当前位置:文档之家› Perturbative and non-perturbative parts of eigenstates and local spectral density of states

Perturbative and non-perturbative parts of eigenstates and local spectral density of states

Perturbative and non-perturbative parts of eigenstates and local spectral density of states
Perturbative and non-perturbative parts of eigenstates and local spectral density of states

a r X i v :c o n d -m a t /9812094v 1 7 D e c 1998

Perturbative and non-perturbative parts of eigenstates and local spectral density of

states:the Wigner band random matrix model

Wen-ge Wang

Department of Physics,South-east University,Nanjing 210096,China

International Center for the Study of Dynamical Systems,University of Milan at Como,via Lucini 3,22100Como,Italy

Department of Physics and Centre for Nonlinear Studies,Hong Kong Baptist University,Hong Kong,China

(February 1,2008)

A generalization of Brillouin-Wigner perturbation theory is applied numerically to the Wigner Band Random Matrix model.The perturbation theory tells that a perturbed energy eigenstate can be divided into a perturbative part and a non-perturbative part with the perturbative part expressed as a perturbation expansion.Numerically it is found that such a division is important in understanding many properties of both eigenstates and the so-called local spectral density of states (LDOS).For the average shape of eigenstates,its central part is found to be composed of its non-perturbative part and a region of its perturbative part,which is close to the non-perturbative part.A relationship between the average shape of eigenstates and that of LDOS can be explained.Numerical results also show that the transition for the average shape of LDOS from the Breit-Wigner form to the semicircle form is related to a qualitative change in some properties of the perturbation expansion of the perturbative parts of eigenstates.The transition for the half-width of the LDOS from quadratic dependence to linear dependence on the perturbation strength is accompanied by a transition of a similar form for the average size of the non-perturbative parts of eigenstates.For both transitions,the same critical perturbation strength λb has been found to play important roles.When perturbation strength is larger than λb ,the average shape of LDOS obeys an approximate scaling law.

PACS number 05.45.+b

I.INTRODUCTION

The average shape of energy eigenfunctions (EFs),which characterizes the spreading of the eigenstates of a perturbed system over the eigenstates of an unperturbed system,is very important in a wide range of physical ?elds,from nuclear physics and atomic physics to con-densed matter physics.For example,in a recent approach for the description of isolated Fermi systems with ?nite number of particles,a type of “microcanonical”partition function has been introduced and expressed in terms of the average shape of eigenfunctions [1].However,up to now only some of the general features of the shape have been known clearly.For example,when perturbation is not strong,generally the shape has a Breit-Wigner form (Lorentzian distribution)[2–5],but in a larger range on the interaction strength,without any simple analytical expression known for the shape,only some phenomeno-logical expressions have been suggested [6–11].

Another quantity,the so-called local spectral density of states (LDOS),has also attracted lots of attention recently [6,7,12–16].This quantity,known in nuclear physics as the “strength function”,gives information about the “decay”of a speci?c unperturbed state into other states due to interaction.In particular,the width of the LDOS de?nes the e?ective “lifetime”of the unper-turbed state.For su?ciently weak coupling,the average shape of LDOS is usually close to the Breit-Wigner form with the half-width having a quadratic dependence on

the interaction strength.On the other hand,when inter-action is strong,the shape is model dependent and the half-width is linear in the interaction strength.

Numerically it is already known that for Hamiltonian matrices with band structure generally both the aver-age shape of EFs and that of LDOS can be divided into two parts:central parts and tails with exponen-tial (or faster)decay.However,an analytical de?nition for such a division has not been achieved yet.A possi-ble clue for this problem comes from a generalization of the so-called Brillouin-Wigner perturbation theory [17]introduced in Ref.[18]for studying long tails of EFs,which tells that analytically EFs can be divided into per-turbative and non-perturbative parts with perturbative parts being able to be expanded in a perturbation expan-sion by making use of the corresponding non-perturbative parts.The relationship between central parts and non-perturbative parts of EFs was not studied in Ref.[18],while it is more important.

The purpose of this paper is to study if the above mentioned generalization of Brillouin-Wigner perturba-tion theory (GBWPT)can provide deeper understanding for properties of EFs and LDOS,especially the relation-ship between the two divisions mentioned above for EFs.As a ?rst step,here we study the so-called Wigner band random matrix (WBRM)model,which is one of the sim-plest models for the application of the GBWPT.

The WBRM was ?rst introduced by Wigner 40years ago [19]for the description of complex quantum sys-

tems as nuclei.It is currently under close investigation [6,12,13,20–25]since it is believed to provide an adequate description also for some other complex systems(atoms, clusters,etc.)and as well as for dynamical conservative systems with few degrees of freedom,which are chaotic in the classical limit.Unlike the standard Band Ran-dom Matrices(see,for example,[26,27]),the theory of WBRM is not well developed.Numerically it is known that di?erent averaging procedures for EFs give di?erent results for their average shape.Speci?cally,when aver-aging is done with respect to centers of energy shell,for strong interaction central parts of averaged EFs are close to a form predicted for the LDOS by the semicircle law. On the other hand,for the case of averaging with respect to centroids of EFs,central parts of averaged EFs are obviously narrower than the corresponding LDOS when the so-called Wigner parameter is large and an ergodicity parameter is small[13].

Comparatively,more properties are known for the av-erage shape of the LDOS of the WBRM.For the tails,a corrected analytical expression has been derived in Ref.

[6]for weak perturbation and numerically found correct for even strong perturbation[6,11,12].A more general analytical approach for the LDOS of the WBRM is given in Ref.[12],where an expression for the LDOS is given in terms of a function satisfying an integral equation.In suf-?ciently weak and extremely strong perturbation cases, the expression gives the well known Breit-Wigner form and semicircle law,respectively.For the transition from the Breit-Wigner form to the semicircle form,although the expression also predicts correct results for the LDOS, the physical explanation for it is not so clear yet.There-fore,it is of interest to study if the GBWPT can throw new light on the above mentioned properties of the EFs and the LDOS of the WBRM.

This paper has the following structure.For the sake of completeness,in section II we give a brief presentation of the GBWPT.Some predictions for properties of EFs of the WBRM are also given in the section.Numerical results for the size of non-perturbative parts of EFs are discussed in section III.It is shown that for the average shape of EFs the averaged non-perturbative part is in-deed related to the central part.A region predicted in section II,which is between the non-perturbative part and the(exponentially or faster decaying)tails of an EF, is also studied numerically.Section IV is devoted to a dis-cussion for the relation between the average shape of EFs and that of the LDOS.In section V,some properties of the average shape of LDOS,such as the transition from the Breit-Wigner form to the semicircle form and the dependence of its half-width on perturbation strength, are studied numerically and found to be closely related to properties of the average size of the non-perturbative parts of the corresponding EFs.Finally,conclusions are given in section VI.II.GENERALIZATION OF BRILLOUIN-WIGNER PERTURBATION THEORY

For the sake of completeness,in this section we?rst give a brief presentation of the above mentioned gener-alization of Brillouin-Wigner perturbation theory(GB-WPT)[18].Then,we give a brief discussion for some properties of the EFs of the WBRM.

Generally,consider a Hamiltonian of the form

H=H0+λV(1) where H0is an unperturbed Hamiltonian,V is a pertur-bation and the parameterλis for adjusting the strength of the perturbation.For the WBRM with dimension N and band width b,the Hamiltonian matrix considered here is chosen of the form

H ij=(H0+λV)ij=E0iδij+λv ij(2) where

E0i=i(i=1,···,N)(3) are eigenenergies of the eigenstates of H0labeled by|i . O?-diagonal matrix elements v ij=v ji are random num-bers with Gaussian distribution for1≤|i?j|≤b ( v ij =0and v2ij =1)and are zero otherwise.Here basis states have been chosen as the eigenstates|i of H0

in energy order.Eigenstates of H,labeled by|α ,are also ordered in energy,

H|α =Eα|α ,Eα+1≥Eα.(4) In order to obtain the GBWPT,let us divide the set of basis states into two parts,{|i ,i=p1,p1+1, (2)

and{|j ,j=1,···p1?1,p2+1,···N}.This also di-vides the Hilbert space into two sub-spaces,for which the corresponding projection operators are

P≡

p2

i=p1

|i i|and Q≡1?P.(5)

Subspaces related to the projection operators P and Q will be called in the following the P and Q subspaces,re-spectively.For an arbitrary eigenstate|α ,which is split into two orthogonal parts|t ≡P|α and|f ≡Q|α by the projection operators P and Q,by making use of the stationary Schr¨o dinger equation,it can be shown that

|α =|t +1

QλV,(7)

the iterative expansion of Eq.(6)is of the form |α =|t +T |

t +T 2|t +···+T n ?1|t +T n |α .

(8)

Then,one can see that if the projection operators P and Q are such chosen that

lim n →∞

α|(T ?)n T n |α =0,

(9)

Eq.(8)gives

|α =|t +T |t +T 2|t +···+T n |t +···.

(10)

Here the eigenvalue E αhas been treated as a constant.Eq.(10)is a generalization of the so-called Brillouin-Wigner perturbation expansion (GBWPE)(for BWPE,see,for example,[17,28]).

Equation (9)is the condition for the GBWPE (10)to hold.Generally,if P and Q subspaces are such chosen

that |E α?E 0

j |is large enough compared with bλV for

any basis state |j in the Q subspace,|T n

α>will van-ish when n →∞.Therefore,generally there are many choices for the P and Q operators ensuring Eq.(10)to hold.Among them,the projection operator(s)P with the minimum number of basis states and the correspond-ing operator(s)Q with the maximum number of basis states will be denoted by P αand Q α,respectively,and the corresponding |t and |f parts of the state |α will be denoted by |t α ≡P α|α and |f α ≡Q α|α ,respec-tively.The |t α part of the state |α will be called the non-perturbative (NPT)part of |α ,and the |f α part called the perturbative (PT)part of |α .Correspond-ingly,the eigenfunction of the state |α ,i.e.,its compo-nents in the basis states,can also be divided into NPT and PT parts.Eq.(10)tells that |f α can be expressed in terms of |t α ,E α,λV and H 0.In what follows,generally the GBWPE (10)will be used to discuss the perturbative parts of eigenstates only.

To achieve a more explicit condition for Eq.(9)to hold,let us write T n in the following form,

T n

=

1

E α?H 0

Q (12)

is an operator in the Q subspace.Eq.(11)shows that it is the properties of λU that determines if T n |α vanishes when n approaches to ∞.Indeed,writing eigenstates of the operator U in the Q subspace as |ν ,

U |ν =u ν|ν ,

(13)

it is easy to see that if all the values of |λu ν|are less than 1,then T n |α vanishes when n goes to in?nity.Therefore,generally the condition for Eq.(10)(also Eq.(9))to hold

is that the corresponding λU operator in the Q subspace does not have any eigenvector |ν with |λu ν|≥1.

As an application of the above results to the WBRM,let us study the component of an eigenstate |α on a basis state |j in the Q αsubspace,C αj ≡ j |α ,i.e.,a component of the perturbative part |f α .In what follows,for convenience,we use |j to indicate a basis state in the Q αsubspace,|i to indicate a basis state in the P αsubspace and |k for the general case.Sup-pose j is larger than p 2for the P αsubspace,speci?cally,p 2+mb

= j |

1

1?λu ν

|ν .(16)

Then,substituting Eq.(16)into Eq.(14),one has

C αj =

1

1?λu ν

j |ν ](λu ν)m .

(17)

Since |λu ν|<1for all ν,the behavior of the long tails of the EFs of the WBRM is more or less like exponential decay as discussed in Ref.[6].In fact,from the viewpoint of the GBWPT,the proof and arguments given in Ref.[6]for behaviors of long tails of the LDOS of the WBRM are still valid when perturbation is strong.

What is of special interest here is the behavior of C αj for j in the regions of (p 2,p 2+b ]and [p 1?b,p 1),i.e.,for j in the regions of size b just beside the non-perturbative part of the eigenstate.For these j ,m =0in Eq.(17)and it is not necessary for |C αj |to decay exponentially.That is to say,the decaying speed of |C αj |for these j should be slower than that for j larger than p 2+b or less than p 1?b .The two regions of j ∈(p 2,p 2+b ]and j ∈[p 1?b,p 1)will be called the slope regions of the eigenstate |α (the reason for such a name will be clear from numerical results in the next section).

According to Eq.(10),the explicit expression for Cαj in terms of elements of the Hamiltonian matrix can be written as

Cαj=

p2

i=p1

(

λV ji

Eα?E0j

λV ki

Eα?E0j

λV kl

Eα?E0l···)Cαi(18)

where Cαi= i|tα .This expression can be written in a simpler form by making use of the concept of path, in analogy to that in the Feynman’s path integral theory [29],which can be done as follows.For(q+1)basis states {|j ,|k1 ,···|k q?1 ,|i }with only|i in the Pαsubspace, we term the sequence j→k1→···→k q?1→i a path of q paces from j to i,if V kk′corresponding to each pace is non-zero.Clearly,paths from j to i are determined by the structure of the Hamiltonian matrix in H0represen-tation.Attributing a factor V kk′/(Eα?E0k)to each pace k→k′,the contribution of a path s to Cαj,denoted by fαs(j→i),is de?ned as the product of the factors of all its paces.Then,Cαj in Eq.(18)can be rewritten as

Cαj=

p2

i=p1

s

fαs(j→i)Cαi.(19)

An advantage of expressing Cαj in terms of contribu-tions of paths is that it makes it easier to understand the important role played by the size of the non-perturbative

part of the EF in determining its shape.Such a size for the state|α will be denoted by N p,N p≡p2?p1+1. (N p is,in fact,a function ofα,but,for brevity,the sub-

scriptαwill be omitted.)Two values ofλare of special interest whenλincreases from zero.One is the smallest λfor N p=2,indicating the beginning of the invalidity of the ordinary Brillouin-Wigner perturbation theory.The otherλis for the case of N p=b.The value of thisλis of interest since topologically the structure of paths for the case of N p≥b is di?erent from that for N p

III.NUMERICAL STUDY FOR THE PERTURBATIVE AND NON-PERTURBATIVE PARTS OF EIGENFUNCTIONS

In this section we study numerically the division of EFs into perturbative(PT)and non-perturbative(NPT) parts.Both the individual shape and the average shape of EFs will be studied.

The boundary of the NPT part of a state|α ,i.e.,the

values of p1and p2,are calculated in the following way. For a Hamiltonian matrix as in Eq.(2),we?rst diago-

nalize it numerically and get all its EFs.Then,for an eigenstate|α with energy Eα,we?nd out all the pairs

of p1and p2for which the value of α|(T?)n T n|α could become smaller than a small quantity(say,10?6)when n goes to in?nity.Finally,for the pair of(p1,p2)thus ob-

tained with the smallest value of N p=p2?p1+1and the pairs of(p1+1,p2)and(p1,p2?1),we calculate eigenval-ues of the corresponding U operators in Eq.(12)in order to check out if all the|λuν|for the pair of(p1,p2)are less than1while some of the|λuν|for each of the other two pairs(p1+1,p2)and(p1,p2?1)are larger than1.

The shape of an eigenstate|α in the unperturbed

states can be de?ned as

Wα(E0)= k|Cαk|2δ(E0?E0k).(20)

In order to obtain the average shape of eigenstates,dif-ferent individual distributions Wα(E0)should be?rst shifted into a common region.For this,we express Wα(E0)with respect to Eαbefore averaging.Forαfrom α1toα2,with Wα(E0)expressed as Wα(E0?Eα),the average shape of the eigenstates,denoted by W(E0s),can be calculated.Numerically,W(E0s)are thus calculated: For a state|α ,some value of E0s and all k satisfying |E0s?(E0k?Eα)|<δE w/2,whereδE w is some quantity chosen for dividing E0s into small regions,we calculate the sum of k|Cαk|2,then take the average of the sum overαfromα1toα2.The result thus obtained is the av-erage value of W in the region(E0s?δE w/2,E0s+δE w/2) and is also denoted by W(E0s).Similarly,the values of W(E0s±mδE w)(m=1,2,···)can also be calcu-lated.The average shape of eigenstates can also be di-vided into a NPT part and a PT part by the averaged boundary of the NPT parts of the states|α ,denoted by p a1≡ p1?Eα and p a2≡ p2?Eα .The size of the NPT part of the average shape of eigenstates is N p ≡ p2?p1+1 .The values ofλfor N p beginning to be larger than1and for N p =b will be denoted by λf andλb,respectively.

Now let us present the numerical results.The?rst one is for the case of N=300,b=10andλ=0.6.This is a case for which N p can be equal to both1and2.The values of|Cαk|2=| k|α |2for four EFs in the middle energy region(α=148?151)are given in Fig.1.The two vertical dashed-dot straight lines for each case indi-cate the positions of p1and p2of the NPT part of the eigenstate,i.e.,the boundary of the NPT part.Since E0k=k,p1and p2are also the unperturbed eigenen-ergies of the corresponding basis states|k=p1 and |k=p2 .Forα=148and149,since p1=p2=αthere is only one vertical dashed-dot line in each case. Forα=150and151,there are,in fact,two NPT parts

for each case.In Fig.1we give one of them for each case only,i.e.,(p 1,p 2)=(149,150)for α=150(the other one is (150,151))and (p 1,p 2)=(151,152)for α=151(the other one is (150,151)).Numerically we have found that only for small λis it possible for an eigenstate to have more than one NPT parts.The average shape of EFs for αfrom 130to 170is given in Fig.2with the correspond-ing values of p a 1and p a

2indicated by vertical dashed-dot

lines.δE w =1for calculating this W (E 0

s )function.

As mentioned in section II,another perturbation strength of interest is for the case of N p being able to equal the band width b of the Hamiltonian matrix.An example for this case is λ=1.4.For this value of λ,there is only one NPT part for each state |α ,e.g.,N p =9,10,7,9for α=148,149,150,151,respectively.Individual EFs for α=148?151are presented in Fig.3with their boundaries of the NPT parts.Although for an individual EF the value of |C αk |2could be still large outside the NPT region (Fig.3),the main body of the average shape of EFs lies obviously in the averaged NPT region as shown in Fig.4(a).For this averaged EF we still have δE w equal to 1and αfrom 130to 170.An interesting feature of the distribution lnW in the slope

regions [p a 1?b,p a

1)and (p a 2,p a 2+b ]in Fig.4(b)is that,as predicted in section II,the decaying speed in the two slope regions is obviously slower than that in the long tail regions.From Fig.4(a)it is quite clear why we call the

regions “slope”.

In Ref.[13]the average shape of EFs for di?erent val-ues of the Wigner parameter q ,

q =

(ρv )2

4

2

.(23)

Here by the NPT region of an EF we mean the region of E 0k between the boundaries (dashed-dot lines)of the NPT part of the EF as shown in Fig.5.Then,since as shown in Fig.5centroids of the EFs are generally not far from the centers of the NPT regions,they are generally not far from the corresponding eigenenergies.Therefore,in this case the averaging with respect to the centroids of the EFs and the averaging with respect to the eigenenergies do not have much di?erence,and the average shape of EFs obtained by the two methods should be more or less similar.However,since there are still some di?erences between the centroids of the EFs and the eigenenergies,results of the two averaging methods can not be quite close to each other.In fact,as shown in Ref.[13],results of the method of averaging with respect to centroids of EFs should be a little narrower than those of the other method.

The average shape of EFs for αfrom 130to 170and λ=4.0is given in Fig.6with δE w =3.0.(In this pa-per numerically we study the averaging with respect to eigenenergies only.)For this averaged EF the slope re-gions are even clearer.The sizes of the two slope regions in Fig.6are larger than b,the predicted one for a sin-gle EF,since the values of N p for the NPT parts of the eigenstates |α taken for averaging are not the same.In fact,the variance of the N p for the states is about 1.56.For studying the case of localization in energy shell as in Ref.[13],the dimension N =300is too small.There-fore,we increase the value of N to 900and study the case of b =10and λ=30.0,for which the parameters q and λe are equal to 90and 0.24,respectively,as those in Ref.[13].The values of |C αk |2(dots)of four EFs in the middle energy region are given in Fig.7with the cor-responding boundaries (p 1and p 2)of the NPT parts of the EFs (indicated by vertical dashed-dot lines).Clearly the main body of each of the EFs occupies only part of the NPT region.Then,resorting to Eq.(23),it is easy to see that for the average shape of EFs the result of averaging with respect to centroids of EFs should be ob-viously narrower than that of averaging with respect to eigenenergies.This phenomenon is called localization in energy shell in Ref.[13].In our opinion,it is,in fact,localization of EFs in their NPT regions.

Although,as shown in Fig.7,when λ=30.0many components of the EFs are quite small in the NPT parts,they can still be distinguished from those in the PT parts.In Fig.8we present the values of |C αk |2in Fig.7in loga-rithm scale,from which the di?erence between the |C αk |2in the NPT parts and those in the PT parts is quite clear.In fact,it can be seen from Fig.8that |C |2

for small components in the NPT parts also decay ex-ponentially on average,but the decaying speed is slower than that for components in the PT parts.Similar re-sults have also been found for other eigenfunctions and the centroids of the EFs have been found scattered in the NPT regions.Therefore,averaging with respect to eigenenergies(around the centers of the NPT regions)is reasonable when studying the average shape of EFs.The average shape of EFs in the middle energy region forαfrom420to480is shown in Fig.9(δE w=10).The two slope regions are also obvious.The widths of the two slope regions,which can be seen from the?gure is about2δE w=2b,are also larger than that predicted for a single EF due to the fact that the variance of N p for these states|α is about5.14.

In order to have a clear picture for the variation of the average size N p of NPT parts of EFs with the perturba-tion strengthλ,we plot it in Fig.10(a)(for N=300and αfrom130to170).The two solid straight lines in the ?gure show that N p has a good linear dependence onλin the two regions ofλ∈(2.0,4.5)andλ∈(4.5,7.0).The variation of N p forλless than2is given in the inset of the?gure in more detail.The solid curve in the inset is a?tting curve of a quadratic form:(7.5(λ?0.4)2+1.0). Since in this case the value ofλf is a little larger than0.4, i.e.,forλ≤0.4the size N p of the NPT parts of the EFs is equal to one,the region ofλ<0.4has been neglected when?tting the N p by the quadratic curve.From the inset it can be seen that the?tting curve?ts the values of N p quite well in the region ofλ∈(0.4,1.5).Inter-estingly,the value ofλb for N p =b is between1.45and 1.5,that is to say,in the region ofλ∈(λf,λb),the values of N p have a quadratic dependence onλ.

The variance of N p,denoted by?N p,is given in Fig.10(b)(circles),which shows that?N p is small com-pared with N p.From the?gure it can be seen that for λ<5the value of?N p increases withλon average. Then,since,as mentioned above,the value of?N p is about5.14whenλ=30,it does not change much in the region ofλ∈(5,30),that is to say,the relative value of the variance,namely?N p/N p,becomes even smaller as λbecomes larger.

IV.RELATIONSHIP BETWEEN THE SHAPE OF EIGENFUNCTIONS AND OF LDOS

The existence of a relationship between the average shape of EFs and that of LDOS in some particular cases has already been noticed numerically by several authors (see,for example,[13,16,18]).Here for the WBRM we show that some analytical arguments can be given for it by making use of the GBWPT.

The so-called local spectral density of states(LDOS) for an unperturbed state|k is de?ned as

ρk L(E)= α|Cαk|2δ(E?Eα)(24) where Cαk= k|α .Making use of the division of EFs into NPT and PT parts,the non-perturbative(NPT)and perturbative(PT)part of the LDOS can be de?ned in the following way.Let us consider all the perturbed states |α for which Cαk is in the NPT parts of their eigenfunc-tions.Supposeαp

1

is the smallest one among theseαandαp

2

is the largest one among them,i.e.,|αp

1 has the smallest eigenenergy and|αp

2 has the largest.A property of the WBRM is that for any state|α with

αp

1≤α≤αp2,generally to say,Cαk is in the NPT part of its eigenfunction.Then,the non-perturbative(NPT)

part of the LDOSρk L(E)can be de?ned as the sum in Eq.(24)overα∈[αp

1

,αp

2

],and the perturbative(PT) part can be de?ned as the sum over the restα.The size of the NPT part of the LDOS is de?ned as(αp

2?αp1+1) and will be denoted by Nα

p

.

The average shape of LDOS,denoted byρL(E s),can be obtained in a way similar to that for the EFs discussed in section III,except that for the LDOS the distributions ρk L(E)are expressed as functions of(E?E0k)before av-eraging.Since E0k is also the centroid ofρk L(E),such an averaging method is the most natural one.The average shape of LDOS can also be divided into a NPT part and a PT part by the averaged boundary of the NPT parts of the individual LDOS.

Before discussing the relation between the average shape of EFs and that of LDOS,let us?rst draw some conclusions for properties of EFs from the numerical re-sults discussed in section III.Firstly,based on the nu-merical results given in section III for the average shape of EFs,we can make such an approximate treatment for the average values of|Cαi|2in the NPT parts of EFs: for a givenλnot extremely large,they can be treated as a constant denoted by t2λ,i.e.,

|Cαi|2on the edges of the NPT parts become smaller than those in the middle regions whenλincreases and the above approx-imate treatment may fail in case of extremely largeλ. Secondly,another result of the last section is that the variance?N p is small compared with N p.This means that when discussing approximate relations it is reason-able to treat the size N p of NPT parts of eigenstates as a constant for a?xedλ.

As results of the above two approximations and the approximate relation(23),it can be shown that,under the corresponding conditions,(a)the average value of |Cαk|2in the NPT parts of LDOS is also about t2λ,(b) the size of the NPT part of a LDOS is close to that of an EF,i.e.,Nα

p≈N p,(c)usually E0k is in the mid-dle region of the NPT part of the LDOSρk L(E),i.e.,

E0k?Eαp1≈Eαp2?E0k.Then,one can see that the following approximate relation holds for the NPT part

of an averaged EF W and the NPT part of an averaged LDOSρL,

W(E)

ρ(E)

(25)

whereρ0(E)andρ(E)are the averaged density of states of the unperturbed and perturbed spectra in the corre-sponding regions,respectively,.Here,for brevity,instead of E0s and E s,we use E to denote the variables of the functions W andρL.

Next let us discuss the relation between the PT part of the average shape of EFs and the PT part of

the

average

shape of LDOS.According to Eq.(19),C2αj for a basis state|j in the Qαsubspace can be written as

C2αj=

p2

i1=p1

p2

i2=p1

s1,s2

fαs

1

(j→i1)fαs

2

(j→i2)Cαi

1

Cαi

2

.

(26)

Following a way similar to that of calculating the average shape of EFs W(E s)in the last section,we take the av-erage of this quantity over di?erent eigenfunctions.Since Cαi in the NPT parts of EFs have random signs,the main contribution to

C2αj≈

p2

i=p1

s1,s2

C2αj comes from the

terms with path s1equal to path s2,that is,

f2αs(j→i)t2λ.(28) Let us?rst discuss the relation(27),which is for cases without enough eigenstates taken for averaging.In these cases,due to the signs of the denominators(Eα?E0k) of the factors of paces,there is a systematic di?erence between the contribution of paths starting from j with E0jEα,especially when N p≥b.A result of this di?erence is that

fαs

1(j→i)fαs

2

(j→i)≈

ρ0(E)≈

ρ?L(E)

|Cαi|2can be approximately

treated as a constant for the NPT parts of both EFs and

LDOS,the approximate relation(30)also holds for the

NPT parts of the average shape of EFs and of LDOS.

When there are enough eigenstates taken for averag-

ing,we have the relation(28).In this case,instead of

(29),we have

f2α′s′(j′→i′),(31)

and the left PT part of an averaged EF should be similar

to its right PT part.Then,the same relation as in(25)

can be obtained for the PT part of the average shape of

EFs and the PT part of the average shape of LDOS.In

this case,ρL(E s)≈ρ?L(E s).

The above results have been checked by numerical cal-

culations.In Fig.11(a)and(b),an average shape of

EFs W(E)(circles)is compared with a corresponding

inverted average shape of LDOSρ?L(E)(solid curve)

forλ=4.0and b=10.In order to avoid edge e?ects,

N is chosen to be900.In this case,in the middle en-

ergy regions the di?erence betweenρ(E)andρ0(E)can

be neglected.The averaging has been done for60per-

turbed and60unperturbed states in the middle energy

regions,respectively.For this relatively small number of

states taken for averaging,one can expect that the re-

lation(25)is not so good as the(30)in the tail region.

Indeed,as shown in Fig.11(c)the LDOSρL(E)(solid

curve)is not so close to the W(E)(circles)as the in-

verted oneρ?L(E)in Fig.11(b).In order to show the

in?uence of edge e?ects on the relation(30),in Fig.11(d)

we give a result obtained when N is equal to300.

Finally,we would like to stress that although the above

arguments leading to the approximate relations(25)and

(30)are for not very largeλ,numerical results in Ref.

[13]show

that

central parts of averaged EFs (for averag-

ing with

respect to eigenenergies)are still close to those of averaged LDOS when λis quite large.In fact,for a given λ,the approximation

|C αi 1|2≈

|C αi |2≈t 2λand

may be still valid for very large λ.Therefore,the two relations (25)and (30)may be correct for very large λ,too.

V.V ARIATION OF THE SHAPE OF LDOS WITH

PERTURBATION STRENGTH

Analytical and numerical study for the shape of the LDOS of the WBRM has been done in,e.g.,[19,6,12,11].It is known that when perturbation is weak (but not very weak)the average shape of LDOS is of the Breit-Wigner form (Lorentzian distribution),and when perturbation becomes strong the shape will approach to a form pre-dicted by the semi-circle law.

Our interest here is in studying the process of the tran-sition from the Breit-Wigner form to the semi-circle form,in order to see if the GBWPT can throw light on how the transition occurs.In fact,due to two results of the previ-ous two sections that (a)the central part of the average shape of EFs is composed of its NPT part and the slope region of the PT part and (b)the average shape of EFs is similar to that of LDOS when the density of states of the perturbed spectrum is similar to that of the unperturbed spectrum,one can expect that properties of the average shape of LDOS,particularly of its half-width,should be related to properties of N p ,the average size of NPT parts of EFs.

An interesting property of the semicircle law

ρsc (E )=2

R 20

?E 2,|E |≤R 0,(32)

where R 0=λ

πR ′0

2

E 2+Γ2/4

(36)

does not have the scaling property as the semicircle law.

For the purpose of studying the relationship between the Breit-Wigner form and the average shape of LDOS,we use the former as a ?tting curve for the later with the width Γas the ?tting parameter.The ?tting is done by requiring the minimum of the area di?erence

?S =

|ρL (E )?ρBW (E )|dE (37)between the Breit-Wigner form and the histogram of

the averaged LDOS.In numerical calculations,we ?rst change the Breit-Wigner form to a histogram correspond-ing to the histogram of the LDOS,then calculate the ?S .

Four examples thus obtained forλ=0.4,0.7,1.0and

1.5are given in Figs.14and15.From numerical results we have found that the average shape of LDOS begins

to be?tted well by the Breit-Wigner form just beforeλreaches0.4.Interestingly,the value ofλf for N p be-ginning to be larger than1is a little larger than0.4.

That is to say,the LDOS of the Breit-Wigner form be-gins to appear just before the ordinary Brillouin-Wigner perturbation theory fails.With the increasing ofλ,the closeness between the LDOS and the Breit-Wigner form maintains for a small region of theλ.Then,whenλin-creases further,deviation will become more obvious.In fact,whenλ=λb≈1.5,the LDOSρL(E)is absolutely di?erent from the Breit-Wigner form,while it becomes closer to the semicircle form.

Since the smallest area di?erence?S in Eq.(37)gives

a measure for the deviation of the average shape of

LDOS from the Breit-Wigner form,we plot it in Fig.16 (squares).It can be seen that the deviation reaches its saturated value at aboutλ=2.0.Similarly,in order to show the deviation of the average shape of LDOS from the semicircle form,one can introduce another area dif-ference

?S= |ρrs L(E)?ρsc(E)|dE(38)

whereρsc(E)is forλ=1.Variation of this?S with λis also given in Fig.16(circles).It shows that before λreaches1.5the deviation is large and drops quickly. Forλfrom1.5to about4.5,?S drops slower.Whenλis larger than4.5,the values of?S are quite small and change quite slowly,which means that the average shape of LDOS has become quite close to the semicircle form. Variation of the half-width of the average shape of LDOS is of both experimental and theoretical interest. Such a variation is given in Fig.17by triangles.As ex-pected,whenλexceedsλb≈1.5,the half-width can be ?tted well by a straight line.The variation of N p with λis also given in Fig.17(circles).Corresponding to the three regions ofλfor the variation of the?S measur-ing the deviation of the LDOS from the semicircle form represented by circles in Fig.16,the variation of N p can also be divided into three regions:(1)λ<1.5,(2) 1.5<λ<4.5,in which it can be?tted well by a straight line,and(3)λ>4.5,in which it can be?tted well by another straight line.

The?tting for the half-width of the LDOS and for the N p for smallλis given in the upper-left inset in Fig.17. Since whenλ<0.4the value of N p equals to1,the?t-ting for N p (circles)has been done forλ>0.4by a quadratic curve(a(λ?0.4)2?1.0)with a≈7.0.The quadratic feature of the dependence of N p onλis quite clear in the region of0.4<λ<1.5.For the half-width (triangles),the same form of?tting curve with a≈15.0 is also given in the inset.As expected,the quadratic feature is also clear for the half-width in the region of 0.4<λ<1.5.Therefore,the correspondence between behaviors of the average size of NPT parts of EFs and

those of the half width of the average shape of LDOS is quite clear.The lower-right inset in Fig.17gives a com-

parison between the N p for N=500(solid curve)here and the N p for N=300(dashed line)in Fig.10.The small deviation between them comes from both edge ef-

fects and the fact that they are for Hamiltonian matrices with di?erent values of o?-diagonal elements.

In conclusion,as expected,numerical results given in

this section show that properties of the average shape of LDOS are indeed related to properties of the average size of NPT parts of perturbed eigenstates and knowledge of the latter,especially the value ofλb for N p =b,can indeed give deeper understanding for the former.

VI.CONCLUSIONS

The Wigner Band Random Matrix(WBRM)model is studied numerically in this paper by making use of a gen-eralization of the Brillouin-Wigner perturbation theory (GBWPT).According to the GBWPT,an energy eigen-function(EF)of a perturbed system can be divided into a non-perturbative(NPT)and a perturbative(PT)part with the PT part expressed as a perturbation expansion. Further more,the PT part can be divided into a slope region and a tail region.

Numerically we have found that for the average shape of EFs its central part is composed of its NPT part and the slope region of its PT part.That is,the GBWPT can give an analytical de?nition for the division of the average shape of EFs into central parts and tails.For the shape of individual EFs,numerical results show that when the perturbation is not strong their NPT part and the slope region of their PT part are usually composed of large components.But when the perturbation becomes stronger,the region of the NPT part of an EF occupied by large components will become relatively smaller,i.e., the ratio of the region to the whole NPT part will be-come smaller.As for the small components in the NPT part of an EF in this case,the di?erence between them and the components in the PT part is also obvious.Here we would like to point out that the possibility of dividing EFs into NPT and PT parts should be useful in reduc-ing calculation time for eigenfunctions in a given energy region.

It is already known from some previous numerical stud-ies that there is a relationship between the average shape of EFs and that of LDOS,but the reason is not clear. Resorting to the GBWPT and some conjectures made from numerical results,it is possible to show that such a relationship indeed exist for the WBRM.Particularly, when the number of states taken for averaging is not large enough,the relationship is between the average shape of EFs and the average shape of inverted LDOS.

A result of the above properties of the average shape of EFs and of LDOS is that some properties of the aver-

age shape of LDOS should be related to properties of the NPT part of the average shape of EFs.This has been

studied in detail by numerical calculations.Firstly,it is found that the LDOS of the Breit-Wigner form appears just before the perturbation strengthλreaches a value

λf,for which the NPT parts of EFs begin to have more that one components.Secondly,whenλreachesλb,for which the average size N p of NPT parts of EFs is equal to the band width b of the Hamiltonian matrix,the av-erage shape of LDOS begins to be close to the semicircle

form predicted by the semicircle law,and forλlarger thanλb the average shape of LDOS obeys an approxi-mate scaling law.Thirdly,variation of the half-width of the average shape of LDOS with perturbation strength is closely related to the variation of the average size N p of NPT parts of EFs.Particularly,whenλ<λb,i.e., N p

Acknowledgements

We are very grateful to G.Casati and F.M.Izrailev for valuable discussions.This work was partly supported by the National Basic Research Project“Nonlinear Science”, China,Natural Science Foundation of China,grants from the Hong Kong Research Grant Council(RGC)and the Hong Kong Baptist University Faculty Research Grant (FRG).

FIG.8.Same as in Fig.7in logarithm scale.

FIG.9.Same as in Fig.2forλ=30.0and N=900.

FIG.10.(a)Variation of the average size N p (circles)of non-perturbative parts of eigenstates in the middle energy re-gion with the perturbation strengthλfor N=300.The two solid straight lines are?tting lines.The inset shows the?tting curve of the form7.5(λ?0.4)2+1.0forλfrom0.4to1.5.(b) Variation of the variance of N p,?N p(circles),withλ.

FIG.11.(a)A comparison between an average shape of eigenfunctions W(E)(circles)and a related average shape of inverted LDOSρ?L(E)(solid curve)forλ=4.0and N=900.

(b)Same as in(a)in logarithm scale.(c)A comparison be-tween the W(E)(circles)in(a)and the LDOSρL(E)(solid curve)related to theρ?L(E)in(a)in logarithm scale.(d) Same as in(b)for N=300.

https://www.doczj.com/doc/8514338952.html,parisons between the rescaled LDOSρrs L (histograms)obtained when N=500and the prediction of semicircle law(solid curve)forλ=1.

FIG.13.Same as in Fig.12for larger values ofλ. FIG.14.The average shape of LDOSρL(E)(histograms) obtained when N=500and the?tting curves(dashed curves) of the Breit-Wigner form.

FIG.15.Same as in Fig.14for larger values ofλ. FIG.16.Variation of the area di?erence?S(circles)be-tween the rescaled LDOS and the semicircle form forλ=1, and variation of the area di?erence?S(squares)between the average shape of LDOS and the?tting Breit-Wigner curves withλfor N=500.

FIG.17.The triangles show the values of the half-width of the average shape of LDOS,and the circles show the values of the average size N p of non-perturbative parts of eigenfunc-tions when N=500.The three solid straight lines are?tting lines.The upper-left inset shows the?tting curve of the form (7(λ?0.4)2+1.0)for N p and the?tting curve of the form (15(λ?0.4)2+1.0)for the half-width of the LDOS forλfrom 0.4to1.5.The lower-right inset gives a comparison between the N p in Fig.10obtained when N=300(dashed curve) and the N p here obtained when N=500(solid curve).

Fig.1 |C k|2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

W

-40

-30-20-100

10203040

E

0s

-30-25

-20

-15

-10

-5

l n W

Fig.2

(a)

(b)

Fig.3 |C k|2

0.0

0.02

0.04

0.06

0.08

0.1

W

-60

-50-40-30-20-100

102030405060

E

0s

-30-25

-20

-15

-10

-5

l n W

Fig.4

(a)

(b)

Fig.5 |C k|2

0.0

0.0050.010.0150.020.0250.03W

-100-90-80-70-60-50-40-30-20-100102030405060708090100

E

s

-30

-25

-20

-15

-10

-5

l n W

Fig.6

(a)

(b)

|C k|2

ln|C k|2

0.0

0.00050.0010.00150.0020.0025

0.0030.00350.004W

-400-300-200-1000

100200300400

E

0s

-80

-70-60-50-40-30

-20-10l n W

Fig.9

(a)

(b)

智能存包柜(储物柜)产品技术说明书

条码式寄存柜(储物柜)产品技术说明 一、适用范围 自助行李寄存柜,用于高效率、规范化且消费群体较密集的高档公共场所,如:超市、学校、机场、俱乐部、游泳馆、健身房、超市、大卖场、商场、事业单位等。客户可根据自身特点选择不同类型的机组,有条码型、指纹型、IC卡、条形码卡、磁卡、射频卡以及TM扣等,或者使用客户各自所持有的会员卡。 二、基本组成 自助行李寄存柜,是由嵌入式计算机进行控制,具有管理功能的小件物品寄存系统。主要由输入设备(条码阅读器)、输出设备(如中文液晶显示)、嵌入式计算机处理中心、管理软件以及电源组成。 三、结构、材料、钣金说明 寄存柜柜体选用0.8mm以上优质冷轧板,经冷加工成形后,用二氧化碳气体保护焊焊接装配而成,柜体结构坚固结实。箱体表面经除锈、除油、打磨、磷化处理后喷塑,塑面的颜色可由用户选定。?箱门背面增加纵向加强筋,提高箱门的防撞击能力;能有效防止和降低使用者因疏忽碰伤、磕伤,电控锁采用360度具有防撬、带防软片插入装置。 四、元器件说明 1)电控锁:经过10万次寿命测试无故障,性能可靠稳定。部件的表面均作热 涂锌防锈处理,装配成形后每把锁均作电气绝缘试验和开启试验,并按加工批量的1%作寿命试验。 2)扫描枪:台湾欣技C1000,性能稳定,读码速度快。 3)液晶显示屏:3.5寸彩色显示屏。例如:

表示:空箱,顾客可以存入的箱子 表示:满箱,有合法密码,箱内有物 4)打印机:自主研发使用日本精工打印机芯。 5)控制主板:自主研发生产。 6)切纸刀:自主研发生产、10万次寿命测试,性能稳定,配有走纸导向。 7)控制芯片:采用国际上著名大公司的工业级产品,有ATMEL公司、INTEL公 司、日立公司、德州公司等。 8)键盘:选用电话机水晶键盘,工作可靠,永不退色,使用寿命长。 五、常规技术指标 (1)功率-待机:25W 开箱:60W (2)电源电压:AC110V—AC240V 50HZ (3)后备电源(可选):18V 7AH (4)打印速度:35mm/s (5)打印机寿命:50Km (6)柜体冷轧钢板厚度:0.8mm (7)读码速度:<0.4s (8)显示分辨率:3.5寸彩色液晶屏(可定制显示LOGO) 六、条码寄存柜主要功能说明 ?大屏幕液晶显示屏 操作步骤提示、箱门5种状态显示、时钟显示、常规故障指示、设置菜单、管理界面、工作状态显示等。 在现场安装就位后,确认各个部件正常后,即可上电开机,完整的显示: ?全开放式中文设置菜单(可定制多国语言、语音) 寄存柜的各个管理参数全部面向客户开放,客户可选择相应的菜单进行设置。设有三级管理密码,方便不同级别的管理要求。 ?快捷管理员管理菜单 在管理模式下,管理快捷菜单可应急开启箱门、清除箱门ID、查询箱门状态等操作。可设置500位管理员进行管理,每个管理员可根据自己的用户号及管

脐带干细胞综述

脐带间充质干细胞的研究进展 间充质干细胞(mesenchymal stem cells,MSC S )是来源于发育早期中胚层 的一类多能干细胞[1-5],MSC S 由于它的自我更新和多项分化潜能,而具有巨大的 治疗价值 ,日益受到关注。MSC S 有以下特点:(1)多向分化潜能,在适当的诱导条件下可分化为肌细胞[2]、成骨细胞[3、4]、脂肪细胞、神经细胞[9]、肝细胞[6]、心肌细胞[10]和表皮细胞[11, 12];(2)通过分泌可溶性因子和转分化促进创面愈合;(3) 免疫调控功能,骨髓源(bone marrow )MSC S 表达MHC-I类分子,不表达MHC-II 类分子,不表达CD80、CD86、CD40等协同刺激分子,体外抑制混合淋巴细胞反应,体内诱导免疫耐受[11, 15],在预防和治疗移植物抗宿主病、诱导器官移植免疫耐受等领域有较好的应用前景;(4)连续传代培养和冷冻保存后仍具有多向分化潜能,可作为理想的种子细胞用于组织工程和细胞替代治疗。1974年Friedenstein [16] 首先证明了骨髓中存在MSC S ,以后的研究证明MSC S 不仅存在于骨髓中,也存在 于其他一些组织与器官的间质中:如外周血[17],脐血[5],松质骨[1, 18],脂肪组织[1],滑膜[18]和脐带。在所有这些来源中,脐血(umbilical cord blood)和脐带(umbilical cord)是MSC S 最理想的来源,因为它们可以通过非侵入性手段容易获 得,并且病毒污染的风险低,还可冷冻保存后行自体移植。然而,脐血MSC的培养成功率不高[19, 23-24],Shetty 的研究认为只有6%,而脐带MSC的培养成功率可 达100%[25]。另外从脐血中分离MSC S ,就浪费了其中的造血干/祖细胞(hematopoietic stem cells/hematopoietic progenitor cells,HSCs/HPCs) [26, 27],因此,脐带MSC S (umbilical cord mesenchymal stem cells, UC-MSC S )就成 为重要来源。 一.概述 人脐带约40 g, 它的长度约60–65 cm, 足月脐带的平均直径约1.5 cm[28, 29]。脐带被覆着鳞状上皮,叫脐带上皮,是单层或复层结构,这层上皮由羊膜延续过来[30, 31]。脐带的内部是两根动脉和一根静脉,血管之间是粘液样的结缔组织,叫做沃顿胶质,充当血管外膜的功能。脐带中无毛细血管和淋巴系统。沃顿胶质的网状系统是糖蛋白微纤维和胶原纤维。沃顿胶质中最多的葡萄糖胺聚糖是透明质酸,它是包绕在成纤维样细胞和胶原纤维周围的并维持脐带形状的水合凝胶,使脐带免受挤压。沃顿胶质的基质细胞是成纤维样细胞[32],这种中间丝蛋白表达于间充质来源的细胞如成纤维细胞的,而不表达于平滑肌细胞。共表达波形蛋白和索蛋白提示这些细胞本质上肌纤维母细胞。 脐带基质细胞也是一种具有多能干细胞特点的细胞,具有多项分化潜能,其 形态和生物学特点与骨髓源性MSC S 相似[5, 20, 21, 38, 46],但脐带MSC S 更原始,是介 于成体干细胞和胚胎干细胞之间的一种干细胞,表达Oct-4, Sox-2和Nanog等多

中国的特色英文翻译

用流利的英语介绍中国的特色~~来源:李思佳的日志 1.元宵节:Lantern Festival 2.刺绣:embroidery 3.重阳节:Double-Ninth Festival 4.清明节:Tomb sweeping day 5.剪纸:Paper Cutting 6.书法:Calligraphy 7.对联:(Spring Festival) Couplets 8.象形文字:Pictograms/Pictographic Characters 9.人才流动:Brain Drain/Brain Flow 10.四合院:Siheyuan/Quadrangle 11.战国:Warring States 12.风水:Fengshui/Geomantic Omen 13.铁饭碗:Iron Bowl 14.函授部:The Correspondence Department 15.集体舞:Group Dance 16.黄土高原:Loess Plateau 17.红白喜事:Weddings and Funerals 18.中秋节:Mid-Autumn Day 19.结婚证:Marriage Certificate 20.儒家文化:Confucian Culture 21.附属学校:Affiliated school 22.古装片:Costume Drama 23.武打片:Chinese Swordplay Movie 24.元宵:Tangyuan/Sweet Rice Dumpling (Soup) 25.一国两制:One Country, Two Systems 26.火锅:Hot Pot 27.四人帮:Gang of Four 28.《诗经》:The Book of Songs 29.素质教育:Essential-qualities-oriented Education 30.《史记》:Historical Records/Records of the Grand Historian 31.大跃进:Great Leap Forward (Movement) 32.《西游记》:The Journey to the West 33.除夕:Chinese New Year’s Eve/Eve of the Sprin g Festival 34.针灸:Acupuncture 35.唐三彩:Tri-color Pottery of the Tang Dynasty/The Tang Tri-colored potte ry 36.中国特色的社会主义:Chinese-charactered Socialist/Socialist with Chinese c haracteristics 37.偏旁:radical 38.孟子:Mencius

精神分裂症的病因及发病机理

精神分裂症的病因及发病机理 精神分裂症病因:尚未明,近百年来的研究结果也仅发现一些可能的致病因素。(一)生物学因素1.遗传遗传因素是精神分裂症最可能的一种素质因素。国内家系调查资料表明:精神分裂症患者亲属中的患病率比一般居民高6.2倍,血缘关系愈近,患病率也愈高。双生子研究表明:遗传信息几乎相同的单卵双生子的同病率远较遗传信息不完全相同 的双卵双生子为高,综合近年来11项研究资料:单卵双生子同病率(56.7%),是双卵双生子同病率(12.7%)的4.5倍,是一般人口患难与共病率的35-60倍。说明遗传因素在本病发生中具有重要作用,寄养子研究也证明遗传因素是本症发病的主要因素,而环境因素的重要性较小。以往的研究证明疾病并不按类型进行遗传,目前认为多基因遗传方式的可能性最大,也有人认为是常染色体单基因遗传或多源性遗传。Shields发现病情愈轻,病因愈复杂,愈属多源性遗传。高发家系的前瞻性研究与分子遗传的研究相结合,可能阐明一些问题。国内有报道用人类原癌基因Ha-ras-1为探针,对精神病患者基因组进行限止性片段长度多态性的分析,结果提示11号染色体上可能存在着精神分裂症与双相情感性精神病有关的DNA序列。2.性格特征:约40%患者的病前性格具有孤僻、冷淡、敏感、多疑、富于幻想等特征,即内向

型性格。3.其它:精神分裂症发病与年龄有一定关系,多发生于青壮年,约1/2患者于20~30岁发病。发病年龄与临床类型有关,偏执型发病较晚,有资料提示偏执型平均发病年龄为35岁,其它型为23岁。80年代国内12地区调查资料:女性总患病率(7.07%。)与时点患病率(5.91%。)明显高于男性(4.33%。与3.68%。)。Kretschmer在描述性格与精神分裂症关系时指出:61%患者为瘦长型和运动家型,12.8%为肥胖型,11.3%发育不良型。在躯体疾病或分娩之后发生精神分裂症是很常见的现象,可能是心理性生理性应激的非特异性影响。部分患者在脑外伤后或感染性疾病后发病;有报告在精神分裂症患者的脑脊液中发现病毒性物质;月经期内病情加重等躯体因素都可能是诱发因素,但在精神分裂症发病机理中的价值有待进一步证实。(二)心理社会因素1.环境因素①家庭中父母的性格,言行、举止和教育方式(如放纵、溺爱、过严)等都会影响子女的心身健康或导致个性偏离常态。②家庭成员间的关系及其精神交流的紊乱。③生活不安定、居住拥挤、职业不固定、人际关系不良、噪音干扰、环境污染等均对发病有一定作用。农村精神分裂症发病率明显低于城市。2.心理因素一般认为生活事件可发诱发精神分裂症。诸如失学、失恋、学习紧张、家庭纠纷、夫妻不和、意处事故等均对发病有一定影响,但这些事件的性质均无特殊性。因此,心理因素也仅属诱发因

脐带血造血干细胞库管理办法(试行)

脐带血造血干细胞库管理办法(试行) 第一章总则 第一条为合理利用我国脐带血造血干细胞资源,促进脐带血造血干细胞移植高新技术的发展,确保脐带血 造血干细胞应用的安全性和有效性,特制定本管理办法。 第二条脐带血造血干细胞库是指以人体造血干细胞移植为目的,具有采集、处理、保存和提供造血干细胞 的能力,并具有相当研究实力的特殊血站。 任何单位和个人不得以营利为目的进行脐带血采供活动。 第三条本办法所指脐带血为与孕妇和新生儿血容量和血循环无关的,由新生儿脐带扎断后的远端所采集的 胎盘血。 第四条对脐带血造血干细胞库实行全国统一规划,统一布局,统一标准,统一规范和统一管理制度。 第二章设置审批 第五条国务院卫生行政部门根据我国人口分布、卫生资源、临床造血干细胞移植需要等实际情况,制订我 国脐带血造血干细胞库设置的总体布局和发展规划。 第六条脐带血造血干细胞库的设置必须经国务院卫生行政部门批准。 第七条国务院卫生行政部门成立由有关方面专家组成的脐带血造血干细胞库专家委员会(以下简称专家委

员会),负责对脐带血造血干细胞库设置的申请、验收和考评提出论证意见。专家委员会负责制订脐带血 造血干细胞库建设、操作、运行等技术标准。 第八条脐带血造血干细胞库设置的申请者除符合国家规划和布局要求,具备设置一般血站基本条件之外, 还需具备下列条件: (一)具有基本的血液学研究基础和造血干细胞研究能力; (二)具有符合储存不低于1 万份脐带血的高清洁度的空间和冷冻设备的设计规划; (三)具有血细胞生物学、HLA 配型、相关病原体检测、遗传学和冷冻生物学、专供脐带血处理等符合GMP、 GLP 标准的实验室、资料保存室; (四)具有流式细胞仪、程控冷冻仪、PCR 仪和细胞冷冻及相关检测及计算机网络管理等仪器设备; (五)具有独立开展实验血液学、免疫学、造血细胞培养、检测、HLA 配型、病原体检测、冷冻生物学、 管理、质量控制和监测、仪器操作、资料保管和共享等方面的技术、管理和服务人员; (六)具有安全可靠的脐带血来源保证; (七)具备多渠道筹集建设资金运转经费的能力。 第九条设置脐带血造血干细胞库应向所在地省级卫生行政部门提交设置可行性研究报告,内容包括:

存包柜项目方案说明

存包柜项目方案说明 一、项目基本信息 (一)项目名称 存包柜项目 (二)项目建设单位 xxx有限公司 (三)法定代表人 于xx (四)公司简介 本公司奉行“客户至上,质量保障”的服务宗旨,树立“一切为客户着想” 的经营理念,以高效、优质、优惠的专业精神服务于新老客户。 公司依托集团公司整体优势、发展自身专业化咨询能力,以助力产业提高运营效率为使命,提供全方面的业务咨询服务。 公司将加强人才的引进和培养,尤其是研发及业务方面的高级人才,健全研发、管理和销售等各级人员的薪酬考核体系,完善激励制度,提高公司员工创造力,为公司的持续快速发展提供强大保障。

上一年度,xxx(集团)有限公司实现营业收入7026.99万元,同比增长25.92%(1446.42万元)。其中,主营业业务存包柜生产及销售收入为5749.34万元,占营业总收入的81.82%。 根据初步统计测算,公司实现利润总额1653.53万元,较去年同期相比增长375.52万元,增长率29.38%;实现净利润1240.15万元,较去年同期相比增长139.78万元,增长率12.70%。 (五)项目选址 xx新兴产业示范基地 (六)项目用地规模 项目总用地面积12559.61平方米(折合约18.83亩)。 (七)项目用地控制指标 该工程规划建筑系数71.28%,建筑容积率1.01,建设区域绿化覆盖率7.20%,固定资产投资强度188.57万元/亩。 项目净用地面积12559.61平方米,建筑物基底占地面积8952.49平方米,总建筑面积12685.21平方米,其中:规划建设主体工程7943.44平方米,项目规划绿化面积913.28平方米。 (八)设备选型方案 项目计划购置设备共计91台(套),设备购置费1292.40万元。 (九)节能分析 1、项目年用电量486324.58千瓦时,折合59.77吨标准煤。

公文文体翻译的特点

一、公文的文体特点及翻译 (一)公文的文体特点 公文主要包括政府发布的各种公告、宣言、声明、规章法令、通告、启示和各类法律文件。其文体特点主要体现在以下几方面: 1)措词准确。发布公文的目的一般在于解释或阐明公文发布者的立场、观点或政策、措施,因此公文在措词上必须准确明晰,切忌模棱两可或含糊晦涩。 2)用词正式,且多古体词。公文作为政府或职能部门所发布的文章,需具有其权威性、规范性。因此在用词上一般较为正式,并且不排除使用一些较为古雅的词(如hereinafter, hereof, herewith等等)。 3)普通词多有特定意义。许多普通的词在公文体中常常具有其特定的意义。如allowance一词通常指"允许"、"津贴",而在经贸合同中则多指"折扣"。 4)长句、复杂句较多。公文体为使其逻辑严谨,表意准确,在句法上常常叠床架屋,以至使得句式有时显得臃肿迟滞,同时句子的长度也大为增加。 (二)公文的翻译 翻译公文首先要注意公文特有的形式,包括格式、体例等。对已模式化、程式化的格式译者决不应随便更改。其次,译者应透彻理解原文,特别是要正确把握原文词义,认清一些common words在公文中特有的含义。再次,在措词上必须使译文的语体与原文相适应。一般说来,英语公文翻译通常应使用正式书面语体,并酌情使用某些文言连词或虚词。最后,公文翻译中要注意长句的处理。要在理清句意和各部分之间逻辑关系的前提下恰当使用切分法或语序调整法,以使译文通畅、自然、地道。 二、商贸函电的文体特点及翻译 (一)商贸函电的文体特点 商贸函电指经济贸易活动中的各类信函、电报、电传等。其文体特征主要有: 1)措词简洁明了。为使表达明晰,商贸函电在措词上力求简明扼要,不太讲究修饰。 2)用语正式庄重。正式庄重的语言常常显得诚恳、自然、有礼貌,因此常用于商贸函电中。

精神分裂症的发病原因是什么

精神分裂症的发病原因是什么 精神分裂症是一种精神病,对于我们的影响是很大的,如果不幸患上就要及时做好治疗,不然后果会很严重,无法进行正常的工作和生活,是一件很尴尬的事情。因此为了避免患上这样的疾病,我们就要做好预防,今天我们就请广州协佳的专家张可斌来介绍一下精神分裂症的发病原因。 精神分裂症是严重影响人们身体健康的一种疾病,这种疾病会让我们整体看起来不正常,会出现胡言乱语的情况,甚至还会出现幻想幻听,可见精神分裂症这种病的危害程度。 (1)精神刺激:人的心理与社会因素密切相关,个人与社会环境不相适应,就产生了精神刺激,精神刺激导致大脑功能紊乱,出现精神障碍。不管是令人愉快的良性刺激,还是使人痛苦的恶性刺激,超过一定的限度都会对人的心理造成影响。 (2)遗传因素:精神病中如精神分裂症、情感性精神障碍,家族中精神病的患病率明显高于一般普通人群,而且血缘关系愈近,发病机会愈高。此外,精神发育迟滞、癫痫性精神障碍的遗传性在发病因素中也占相当的比重。这也是精神病的病因之一。 (3)自身:在同样的环境中,承受同样的精神刺激,那些心理素质差、对精神刺激耐受力低的人易发病。通常情况下,性格内向、心胸狭窄、过分自尊的人,不与人交往、孤僻懒散的人受挫折后容易出现精神异常。 (4)躯体因素:感染、中毒、颅脑外伤、肿瘤、内分泌、代谢及营养障碍等均可导致精神障碍,。但应注意,精神障碍伴有的躯体因素,并不完全与精神症状直接相关,有些是由躯体因素直接引起的,有些则是以躯体因素只作为一种诱因而存在。 孕期感染。如果在怀孕期间,孕妇感染了某种病毒,病毒也传染给了胎儿的话,那么,胎儿出生长大后患上精神分裂症的可能性是极其的大。所以怀孕中的女性朋友要注意卫生,尽量不要接触病毒源。 上述就是关于精神分裂症的发病原因,想必大家都已经知道了吧。患上精神分裂症之后,大家也不必过于伤心,现在我国的医疗水平是足以让大家快速恢复过来的,所以说一定要保持良好的情绪。

基于单片机的自动存包系统设计

基于单片机的自动存包系统设计 摘要 近年来,随着生活水平的提高,人们对于社会消费品的质量和数量的要求也在逐渐增加。为了更好的为广大顾客服务,在一些商场、影院、超市等公共场合通常设置有自动存包柜,本次便是针对这一现象进行设计。 本文详细介绍了国内自动存包控制系统的发展现状,发展中所面临的问题。并详细介绍了本系统采用的AT89S52单片机做控制器,可以同时管理四个存包柜。柜门锁是由继电器控制,当顾客需要存包的时候,可以自行到存包柜前按“开门”键,需要顾客向光学指纹识别系统输入个指纹,然后通过继电器进行开门(用亮灯表示),顾客即可存包,并需将柜门关上。当顾客需要取包时,要将只要将之前输入的指纹放置于指纹识别器前方,指纹识别器采集到指纹信息输出相应的高低电平信号传给单片机,系统比较密码一致后,发出开箱信号至继电器将柜门打开,顾客即可将包取出。它具有功能实用、操作简便、安全可靠、抗干扰性强等特点。 关键词:自动存包柜,单片机,指纹识别器

李少鹏:基于单片机的自动存包系统设计 Based on single chip microcomputer automatic package design Abstract In recent years, with the improvement of living standards, people for social consumer goo ds quality and quantity requirements are to increase gradually. In order to better service for the g eneral customers, in some stores, movie theaters, supermarkets public Settings are to be put auto matically usually bag ark, it is functional practical, simple operation, safe and reliable, anti-jamm ing strong sexual characteristics. Domestic deposit automatic control system are introduced in detail in this paper the development of the status quo, problems faced in the development of. And introduces in detail the system adopts single chip microcomputer controller, can simultaneously manage multiple pack ark. Cupboard door lock controlled by relay, when customers need to save package, will be allowed to save package before the ark according to the "open" button, need customer to the system input fingerprint, and then through the relay to open the door (with lighting), customers can save package, and the cupboard door must be closed. When customers need to pick up package, as long as before the input fingerprint should be placed on the fingerprint recognizer, fingerprint recognizer collecting to the fingerprint information and output the corresponding high and low level signal to the microcontroller, the system is password consistent, signal out of the box to the relay Key words: Automatic Storage Bag, Microcontroller, Fingerprint recognizer。

精神分裂症的病因是什么

精神分裂症的病因是什么 精神分裂症是一种精神方面的疾病,青壮年发生的概率高,一般 在16~40岁间,没有正常器官的疾病出现,为一种功能性精神病。 精神分裂症大部分的患者是由于在日常的生活和工作当中受到的压力 过大,而患者没有一个良好的疏导的方式所导致。患者在出现该情况 不仅影响本人的正常社会生活,且对家庭和社会也造成很严重的影响。 精神分裂症常见的致病因素: 1、环境因素:工作环境比如经济水平低低收入人群、无职业的人群中,精神分裂症的患病率明显高于经济水平高的职业人群的患病率。还有实际的生活环境生活中的不如意不开心也会诱发该病。 2、心理因素:生活工作中的不开心不满意,导致情绪上的失控,心里长期受到压抑没有办法和没有正确的途径去发泄,如恋爱失败, 婚姻破裂,学习、工作中不愉快都会成为本病的原因。 3、遗传因素:家族中长辈或者亲属中曾经有过这样的病人,后代会出现精神分裂症的机会比正常人要高。 4、精神影响:人的心里与社会要各个方面都有着不可缺少的联系,对社会环境不适应,自己无法融入到社会中去,自己与社会环境不相

适应,精神和心情就会受到一定的影响,大脑控制着人的精神世界, 有可能促发精神分裂症。 5、身体方面:细菌感染、出现中毒情况、大脑外伤、肿瘤、身体的代谢及营养不良等均可能导致使精神分裂症,身体受到外界环境的 影响受到一定程度的伤害,心里受到打击,无法承受伤害造成的痛苦,可能会出现精神的问题。 对于精神分裂症一定要配合治疗,接受全面正确的治疗,最好的 疗法就是中医疗法加心理疗法。早发现并及时治疗并且科学合理的治疗,不要相信迷信,要去正规的医院接受合理的治疗,接受正确的治 疗按照医生的要求对症下药,配合医生和家人,给病人创造一个良好 的治疗环境,对于该病的康复和痊愈会起到意想不到的效果。

自动存包柜的设计与仿真

自动存包柜的设计与仿真 摘要 本课题是基于单片机的自动存包柜设计。自动存包柜是新一代的存包柜,具有功能实用、操作简单、管理方便、安全可靠等特点,能够更好的服务于不同市场的广大群众,使用者可以根据简明清晰的操作说明自行完成存包取包工作。本系统由MCS-51单片机构成核心控制系统,整个系统由主控部分、键盘显示控制部分、执行部分三部分组成,通过随机密码的产生和核对完成自动存包取包过程。本设计中各元器件便于安装且操作简单,能基本实现存包取包功能。 关键词:自动存包柜;单片机;随机密码

Design and Simulation of Automatic Lockers ABSTRACT This topic is microcontroller-based automatic lockers.Automatic lockers is a new generation of lockers, with a practical, simple operation, easy management, safe and reliable, able to better serve the broad masses of the different markets, users are based on a clear and concise instructions to complete the deposit bags to take the package. The system consists of MCS-51 microcontroller core control system, the entire system from the main section, the keyboard display control part of the implementation of some of the three-part composition, random password generation and check completed automatically save the package to take the package process. Various components of this design is easy to install and easy to operate, can basically save the package to take package function. Key words :Automatic lockers; microcontroller; random password

卫生部办公厅关于印发《脐带血造血干细胞治疗技术管理规范(试行)

卫生部办公厅关于印发《脐带血造血干细胞治疗技术管理规 范(试行)》的通知 【法规类别】采供血机构和血液管理 【发文字号】卫办医政发[2009]189号 【失效依据】国家卫生计生委办公厅关于印发造血干细胞移植技术管理规范(2017年版)等15个“限制临床应用”医疗技术管理规范和质量控制指标的通知 【发布部门】卫生部(已撤销) 【发布日期】2009.11.13 【实施日期】2009.11.13 【时效性】失效 【效力级别】部门规范性文件 卫生部办公厅关于印发《脐带血造血干细胞治疗技术管理规范(试行)》的通知 (卫办医政发〔2009〕189号) 各省、自治区、直辖市卫生厅局,新疆生产建设兵团卫生局: 为贯彻落实《医疗技术临床应用管理办法》,做好脐带血造血干细胞治疗技术审核和临床应用管理,保障医疗质量和医疗安全,我部组织制定了《脐带血造血干细胞治疗技术管理规范(试行)》。现印发给你们,请遵照执行。 二〇〇九年十一月十三日

脐带血造血干细胞 治疗技术管理规范(试行) 为规范脐带血造血干细胞治疗技术的临床应用,保证医疗质量和医疗安全,制定本规范。本规范为技术审核机构对医疗机构申请临床应用脐带血造血干细胞治疗技术进行技术审核的依据,是医疗机构及其医师开展脐带血造血干细胞治疗技术的最低要求。 本治疗技术管理规范适用于脐带血造血干细胞移植技术。 一、医疗机构基本要求 (一)开展脐带血造血干细胞治疗技术的医疗机构应当与其功能、任务相适应,有合法脐带血造血干细胞来源。 (二)三级综合医院、血液病医院或儿童医院,具有卫生行政部门核准登记的血液内科或儿科专业诊疗科目。 1.三级综合医院血液内科开展成人脐带血造血干细胞治疗技术的,还应当具备以下条件: (1)近3年内独立开展脐带血造血干细胞和(或)同种异基因造血干细胞移植15例以上。 (2)有4张床位以上的百级层流病房,配备病人呼叫系统、心电监护仪、电动吸引器、供氧设施。 (3)开展儿童脐带血造血干细胞治疗技术的,还应至少有1名具有副主任医师以上专业技术职务任职资格的儿科医师。 2.三级综合医院儿科开展儿童脐带血造血干细胞治疗技术的,还应当具备以下条件:

大件寄存管理流程

大件寄存程序 一、大件寄存流程 1、当顾客提出大件寄存需求时,服务中心员工应先查看物品大小,如果可自助存包柜寄存的物品,请顾客优先使用自动存包柜,并提醒顾客不要寄放贵重物品。 2、如果物品过大,自助存包柜寄存不下的物品或顾客坚持要求寄存服务台的商品,服务台员工应与顾客确认是否有贵重物品,如有,请顾客将贵重物品取出自行保管,其它物品则办理寄存手续。 3、员工将顾客物品放置在指定区域,挂好存包牌,将另一块号码牌交予顾客,并告知顾客于当天营业结束前凭此号码牌领取寄存物品,请顾客妥善保管。 4、当顾客前来领取寄存物品时,服务中心员工请顾客出示号码牌,员工收回号码牌,根据号码牌查找物品上对应的号码牌,核对无误后交还顾客物品。存包牌两块互绑在一起放回存放盒内。 5、若核对号码牌时发现物品与存放时不符或丢失,应立即告知客服主管或值班经理前来处理(具体处理方法请参照客诉处理办法) 6、如顾客遗失号码牌时,服务中心员工处理程序: A、通知广播寻找遗失的号码牌。 B、询问顾客具体号码牌号或所寄存物品形状、颜色、特征。 C、询问顾客是否有任何的证件,并请顾客提供有效证件证明所寄存物品确为其所属。 D、请顾客在《寄存物异常登记表》上留下地址、电话、证件号等信息。 E、向顾客适当收取号码牌工本费并在退换货收银机做销售操作,将寄存物品归还于顾客。 7、每日营业结束后盘点号码牌,每块号码牌要求一个号码两块互绑在一起,如已不齐全的号码牌则不再使用。号码牌需定期全部更换。 二、大件寄存顾客告示 1、请您在存包后主动索取存包牌,并保存好自己的存包牌,不要遗失。 2、现金、手机、照相机、存折等超过200元的贵重物品及有效证件如身份证、户口本等物品请随身携带,请勿寄存,由此造成的损失,自行承担。 3、当您领取所存物品时,请出示存包牌,并当面点清您所存的物品,离柜本商场不再负责。 4、如存包牌丢失,应及时持有效证件领取所存物品,并付工本费5元,未及时挂失,导致所存物品丢失,不予负责。

精神分裂症应该怎么治疗

精神分裂症应该怎么治疗 1、坚持服药治疗 服药治疗是最有效的预防复发措施临床大量统计资料表明,大多数精神分裂症的复发与自行停药有关。坚持维持量服药的病人复发率为40%。而没坚持维持量服药者复发率高达80%。因此,病人和家属要高度重视维持治疗。 2、及时发现复发的先兆,及时处理 精神分裂症的复发是有先兆的,只要及时发现,及时调整药物和剂量,一般都能防止复发,常见的复发先兆为:病人无原因出现睡眠不好、懒散、不愿起床、发呆发愣、情绪不稳、无故发脾气、烦躁易怒、胡思乱想、说话离谱,或病中的想法又露头等。这时就应该及时就医,调整治疗病情波动时的及时处理可免于疾病的复发。 3、坚持定期门诊复查 一定要坚持定期到门诊复查,使医生连续地、动态地了解病情,使病人经常处于精神科医生的医疗监护之下,及时根据病情变化调整药量。通过复查也可使端正人及时得到咨询和心理治疗解除病人在生活、工作和药物治疗中的各种困惑,这对预防精神分裂症的复发也起着重要作用。 4、减少诱发因素 家属及周围人要充分认识到精神分裂症病人病后精神状态的薄弱性,帮助安排好日常的生活、工作、学习。经常与病人谈心,帮助病人正确对待疾病,正确对待现实生活,帮助病人提高心理承受能力,学会对待应激事件的方法,鼓励病人增强信心,指导病人充实生活,使病人在没有心理压力和精神困扰的环境中生活。 首先是性格上的改变,塬本活泼开朗爱玩的人,突然变得沉默寡言,独自发呆,不与人交往,爱干净的人也变的不注意卫生、生活

懒散、纪律松弛、做事注意力不集中,总是和患病之前的性格完全 相悖。 再者就是语言表达异常,在谈话中说一些无关的谈话内容,使人无法理解。连最简单的话语都无法准确称述,与之谈话完全感觉不 到重心。 第三个就是行为的异常,行为怪异让人无法理解,喜欢独处、不适意的追逐异性,不知廉耻,自语自笑、生活懒散、时常发呆、蒙 头大睡、四处乱跑,夜不归宿等。 还有情感上的变化,失去了以往的热情,开始变的冷淡、对亲人不关心、和友人疏远,对周围事情不感兴趣,一点消失都可大动干戈。 最后就是敏感多疑,对任何事情比较敏感,精神分裂症患者,总认为有人针对自己。甚至有时认为有人要害自己,从而不吃不喝。 但是也有的会出现难以入眠、容易被惊醒或睡眠不深,整晚做恶梦或者长睡不醒的现象。这些都有可能是患上了精神分裂症。 1.加强心理护理 心理护理是家庭护理中的重要方面,由于社会上普遍存在对精神病人的歧视和偏见,给病人造成很大的精神压力,常表现为自卑、 抑郁、绝望等,有的病人会因无法承受压力而自杀。家属应多给予 些爱心和理解,满足其心理需求,尽力消除病人的悲观情绪。病人 生活在家庭中,与亲人朝夕相处,接触密切,家属便于对病人的情感、行为进行细致的观察,病人的思想活动也易于向家属暴露。家 属应掌握适当的心理护理方法,随时对病人进行启发与帮助,启发 病人对病态的认识,帮助他们树立自信,以积极的心态好地回归社会。 2.重视服药的依从性 精神分裂症病人家庭护理的关键就在于要让病人按时按量吃药维持治疗。如果不按时服药,精神病尤其是精神分裂症的复发率很高。精神病人在医院经过一系统的治疗痊愈后,一般需要维持2~3年的

卫生部关于印发《脐带血造血干细胞库设置管理规范(试行)》的通知

卫生部关于印发《脐带血造血干细胞库设置管理规范(试行)》的通知 发文机关:卫生部(已撤销) 发布日期: 2001.01.09 生效日期: 2001.02.01 时效性:现行有效 文号:卫医发(2001)10号 各省、自治区、直辖市卫生厅局: 为贯彻实施《脐带血造血干细胞库管理办法(试行)》,保证脐带血临床使用的安全、有效,我部制定了《脐带血造血干细胞库设计管理规范(试行)》。现印发给你们,请遵照执行。 附件:《脐带血造血干细胞库设置管理规范(试行)》 二○○一年一月九日 附件: 脐带血造血干细胞库设置管理规范(试行) 脐带血造血干细胞库的设置管理必须符合本规范的规定。 一、机构设置 (一)脐带血造血干细胞库(以下简称脐带血库)实行主任负责制。 (二)部门设置 脐带血库设置业务科室至少应涵盖以下功能:脐带血采运、处理、细胞培养、组织配型、微生物、深低温冻存及融化、脐带血档案资料及独立的质量管理部分。 二、人员要求

(一)脐带血库主任应具有医学高级职称。脐带血库可设副主任,应具有临床医学或生物学中、高级职称。 (二)各部门负责人员要求 1.负责脐带血采运的人员应具有医学中专以上学历,2年以上医护工作经验,经专业培训并考核合格者。 2.负责细胞培养、组织配型、微生物、深低温冻存及融化、质量保证的人员应具有医学或相关学科本科以上学历,4年以上专业工作经历,并具有丰富的相关专业技术经验和较高的业务指导水平。 3.负责档案资料的人员应具相关专业中专以上学历,具有计算机基础知识和一定的医学知识,熟悉脐带血库的生产全过程。 4.负责其它业务工作的人员应具有相关专业大学以上学历,熟悉相关业务,具有2年以上相关专业工作经验。 (三)各部门工作人员任职条件 1.脐带血采集人员为经过严格专业培训的护士或助产士职称以上卫生专业技术人员并经考核合格者。 2.脐带血处理技术人员为医学、生物学专业大专以上学历,经培训并考核合格者。 3.脐带血冻存技术人员为大专以上学历、经培训并考核合格者。 4.脐带血库实验室技术人员为相关专业大专以上学历,经培训并考核合格者。 三、建筑和设施 (一)脐带血库建筑选址应保证周围无污染源。 (二)脐带血库建筑设施应符合国家有关规定,总体结构与装修要符合抗震、消防、安全、合理、坚固的要求。 (三)脐带血库要布局合理,建筑面积应达到至少能够储存一万份脐带血的空间;并具有脐带血处理洁净室、深低温冻存室、组织配型室、细菌检测室、病毒检测室、造血干/祖细胞检测室、流式细胞仪室、档案资料室、收/发血室、消毒室等专业房。 (四)业务工作区域应与行政区域分开。

翻译特点

A. Literal translation: It strives to reproduce both the ideological content and the style of the original works and retains as much as possible the figures of speech. B. Free translation Free translation changes the original work’s figures of speech, sent ence structures or patterns, but not the original meaning. C. Domestication: it refers to the target-culture-oriented translation in which unusual expressions to the target culture are exploited and turned into some familiar ones so as to make the translated text intelligible and easy for the target readers. D. Foreignization:(异化翻译)retaining something of the foreignness of the original 在一定程度上保留原文的异域性(保留原文的语言和文化差异) Her eyes sparkled with tears, her breath was soft and faint .In response, she was like a lovely flower mirrored in the water in motion, a pliant willow swaying in the wind. ___chapter three (泪光点点,娇喘微微,娴静时如姣花照水,行动处似弱柳扶风。这是林黛玉进贾府,与贾宝玉初次见面时宝玉严重的待遇形象。曹雪芹用泪光点点,娇喘微微来表现林黛玉的多愁善感,弱不经风并运用姣花照水,弱柳扶风两个比喻勾画出林黛玉娴静雅致的形象) Mr. Yang used literal translation and translated as a lovely flower mirrored in the water and a pliant willow swaying in the wind .He reserved the original form and images to reflect the image of Lin Daiyu. B. free 》translation When the images or expressions are the same with English, Mr.Yang adopt to keep the original images and made it concise and clear. (意象或表达方式意义相似则意译当原文的 意 向或表达方式在中英文中有相同的意义,并非汉语所特有,杨宪益采取意译法,并保留原文的意向.简约精炼,忠实清晰.) Examples: 例1:黛玉便说“兔死狐悲,物伤其类”,不免感叹起来。(第57回) 杨译:Daiyu exclaimed in distress and sympathy. 解析:“兔”与“狐”在中西生态文化中具有相同的含义。两种动物都是打猎的主要对象,在英语中也有fox - hunting , hare- coursing的用法。这两个意象并未包含非常重要的文化信息,所以跳脱未译,在杨译本中没有出现例3:贾瑞急的也不敢则声,只得悄悄的出来,将门撼了撼,关的铁桶一般。(第12回) 杨译: He crept out to try the gate and found it securely locked. Although Yang uses free translation in above examples, but it is quite accurate and is closed to the original version. C.Domestication 例9: (平儿) “如今这事八下里水落石出了,连前儿太太屋里丢的也有了主儿。”(第61回) 杨译:“The fact is, this business ismore or less solved; we’ve even found out as well who took the

相关主题
文本预览
相关文档 最新文档