当前位置:文档之家› 线性代数在现实生活中的应用

线性代数在现实生活中的应用

线性代数在现实生活中的应用
线性代数在现实生活中的应用

线性代数在现实生活中的应用

【摘要】线性代数理论有着悠久的历史和丰富的内容,其理论应用,是研究现代科学技术的重要方法,在众多的科学技术领域中应用都十分广泛。本文通过对线性代数的定义的解释,和应用实例的列举,分析了线性代数被广泛运用于各个领域的原因。并对在这些领域中,线性代数的具体应用做了简要论述。

【关键词】线性代数;实际生活;应用实例

一、什么是线性代数

线性代数(Linear Algebra)是数学的一个分支,也是代数的一个重要学科,那么什么是代数呢?代数英文是Algebra,源于阿拉伯语。其本意是“结合在一起”。 [1]也就是说代数的功能是把许多看似不相关的事物“结合在一起”,也就是进行抽象。抽象的目的是为了解决问题的方便,为了提高效率,通过线性代数可以把一些看似不相关的问题化归为一类问题。线性代数的研究内容包括行列式,矩阵和向量等,其主要处理的是线性关系的问题,随着数学的发展,线性代数的含义也不断的扩大。它的理论不仅渗透到了数学的许多分支中,而且在理论物理、理论化学、工程技术、国民经济、生物技术、航天、航海等领域中都有着广泛的应用。

二、线性代数被广泛运用的原因

为什么线性代数得到广泛运用,也就是说,为什么在实际的科学研究中解线性方程组是经常的事,而并非解非线性方程组是经常的事呢?

原因之一,大自然的许多现象恰好是线性变化的。以物理学为例,整个物理世界可以分为机械运动、电运动、还有量子力学的运动。而机械运动的基本方程是牛顿第二定律,即物体的加速度同它所受到的力成正比,这是一个基本的线性微分方程。电运动的基本方程是麦克思韦方程组,这个方程组表明电场强度与磁场的变化率成正比,而磁场的强度又与电场强度的变化率成正比,因此麦克思韦方程组也正好是线性方程组。而量子力学中描绘物质的波粒二象性的薜定谔方程,也是线性方程组。

其二,随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,因为各种实际问题在大多数情况下可以线性化,而科学研究中的非线性模型通常也可以被近似为线性模型,另外由于计算机的发展,线性化了的问题又可以计算出来,所以,线性代数因成为了解决这些问题的有力工具而被广泛应用。如量子化学(量子力学)是建立在线性Hilbert空间的理论基础上的,没有线性代数的基础,不可能掌握量子化学。而量子化学(和分子力学)的计算在今天的化学和新药的研发中是不可缺少的。

其三,线性代数所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的。

三、线性代数在实际中的应用

下面将从几个领域出发简要谈一下线性代数在实际生活中的应用。

1.在运筹学中的应用

运筹学的一个重要议题是线性规划,许多重要的管理决策是在线性规划模型的基础上做出的。而线性规划则要用到大量的线性代数的知识进行处理。如果你掌握了线性代数及线性规划的相关知识,那么你就可以将实际生活中的大量问题抽象为线性规划问题,从而得到最优解。比如,航空运输业就使用线性规划来调度航班,监视飞行及机场的维护运作等;又如,你作为一个大商场的老板,线性规划可以帮助你合理的安排各种商品的进货,以达到最大利润。即使你是一家小商店的老板,你也可以运用线性代数知识来合理的安排各种商品的进货,以达到最大利润;或者你仅仅是一个大家庭中的一员,你同样可以用规划的办法来使你们的家庭预算达到最小。这些都是实际的应用。

2.在电子、软件工程中的应用

由于线性代数是研究线性网络的主要工具,因此,电路分析、线性信号系统分析、数字滤波器分析设计等需要线代;在进行IC集成电路设计时,对付数百万个集体管的仿真软件也需要依赖线性方程组的方法;对于光电及射频工程,电磁场、光波导分析都是向量场的分析,比如光调制器分析研制需要张量矩阵,手机信号处理等等也离不开矩阵运算。此外,3D游戏的制作也是以图形的矩阵运算为基础的,游戏里的大量图像数据处理更离不开矩阵这个强大的工具,比如电影《阿凡达》中大量的后期电脑制作,如果没有线代的数学工具简直难以想象。

3.在工业生产和经济管理中的应用

在工业生产和经济管理方面应用最广的应该是行列式了,人们可以利用行列式解决部分工程中的现实问题。例如:日常会计工作中有时会遇到的一些单位成本问题,虽然成本会计可以算出单位成本,用约当产量法或定额法或原材料成本法,但只能求得近似值,不能求得精确值。许多工程施工中,经常遇到计算断面面积、开挖或回填方量的工作。根据行列式的几何意义,将其与实际纵断图结合分析,可以直接计算出结果,并具有精确、简便的优点。

4.在机械工程领域中的应用

在机械工程领域复杂线性方程组的数值求解是经常遇见的问题,而且机械工程中的一些多解问题,例如机构转配构型,机器人机构树状解和设计方案的多解问题等,常常需要线性代数中线性方程的一些理论求解。并且线性代数中的公式通用于能淬火硬化的各种碳素钢及合金钢。实际上,这些方程可以当作是一种定量尺度,广泛用于设计或选择钢种、制定或修订标准、控制熔炼成分等方面。此外,这也有助于建立关于成分、组织和性能的完整的计算体系。这为机械工程领域作出了巨大的贡献。

5.其他领域中的应用

对于其他领域,也基本没有用不上线代的地方。如搞建筑工程,那么奥运场馆鸟巢的受力分析需要线代的工具;石油勘探,勘探设备获得的大量数据所满足的几千个方程组需要你的线代知识来解决;做餐饮业,对于构造一份有营养的减肥食谱也需要解线性方程组;再比如气象方面,为了做天气和气象预报,有时往往根据诸多因素最后归结为解一个线性方程组。当然,这种线性方程组在求解时不能手算,而要在电子计算机上进行;又比如线性方程组在国民经济中的应用。为了预测经济形势,利用投入产出经济数学模型,也往往归结为求解一个线性方程组。

知道有限元方法吗?这个工程分析中十分有效的有限元方法,其基础就是

求解线性方程组。知道马尔科夫链吗?这个“链子”神通广大,在许多学科如生物学、商业、化学、工程学及物理学等领域中被用来做数学模型,实际上马尔科夫链是由一个随机变量矩阵所决定的一个概率向量序列。另外,矩阵的特征值和特征向量可以用在研究物理、化学领域的微分方程、连续的或离散的动力系统中,甚至数学生态学家用以在预测原始森林遭到何种程度的砍伐会造成猫头鹰的种群灭亡;大名鼎鼎的最小二乘算法广泛应用在各个工程领域里被用来把实验中得到的大量测量数据来拟合到一个理想的直线或曲线上,最小二乘拟合算法实质就是超定线性方程组的求解。

再比如现代飞行器外形设计,这个就需要先研究飞机表面的气流的过程。把飞行器的外形分成若干大的部件,每个部件沿着其表面又用三维的细网格划分出许多立方体,这些立方体包括了机身表面以及此表面内外的空气。对每个立方体列写出空气动力学方程,其中包括了与它相邻的立方体的共同边界变量,这些方程通常都已经简化为线性方程。

卫星遥感图象处理中,卫星上用三种可见光和四种红外光进行摄像,对每一个区域,可以获得七张遥感图象。利用多通道的遥感图可以获取尽可能多的地面信息,因为各种地貌、作物和气象特征可能对不同波段的光敏感。而在实用上应该寻找每一个地方的主因素,成为一张实用的图象。每一个象素上有七个数据,形成一个多元的变量数组,在其中合成并求取主因素的问题,就与线性代数中要讨论的特征值问题有关。

总结一下,线性代数的应用领域几乎可以涵盖所有的工程技术领域。

四、结束语

线性代在某些新兴领域里的发展都存在着非常大的技术难点,但随着科学技术的迅猛发展及其数学化的趋势,在未来,线性代数在计算机,计算机图形,计算机辅助设计,密码学,虚拟现实等技术中将会发挥更大的作用。它将会改变我们生活,将我们带进一个奇妙的世界。

线性代数应用实例

线性代数应用实例 ● 求插值多项式 右表给出函数()f t 上4个点的值,试求三次插值多项式230123()p t a a t a t a t =+++,并求(1.5)f 的近似值。 解:令三次多项式函数230123()p t a a t a t a t =+++过 表中已知的4点,可以得到四元线性方程组: ?????? ?=+++-=+++=+++=6 27931842033 210321032100 a a a a a a a a a a a a a 对于四元方程组,笔算就很费事了。应该用计算机求解了,键入: >>A=[1,0,0,0;1,1,1,1;1,2,4,8;1,3,9,27], b=[3;0;-1;6], s=rref([A,b]) 得到x = 1 0 0 0 3 0 1 0 0 -2 0 0 1 0 -2 0 0 0 1 1 得到01233,2,2,1a a a a ==-=-=,三次多项函数为23 ()322p t t t t =--+,故(1.5)f 近 似等于23 (1.5)32(1.5)2(1.5)(1.5) 1.125p =--+=-。 在一般情况下,当给出函数()f t 在n+1个点(1,2,,1)i t i n =+ 上的值()i f t 时,就可以用n 次多项式2012()n n p t a a t a t a t =++++ 对()f t 进行插值。 ● 在数字信号处理中的应用----- 数字滤波器系统函数 数字滤波器的网络结构图实际上也是一种信号流图。它的特点在于所有的相加节点都限定为双输入相加器;另外,数字滤波器器件有一个迟延一个节拍的运算,它也是一个线性算子,它的标注符号为z -1。根据这样的结构图,也可以用类似于例7.4的方法,求它 的输入输出之间的传递函数,在数字信号处理中称为系统函数。 图1表示了某个数字滤波器的结构图,现在要求出它的系统函数,即输出y 与输入u 之比。先在它的三个中间节点上标注信号的名称x1,x2,x3,以便对每个节点列写方程。

数学模型在《线性代数》教学中的应用实例(一)

数学模型在《线性代数》教学中的应用实例(一) 课 程: 线性代数 教 学 内 容: 矩阵 数 学 模 型: 生态学:海龟种群统计数据 该模型在高等数学教学应用的目的: 1. 通过生动有趣的实例激发学生的学习积极性,在分析问题和解决问题的过程中培养学生的创新意识。 2. 使学生掌握建立矩阵代数模型的基本过程,能熟练地将矩阵的知识应用于实际问题。培养学生将实际问题抽象成数学模型,又用数学模型的结果解释实际现象的能力。 3. 巩固矩阵的概念和计算。 生态学:海龟种群统计数据 管理和保护许多野生物种,依赖于我们建立种群的动态模型的能力。一个常规的建模技术是,把一个物种的生命周期划分为几个阶段。该模型假设:每阶段的种群规模只依赖于母海龟的种群数;每只母海龟能够存活到下一年的概率依赖于其处在生命周期的那个阶段,而与个体的具体年龄无直接关系。举例来说,可以用一个四阶段的模型来分析海龟种群的动态。 如果d i 表示第i 个阶段的持续时间,s i 表示该阶段的每年存活率,那么可以证明,在第i 阶段可以存活到下一年的比例是 111i i d i i i d i s p s s -??-= ?-?? 种群可以存活且在次年进入下一阶段的比例是 ()11i i d i i i d i s s q s -= - 如果用e i 表示第i 阶段的成员1年内产卵的平均数,构造矩阵

12341 2233 400000 p e e e q p L q p q p ?? ? ?= ? ??? 那么L 可以用来预测未来几年每阶段的种群数。上述形式的矩阵称为Leslie (莱斯利)矩阵,相应的种群模型有时也称为莱斯利种群模型。根据前面表格数据,我们模型的莱斯利矩阵是 0127790.670.73940000.000600000.810.8077L ?? ? ?= ? ??? 假设每阶段的初始种群数分别是200000、300000、500和1500,用向量x 0来表示,1年后 每阶段的种群数可以如下计算 100 0127792000001820000.670.73940030000035582000.000600500180000.810.807715001617x Lx ?????? ??? ? ??? ?=== ??? ? ??? ??????? (这里的计算进行了四舍五入)。为了得到2年后的种群数,再用矩阵L 乘一次。 2210x Lx L x == 一般来说,k 年后的种群数由公式0k k x L x =给出。为了了解更长时期的趋势,计算出x 10、 x 25和x 50,如下表所示。 这个模型预测50年后繁殖期的海龟总数下降了80%。 下面的文献[1]介绍了一个七阶段的种群动态模型,文献[2]是莱斯利原来那篇文章。 思考:海龟最终是否会灭绝?如果不灭绝,海龟种群数有无稳定值?该模型用到了那些数学知识?该模型可以进行怎样的推广? 参考文献 1. Crouse, Deborah T., Larry B. Crowder, and Hal Caswell, “A Stage-Based Population Model for Loggerhead Sea Turtles and Implications for Conservation,” Ecology , 68(5), 1987 2. Leslie, P. H., “On the Use of Matrices in Certain Population Mathematics,” Biometrika , 33, 1945.

线性代数(李建平)习题答案详解__复旦大学出版社

线性代数课后习题答案 习题一 1.2.3(答案略) 4. (1) ∵ (127435689)415τ=+= (奇数) ∴ (127485639)τ为偶数 故所求为127485639 (2) ∵(397281564)25119τ=+++= (奇数) ∴所求为397281564 5.(1)∵(532416)421106τ=++++= (偶数) ∴项前的符号位()6 11-=+ (正号) (2)∵325326114465112632445365a a a a a a a a a a a a = (162435)415τ=+= ∴ 项前的符号位5(1)1-=- (负号) 6. (1) (2341)(1)12n n τ-?L L 原式=(1)(1)!n n -=- (2)()((1)(2)21) 1(1)(2)21n n n n n n τ--??---??L L 原式=(1)(2) 2 (1) !n n n --=- (3)原式=((1)21) 12(1)1(1) n n n n n a a a τ-?--L L (1) 2 12(1)1(1)n n n n n a a a --=-L 7.8(答案略) 9. ∵162019(42)0D x =?-?+?--?= ∴7x = 10. (1)从第2列开始,以后各列加到第一列的对应元素之上,得 []11(1)1110 01(1)1110 (1)1 1 (1)1 1 1 x x n x x x n x x x n x x n x x +-+--==+-+--L L L L L L L L L L L L L L L L L L L L L []1(1)(1)n x n x -=+-- (2)按第一列展开: 11100000 (1)(1)0 0n n n n n y x y D x x y x y x y -++=?+-=+-L L L L L L L L

线性代数应用案例资料

线性代数应用案例

行列式的应用 案例1 大学生在饮食方面存在很多问题,多数大学生不重视吃早餐,日常饮 食也没有规律,为了身体的健康就需要注意日常饮食中的营养。大学生每天的配餐中需要摄入一定的蛋白质、脂肪和碳水化合物,下表给出了这三种食物提供的营养以及大学生的正常所需营养(它们的质量以适当的单位计量)。 试根据这个问题建立一个线性方程组,并通过求解方程组来确定每天需要摄入的上述三种食物的量。 解:设123,, x x x 分别为三种食物的摄入量,则由表中的数据可以列出下列 方程组 123231 23365113337 1.1352347445 x x x x x x x x ++=?? +=? ?++=? 利用matlab 可以求得 x = 0.27722318361443 0.39192086163701 0.23323088049177 案例2 一个土建师、一个电气师、一个机械师组成一个技术服务社。假设在 一段时间内,每个人收入1元人民币需要支付给其他两人的服务费用以及每个人的实际收入如下表所示,问这段时间内,每人的总收入是多少?(总收入=实际收入+支付服务费)

解:设土建师、电气师、机械师的总收入分别是123,,x x x 元,根据题 意,建立方程组 1232133 120.20.35000.10.47000.30.4600 x x x x x x x x x --=?? --=??--=? 利用matlab 可以求得 x = 1.0e+003 * 1.25648414985591 1.44812680115274 1.55619596541787 案例3 医院营养师为病人配制的一份菜肴由蔬菜、鱼和肉松组成,这份菜肴 需含1200cal 热量,30g 蛋白质和300mg 维生素c ,已知三种食物每100g 中的有关营养的含量如下表,试求所配菜肴中每种食物的数量。 解:设所配菜肴中蔬菜、鱼和肉松的数量分别为123,,x x x 百克,根据题意,建立方程组 12312312360300600120039630906030300 x x x x x x x x x ++=?? ++=? ?++=? 利用matlab 可以求得 x = 1.52173913043478 2.39130434782609

数学建模案例线性代数教学研究

数学建模案例线性代数教学研究 摘要:本文通过分析线性代数课程的特点和目前教学中出现的问题,从数学建模思想入手,结合几个案例探讨了线性代数中矩阵的概念与运算、特征值和特征向量的应用等知识点。具体阐述了将数学建模思想融入线性代数教学过程中的重要性,增强了学生利用数学建模思想解决实际问题的能力。 关键词:线性代数;数学建模;教学方法 线性代数是高校理工科专业大一新生的一门重要的公共基础课程,它不仅是很多高年级的课程的延伸和推广,而且它在数学、物理、控制科学、工程技术等领域也具有广泛的应用,特别是当前计算机科学技术人工智能的快速发展,使得线性代数的作用和地位得到更大的提升。因此,线性代数这门课程学习效果的好坏对学生知识能力的培养和后继课程的开展至关重要。但是,目前线性代数的教学仍然存在一些问题,具体表现为:第一,线性代数的教学模式偏重于理论教学,无法激起学生的学习兴趣。线性代数的概念多,理论性强,抽象晦涩,难以理解,更加加深了学生学习线性代数的难度,降低了学生的学习兴趣。第二,学生的基础较差,课程数较少,导致学生的学习困难。学生来源于不同的地区,生源素质差异较大,使得课堂出现两极分化现象,致使线性代数的教学质量无法全面提升。第三,教学中缺乏实际的应用背景,学生无法理解线性代数作为一门重要基础课程的意义。众所周知,数学建模就是根据实际问题建立数学模型,然后运用数学知识对模型求解,最后根据计算结果来解决实际问题的过程[1]。基于此,本文将数学建模的思想融入线性代数的教学过程中,通过适当引入典型的建模案例[2,3],达到吸引学生的注意力和学习兴趣的目的,从而活跃课堂教学氛围,提高教学效果。与此同时,在上课过程中讲授数学建模案例还可以增加老师和学生之间的互动性,丰富课堂教学的内容,开阔学生的眼界,使得原本抽象、枯燥乏味的概念和定理变得生动有趣,进而激发学生学习线性代数的兴趣,提升学生学习数学的素养。 1 数学建模案例在线性代数中的应用 线性代数教学中有许多定义和定理抽象晦涩、难以理解,学生上课中往往不知所云,更不知道学习了相关知识有什么作用。如果在教学过程中我们融入

同济大学线性代数第六版答案(全)

第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1)3811411 02---; 解 3 811411 02--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2221 11c b a c b a ; 解 2 221 11c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).

(4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3). 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ? ? ? (2n -1) 2 4 ? ? ? (2n ); 解 逆序数为2) 1(-n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个)

线性代数矩阵性及应用举例

线性代数矩阵性及应用举例

————————————————————————————————作者:————————————————————————————————日期:

华北水利水电学院线性代数解决生活中实际问题 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2012年11月7日

关于矩阵逆的判定及求逆矩阵方法的探讨 摘 要:矩阵的可逆性判定及逆矩阵的求解是高等代数的主要内容之一。本文给出 判定矩阵是否可逆及求逆矩阵的几种方法。 关键词:逆矩阵 伴随矩阵 初等矩阵 分块矩阵 矩阵理论是线性代数的一个主要内容,也是处理实际问题的重要工具,而逆矩阵在矩阵的理论和应用中占有相当重要的地位。下面通过引入逆矩阵的定义,就矩阵可逆性判定及求逆矩阵的方法进行探讨。 定义1 n 级方阵A 称为可逆的,如果n 级方阵B ,使得 AB=BA=E (1) 这里E 是n 级单位矩阵。 定义2 如果B 适合(1),那么B 就称为A 的逆矩阵,记作1 -A 。 定理1 如果A 有逆矩阵,则逆矩阵是唯一的。 逆矩阵的基本性质: 性质1 当A 为可逆阵,则A A 1 1 = -. 性质 2 若A 为可逆阵,则k kA A (,1 -为任意一个非零的数)都是可逆阵,且A A =--1 1)( )0(1)(1 1≠= --k A k kA . 性质3 111 ) (---=A B AB ,其中A ,B 均为n 阶可逆阵. 性质4 A ()()'11 '=--A . 由性质3有 定理2 若)2(,21≥n A A A n Λ是同阶可逆阵,则n A A A Λ21,是可逆阵,且21(A A 下面给出几种判定方阵的可逆性及求逆矩阵的方法: 方法一 定义法 利用定义1,即找一个矩阵B ,使AB=E ,则A 可逆,并且B A =-1 。 方法二 伴随矩阵法 定义3 设)(ij a A =是n 级方阵,用ij A 表示A 的),(j i 元的代数余子式)1,(n j i Λ=,

线性代数课程教学总结

线性代数课程教学总结 《线性代数课程教学总结》的范文,这里给大家。篇一:线性代数课程总结 线性代数精讲 曾经我学过线性代数,但是没有深入的学习,所有一直希望有一个机会能够深入学习线性代数的机会。没有想到的是,今年的选修课给了我这样一个机会。线性代数精讲,当我看到它的时候,毅然的选了这门选修课。 现在这学期快要结束了,当然这门选修课也即将结束,在这里我想总结一下这门选修课给我带来的帮助。首先从专业来说,对于学习计算机的人来说,数学的重要性不言而喻。打一个比方,数学就好比计算机的左膀右臂。对于想深入学习计算机的人来说,数学必须学得很好。所以线性代数这门课对我来说很重要,它与我们所讲的数据结构中的图有很大的联系。通过这门课程的学习,我已经深入了解了线性代数,它使我对原来学过的某些知识有种恍然大悟的感觉。以后我还会继续学习线性代数这门课程,我相信它给我带来的还远不止这些。 其次,从考研方面来说,对于考研考试中的数学试卷,线性代数占有很大的比重,这也显现出来线性代数对考研的学生来说有多么重要。我是一个将在后年要参加考研的学生,能听到线性代数精讲这样一门课,我很高兴。在这门课程的学习过程中,老

师深入地讲解了线性代数,让我的考研之路轻松了不少。而且,老师在将课的同时还插入例如考研真题,这是最让我感激的地方。有这样的辅导,我的线性代数还愁不过吗? 最后,我想从对实际生活的影响方面来说,生活中的思维模式是 数学思维模式的一种映射。从某一个方面来说吧,比如做数学中的证明题,每一步都不是凭空而来的,精品而是根据题中的实际要求一步一步推出来的,这就好比做生活中的某件事,如果没有一步一步踏踏实实的走过,是不可能有好的结果的。这门课的讲解,让我对数学的思维模式有了更深入地了解,对生活也有了更深入的认识。 通过这半学期的学习,让我学到了很多,我想说对老师说声谢谢。希望这门课能够一直的讲下去,让更多学弟学妹们受到帮助。 篇二:线性代数课程总结 线性代数课程总结 第一章行列式 1.1二阶、三阶行列式 (一)二阶行列式 (二)三阶行列式 1.2 (二)

同济大学线性代数第六版答案(全)

第一章行列式 1.利用对角线法则计算下列三阶行列式: (1)3 81141102---; 解3 81141102--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2 22111c b a c b a ; 解2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ). (4)y x y x x y x y y x y x +++.

解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2y -x 3-y 3-x 3 =-2(x 3+y 3). 2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; 解逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ??? (2n -1) 2 4 ??? (2n ); 解 逆序数为2 )1(-n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ?????? (2n -1)2, (2n -1)4, (2n -1)6,???, (2n -1)(2n -2)(n -1个) (6)1 3 ??? (2n -1) (2n ) (2n -2) ??? 2.

线性代数论文设计(矩阵在自己专业中地应用及举例)

矩阵在自己专业中的应用及举例

摘要: I、矩阵是线性代数的基本概念,它在线性代数与数学的许多分支中都有重要的应用,许多实际问题可以用矩阵表达并用相关的理论得到解决。 II、文中介绍了矩阵的概念、基本运算、可逆矩阵、矩阵的秩等容。 III、矩阵在地理信息系统中也有许多的应用,比如文中重点体现的在计算机图形学中应用。 关键词: 矩阵可逆矩阵图形学图形变换 正文: 第一部分引言 在线性代数中,我们主要学习了关于行列式、矩阵、方程、向量等相关性比较强的容,而这些容在我们专业的其他一些学科中应用也是比较广泛的,是其它一些学科的很好的辅助学科之一。因此,能够将我们所学的东西融会贯通是一件非常有意义的事,而且对我们的学习只会有更好的促进作用。在计算机图形学中矩阵有一些最基本的应有,但是概念已经与线性代数中的有一些不同的意义。在计算机图形学中,矩阵可以是一个新的额坐标系,也可以是对一些测量点的坐标变换,例如:平移、错切等等。在后面的文章中,我通过查询一些相关的资料,对其中一些容作了比较详细的介绍,希望对以后的学习能够有一定的指导作用。在线性代数中,矩阵也占据着一定的重要地位,

与行列式、方程、向量、二次型等容有着密切的联系,在解决一些问题的思想上是相同的。尤其他们在作为处理一些实际问题的工具上的时候。 图形变换是计算机图形学领域的主要容之一,为方便用户在图形交互式处理过程中度图形进行各种观察,需要对图形实施一系列的变换,计算机图形学主要有以下几种变换:几何变换、坐标变换和观察变换等。这些变换有着不同的作用,却又紧密联系在一起。 第二部分 研究问题及成果 1. 矩阵的概念 定义:由n m ?个数排列成的m 行n 列的矩阵数表 ????? ???????ann an an n a a a n a a a ΛM ΛM M K Λ212222111211 称为一个n m ?矩阵,其中an 表示位于数表中第i 行第j 列的数,i=1,2,3,…n ,又称为矩阵的元素。A,B 元素都是实数的矩阵称为实矩阵。元素属于复数的矩阵称为复矩阵。 下面介绍几种常用的特殊矩阵。 (1)行距阵和列矩阵 仅有一行的矩阵称为行距阵(也称为行向量),如 A=(a11 a12 .... a1n), 也记为 a=(a11,a12,.....a1n). 仅有一列的矩阵称为列矩阵(也称为列向量),如

线性代数教学方案(正式打印版)

第(1)次课授课时间()

基本内容备注第一节二、三阶行列式的定义 一、二阶行列式的定义 从二元方程组的解的公式,引出二阶行列式的概念。 设二元线性方程组 ? ? ? = + = + 2 2 22 2 21 1 2 12 1 11 b x a x a b x a x a 用消元法,当0 21 12 22 11 ≠ -a a a a时,解得 21 12 22 11 1 21 2 11 2 21 12 22 11 2 12 1 22 1 , a a a a b a b a x a a a a b a b a x - - = - - = 令 21 12 22 11 22 21 12 11a a a a a a a a - =,称为二阶行列式,则 如果将D中第一列的元素 11 a,21a换成常数项1b,2b,则可得到 另一个行列式,用字母 1 D表示,于是有 22 2 12 1 1a b a b D= 按二阶行列式的定义,它等于两项的代数和: 21 2 22 1 a b a b-,这就是公 式(2)中 1 x的表达式的分子。同理将D中第二列的元素a 12,a 22换 成常数项b1,b2 ,可得到另一个行列式,用字母 2 D表示,于是有 2 12 1 11 2b a b a D= 按二阶行列式的定义,它等于两项的代数和: 1 21 2 11 b a b a-,这就是公式 (2)中 2 x的表达式的分子。

于是二元方程组的解的公式又可写为 ? ? ? ?? ? ? = = D D x D D x 2 2 1 1 其中0 ≠ D 例1.解线性方程组. 1 2 12 2 3 2 1 2 1 ? ? ? ? ? = + = - x x x x 同样,在解三元一次方程组 ? ? ? ? ? = + + = + + = + + 3 3 33 2 32 1 31 2 3 23 2 22 1 21 1 3 13 2 12 1 11 b x a x a x a b x a x a x a b x a x a x a 时,要用到“三阶行列式”,这里可采用如下的定义. 二、三阶行列式的定义 设三元线性方程组 ? ? ? ? ? = + + = + + = + + 3 3 33 2 32 1 31 2 3 23 2 22 1 21 1 3 13 2 12 1 11 b x a x a x a b x a x a x a b x a x a x a 用消元法解得 定义设有9个数排成3行3列的数表 33 32 31 23 22 21 13 12 11 a a a a a a a a a 记 33 32 31 23 22 21 13 12 11 a a a a a a a a a D=32 21 13 31 23 12 33 22 11 a a a a a a a a a+ + = 33 21 12 32 23 11 31 22 13 a a a a a a a a a- - -,称为三阶行列式,则

大学线性代数练习试题及答案

第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λ s αs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2 η1+ 1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 9.设n阶方阵A不可逆,则必有()

线性代数的应用论文

论文:线性代数的应用与心得体会班级: 姓名: 学号: 指导老师: 完成时间:2014年10月20日

目录 【摘要】 (2) 【关键词】 (2) 一、线性代数被广泛运用的原因 (2) 二、线性代数在实际中的应用 (2) 1. 用二阶行列式求平行四边形面积,用三阶行列 式求平行六面面体 (2) 2. 希尔密码 (2) 3.在人们平常日常生活的应用——减肥配方的实 现 (3) 4、在城市人们出行的应用——交通流的分析 (4) 5、马尔可夫链 (5) 6、在人口迁移的应用人口迁徙模型 (5) 三、心得与体会 (7)

【摘要】我们对线性代数的了解大概是,线性代数理论有着悠久的历史和丰富的内容,还有其主要知识:矩阵、方程组和向量;我们也应该了解其在众多的科学技术领域和实际生活中的应用都十分广泛。下面就是看一些具体实例应用,和一些心得体会。 【关键词】线性代数;实际生活;应用实例;心得体会; 。 一、线性代数被广泛运用的原因 为什么线性代数得到广泛运用,也就是说,为什么在实际的科学研究中解线性方程组是经常的事,而并非解非线性方程组是经常的事呢? 原因之一,大自然的许多现象恰好是线性变化的,研究的是单个变量之间的关系。例如我们高中学过的物理学科中,物理可以分为机械运动、电运动、还有量子力学的运动。而比较重要的机械运动的基本方程是牛顿第二定律,即物体的加速度同它所受到的力成正比,其实这又恰恰符合基本的线性微分方程。再如电运动的基本方程是麦克思韦方程组,这个方程组表明电场强度与磁场的变化率成正比,而磁场的强度又与电场强度的变化率成正比,因此麦克思韦方程组也正好是线性方程组。 原因之二,之后随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,因为各种实际问题在大多数情况下可以线性化,而且由于计算机的发展,线性化了的问题又可以计算出来,所以,线性代数因这方面的成为了解决这些问题的有力工具而被广泛应用。 原因之三,在数学中线性代数与几何和代数有着不可分割的联系。线性代数所体现的几何观念与代数方法之间的联系,从具体概念变为抽象出来的公理化方法,对于强化人们的数学训练,增强科学性是非常有用的。 二、线性代数在实际中的应用 1.用二阶行列式求平行四边形面积,用三阶行列式求平行六面面体 2.希尔密码 希尔密码(Hill Password)是运用基本矩阵论原理的替换密码,由Lester S. Hill在1929年发明。每个字母当作26进制数字:A=0, B=1, C=2... 一串字母当成n维向量,跟一个n×n 的矩阵相乘,再将得出的结果模26。注意用作加密的矩阵(即密匙)在\mathbb_^n必须是可逆的,否则就不可能译码。只有矩阵的行列式和26互质,才是可逆的。 例题、 设明文为HPFRPAHTNECL,密钥矩阵为:

线性代数在企业生产中的应用

线性代数在企业生产中的应用 小组:第五组 系部:工商管理系 专业:市场营销 指导老师:赵梅春 提交日期:2015年5月27日

目录 线性代数在企业生产中的应用 (1) 摘要 (2) 简介 (3) 什么是线性代数 (3) 线性代数在经营管理领域中的应用 (4) 线性代数应用广泛的原因 (4) 相关知识 (5) 实例分析 (9) 1、价格平衡模型 (9) 2、生产总值问题 (11) 3、产品成本计算 (13) 4、投入产出数学模型 (14) 参考文献 (15) 致谢 (15)

摘要 线性代数是一门讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的学科。当代,睡着线性代数在企业生产领域的广泛应用,线性代数显得日益的重要。通过对线性代数知识的运用,企业可以预测市场变化、计算投资与回报、调节最优的生产模式等。科学地运用线性代数可以使企业生产更加适应当今不断变化的市场环境。可见,对线性代数研究的深浅将直接影响我国企业是否能在未来的生产中顺利发展。本文将围绕线性代数在企业生产中的应用,通过四个线性代数在企业生产中应用的实例,即运用线性代数建立投入产出模型、运用线性代数计算产品成本、运用线性代数解决生产总值问题等四个实例,目的在于通过对这四个实例的分析,来说明线性代数在企业生产中有着那些应用,并解释为什么这些应用对企业生产有着不可替代的重要作用,以及解答如何在企业生产中科学地运用小小大,而更重要的是,我们希望本文的研究成果,能为企业在运用线性代数解决生产问题这一方面提供科学有效的参考价值。 关键词:线性代数企业生产数学模型预测市场 Abstract

Linear algebra is a discussion of matrix theory, matrix binding and subject finite-dimensional vector space linear transformation theory. Contemporary, asleep linear algebra is widely used in the production field, linear algebra is becoming increasingly important. Through the use of linear algebra, companies can predict market changes, and return on investment calculation, adjusting optimal production mode. Scientific use of linear algebra can make production more responsive to today's ever-changing market environment. Seen on the depth of linear algebra will directly affect whether the smooth development of Chinese enterprises in the future production. This article will focus on linear algebra in the enterprise production, by way of example in the production of four linear algebra applied, that the use of linear algebra establish input-output model, using linear algebra calculation of product cost, using linear algebra to solve the problem of GDP four instances, the aim of the analysis by these four examples to illustrate the production of linear algebra with those applications, and explain why these applications on the production plays an irreplaceable role, and how to answer in enterprise production Little Big scientific use, but more importantly, we hope that results of this study can provide

线性代数原理的几个应用【文献综述】

毕业论文文献综述 数学与应用数学 线性代数原理的几个应用 一、前言部分 线性代数在数学、力学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位。在计算机飞速发展并且广泛应用的今天,计算机科学、统计学[1]、生物学、人口迁移模型等无不以线性代数为其理论和算法基础的一部分;该学科所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的。随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。 线性代数课程在大学数学中占有重要的地位,学习线性代数课程,无论是对于比较全面地培养学生的数学思维、提高数学素质还是进一步学习其他课程打下基础,都有着非常重要的理论和现实意义。而我国的线性代数课程偏重于理论的运算验证等,传统的线性代数教材追求逻辑的严密性和理论体系的完整性,重理论而轻视实践,剥离了概念、原理和范例的几何背景与现实意义,导致教学不尽如人意[2]。 本文主要利用建模思想应用线性代数知识解决实际问题,即从问题实例出发,建立数学模型[3],引入线性代数的基本知识点,回到实际应用中去。事实上用这种方式进行教学,可以培养学生的创新能力,提高学生分析和解决问题的能力。实际上线性代数自身理论正是在解决离散数学问题,建立数学模型的过程中发展起来的。 通过线性代数的学习,我们发现它和实际生活有着密切的联系。因此本文的写作目的就是把线性代数的有关知识运用到解决实际问题中去。在本文中,我主要通过几个实际例子,建立相应的数学建模进行研究分析。具体方案是先采集大量有关数据,然后运用线性代数原理等知识,借助MATLAB[4]等计算机工具对数据进行处理和分析,最后得到一个最优的策划方案。

重庆大学线性代数答案

习题一解答 1、 填空 (3)设有行列式 2 31118700123456 4021103152----=D 含因子453112a a a 的项 为 答:144038625) 1(54453123123 -=????-=-a a a a a 或018605)1(53453124124=????=-a a a a a (5)设 3 2 8814 4 1 2211111)(x x x x f --= ,0)(=x f 的根为 解:根据课本第23页例8得到)2)(2)(1)(22)(12)(12()(+-------=x x x x f 0)(=x f 的根为2,2,1- (6)设321,,x x x 是方程03 =++q px x 的三个根,则行列式1 3 2 213321x x x x x x x x x = 解:根据条件) )()((3213x x x x x x q px x ---=++,比较系数得到 0321=++x x x , q x x x -=321;再根据条件q px x --=131,q px x --=232,q px x --=333; 原行列式=-++33323 1 x x x =3213x x x 033)(321=+-++-q q x x x p (7)设 )(32142 1 4 3 1 4324321iJ a D ?== ,则44342414432A A A A +++= 解:44342414432A A A A +++相当于)(iJ a ?中第一列四个元素分别乘以第四列的代数余子式,其值为0. (8)设)(iJ a c d b a a c b d a d b c d c b a D ?== ,则44342414A A A A +++= 解 将D 按第四列展开得到44342414cA aA aA dA +++=c d b a a c b d a d b c d c b a ,第四列的元素全变成1,此时第四列与第二列对应成比例,所以44342414A A A A +++=0.

西南大学线性代数作业标准答案

第一次 行列式部分的填空题 1.在5阶行列式ij a 中,项a 13a 24a 32a 45a 51前的符号应取 + 号。 2.排列45312的逆序数为 5 。 3.行列式2 51122 1 4---x 中元素x 的代数余子式是 8 . 4.行列式1 02 325 4 3 --中元素-2的代数余子式是 —11 。 5.行列式2 51122 1 4--x 中,x 的代数余子式是 —5 。 6.计算0 000 0d c b a = 0 行列式部分计算题 1.计算三阶行列式 3 811411 02--- 解:原式=2×(—4)×3+0×(—1)×(—1)+1×1×8—1×(—1)× (—4)—0×1×3—2×(—1)×8=—4 2.决定i 和j ,使排列1 2 3 4 i 6 j 9 7 为奇排列. 解:i =8,j =5。 3.(7分)已知0010413≠x x x ,求x 的值. 解:原式=3x 2—x 2—4x=2 x 2—4x=2x(x —2)=0 解得:x 1=0;x 2=2 所以 x={x │x ≠0;x ≠2 x ∈R } 4.(8分)齐次线性方程组

?? ? ??=++=++=++000z y x z y x z y x λλ 有非零解,求λ。 解:()211 1 1 010001 1 111111-=--= =λλλλλD 由D=0 得 λ=1 5.用克莱姆法则求下列方程组: ?? ? ??=+-=++=++10329253142z y x z y x z y x 解:因为 33113 210421711 7021 0421911 701890421351132 1 5 421231 312≠-=?-?=-------=-------=)(r r r r r r D 所以方程组有唯一解,再计算: 81111021 29 4 2311-=-=D 1081 103229543112-==D 13510 13291 5 31213=-=D 因此,根据克拉默法则,方程组的唯一解是: x=27,y=36,z=—45 第二次 线性方程组部分填空题 1.设齐次线性方程组A x =0的系数阵A 的秩为r ,当r= n 时,则A x =0 只有零解;当A x =0有无穷多解时,其基础解系含有解向量的个数为 n-r .

北京邮电大学版 线性代数 课后题答案

习题 三 (A 类) 1. 设α1=(1,1,0),α2=(0,1,1),α3=(3,4,0).求α1-α2及3α1+2α2-α3. 解:α1-α2=(1,1,0)-(0,1,1)=(1,0,-1),3α1+2α2-α3=(3,3,0)+(0,2,2)-(3,4,0)=(0,1,2) 2. 设3(α1-α)+2(α2+α)=5(α3+α),其中α1=(2,5,1,3),α2=(10,1,5,10),α3=(4,1,-1,1).求α. 解:由3(α1-α)+2(α2+α)=5(α3+α) 整理得:α=1 6(3α1+2α2-5α3),即α=16 (6,12,18,24) =(1,2,3,4) 3.(1)× (2)× (3)√ (4)× (5)× 4. 判别下列向量组的线性相关性. (1)α1=(2,5), α2=(-1,3); (2) α1=(1,2), α2=(2,3), α3=(4,3); (3) α1=(1,1,3,1),α2=(4,1,-3,2),α3=(1,0,-1,2); (4) α1=(1,1,2,2,1),α2=(0,2,1,5,-1),α3=(2,0,3,-1,3),α4=(1,1,0,4,-1). 解:(1)线性无关;(2)线性相关;(3)线性无关;(4)线性相关. 5. 设α1,α2,α3线性无关,证明:α1,α1+α2,α1+α2+α3也线性无关. 证明:设 112123123()()0,k k k αααααα+++++= 即 123123233()()0.k k k k k k ααα+++++= 由123,,ααα线性无关,有 123233 0,0,0.k k k k k k ++=?? +=??=? 所以1230, k k k ===即 112123,,αααααα+++线性无关. 6.问a 为何值时,向量组 '''123(1,2,3),(3,1,2),(2,3,)a ααα==-= 线性相关,并将3α用12,αα线性表示. 解: 1 3 2 2137(5),32A a a =-=-当a =5时, 312111.77ααα= +

相关主题
文本预览
相关文档 最新文档