,因为电子的速度与k有关,既然k状态不断变化,则电子的速度必然不断变化。 7.以硅的本征激发为例,说明半导体能带图的物理意义及其与硅晶格结构的联系,为什么电子从其价键上挣脱出来所需的最小能量就是半导体的禁带宽度?答:沿不同的晶向,能量带隙不一样。因为电子要摆脱束缚就能从价带跃迁到导带,这个时候的能量就是最小能量,也就是禁带宽度。 1.为什么半导体满带中的少量空状态可以用具有正电荷和一定质量的空穴来描述? 答:空穴是一个假想带正电的粒子,在外加电场中,空穴在价带中的跃迁类比当水池中气泡从水池底部上升时,气泡上升相当于同体积的水随气泡的上升而下降。把气泡比作空穴,下降的水比作电子,因为在出现空穴的价带中,能量较低的电子经激发可以填充空穴,而填充了空穴的电子又留下了一个空穴。因此,空穴在电场中运动,实质是价带中多电子系统在电场中运动的另一种描述。因为人们发现,描述气泡上升比描述因气泡上升而水下降更为方便。所以在半导体的价带中,人们的注意力集中于空穴而不是电子。 2.有两块硅单晶,其中一块的重量是另一块重量的二倍.这两块晶体价带中的能级数是否相等,彼此有何联系? 答:相等,没任何关系 3.为什么极值附近的等能面是球面的半导体,当改变磁场方向时只能观察到一个共振吸收峰。答:各向同性。 5.典型半导体的带隙。 一般把禁带宽度等于或者大于2.3ev的半导体材料归类为宽禁带半导体,主要包括金刚石,SiC,GaN,金刚石等。26族禁带较宽,46族的比较小,如碲化铅,硒化铅(0.3ev),35族的砷化镓(1.4ev)。 第二章1.说明杂质能级以及电离能的物理意义。为什么受主、施主能级分别位于价带之上或导带之下,而且电离能的数值较小?答:被杂质束缚的电子或空穴的能量状态称为杂质能级,电子脱离杂质的原子的束缚成为导电电子的过程成为杂质电离,使这个多余的价电子挣脱束缚成为导电电子所需要的能量成为杂质电离能。杂质能级离价带或导带都很近,所以电离能数值小。 2.纯锗,硅中掺入III或Ⅴ族元素后,为什么使半导体电学性能有很大的改变?杂质半导体(p型或n型)应用很广,但为什么我们很强调对半导体材料的提纯?答:因为掺入III或Ⅴ族后,杂质产生了电离,使得到导带中得电子或价带中得空穴增多,增强了半导体的导电能力。极微量的杂质和缺陷,能够对半导体材料的物理性质和化学性质产生决定性的影响,,当然,也严重影响着半导体器件的质量。 4.何谓深能级杂质,它们电离以后有什么特点?答:杂质电离能大,施主能级远离导带底,受主能级远离价带顶。特点:能够产生多次电离,每一次电离相应的有一个能级。 5.为什么金元素在锗或硅中电离后可以引入多个施主或受主能级?答:因为金是深能级杂质,能够产生多次电离,

半导体物理学练习题(刘恩科)

第一章半导体中的电子状态 例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。 解:K状态电子的速度为: (1)同理,-K状态电子的速度则为: (2)从一维情况容易看出: (3)同理 有: (4) (5) 将式(3)(4)(5)代入式(2)后得: (6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。 例2.已知一维晶体的电子能带可写成: 式中,a为晶格常数。试求: (1)能带的宽度; (2)能带底部和顶部电子的有效质量。 解:(1)由E(k)关 系 (1)

(2) 令得: 当时,代入(2)得: 对应E(k)的极小值。 当时,代入(2)得: 对应E(k)的极大值。 根据上述结果,求得和即可求得能带宽度。 故:能带宽度 (3)能带底部和顶部电子的有效质量: 习题与思考题: 1 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。 2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。 3 试指出空穴的主要特征。 4 简述Ge、Si和GaAs的能带结构的主要特征。

5 某一维晶体的电子能带为 其中E0=3eV,晶格常数a=5×10-11m。求: (1)能带宽度; (2)能带底和能带顶的有效质量。 6原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同?原子中内层电子和外层电子参与共有化运动有何不同? 7晶体体积的大小对能级和能带有什么影响? 8描述半导体中电子运动为什么要引入“有效质量”的概念?用电子的惯性质量 描述能带中电子运动有何局限性? 9 一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此?为什么? 10有效质量对能带的宽度有什么影响?有人说:“有效质量愈大,能量密度也愈大,因而能带愈窄。”是否如此?为什么? 11简述有效质量与能带结构的关系? 12对于自由电子,加速反向与外力作用反向一致,这个结论是否适用于布洛赫电子? 13从能带底到能带顶,晶体中电子的有效质量将如何变化?外场对电子的作用效果有什么不同? 14试述在周期性势场中运动的电子具有哪些一般属性?以硅的本征激发为例,说明半导体能带图的物理意义及其与硅晶格结构的联系? 15为什么电子从其价键上挣脱出来所需的最小能量就是半导体的禁带宽度?16为什么半导体满带中的少量空状态可以用具有正电荷和一定质量的空穴来描述? 17有两块硅单晶,其中一块的重量是另一块重量的二倍。这两块晶体价带中的能级数是否相等?彼此有何联系? 18说明布里渊区和k空间等能面这两个物理概念的不同。 19为什么极值附近的等能面是球面的半导体,当改变存储反向时只能观察到一个共振吸收峰? 第二章半导体中的杂质与缺陷能级 例1.半导体硅单晶的介电常数=11.8,电子和空穴的有效质量各为= 0.97, =0.19和=0.16,=0.53,利用类氢模型估计: (1)施主和受主电离能; (2)基态电子轨道半径 解:(1)利用下式求得和。

半导体物理学答案 刘恩科第七版

第一章习题 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近 能量E V (k)分别为: E c =0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V - =-+ 0m 。试求: 为电子惯性质量,nm a a k 314.0,1== π (1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1) eV m k E k E E E k m dk E d k m k dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43 (0,060064 3 382324 3 0)(2320 212102220 202 02022210 1202==-==<-===-==>=+===-+ 因此:取极大值 处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带: 04 32 2 2*8 3)2(1 m dk E d m k k C nC ===

s N k k k p k p m dk E d m k k k k V nV /1095.704 3 )() ()4(6 )3(25104 3002 2 2*1 1 -===?=-=-=?=- == 所以:准动量的定义: 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计 算电子自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=? s a t s a t 137 19 282 1911027.810 10 6.1)0(102 7.810106.1) 0(----?=??-- =??=??-- = ?π π 补充题1 分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提 示:先画出各晶面内原子的位置和分布图) Si 在(100),(110)和(111)面上的原子分布如图1所示: (a )(100)晶面 (b )(110)晶面

半导体物理学题库20121229

1.固体材料可以分为 晶体 和 非晶体 两大类,它们之间的主要区别是 。 2.纯净半导体Si 中掺V 族元素的杂质,当杂质电离时释放 电子 。这种杂质称 施主 杂质;相应的半 导体称 N 型半导体。 3.半导体中的载流子主要受到两种散射,它们分别是 电离杂质散射 和 晶格振动散射 。前者在 电离施 主或电离受主形成的库伦势场 下起主要作用,后者在 温度高 下起主要作用。 4.当半导体中载流子浓度的分布不均匀时,载流子将做 扩散 运动;在半导体存在外加电压情况下,载 流子将做 漂移 运动。 5.对n 型半导体,如果以E F 和E C 的相对位置作为衡量简并化与非简并化的标准,那末, 为非 简并条件; 为弱简并条件; 简并条件。 6.空穴是半导体物理学中一个特有的概念,它是指: ; 7.施主杂质电离后向 带释放 ,在材料中形成局域的 电中心;受主杂质电离后 带释放 , 在材料中形成 电中心; 8.半导体中浅能级杂质的主要作用是 ;深能级杂质所起的主要作用 。 9. 半导体的禁带宽度随温度的升高而__________;本征载流子浓度随禁带宽度的增大而__________。 10.施主杂质电离后向半导体提供 ,受主杂质电离后向半导体提供 ,本征激发后向半导体提 供 。 11.对于一定的n 型半导体材料,温度一定时,较少掺杂浓度,将导致 靠近Ei 。 12.热平衡时,半导体中电子浓度与空穴浓度之积为常数,它只与 和 有关,而与 、 无关。 A. 杂质浓度 B. 杂质类型 C. 禁带宽度 D. 温度 12. 指出下图各表示的是什么类型半导体? 13.n o p o =n i 2标志着半导体处于 平衡 状态,当半导体掺入的杂质含量改变时,乘积n o p o 改变否? 不 变 ;当温度变化时,n o p o 改变否? 改变 。 14.非平衡载流子通过 复合作用 而消失, 非平衡载流子的平均生存时间 叫做寿命τ,寿命 τ与 复合中心 在 禁带 中的位置密切相关,对于强p 型和 强n 型材料,小注入时寿命τn 为 ,寿命τp 为 . 15. 迁移率 是反映载流子在电场作用下运动难易程度的物理量, 扩散系数 是反映有浓度梯度时载流子 运动难易程度的物理量,联系两者的关系式是 q n n 0=μ ,称为 爱因斯坦 关系式。 16.半导体中的载流子主要受到两种散射,它们分别是电离杂质散射 和 晶格振动散射 。前者在 电离施主或电离受主形成的库伦势场 下起主要作用,后者在 温度高 下起主要作用。 17.半导体中浅能级杂质的主要作用是 影响半导体中载流子浓度和导电类型 ;深能级杂质所起的主 要作用 对载流子进行复合作用 。

2012半导体物理知识点及重点习题总结

基本概念题: 第一章半导体电子状态 1.1 半导体 通常是指导电能力介于导体和绝缘体之间的材料,其导带在绝对零度时全空,价带全满,禁带宽度较绝缘体的小许多。 1.2能带 晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些区间没有能及分布。这些区间在能级图中表现为带状,称之为能带。 1.2能带论是半导体物理的理论基础,试简要说明能带论所采用的理论方法。 答: 能带论在以下两个重要近似基础上,给出晶体的势场分布,进而给出电子的薛定鄂方程。通过该方程和周期性边界条件最终给出E-k关系,从而系统地建立起该理论。 单电子近似: 将晶体中其它电子对某一电子的库仑作用按几率分布平均地加以考虑,这样就可把求解晶体中电子波函数的复杂的多体问题简化为单体问题。 绝热近似: 近似认为晶格系统与电子系统之间没有能量交换,而将实际存在的这种交换当作微扰来处理。

1.2克龙尼克—潘纳模型解释能带现象的理论方法 答案: 克龙尼克—潘纳模型是为分析晶体中电子运动状态和E-k关系而提出的一维晶体的势场分布模型,如下图所示 利用该势场模型就可给出一维晶体中电子所遵守的薛定谔方程的具体表达式,进而确定波函数并给出E-k关系。由此得到的能量分布在k空间上是周期函数,而且某些能量区间能级是准连续的(被称为允带),另一些区间没有电子能级(被称为禁带)。从而利用量子力学的方法解释了能带现象,因此该模型具有重要的物理意义。 1.2导带与价带 1.3有效质量 有效质量是在描述晶体中载流子运动时引进的物理量。它概括了周期性势场对载流子运动的影响,从而使外场力与加速度的关系具有牛顿定律的形式。其大小由晶体自身的E-k 关系决定。 1.4本征半导体 既无杂质又无缺陷的理想半导体材料。

半导体物理学 (第七版) 习题答案

半导体物理习题解答 1-1.(P 32)设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为: E c (k)=0223m k h +022)1(m k k h -和E v (k)= 0226m k h -0 2 23m k h ; m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。试求: ①禁带宽度; ②导带底电子有效质量; ③价带顶电子有效质量; ④价带顶电子跃迁到导带底时准动量的变化。 [解] ①禁带宽度Eg 根据dk k dEc )(=0232m k h +0 12)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值: k min = 14 3 k , 由题中E C 式可得:E min =E C (K)|k=k min = 2 10 4k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0; 并且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =2 02 48a m h =11 28282 2710 6.1)1014.3(101.948)1062.6(----???????=0.64eV ②导带底电子有效质量m n 0202022382322 m h m h m h dk E d C =+=;∴ m n =022 283/m dk E d h C = ③价带顶电子有效质量m ’ 022 26m h dk E d V -=,∴022 2'61/m dk E d h m V n -== ④准动量的改变量 h △k =h (k min -k max )= a h k h 83431= [毕] 1-2.(P 33)晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带 底运动到能带顶所需的时间。 [解] 设电场强度为E ,∵F =h dt dk =q E (取绝对值) ∴dt =qE h dk

半导体物理试题总结

半导体物理学考题 A (2010年1月)解答 一、(20分)简述下列问题: 1.(5分)布洛赫定理。 解答:在周期性势场中运动的电子,若势函数V(x)具有晶格的周期性,即:)x (V )na x (V =+, 则晶体中电子的波函数具有如下形式:)x (u e )x (k ikx =ψ,其中,)x (u k 为具有晶格周期性的 函数,即:)x (u )na x (u k k =+ 2.(5分)说明费米能级的物理意义; 试画出N 型半导体的费米能级随温度的变化曲线。 解答: 费米能级E F 是反映电子在各个能级中分布情况的参数。 能量为E F 的量子态被电子占据的几率为1/2。 N 型半导体的费米能级随温度变化曲线如右图所示:(2分) 3、(5分)金属和N 型半导体紧密接触,接触前,二者的真空能级相等,S M W W <。试画出金属— 半导体接触的能带图,标明接触电势差、空间电荷区和内建电场方向。 解答: 4.(5分)比较说明施主能级、复合中心和陷阱在半导体中的作用及其区别。 解答: 施主能级:半导体中的杂质在禁带中产生的距离能带较近的能级。可以通过杂质电离过程向半导体导带提供电子,因而提高半导体的电导率;(1分) 复合中心:半导体中的一些杂质或缺陷,它们在禁带中引入离导带底和价带顶都比较远的局域化能级,非平衡载流子(电子和空穴)可以通过复合中心进行间接复合,因此复合中心很大程度上影响着非平衡载流子的寿命。(1分) 陷阱:是指杂质或缺陷能级对某一种非平衡载流子的显著积累作用,其所俘获的非平衡载流子数目可以与导带或价带中非平衡载流子数目相比拟。陷阱的作用可以显著增加光电导的灵敏度以及使光电导的衰减时间显著增长。(1分) 浅施主能级对载流子的俘获作用较弱;有效复合中心对电子和空穴的俘获系数相差不大,而且,其对非平衡载流子的俘获几率要大于载流子发射回能带的几率。一般说来,只有杂质的能级比费米能级离导带底或价带顶更远的深能级杂质,才能成为有效的复合中心。而有效的陷阱则要求其对电子和空穴的俘获几率必须有很大差别,如有效的电子陷阱,其对电子的俘获几率远大于对空穴的俘获几率,因此才能保持对 C v FN FM E i E ? C i d V

《半导体物理学》习题库完整

第1章思考题和习题 1. 300K时硅的晶格常数a=5.43?,求每个晶胞所含的完整原子数和原子密度为多少? 2. 综述半导体材料的基本特性及Si、GaAs的晶格结构和特征。 3. 画出绝缘体、半导体、导体的简化能带图,并对它们的导电性能作出定性解释。 4. 以硅为例,简述半导体能带的形成过程。 5. 证明本征半导体的本征费米能级E i位于禁带中央。 6. 简述迁移率、扩散长度的物理意义。 7. 室温下硅的有效态密度Nc=2.8×1019cm-3,κT=0.026eV,禁带宽度Eg=1.12eV,如果忽略禁带宽度随温度的变化,求: (a)计算77K、300K、473K 3个温度下的本征载流子浓度。 (b) 300K本征硅电子和空穴的迁移率分别为1450cm2/V·s和500cm2/V·s,计算本征硅的电阻率是多少? 8. 某硅棒掺有浓度分别为1016/cm3和1018/cm3的磷,求室温下的载流子浓度及费米能级E FN的位置(分别从导带底和本征费米能级算起)。 9. 某硅棒掺有浓度分别为1015/cm3和1017/cm3的硼,求室温下的载流子浓度及费米能级E FP的位置(分别从价带顶和本征费米能级算起)。 10. 求室温下掺磷为1017/cm3的N+型硅的电阻率与电导率。 11. 掺有浓度为3×1016cm-3的硼原子的硅,室温下计算: (a)光注入△n=△p=3×1012cm-3的非平衡载流子,是否为小注入?为什么?

(b)附加光电导率△σ为多少? (c)画出光注入下的准费米能级E’FN和E’FP(E i为参考)的位置示意图。 (d)画出平衡下的能带图,标出E C、E V、E FP、E i能级的位置,在此基础上再画出光注入时,E FP’和E FN’,并说明偏离E FP的程度是不同的。 12. 室温下施主杂质浓度N D=4×1015 cm-3的N型半导体,测得载流子迁移率μn=1050cm2/V·s,μp=400 cm2/V·s, κT/q=0.026V,求相应的扩散系数和扩散长度为多少? 第2章思考题和习题 1.简述PN结空间电荷区的形成过程和动态平衡过程。 2.画出平衡PN结,正向PN结与反向PN结的能带图,并进行比较。 3.如图2-69所示,试分析正向小注入时,电子与空穴在5个区域中的运动情况。 4.仍如图2-69为例试分析PN结加反向偏压时,电子与空穴在5个区域中的运动情况。 5试画出正、反向PN结少子浓度分布示意图,写出边界少子浓度及

半导体物理学复习提纲(重点)

第一章 半导体中的电子状态 §1.1 锗和硅的晶体结构特征 金刚石结构的基本特征 §1.2 半导体中的电子状态和能带 电子共有化运动概念 绝缘体、半导体和导体的能带特征。几种常用半导体的禁带宽度; 本征激发的概念 §1.3 半导体中电子的运动 有效质量 导带底和价带顶附近的E(k)~k 关系()()2 * 2n k E k E m 2h -0= ; 半导体中电子的平均速度dE v hdk = ; 有效质量的公式:2 2 2 * 11dk E d h m n = 。 §1.4本征半导体的导电机构 空穴 空穴的特征:带正电;p n m m ** =-;n p E E =-;p n k k =- §1.5 回旋共振 §1.6 硅和锗的能带结构 导带底的位置、个数; 重空穴带、轻空穴 第二章 半导体中杂质和缺陷能级 §2.1 硅、锗晶体中的杂质能级

基本概念:施主杂质,受主杂质,杂质的电离能,杂质的补偿作用。 §2.2 Ⅲ—Ⅴ族化合物中的杂质能级 杂质的双性行为 第三章 半导体中载流子的统计分布 热平衡载流子概念 §3.1状态密度 定义式:()/g E dz dE =; 导带底附近的状态密度:() () 3/2 * 1/2 3 2()4n c c m g E V E E h π=-; 价带顶附近的状态密度:() () 3/2 *1/2 3 2()4p v V m g E V E E h π=- §3.2 费米能级和载流子的浓度统计分布 Fermi 分布函数:()01 ()1exp /F f E E E k T = +-???? ; Fermi 能级的意义:它和温度、半导体材料的导电类型、杂质的含量以及能量零点的选取有关。1)将半导体中大量的电子看成一个热力学系统,费米能级F E 是系统的化学势;2)F E 可看成量子态是否被电子占据的一个界限。3)F E 的位置比较直观地标志了电子占据量子态的情况,通常就说费米能级标志了电子填充能级的水平。费米能级位置较高,说明有较多的能量较高的量子态上有电子。 Boltzmann 分布函数:0()F E E k T B f E e --=; 导带底、价带顶载流子浓度表达式: 0()()c c E B c E n f E g E dE '= ?

半导体物理学试题及答案

半导体物理学试题及答案 半导体物理学试题及答案(一) 一、选择题 1、如果半导体中电子浓度等于空穴浓度,则该半导体以( A )导电为主;如果半导体中电子浓度大于空穴浓度,则该半导体以( E )导电为主;如果半导体中电子浓度小于空穴浓度,则该半导体以( C )导电为主。 A、本征 B、受主 C、空穴 D、施主 E、电子 2、受主杂质电离后向半导体提供( B ),施主杂质电离后向半导体提供( C ),本征激发向半导体提供( A )。 A、电子和空穴 B、空穴 C、电子 3、电子是带( B )电的( E );空穴是带( A )电的( D )粒子。 A、正 B、负 C、零 D、准粒子 E、粒子 4、当Au掺入Si中时,它是( B )能级,在半导体中起的是( D )的作用;当B掺入Si中时,它是( C )能级,在半导体中起的是( A )的作用。 A、受主 B、深 C、浅 D、复合中心 E、陷阱 5、 MIS结构发生多子积累时,表面的导电类型与体材料的类型( A )。 A、相同 B、不同 C、无关

6、杂质半导体中的载流子输运过程的散射机构中,当温度升高时,电离杂质散射的概率和晶格振动声子的散射概率的变化分别是( B )。 A、变大,变小 ; B、变小,变大; C、变小,变小; D、变大,变大。 7、砷有效的陷阱中心位置(B ) A、靠近禁带中央 B、靠近费米能级 8、在热力学温度零度时,能量比EF小的量子态被电子占据的概率为( D ),当温度大于热力学温度零度时,能量比EF小的量子态被电子占据的概率为( A )。 A、大于1/2 B、小于1/2 C、等于1/2 D、等于1 E、等于0 9、如图所示的P型半导体MIS结构的C-V特性图中,AB段代表( A),CD段代表( B )。 A、多子积累 B、多子耗尽 C、少子反型 D、平带状态 10、金属和半导体接触分为:( B )。 A、整流的肖特基接触和整流的欧姆接触 B、整流的肖特基接触和非整流的欧姆接触 C、非整流的肖特基接触和整流的欧姆接触 D、非整流的肖特基接触和非整流的欧姆接触 11、一块半导体材料,光照在材料中会产生非平衡载

半导体物理学期末复习试题及答案一

一、半导体物理学期末复习试题及答案一 1.与绝缘体相比,半导体的价带电子激发到导带所需要的能量 ( B )。 A. 比绝缘体的大 B.比绝缘体的小 C. 和绝缘体的相同 2.受主杂质电离后向半导体提供( B ),施主杂质电离后向半 导体提供( C ),本征激发向半导体提供( A )。 A. 电子和空穴 B.空穴 C. 电子 3.对于一定的N型半导体材料,在温度一定时,减小掺杂浓度,费米能 级会( B )。 A.上移 B.下移 C.不变 4.在热平衡状态时,P型半导体中的电子浓度和空穴浓度的乘积为 常数,它和( B )有关 A.杂质浓度和温度 B.温度和禁带宽度 C.杂质浓度和禁带宽度 D.杂质类型和温度 5.MIS结构发生多子积累时,表面的导电类型与体材料的类型 ( B )。 A.相同 B.不同 C.无关 6.空穴是( B )。 A.带正电的质量为正的粒子 B.带正电的质量为正的准粒子 C.带正电的质量为负的准粒子 D.带负电的质量为负的准粒子 7.砷化稼的能带结构是( A )能隙结构。 A. 直接 B.间接

8. 将Si 掺杂入GaAs 中,若Si 取代Ga 则起( A )杂质作用, 若Si 取代As 则起( B )杂质作用。 A. 施主 B. 受主 C. 陷阱 D. 复合中心 9. 在热力学温度零度时,能量比F E 小的量子态被电子占据的概率为 ( D ),当温度大于热力学温度零度时,能量比F E 小的量子 态被电子占据的概率为( A )。 A. 大于1/2 B. 小于1/2 C. 等于1/2 D. 等于1 E. 等于0 10. 如图所示的P 型半导体MIS 结构 的C-V 特性图中,AB 段代表 ( A ),CD 段代表(B )。 A. 多子积累 B. 多子耗尽 C. 少子反型 D. 平带状态 11. P 型半导体发生强反型的条件( B )。 A. ???? ??=i A S n N q T k V ln 0 B. ??? ? ??≥i A S n N q T k V ln 20 C. ???? ??= i D S n N q T k V ln 0 D. ???? ??≥i D S n N q T k V ln 20 12. 金属和半导体接触分为:( B )。 A. 整流的肖特基接触和整流的欧姆接触 B. 整流的肖特基接触和非整流的欧姆接触 C. 非整流的肖特基接触和整流的欧姆接触 D. 非整流的肖特基接触和非整流的欧姆接触

半导体物理学试题库学习资料

半导体物理学试题库

一.填空题 1.能带中载流子的有效质量反比于能量函数对于波矢的_________,引入有效质量的意义在于其反映了晶体材料的_________的作用。(二阶导数,内部势场) 2.半导体导带中的电子浓度取决于导带的_________(即量子态按能量如何分布)和 _________(即电子在不同能量的量子态上如何分布)。(状态密度,费米分布函数) 3.两种不同半导体接触后, 费米能级较高的半导体界面一侧带________电,达到热平衡后两者的费米能级________。(正,相等) 4.半导体硅的价带极大值位于空间第一布里渊区的中央,其导带极小值位于________方向上距布里渊区边界约0.85倍处,因此属于_________半导体。([100],间接带隙) 5.间隙原子和空位成对出现的点缺陷称为_________;形成原子空位而无间隙原子的点缺陷称为________。(弗仑克耳缺陷,肖特基缺陷) 6.在一定温度下,与费米能级持平的量子态上的电子占据概率为_________,高于费米能级2kT能级处的占据概率为_________。(1/2,1/1+exp(2)) 7.从能带角度来看,锗、硅属于_________半导体,而砷化稼属于_________半导体,后者有利于光子的吸收和发射。(间接带隙,直接带隙)

8.通常把服从_________的电子系统称为非简并性系统,服从_________的电子系统称为简并性系统。(玻尔兹曼分布,费米分布) 9. 对于同一种半导体材料其电子浓度和空穴浓度的乘积与_________有关,而对于不同的半导体材料其浓度积在一定的温度下将取决于_________的大小。(温度,禁带宽度) 10. 半导体的晶格结构式多种多样的,常见的Ge和Si材料,其原子均通过共价键四面体相互结合,属于________结构;与Ge和Si晶格结构类似,两种不同元素形成的化合物半导体通过共价键四面体还可以形成_________和纤锌矿等两种晶格结构。(金刚石,闪锌矿) 11.如果电子从价带顶跃迁到导带底时波矢k不发生变化,则具有这种能带结构的半导体称为_________禁带半导体,否则称为_________禁带半导体。(直接,间接) 12. 半导体载流子在输运过程中,会受到各种散射机构的散射,主要散射机构有_________、 _________ 、中性杂质散射、位错散射、载流子间的散射和等价能谷间散射。(电离杂质的散射,晶格振动的散射) 13. 半导体中的载流子复合可以有很多途径,主要有两大类:_________的直接复合和通过禁带内的_________进行复合。(电子和空穴,复合中心)

半导体物理学简答题及答案.docx

复习思考题与自测题 第一章 1. 原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同,原子中内层电子和外层 电子参与共有化运动有何不同。 答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一 个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。 当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层, 和孤立原子一样 ; 然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新 的运动状态。组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电 子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。 2.描述半导体中电子运动为什么要引入 " 有效质量 " 的概念 , 用电子的惯性质量描述能带中电子运动 有何局限性。 答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外 力作用下的运动规律时,可以不涉及半导体内部势场的作用。惯性质量描述的是真空中的自由电 子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动, 成为有效质量 3.一般来说 , 对应于高能级的能带较宽 , 而禁带较窄 , 是否如此,为什么 答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄 取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。 4.有效质量对能带的宽度有什么影响,有人说:" 有效质量愈大 , 能量密度也愈大 , 因而能带愈窄 . 是否如此,为什么 答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1( k)随 k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子 的能带宽,有效质量小。 5.简述有效质量与能带结构的关系; 答:能带越窄,有效质量越大,能带越宽,有效质量越小。 6.从能带底到能带顶 , 晶体中电子的有效质量将如何变化外场对电子的作用效果有什么不同; 答:在能带底附近,电子的有效质量是正值,在能带顶附近,电子的有效质量是负值。在外电F 作用下,电子的波失K不断改变,f h dk , 其变化率与外力成正比,因为电子的速度与k有关,dt

半导体物理学重点概念个人总结

Si:导带:硅的导带极小值位于k空间[100]方向的布里渊区中心到布里渊区边界的0.85处;导带极小值附近的等能面是长轴沿[100]方向的旋转椭球面;在简约布里渊区共有6个这样的椭球。 价带:价带具有一个重空穴带,一个轻空穴带和由于自旋-轨道耦合分裂出来的第三个能带;价带极大值位于布里渊区的中心;重空穴有效质量为0.53m0,轻空穴有效质量为0.16m0;第三个能带的裂距为0.04eV。Ge:导带:锗的导带极小值位于k空间的[111]方向的简约布里渊区边界;导带极小值附近的等能面是长轴沿[111]方向旋转的8个椭球面;每个椭球面有半个在简约布里渊区内,因此,在简约布里渊区内共有4个椭球。价带:价带具有一个重空穴带,一个轻空穴带和由于自旋-轨道耦合分裂出来的第三个能带;价带极大值位于布里渊区的中心;重空穴有效质量为0.36m0,轻空穴有效质量为0.044m0;第三个能带的裂距为0.29eV。 主要特征:禁带宽度E g随温度增加而减小E g:Si0.7437eV Ge1.170ev 间接能隙结构。本征激发:当温度一定时,价代电子受到激发而成为导带电子的过程称为本征激发。(温度升高,载流子浓度增大,空穴密度增大,本征激发加剧) 有效质量意义:它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及到半导体内部势场的作用;特别是有效质量可以直接由实验测定,因而可以很方便地解决电子的运动规律。 性质:1.电子的有效质量概况了半导体内部的势场作用;2.在能带底部附近,电子的有效质量是正值;在能带顶部附近,电子的有效质量是负值;对于带顶和带底的电子,有效质量恒定;3.有效质量与能量函数对于k 的二次微商成反比,能带越窄,二次微商越小,有效质量越大。内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。因此,外层电子在外力作用下可以获得较大的加速度。 特点:决定于材料;与电子的运动方向有关;与能带的宽窄有关。空穴:空穴是几乎充满的能带中未被电子占据的空量子态。价带电子被激发到导带后,价带中存在空着的状态。这种空着的状态将价带电子的导电作用等效为带正电荷的准粒子的导电作用。 特征:1.带正电:+q;2.空穴浓度表示为p; 3.E p= -E n; 4.m p* = -m n*。 浅能级杂质:将很接近于价带顶的受主能级和很接近于导带底的施主能级称为浅能级。将产生浅能级的杂质称为浅能级杂质。其特点为:施主电离能:ΔE D<

半导体物理学 基本概念汇总

半导体物理学基本概念 有效质量-----载流子在晶体中的表观质量,它体现了周期场对电子运动的影响。其物理意义:1)有效质量的大小仍然是惯性大小的量度;2)有效质量反映了电子在晶格与外场之间能量和动量的传递,因此可正可负。 空穴-----是一种准粒子,代表半导体近满带(价带)中的少量空态,相当于具有正的电子电荷和正的有效质量的粒子,描述了近满带中大量电子的运动行为。 回旋共振----半导体中的电子在恒定磁场中受洛仑兹力作用将作回旋运动,此时在半导体上再加垂直于磁场的交变磁场,当交变磁场的频率等于电子的回旋频率时,发生强烈的共振吸收现象,称为回旋共振。施主-----在半导体中起施予电子作用的杂质。受主-----在半导体中起接受电子作用的杂质。 杂质电离能-----使中性施主杂质束缚的电子电离或使中性受主杂质束缚的空穴电离所需要的能量。 n-型半导体------以电子为主要载流子的半导体。 p-型半导体------以空穴为主要载流子的半导体。 浅能级杂质------杂质能级位于半导体禁带中靠近导带底或价带顶,即杂质电离能很低的杂质。浅能级杂质对半导体的导电性质有较大的影响。 深能级杂质-------杂质能级位于半导体禁带中远离导带底(施主)或价带顶(受主),即杂质电离能很大的杂质。深能级杂质对半导体导电性质影响较小,但对半导体中非平衡载流子的复合过程有重要作用。位于半导体禁带中央能级附近的深能级杂质是有效的复合中心。 杂质补偿-----在半导体中同时存在施主和受主杂质时,存在杂质补偿现象,即施主杂质束缚的电子优先填充受主能级,实际的有效杂质浓度为补偿后的杂质浓度,即两者之差。

半导体物理学 基本概念

半导体物理学基本概念 能带(energy band)相邻原子在组成固体时,其相应的电子能级由于原子间的相互作用而分裂,由于固体中包含的原子数很大,分离出来的能级十分密集,形成一个在能量上准连续的分布即能带。由不同的原子能级所形成的允许能带之间一般隔着禁止能带。 导带与价带根据能带理论,固体中的电子态能级分裂为一系列的带,在带内能级分布是准连续的,带与带之间存在有能量间隙。在非导体中,电子恰好填满能量较低的一系列能带,再高的各带全部都是空的,在填满的能带中尽管存在很多电子,但并不导电。在导体中,则除了完全填满的一系列能带外,还有只是部分地被电子填充的能带,这种部分填充带中的电子可以起导电作用,称为导带。半导体属于上述非导体的类型,但满带与空带之间的能隙比较小。通常把半导体一系列满带中最高的能带称为价带,把半导体中一系列空带中最低的能带称为导带。 直接带隙直接带隙半导体材料就是导带最小值(导带底)和满带最大值在k 空间中同一位置。电子要跃迁到导带上产生导电的电子和空穴(形成半满能带)只需要吸收能量。 间接带隙间接带隙半导体材料(如Si、Ge)导带最小值(导带底)和满带最大值在k空间中不同位置。形成半满能带不只需要吸收能量,还要改变动量。 杂质电离能使中性施主杂质束缚的电子电离或使中性受主杂质束缚的空穴电离所需要的能量。 施主(donor)在半导体带隙中间的能级,能够向晶体提供电子同时自身成为正离子的杂质称为施主杂质。 受主(acceptor)在半导体带隙中间的能级,能接受电子同时自身成为负离子的杂质称为受主杂质。 杂质能级(impurity level)由于杂质的存在,半导体材料中的杂质使严格的周期性势场受到破坏,从而有可能产生能量在带隙中的局域化电子态,称为杂质能级。施主能级离化能很小,在常温下就能电离而向导带提供电子,自身成为带正电的电离施主,通常称这些杂质能级为施主能级。 受主能级离化能很小,在常温下就能电离而向价带提供空穴,自身成为带负电的电离受主,通常称这些杂质能级为受主能级。 浅能级杂质杂质能级位于半导体禁带中靠近导带底或价带顶,即杂质电离能很低的杂质。浅能级杂质对半导体的导电性质有较大的影响。 深能级杂质杂质能级位于半导体禁带中远离导带底(施主)或价带顶(受主),即杂质电离能很大的杂质。深能级杂质对半导体导电性质影响较小,但对半导体中非平衡载流子的复合过程有重要作用。位于半导体禁带中央能级附近的深能级杂质是有效的复合中心。

相关主题
文本预览
相关文档 最新文档