当前位置:文档之家› 高频实验报告_电容反馈LC振荡器实验报告

高频实验报告_电容反馈LC振荡器实验报告

高频实验报告_电容反馈LC振荡器实验报告
高频实验报告_电容反馈LC振荡器实验报告

电容反馈LC 振荡器实验报告

学号 200805120109 姓名 刘皓 实验台号

实验结果及数据

(一)静态工作点(晶体管偏置)不同对振荡器振荡频率、幅度和波形的影响 1、K 1、K 2 均置于1—2,K 3、K 4断开,用示波器和频率计在B 点监测。调整DW 1,使振荡器振荡;微调C 6,使振荡频率在4MHz 左右。

2、调整DW 1,使BG 1工作电流E Q I 逐点变化,E Q I 可用万用表在A 点通过测量发射极电阻R 4两端的电压得到(R 4=1k Ω)。振荡器工作情况变化及测量结果如表1所示:

表1 静态工作点变化对振荡器的影响

最佳静态工作点E Q V = 2.0V E Q I 2.0mA (二)反馈系数不同对振荡器振荡频率、幅度和波形的影响

保持静态工作点电流为最佳值,即调整DW 1使振荡输出幅度尽量大且不失真。改变K 1、K 2的位置,即选用不同反馈系数,振荡器工作变化情况及测量结果如表2所示:。

表2 反馈系数变化对振荡器的影响 测量条件:E Q I = m A

该工作点下的最佳反馈系数是:

E Q I = 2.0m A C 2= 300 p

F C 3= 300 pF

(三)振荡器频率范围测量

在最佳反馈条件下,调整C 5从最大到最小,观察并记录振荡器的振荡频率的变化。

m in f = 3.80 MHz m ax f = 4.22MHz

(四)负载变化对振荡器的影响

1、K 3断开的情况下,将振荡器的振荡频率调整到4MHz 左右,此时频率osc f = 3.95 MHz ,幅度opp V = 0.75 V 。

2、将K 3分别接1—2、1—

3、1—4的位置,即接入不同的负载电阻R 5,测得的相应的频率和幅度及计算结果如表3所示。

表3 负载变化对振荡器的影响 测量条件:osc f = 3.95 MHz ,幅度opp V = 0.75 V

由表3知:

负载变化对振荡器工作频率的影响是:

负载变化保证振荡的前提下对工作频率的影响较小。

负载变化对振荡器输出幅度的影响是: 输出幅度随着负载阻抗的减小而减小。 思考题

1, 在克拉伯振荡电路中,若RW 增大到某一值时,电路停止振荡,试说明原因。 答:RW 控制直流偏置,RW 增大到某一值,三极管进入饱和或者截至区,不能正常工作,所以振荡停止。

2, 在克拉伯振荡电路中,若C3减小到某一值时,电路停止振荡,试说明原因。

答:当C3减小很多时,回路总电容约等于C3,C3太小,总电容很小,无法起振。 3,同一振荡电路中,静态工作点不同时,振荡器的输出幅度也不相同,为什么? 答:直流工作点不相同,三极管的放大倍数不同,输出幅度也就不同。 4,为什么反馈系数太大会影响振荡器的起振?

答:反馈系数会对回路的Q 值 产生影响,,反馈系数越大,Q 值越小,振荡器起振越困难。 5,测量频率可以用频率以也可以用示波器,各有什么优缺点?

答:频率仪可以准确测量频率动态变化,但是不能得到幅值的数据;示波器对频率的反应比较慢而其不够准确,但可以全面直观的反应信号的幅值和频率。 6,西勒振荡电路和克拉泼振荡电路的差别在何处,各有什么特点?

答:西勒电路是在克拉泼电路的基础上,在电感L 两端并联了可变电容。

克拉泼电路是在电容三点式振荡电路的电感支路上串进了一个小电容C 而构成的(C 3对交流短路,属共基组态)。C 1、C 2、C 及L 组成谐振回路,当C << C 1、C <

上式可见,振荡频率基本上与C 1、C 2无关,因此,可选C 1、C 2的值远大于极间电容,这就减小了极间电容变化对振荡频率的影响,提高了振荡频率的稳定性。

席勒振荡电路,它是在串联型电容三点式振荡电路的电感L 旁并接了一个电容C 而构成的。 由于LC 回路的谐振电阻R 0反射到三极管集、射极间的等效负载电阻

osc ω=

而C3>C,当C变小时,变化程度不如式GS0813那样显著,从而削弱了振荡幅度受频率改变的影响。因此,席勒振荡电路的频率调节范围较克拉泼电路要宽,由图I0823可知,当C3<

7,西勒和克拉泼电路都比较难起振,为什么?

答:西勒电路和克拉泼电路是以牺牲环路增益为代价换取回路标准性的提高。环路增益越小,越不易起振。

8,如果改变电源电压或使晶体管温度升高,振荡器的输出幅度和频率是否会发生变化?答:会的,以为电源电压和晶体管温度的升高会改变晶体管的放大倍数甚至使晶体管进入饱和或者截至区,所以会改变振荡器的输出幅度和频率。

电容三点式震荡电路的设计..

北方民族大学课程设计报告 院(部、中心)电气信息工程学院 姓名郭佳学号 21000065 专业通信工程班级 1 同组人员 课程名称通信电路课程设计 设计题目名称 500KHz电容三点式LC正弦波振荡器的设计起止时间2013.3.4——2013.4.28 成绩 指导教师签名 北方民族大学教务处制

摘要 本次课设介绍了电容三点式高频振荡电路的设计方法,反馈振荡器的原理和分析以及电容三点式电路参数的计算,并利用其它相关电路为辅助工具来调试放大电路,解决了放大电路中经常出现的自激振荡问题和难以准确的调谐问题。同时也给出了具体的理论依据和调试方案,从而实现了快速、有效的分析和制作,振荡器电路。并以500KHz的振荡器为例,利用multisim制作仿真的模型。 关键字:电容三点式振荡仿真

目录 目录 (3) 1、概述 (4) 2、三点式电容振荡器 (5) 2.1 反馈振荡器的原理和分析 (5) 2.2 电容三点式参数 (6) 2.3设计要求 (8) 3、电路设计 (8) 4 、调试与总结 (10) 1 仿真 (10) 2、总结: (11) 5、心得体会 (11)

1、概述 振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。凡是可以完成这一目的的装置都可以作为振荡器。 一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持下去。选频网络则只允许某个特定频率 f 能通过,使振荡器产生单一频率的输出。 振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个 是反馈电压 U f 和输入电压 U i 要相等,这是振幅平衡条件。二是U f 和U i 必 须相位相同,这是相位平衡条件,也就是说必须保证是正反馈。一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。 振荡器的用途十分广泛,它是无线电发送设备的心脏部分,也是超外差式接收机的主要部分各种电子测试仪器如信号发生器、数字式频率计等,其核心部分都离不开正弦波振荡器。功率振荡器在工业方面(例如感应加热、介质加热等)的用途也日益广阔。 正弦波是电子技术、通信和电子测量等领域中应用最广泛的波形之一。能够产生正弦波的电路称为正弦波振荡器。通常,按工作原理的不同,正弦振荡器分为反馈型和负载型两种,前者应用更为广泛。在没有外加输入信号的条件下,电路自动将直流电源提供的能量转换为具有一定频率、一定波形和一定振幅的交变振荡信号输出。

压控振荡器实验报告

微波与天线实验报告 实验名称:压控振荡器 实验指导:黎鹏老师 一、实验目的: 1.了解变容二极管的基本原理与压控振荡器的设计方法。 2.利用实验模组的实际测量使学生了解压控振荡器的特性。 3.学会使用微波软件对压控振荡器进行设计和仿真,并分析结果。 二、预习内容: 1.熟悉VCO的原理的理论知识。 2.熟悉VCO的设计的有关的理论知识。

三、实验设备: 项次设备名称数量备注 1 MOTECH RF2000 测量仪1套亦可用网络分析仪 2 压控振荡器模组1组RF2KM9-1A 3 50Ω BNC及1MΩ BNC 连接线4条CA-1、CA-2 、CA-3、CA-4 4 直流电源连接线1条DC-1 5 MICROWAVE软件1套微波软件 四、实验步骤 1、硬件测量: 1.对MOD-9,压控振荡器的频率测量以了解压控振荡电路的特性。 2.准备电脑、测量软件、RF-2000,相关模组,若干小器件等。 3.测量步骤: MOD-9之P1端子的频率测量: ⑴设定 RF-2000测量模式:COUNTER MODE. ⑵用DC-1连接线将RF-2000后面12VDC 输出端子与待测模组之12VDC 输入端子连接起来。 ⑶针对模组P1端子做频率测量。 ⑷调整模组之旋钮,并记录所量测频率值: 最大_623_______ MHZ。 最小___876_____ MHZ。 4.实验记录:填写各项数据即可。 5.硬件测量的结果建议如下为合格: RF2KM9-1A MOD-9 fo 600-900MHZ Pout≥5dBm 6.待测模组方框图: 2、软件仿真: 1、进入微波软件。 2、在原理图上设计好相应的电路,设置好端口,完成频率设置、尺寸规范、 器件的加载、仿真图型等等的设置。

用示波器测电容实验报告

用示波器测电容 摘要:电容在交流电路中电压发生了变化,相位也发生了变化,而通过示波器可以清楚的观察到这些变化,本实验利用示波器和电容的交流特性,通过实验得出谐振频率的特殊值进而通过公式计算,得出电容器的电容值大小。 关键词:电容RLC谐振频率阻抗相位差电流峰值 一、引言 电容是电容器的参数之一,对于解决生活及实验中的实际问题,有着很重要的作用,不同电容的电容器因所需不同而被应用在不同的地方,在实验中测电容器的电容,已成为大学物理实验中很重要的一个环节,在此实验中,我们用示波器测量电容的容量,该方法操作简单,且能加深我们对电容和电容性质的理解,巩固我们所学的知识。 二、实验任务利用示波器测量电容器的电容量C。 三、实验仪器 200欧姆电阻一个,10mH电感一个,信号发生器一台, 双踪示波器一台,面包板一个, 电容一个,导线若干。 四、实验原理 测RLC谐振频率 RLC串联电路如图1所示: 所加交流电压U(有效值)的角频率为w,则电路的的复阻抗 为: 复阻抗模为: 复阻抗的幅角: 即该电路电流滞后于总电压的位差值。回路中的电流I(有效值)为 上面三式中Z﹑﹑I均为频率f(或角频率,)的函数,当回路中其他元件参数取确定值的情况下,它们的特性完全取决于频率。 图2(a)(b)(c)分别为RLC串联电路的阻抗,相位差,电流随频率的变化曲线。

其中(b)图-f曲线称为相频特性曲线;(c)图i-f曲线称为幅频特性曲线。由曲线图 可以看出,存在一个特殊的频率特点为 (1)当f<时,<0,电流相位超前于电压,整个电路 呈电容性。 (2)当f>时,>0,电流相位滞后于电压,整个电路 呈电感性。 (3)当时,即或 时,=0,表明电路中电流I和电压 U同相位,整个电路呈纯电阻性。 这就是串联电路谐振现象,此时电路总阻抗的模最小,电流达到极大值,易知只要调节f﹑L﹑C中任意一个量,电路就能达到谐振。 根据LC谐振回路的谐振频率或可求得。 五、实验内容(或步骤) 1.电路连接如图1,其中L=10mH,R=,U=2V。 2.用万用电表测出待测电容。 3.调节信号发生器的频率同时观察两端电压变化,当调至某一频率时,电压最大,测得这个最大值及信号的周期(或频率)。 4.由这个最大值的周期(或频率)计算出电容的值。 六、数据处理和分析 测RLC谐振频率数据记录表 5.9 6.9 7.9 8.910.911.912.913.914.915.916.917.9 f (KHZ) 331362393412434442431421402390381372 (mv)

正弦波振荡器设计multisim(DOC)

摘要 自激式振荡器是在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅值的交变能量电路。正弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。基于频率稳定、反馈系数、输出波形、起振等因素的综合考虑,本次课程设计采用电容三点式振荡器,运用multisim软件进行仿真。根据静态工作点计算出回路的电容电感取值,得出输出频率与输出幅度有效值以达到任务书的要求。 关键词:电容三点式;振荡器;multisim;

目录 1、绪论 (1) 2、方案的确定 (2) 3、工作原理、硬件电路的设计和参数的计算 (3) 3.1 反馈振荡器的原理和分析 (3) 3.2. 电容三点式振荡单元 (4) 3.3 电路连接及其参数计算 (5) 4、总体电路设计和仿真分析 (6) 4.1组建仿真电路 (6) 4.2仿真的振荡频率和幅度 (7) 4.3误差分析 (8) 5、心得体会 (9) 参考文献 (10) 附录 (10) 附录Ⅰ元器件清单 (10) 附录Ⅱ电路总图 (11)

1、绪论 振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。凡是可以完成这一目的的装置都可以作为振荡器。一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持 下去。选频网络则只允许某个特定频率0f能通过,使振荡器产生单一频率的输出。 振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个是反馈电压 U和输入电压i U要相等,这是振幅平衡条件。二是f U和i U必须相位相同,这是相位f 平衡条件,也就是说必须保证是正反馈。一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。 本次课程设计我设计的是电容反馈三点式振荡器,电容三点式振荡器,也叫考毕兹振荡器,是自激振荡器的一种,这种电路的优点是输出波形好。电容三点式振荡器是由串联电容与电感回路及正反馈放大器组成。因振荡回路两串联电容的三个端点与振荡管三个管脚分别相接而得名。 本课题旨在根据已有的知识及搜集资料设计一个正弦波振荡器,要求根据给定参数设计电路,并利用multisim仿真软件进行仿真验证,达到任务书的指标要求,最后撰写课设报告。报告内容按照课设报告文档模版的要求进行,主要包括有关理论知识介绍,电路设计过程,仿真及结果分析等。 主要技术指标:输出频率9 MHz,输出幅度(有效值)≥5V。

电容三点式振荡器-高频课设

1 概述 振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。凡是可以完成这一目的的装置都可以作为振荡器。 一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持下去。选频网络则只允许某个特定频率 f 能通过,使振荡器产生单一频率的输出。 振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个是反馈电 压 U f 和输入电压 U i 要相等,这是振幅平衡条件。二是U f 和U i 必须相位相同,这是 相位平衡条件,也就是说必须保证是正反馈。一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。 振荡器的用途十分广泛,它是无线电发送设备的心脏部分,也是超外差式接收机的主要部分各种电子测试仪器如信号发生器、数字式频率计等,其核心部分都离不开正弦波振荡器。功率振荡器在工业方面(例如感应加热、介质加热等)的用途也日益广阔。 正弦波是电子技术、通信和电子测量等领域中应用最广泛的波形之一。能够产生正弦波的电路称为正弦波振荡器。通常,按工作原理的不同,正弦振荡器分为反馈型和负载型两种,前者应用更为广泛。在没有外加输入信号的条件下,电路自动将直流电源提供的能量转换为具有一定频率、一定波形和一定振幅的交变振荡信号输出。

2 三点式电容振荡器 2.1 反馈振荡器的原理和分析 反馈振荡器原理方框图如图2.1所示。反馈型振荡器是由放大器和反馈网络组成的一 个闭合环路,放大器通常是以某种选频网络(如振荡回路)作负载,是一个调谐放大器。 图2.1 反馈振荡器方框图 为了能产生自激振荡,必须有正反馈,即反馈到输入端的自你好与放大器输入端的信号相位相同。定义A (S )为开环放大器的电压放大倍数: ) () ()(S U S U S A i o = F(S)为反馈网络的电压反馈系数: ) () ()('S U S U S F o i = )(S A f 为闭环电压放大倍数: ) ()(1) ()()()(S F S A S A s U s U S A i o f ?-== 在振荡开始时,由于激励信号较弱,输出电压的振幅o U 则比较小,此后经过不断放大与反馈循环,输出幅度o U 开始逐渐增大,为了维持这一过程使输出振幅不断增加,应使反馈回来的信号比输入到放大器的信号大,即振荡开始时应为增幅振荡,即: 1)( jw T 因此起振的振幅条件是:

BZ振荡反应-实验报告

B-Z 振荡反应 实验日期:2016/11/24 完成报告日期:2016/11/25 1 引言 1.1 实验目的 1. 了解Belousov-Zhabotinski 反应(简称B-Z 反应)的机理。 2. 通过测定电位——时间曲线求得振荡反应的表观活化能。 1.2 实验原理 对于以B-Z 反应为代表的化学振荡现象,目前被普遍认同的是Field ,kooros 和Noyes 在1972年提出的FKN 机理,,他们提出了该反应由萨那个主过程组成: 过程A ① ② 式中 为中间体,过程特点是大量消耗。反应中产生的能进一步反应,使 有机物MA 如丙二酸按下式被溴化为BrMA, (A1) (A2) 过程B ③ ④ 这是一个自催化过程,在消耗到一定程度后, 才转化到按以上③、④两式 进行反应,并使反应不断加速,与此同时,催化剂氧化为。在过程B 的③和④中,③的正反应是速率控制步骤。此外, 的累积还受到下面歧化反应的制约。 ⑤ 过程C MA 和使离子还原为,并产生(由)和其他产物。 这一过程目前了解得还不够,反应可大致表达为: ⑥2++f +2+其他产物 式中f 为系数,它是每两个离子反应所产生的数,随着与MA 参加反应 的不同比例而异。过程C 对化学振荡非常重要。如果只有A 和B ,那就是一般的自催化反应或时钟反应,进行一次就完成。正是由于过程C ,以有机物MA 的消耗为代价,重新得到和,反应得以重新启动,形成周期性的振荡。 322BrO Br H HBrO HOBr --+++→+22HBrO Br H HOBr -+++→2 HBrO Br - HOBr 22HOBr Br H Br H O -+++→+2Br MA BrMA Br H -+ +→++32222BrO HBrO H BrO H O -++++342222222BrO Ce H HBrO Ce ++ ++→+Br - 2 HBrO 3Ce + 4Ce + 2 HBrO 232HBrO BrO HOBr H -+ →++BrMA 4Ce + 3Ce + Br - BrMA 4Ce + MA BrMA →Br - 3Ce + 4Ce + Br - BrMA Br - 3Ce +

传感器实验报告 (2)

传感器实验报告(二) 自动化1204班蔡华轩 U201113712 吴昊 U201214545 实验七: 一、实验目的:了解电容式传感器结构及其特点。 二、基本原理:利用平板电容C=εA/d 和其它结构的关系式通过相应的结 构和测量电路可以选择ε、A、d 中三个参数中,保持二个参数不变,而 只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。 三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏 检波、滤波模板、数显单元、直流稳压源。 四、实验步骤: 1、按图6-4 安装示意图将电容传感器装于电容传感器实验模板上。 2、将电容传感器连线插入电容传感器实验模板,实验线路见图7-1。图 7-1 电容传感器位移实验接线图 3、将电容传感器实验模板的输出端V01 与数显表单元Vi 相接(插入主控 箱Vi 孔),Rw 调节到中间位置。 4、接入±15V 电源,旋动测微头推进电容传感器动极板位置,每间隔0.2mm 图(7-1) 五、思考题: 试设计利用ε的变化测谷物湿度的传感器原理及结构,并叙述一 下在此设计中应考虑哪些因素? 答:原理:通过湿度对介电常数的影响从而影响电容的大小通过电压表现出来,建立起电压变化与湿度的关系从而起到湿度传感器的作用;结构:与电容传感器的结构答大体相同不同之处在于电容面板的面积应适当增大使测量灵敏度更好;设计时应考虑的因素还应包括测量误差,温度对测量的影响等

六:实验数据处理 由excle处理后得图线可知:系统灵敏度S=58.179 非线性误差δf=21.053/353=6.1% 实验八直流激励时霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。 它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。 根据霍尔效应,霍尔电势UH=KHIB,当霍尔元件处在梯度磁场中 运动时,它就可以进行位移测量。图8-1 霍尔效应原理 三、需用器件与单元:霍尔传感器实验模板、霍尔传感器、直流源±4V、± 15V、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器按图8-2 安装。霍尔传感器与实验模板的连接 按图8-3 进行。1、3 为电源±4V,2、4 为输出。图8-2 霍尔 传感器安装示意图 2、开启电源,调节测微头使霍尔片在磁钢中间位置再调节RW2 使数显表指示为零。

电容三点式振荡器电路设计与实现

郑州轻工业学院本科 通信电子线路课程设计总结报告 设计题目:电容三点式振荡器电路设计与实现 学生姓名:赵玉春 系别:计算机与通信工程学院信息与通信工程系专业:通信工程 班级:08级1班 学号:58号 指导教师:曹瑞、黄敏 2010年12月25日

郑州轻工业学院 课程设计任务书 题目:电容三点式振荡器电路设计与实现 专业、班级通信工程08-1学号 58姓名赵玉春 主要内容、基本要求、主要参考资料等: 1、主要内容 1) 焊接振荡器电路板。 2) 通过LC振荡器和晶体振荡器输出的波形,对比分析LC振荡器与晶体振荡器的频率稳定度。 2、基本要求 元器件排放错落有致,节点焊接正确,设计结构设合理,实验数据可靠,结果输出稳定。 3、主要参考资料 [1]张启民编著.通信电子线路.西安:西安电子科技大学出版社,2004. [2]董尚斌等编.通信电子线路.北京:清华大学出版社,2007. [3]顾宝良编著.通信电子线路教程.北京:电子工业出版社,2007. 完成期限:2010年12月25日 指导教师签名: 课程负责人签名: 2010年12月25日

目录 1、设计题目 (4) 2、设计内容 (4) 3、设计思路 (4) 4、设计原理 (4) 5、运行结果 (9) 6、实验体会 (10) 7、参考文献 (11)

一:设计题目: 电容三点式振荡器电路设计与实现 二:设计内容: 1) 振荡器电路板的设计与焊接。 2) 调节LC振荡器和晶体振荡器中静态工作点,并了解反馈系数及负载对振荡器的影响。 3) 测试、分析比较LC振荡器与晶体振荡的稳定状况。 三:设计思路: 焊接一个符合电容三点式的电路板,电路板上包含有LC振荡电路和集体震荡器震荡电路。 焊接好电路板之后,调节LC振荡器和晶体振荡器的静态工作点。 观察LC振荡器和晶体振荡器的波形图,同时对LC振荡器和晶体振荡器所产生的波形图进行对比分析。 四:设计原理: 本次实验首先需要焊接电路板,在焊接电路板时需要注意一些节点的焊接,同时避免焊接时出现短路现象。 本次实验验中振荡器包含电容反馈LC三端振荡器和一个晶体振荡器。振荡电路主要由振荡回路模块、偏置电路模块、输出缓冲电路模块组成。它选择主要是根据所给定的工作频率(或工作频段)频率稳定度的要求。因为设计的电路要求是高频信号,故选择LC振荡电路或晶体振荡电路,现在分别应用这两种电路,分别比较它们的频稳性。 1) 三点式震荡电路的基本模型

最新压控LC电容三点式振荡器设计及仿真

实验二压控 LC 电容三点式振荡器设计及仿真1 2 一、实验目的 3 1、了解和掌握LC 电容三点式振荡器电路组成和工作原理。 4 2、了解和掌握压控振荡器电路原理。 5 3、理解电路元件参数对性能指标的影响。 6 4、熟悉电路分析软件的使用。 7 二、实验准备 8 1、学习LC 电容三点式西勒振荡器电路组成和工作原理。 9 2、学习压控振荡器的工作原理。 10 3、认真学习附录相关内容,熟悉电路分析软件的基本使用方法。 11 三、设计要求及主要指标 12 1、采用电容三点式西勒振荡回路,实现振荡器正常起振,平稳振荡。 13 2、实现电压控制振荡器频率变化。 14 3、分析静态工作点,振荡回路各参数影响,变容二极管参数。 15 4、振荡频率范围:50MHz~70MHz,控制电压范围3~10V。 16 5、三极管选用MPSH10(特征频率最小为650MHz,最大IC 电流50mA,可 17 满足频率范围要求),直流电压源12V,变容二极管选用MV209。 18 四、设计步骤

19 1、整体电路的设计框图 20 整个设计分三个部分,主体为LC 振荡电路,在此电路基础上添加压控部分, 21 22 设计中采用变容二极管MV209 来控制振荡器频率,由于负载会对振荡电路的频 23 24 率产生影响,所以需要添加缓冲器隔离以使振荡电路不受负载影响。 25 2、LC 振荡器设计 26 27 首先应选取满足设计要求的放大管,本设计中采用MPSH10 三极管,其特征频28 率f T=1000MHz。LC 振荡器的连接方式有很多,但其原理基本一致,本实验中29 采用电容三点式西勒振荡电路的连接方式,该振荡电路在克拉泼振荡电路的基30 础上进行了细微的改良,增加了一个与电感L 并联的电容,主要利用其改变频31 率而不对振荡回路的分压比产生影响的特点。电路图如下所示:

高频课程设计_LC振荡器_克拉泼.(DOC)

高频电子线路课程设计报告设计题目:高频正弦信号发生器 2015年 1月 6 日

目录 一、设计任务与要求 (1) 二、设计方案 (1) 2.1电感反馈式三端振荡器 (2) 2.2电容反馈式三端振荡器 (2) 2.3克拉波电路振荡器 (6) 三、设计内容 (8) 3.1LC振荡器的基本工作原理 (8) 3.2克拉泼电路原理图 (9) 3.2.1振荡原理 (9) 3.3克拉泼振荡器仿真 (10) 3.4.1软件简介 (10) 3.4.2进行仿真 (10) 3.4.3电容参数改变对波形的影响 (11) 四、总结 (17) 五、主要参考文献 (18) 六、附录.................................................................................... .. (18)

一、设计任务与要求 为了熟悉《高频电子线路》课程中所学到的知识,在本课程设计中,我和队友(石鹏涛、甘文鹏)对LC正弦波振荡器进行了分析和研究。通过对几种常见的振荡器(电感反馈式三端振荡器、电容反馈式三端振荡器、改进型电容反馈式振荡器)进行分析论证,我们最终选择了克拉泼振荡器。 在本次课程设计中,设计要求产生10~20Mhz的振荡频率。振荡器的种类很多,适用的范围也不相同,但它们的基本原理都是相同的,都由放大器和选频网络组成,都要满足起振,平衡和稳定条件。然后通过所学的高频知识进行初步设计,由于受实践条件的限制,在设计好后,我利用了模拟软件进行了仿真与分析。为了学习Multisim软件的使用,以及锻炼电子仿真的能力,我们选用的仿真软件是Multisim11.0版本,该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。NI Multisim软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。 最后我们利用了仿真软件对电路进行了一写的仿真分析,如改变电容的参数,分析对电路产生的影响等,再考虑输出频率和振幅的稳定性,得到了与理论值比较相近的结果,这表明电路的原理设计是比较成功的,本次课程设计也是比较成功的。 二:设计方案 通过学习高频电子线路的相关知识,我们知道LC正弦波振荡器主要有电感反馈式三端振荡器、电容反馈式三端振荡器以及改进型电容反馈式振荡器(克拉波电路)等。通过老师所讲和查阅相关资料可知,克拉泼振荡电路具有该电路频率稳定性非常高,振幅稳定,适合做波段振荡器等优点。所以在本设计中拟采用改进型电容反馈式--克拉泼电路振荡器。 下面对几种振荡器进行分析论证: 2.1电感反馈式三端振荡器

(完整版)整流滤波电路实验报告

整流滤波电路实验报告 姓名:XXX 学号:5702112116 座号:11 时间:第六周星期4 一、实验目的 1、研究半波整流电路、全波桥式整流电路。 2、电容滤波电路,观察滤波器在半波和全波整流电路中的滤波效果。 3、整流滤波电路输出脉动电压的峰值。 4、初步掌握示波器显示与测量的技能。 二、实验仪器 示波器、6v交流电源、面包板、电容(10μF*1,470μF*1)、变阻箱、二极管*4、导线若干。 三、实验原理 1、利用二极管的单向导电作用,可将交流电变为直流电。常用的二极管整 流电路有单相半波整流电路和桥式整流电路等。 2、在桥式整流电路输出端与负载电阻RL并联一个较大电容C,构成电容滤 波电路。整流电路接入滤波电容后,不仅使输出电压变得平滑、纹波显著成小,同时输出电压的平均值也增大了。 四、实验步骤 1、连接好示波器,将信号输入线与6V交流电源连接,校准图形基准线。 2、如图,在面包板上连接好半波整流电路,将信号连接线与电阻并联。

3、如图,在面包板上连接好全波整流电路,将信号输入线与电阻连接。

4、在全波整流电路中将电阻换成470μF的电容,将信号接入线与电容并联。 5、如图,选择470μF的电容,连接好整流滤波电路,将信号接入线与电阻并联。 改变电阻大小(200Ω、100Ω、50Ω、25Ω)

200Ω100Ω50Ω

25Ω 6、更换10μF的电容,改变电阻(200Ω、100Ω、50Ω、25Ω)200Ω 100Ω

50Ω 25Ω 五、数据处理 1、当C 不变时,输出电压与电阻的关系。 输出电压与输入交流电压、纹波电压的关系如下: avg)r m V V V (输+= 又有i avg R C V ??=输89.2V )(r 所以当C 一定时,R 越大 就越小 )(r V avg 越大 输V

四LC电容反馈式三点式振荡器

实验四 LC 电容反馈式三点式振荡器 一、实验目的 1. 掌握LC 三点式振荡电路的基本原理,掌握LC 电容反馈式三点振荡电路 的设计及电路参数计算; 2. 掌握振荡回路Q 值对频率稳定度的影响; 3. 弄清振荡器反馈系数不同时,静态工作电流EQ I 对振荡器起振及振幅的 影响。 二、预习要求 1. 弄清LC 振荡器的工件原理; 2. 分析图4-1电路的工作原理及各元件的作用,计算晶体管静态工作电流 EQ I 的最大值(设晶体管的β值为50); 3. 电路中,1L =3.3h μ, 若C =120pf , C '=680pf ,计算当T C =50pf 和T C =150pf 时振荡频率各为多少? 三、仪器设备 1. 双踪示波器 1台 2. 高频电路实验学习机 1台 3. 万用表 1块 4. 实验板1G 1块 四、实验内容及步骤 实验电路见图4-1。实验前根据4-1所示原理图在实验板上找到相应器件及插孔并弄清其作用。 1. 检查静态工作点 (1)在实验板+12V 插孔上接入+12V 直流电源,注意电源极性不能接反。

+12V 图4-1 LC电容反馈式三点式振荡器原理图 (2)C、R、 T C不接,C'接(C'=680pf),用示波器观察振荡器停振时 的情况(此时用示波器观察应为一条直线)。 注意:连接C'的导线要尽量短。 (3)改变电位器 P R(0~47KΩ),用万用表测得晶体管V的发射极工作 电压 EQ U, EQ U可连续变化,记下 EQ U的最大值 max EQ U,计算 max EQ I的值,填入表4.1中。 表4.1 其中:max max 4 EQ EQ U I R =(已知 4 R=1KΩ)。 2.振荡频率与振荡幅度的测试

电容三点式振荡电路

电容三点式振荡电路的分析与仿真 摘要:自激式振荡器是在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅值的交变能量电路。正弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。基于频率稳定度、反馈系数、输出波形、起振等因素的综合考虑,本设计采用的是电容三点式振荡器。 关键词:电容三点式、multisim、振荡器 引言:不需外加输入信号,便能自行产生输出信号的电路称为振荡器。按照产生的波形,振荡器可以分为正弦波振荡器和非正弦波振荡器。按照产生振荡的工作原理,振荡器分为反馈式振荡器和负阻式振荡器。所谓反馈式振荡器,就是利用正反馈原理构成的振荡器,是目前用的最广泛的一类振荡器。所谓负阻式振荡器,就是利用正反馈有负阻特性的器件构成的振荡器,在这种电路中,负阻所起的作用,是将振荡器回路的正阻抵消以维持等幅振荡。反馈式振荡电路,有变压器反馈式振荡电路,电感三点式振荡电路,电容三点式振荡电路和石英晶体振荡电路等。本次设计我们采用的是电容三点式振荡电路。

设计原理: 1、电容三点式振荡电路 (1)线路特点 电容三点式振荡器的基本电路如图(1)所示。与发射极连接的两个电抗元件为同性质的容抗元件C2和C3;与基极和集电极连接的为异性质的电抗元件L。它的反馈电压是由电容C3上获得,晶体管的三个电极分别与回路电容的三个端点相连接,故称之为电容反馈三端式振荡器。电路中集电极和基极均采取并联馈电方式。C7为隔直电容。 图(1) (2)起振条件和振荡频率 由图可以看出,反馈电压与输入电压同相,满足相位起振条件,这时可以调整反馈系数F,使之满足A0F>1就可以起振。

高频课设报告---通信电子线路课程设计——电容三点式正弦波振荡器

目录 一课程设计目的 (2) 二课程设计题目 (2) 三课程设计内容 (2) 3.1 仿真设计部分 (2) 3.1.1设计方案的选择 (2) 3.1.2振荡器的原理概述 (3) 3.1.3方案对比与选择 (5) 3.1.4电路设计方案 (7) 3.1.5元器件的选择 (9) 3.1.6电路仿真 (9) 3.1.7元器件清单 (12) 3.2系统制作和调试 (13) 3.2.1系统结构 (13) 3.2.2系统制作 (15) 3.2.3调试分析 (16) 四课后总结和体会 (17) 参考文献 (17)

一课程设计目的 《高频电子线路》课程是电子信息专业继《电路理论》、《电子线路(线性部分)》之后必修的主要技术基础课,同时也是一门工程性和实践性都很强的课程。课程设计是在课程内容学习结束,学生基本掌握了该课程的基本理论和方法后,通过完成特定电子电路的设计、安装和调试,培养学生灵活运用所学理论知识分析、解决实际问题的能力,具有一定的独立进行资料查阅、电路方案设计及组织实验的能力。通过设计,进一步培养学生的动手能力。 二课程设计题目 1、模块电路设计(采用Multisim软件仿真设计电路) 1)采用晶体三极管或集成电路,场效应管构成一个正弦波振荡器; 2)额定电源电压5.0V ,电流1~3mA; 输出中心频率 6 MHz (具一定的变化范围); 2、高频电路制作、调试

LC 高频振荡器的制作和调试 三 课程设计内容 3.1 仿真设计部分 3.1.1设计方案的选择 电容反馈式振荡电路的基本电路就是通常所说的三端式(又称三点式)的振 荡器,即LC 回路的三个端点与晶体管的三个电极分别连接而成的电路,如图2-0 所示。由图可见,除晶体管外还有三个电抗元件X1、X2、X3,它们构成了决定 振荡器频率的并联谐振回路,同时构成了正反馈所需的网络,为此根据振荡器组 成原则,三端式振荡器有两种基本电路,如图2-0所示。图2-0中X1和X2为容 性,X3为感性,满足三端式振荡器的组成原则,反馈网络是由电容元件完成的, 称电容反馈振荡器 电容反馈式振荡电路的设计及原理分析 电路由放大电路、选频网络、正反馈网络组成。总体设计方案框图如下: V 0 图2-1 三端式振荡器基本电路

lc压控振荡器实验报告doc

lc压控振荡器实验报告 篇一:实验2 振荡器实验 实验二振荡器 (A)三点式正弦波振荡器 一、实验目的 1. 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。 2. 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。 3. 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验内容 1. 熟悉振荡器模块各元件及其作用。 2. 进行LC振荡器波段工作研究。 3. 研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响。 4. 测试LC振荡器的频率稳定度。 三、基本原理 图6-1 正弦波振荡器(4.5MHz) 【电路连接】将开关S2的1拨上2拨下, S1全部断开,由晶体管Q3和C13、C20、C10、CCI、L2构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI可用来改变振 荡频率。振荡频率可调范围为:

?3.9799?M??f0??? ? ?4.7079?M? CCI?25p CCI? 5p 调节电容CCI,使振荡器的频率约为4.5MHz 。振荡电路反馈系数: F= C1356 ??0.12 C20470 振荡器输出通过耦合电容C3(10P)加到由Q2组成的射极跟随器的输入端,因C3容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号Q1调谐放大,再经变压器耦合从J1输出。 四、实验步骤 根据图6-1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。 1. 调整静态工作点,观察振荡情况。 1)将开关S2全拨下,S1全拨下,使振荡电路停振 调节上偏置电位器RA1,用数字万用表测量R10两端的静态直流电压UEQ(即测量振荡管的发射极对地电压UEQ),使其为5.0V(或稍小,以振荡信号不失真为准),这时表明振荡管的静态工作点电流IEQ=5.0mA(即调节W1使

Removed_圆柱形电容器实验报告

班级:通信13-4 姓名: 学号: 指导教师:徐维 成绩: 电子与信息工程学院 信息与通信工程系

实验一仿真求解圆柱形电容器 一、实验目的 1.学习软件Ansoft maxwell 软件的使用方法; 2.复习电磁学相关的基本理论; 3.通过软件的学习掌握运用Ansoft maxwell 进行电磁场仿真的流程; 4.通过对圆柱形电容器计算仿真实验进一步熟悉Ansoft maxwell 软件的应用。 二、实验内容 1.学会Ansoft maxwell有限元分析步骤; 2.会用Ansoft maxwell后处理器和计算器对仿真结果分析; 3.对圆柱形电容仿真计算结果与理论计算值进行比较。 三、实验步骤 圆柱形电容器模型的描述: 电容器采用铜作为导体材料,内导体半径a=0.6mm,实心,外导体半径b=1mm,壁厚0.2mm,内外导体间以空气填充。设置高为h=1mm。(截面图如图1) 图1 1.建模 打开Ansoft maxwell新建3D工程,建立如上图所示的圆柱体电容器,导体设置为铜; Project >Insert Maxwell 3D Design

File>Save as>Planer 选中两个圆柱体Assign Material > copper(设置材料为铜)(如图1-1) Draw>Region(如图1-2) 图1-1 图1-2 选择求解器类型:Maxwell > Solution Type> Electric> Electrostatic(如图1-3) 图1-3

2.设置激励 外导体设置为3V内导体设置0V(如图2-1) 选中inside Maxwell 3D> Excitations > Assign(计划,分配)>Voltage > 3V 选中outside Maxwell 3D> Excitations > Assign >Voltage > 0V 图2-1 3.设置计算参数(Assign Executive Parameter) Maxwell 3D > Parameters > Assign > Matrix (矩阵)> Voltage1, Voltage2(如图3-1,3-2) 图3-1

RC振荡电路实验报告(特选资料)

广州大学学生实验报告 院(系)名称 物理与信息工程系 班别 姓名 专业名称 学号 实验课程名称 模拟电路实验 实验项目名称 RC 串并联网络(文氏桥)振荡器 实验时间 实验地点 实验成绩 指导老师签名 【实验目的】 1.进一步学习RC 正弦波振荡器的组成及其振荡条件。 2.学会测量、调试振荡器。 【实验原理】 从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大器。若用R 、C 元件组成选频网络,就称为RC 振荡器, 一般用来产生1Hz ~1MHz 的低频信号。 RC 串并联网络(文氏桥)振荡器 电路型式如图6-1所示。 振荡频率 RC 21 f O π= 起振条件 |A &|>3 电路特点:可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。 图6-1 RC 串并联网络振荡器原理图 注:本实验采用两级共射极分立元件放大器组成RC 正弦波振荡器。 【实验仪器与材料】 模拟电路实验箱 双踪示波器 函数信号发生器 交流毫伏表 万用电表 连接线若干

【实验内容及步骤】 1.RC 串并联选频网络振荡器 (1)按图6-2组接线路 图6-2 RC 串并联选频网络振荡器 (2)接通RC 串并联网络,调节R f 并使电路起振,用示波器观测输出电压u O 波形,再细调节R f ,使获得满意的正弦信号,记录波形及其参数,即,测量振荡频率,周期并与计算值进行比较。 (3) 断开RC 串并联网络,保持R f 不变,测量放大器静态工作点,电压放大倍数。 (4)断开RC 串并联网络,测量放大器静态工作点及电压放大倍数。(输入小信号:f=1KHz,峰峰值为100mV 正弦波)用毫伏表测量u i 、u 0 就可以计算出电路的放大倍数。 (5)改变R 或C 值,观察振荡频率变化情况。 将RC 串并联网络与放大器断开,用函数信号发生器的正弦信号注入RC 串并联网络,保持输入信号的幅度不变(约3V ),频率由低到高变化,RC 串并联网络输出幅值将随之变化,当信号源达某一频率时,RC 串并联网络的输出将达最大值(约1V 左右)。且输入、输出同相位,此时信号源频率为 2πRC 1 f f ο== 【实验数据整理与归纳】 (1)静态工作点测量 U B (V ) U E (V ) U C (V) 第一级 2.48 2.96 4.66 第二级 0.84 11.51 1.01 (2)电压放大倍数测量: u i (mV) u o (V) Av 788 2.80 3.60

超级电容器实验报告

实验报告 题目C,MnO2的电化学电容特性实验姓名许树茂 学号20104016005 所在学院化学与环境学院 年级专业新能源材料与器件创新班 指导教师舒东老师 完成时间2012 年 4 月

1.【实验目的】 1. 了解超级电容器的原理; 2. 了解超级电容器的比电容的测试原理及方法; 3. 了解超级电容器双电层储能机理的特点; 4. 掌握超级电容器电极材料的制备方法; 5. 掌握利用循环伏安法及恒流充放电的测定材料比电容的测试方法。 2. 【实验原理】 超级电容器的原理 超级电容器是由两个电极插入电解质中构成。超级电容与电解电容相比,具有非常高的功率密度和实质的能量密度。尽管超级电容器储存电荷的能力比普通电容器高,但是超级电容与电解电容或者电池的结构非常相似。 图1 超级电容器的结构图 从图中可看出,超级电容器与电解电容或者电池的结构非常相似,主要差别是用到的电极材料不一样。在超级电容器里,电极基于碳材料技术,可提供非常大的表面面积。表面面积大且电荷间隔很小,使超级电容器具有很高的能量密度。大多数超级电容器的容量用法拉(F)标定,通常在1F到5,000F之间。 (1) 双电层超级电容器的工作原理 双电层电容是在电极/溶液界面通过电子或离子的定向排列造成电荷的对峙所产生的。对一个电极/溶液体系,会在电子导电的电极和离子导电的电解质溶液界面上形成双电层。当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。这时对某一电极而言,会在一定距离内(分散层)产生与电极上的

高频电容三点式正弦波振荡器课程设计报告

课程设计任务书 学生姓名:***专业班级:电子 指导教师:吴皓莹工作单位:信息工程学院 题目:高频电容三点式正弦波振荡器 初始条件: 具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。 要求完成的主要任务: 1.采用晶体三极管或集成电路,场效应管构成一个正弦波振荡器; 2.额定电源电压5.0V ,电流1~3mA; 输出中心频率 6 MHz (具一定的变化范围); 3.通过跳线可构成发射极接地、基极接地及集电极接地振荡器; 4.有缓冲级,在100欧姆负载下,振荡器输出电压≥ 1 V (D-P); 5.完成课程设计报告(应包含电路图,清单、调试及设计总结)。 时间安排: 1.2011年6月3日分班集中,布置课程设计任务、选题;讲解课设具体实施计划与课程设计报告格式的要求;课设答疑事项。 2.2011年6月4日至2011年6月9日完成资料查阅、设计、制作与调试;完成课程设计报告撰写。 3. 2011年6月10日提交课程设计报告,进行课程设计验收和答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要............................................................................................................. 错误!未定义书签。Abstract ........................................................................................................... 错误!未定义书签。 1 绪论............................................................................................................. 错误!未定义书签。 2.1 反馈振荡器的原理........................................................................... 错误!未定义书签。 2.1.1 原理分析................................................................................. 错误!未定义书签。 2.1.2 平衡条件................................................................................. 错误!未定义书签。 2.1.3 起振条件................................................................................. 错误!未定义书签。 2.1.4 稳定条件................................................................................. 错误!未定义书签。 2.2 电容三点式振荡器........................................................................... 错误!未定义书签。 3 设计思路及方案......................................................................................... 错误!未定义书签。 3.1 总体思路........................................................................................... 错误!未定义书签。 3.2 设计原理........................................................................................... 错误!未定义书签。 3.3 单元设计........................................................................................... 错误!未定义书签。 3.3.1 电容三点式振荡单元............................................................. 错误!未定义书签。 3.3.2 输出缓冲级单元..................................................................... 错误!未定义书签。 4 电路仿真与实现......................................................................................... 错误!未定义书签。 4.1 基于................................................................................................... 错误!未定义书签。 4.2 硬件调试........................................................................................... 错误!未定义书签。 5 心得体会..................................................................................................... 错误!未定义书签。参考文献......................................................................................................... 错误!未定义书签。附录Ⅰ总电路图......................................................................................... 错误!未定义书签。附录Ⅱ元件清单......................................................................................... 错误!未定义书签。

相关主题
文本预览
相关文档 最新文档