当前位置:文档之家› 变压器绕组光纤温度-王红春

变压器绕组光纤温度-王红春

变压器绕组光纤温度-王红春
变压器绕组光纤温度-王红春

光纤变压器绕组温度在线检测系统的研究

王红春

(山东微感光电子有限公司)

摘要:针对变压器内绕组易发热的监测要求,本文研制了一种新型的光纤式温度在线检测系统。该系统基于光纤布拉格光栅(Fiber Bragg Grating, FBG)传感原理,对接收到的光信号解调,实现对变压器绕组上易发热点进行实时在线监测。光纤光栅测温系统具有抗电磁干扰能力强、体积小、耐腐蚀、绝缘性能强等优点,对变压器整体的智能化测试有重要意义。关键词变压器绕组;光纤光栅;传感器探头;实用性

中图分类号:TP216文献标识码: A

Research of Transformer Winding Temperature

Fiber-Detection System

Wang Hongchun

(Shandong micro-sensor photonics Ltd,Jinan250014,china)

Abstract: According to temperature measurement of Transformer Winding fever, this paper researched a new kind of optical fiber temperature on-line detection system. The detection system is based on Fiber Bragg Grating(FBG) principle, demodulates to receive the optical signal and real-time on-line monitor to Transformer Winding fever. The detection system with anti-electromagnetic interference ability, small size, resistant to corrosion, insulation, and other advantages, is important to the overall intelligence test transformer.

Keywords: Transformer winding, optic fiber grating, sensor probe, application 1.引言

电力行业设备中大型变压器担负着电压、电流的转换以及功率传输的重要任务,它的性能好坏直接影响电力整个系统安全稳定运行。由于长期处在满负荷运行状态,又因为采用全封闭式结构,引起其各部位经常发热,在很多情况下工作人员无法测量到变压器内部某些陕小的位臵,如经常发热的绕组上的温度,长期运行,易引起发热部分老化,温度高升,这直接威胁着整个电网的运行。因此,通过对变压器绕组易发热点进行实时在线监测并根据其温度变化来判断其健康状况,提示工作人员对变压器进行负荷调整以及预知性维修,避免发热导致变压器种种故障。

在电力中目前所用的变压器绕组测温方法有热电阻测温、热电耦测温和红外测温[1]。但绕组处于高电压、高温度、高磁场以及极强的电磁干扰的特殊环境中,

基金项目: 863计划资助,课题编号:2006AA06Z213

作者简介:王红春(1982 - ),男,硕士研究生。主要研究方向:光纤传感器

*通讯作者:E-mail:whc_wyp@https://www.doczj.com/doc/8c14282021.html,

而热电阻、热电耦又都有金属导线传输信号,会对环境产生电磁干扰,金属导线常期处在油内,老化后容易产生短路。红外线无法安装在变压器内,只能测量变压器的表面温度,并且易受环境温度影响等。光纤温度传感器与传统的传感器相比,有以下优点:本质防爆,对电绝缘,适用于高电压以及强电磁干扰环境下的检测,化学稳定性好;传感探头结构简单、尺寸小、重量轻、耐温性好,径细、质地柔软,具有优良的可操作性和埋入性;时域变换性好,易于多点分布测量,并可单线多路复用,构成传感网络和阵列,便于波分时分复用[2]及分布式传感[3]。

2.变压器绕组测温原理

2.1光纤光栅温度传感器工作原理

用强度在空间上周期变化的强紫外线激光照射掺锗光纤就可在纤芯内、沿轴向形成一个折射率周期变化的光栅。当一束宽光谱光通过FBG时,FBG反射回一束单色光,经传输光缆传送到调制解调器,测定窄带光的中心波长,从而确定现场温度。当现场温度稳定不变时,系统返回的窄带光中心波长也不变。当现场温度发生变化时,系统返回的窄带光中心波长发生相应的变化,达到精确测量现场温度的目的。同时,系统通过二次仪表准确地显示出测量温度,并可以给出相应的接点信号。

FBG反射回一束单色光的波长λ满足下式[4]:

λ

B

=2nΛ (1) 式中,λB为Bragg波长,n为有效折射率,Λ为光栅周期。作用于光纤光栅探头的被测物理量(温度)发生变化时,会引起n和Λ的相应改变,从而导致λB

的漂移,反过来,通过检测λB的漂移,可得知被测物理量的信息。在无应力的情况下,可得出波长λB与温度℃关系式为:

λ

B =λ +(ΔT-T

O

)* K (2)

式中λB为绝对变化波长值,λ为基准波长,T O为绝对温度,ΔT为变化量,K为基准系数;

由公式(2)可得出

ΔT=(λ

B -λ)/K+ T

(3)

通过测定λB的漂移,可获得ΔT的温度值。

2.2系统结构图

根据光纤光栅温度传感器的原理,我们设计了光纤光栅测温系统。图1是测温系统整体结构图。该系统主要由宽带光源,耦合器,测温探头,分析仪等组成。以下为监测仪正背面图

监测仪实物正面图

监测仪实物背面图

其工作原理为:由宽带光源发出的光束经耦合器后沿光纤进入测温探头。测温探头主要包括感温元件-光纤温度传感器和配件,光纤温度传感器是物理量的变换元件,它实现温度的改变到光信息的变化(该光纤温度传感器由山东微感光电子有限公司自主研发和生产)。光纤温度传感器的输出光信号经耦合器后进入分析仪,并由分析仪解调出变化的光信息,即可得到变化的温度的数值。

2.3光纤温度探头

光纤光栅温度传感器采用光信号进行测量和传输,现场实现了无电检测。同时该系统使用光栅技术,检测信号以光信号中心波长为对象,克服了传统光电传感器依赖光强和电强度大小的缺陷,实现了数字化检测,可靠性好,灵敏度高。

光纤温度探头是采用化学性能稳定的绝缘材料,透油性及强的光纤套管,外

加螺旋状缠绕的铁氟龙管保护加强,能让油顺利流入流出护套,同时也方便对变

压器内传感器抽真空。光纤温度探头如图2所示。

图2 光纤温度探头

3.实验测试及测试结果

3.1实验装置

实验用的传感器及传感器解调系统均为山东微感光电子有限公司自主研发生产。为了使测试数据更准确和可靠,该系统内各结构部件都是选择进口元器件,测试设备均采用高性能的仪器设备配臵。实验装臵见图2。

图3为实验装臵

3.2测试结果

在测试中我们是采用国标二等水银温度计(每年通过国家测量仪器检测中心校正一次)来对比。恒温液体槽精度可达到±0.02℃,槽内为标准变压器油,恒温槽可进行各温度段调节,通过采点升降不同的温度,得出以下温度与光纤波长关系曲线(见图4)。

图4为参数关系图

根据以上标定的系数,模拟现场测温最高温度升至121度,得到以下试验结果:

由表1

实温度,更进一步说明了该系统是变压器绕组在线测温最理想产品。

4结论

在本系统中光纤既是传感元件,又是传输介质,在信号的产生和传输过程中,没有任何电子元器件参与现场工作,本系统能进行快速多点监测和空间定位,并能进行自动超温报警。传感器及传输线路不需要任何供电及电缆,光纤及护套(用玻璃纤维加工)能耐高温,不会被火灾毁坏,系统与其计算机系统连网后,不但可以抗电磁干扰,还可以自动超温处理,提高自动化程度,减少人为的失误。光纤光栅温度传感器是当代最先进的高科技产品,是新一代无电检测仪器,适应于各种恶劣环境下的物理参数测量,能够准确地检测介质(环境)的温度等基本变化。

通过以上多次的实验表明光纤光栅传感器的性能都比传统的测温传感器更稳定、更可靠、更准确。光纤光栅变压器绕组测量传感器具有较高的灵敏度和测量范围,亦可同时测定若干部位相应物理量及其变化,光纤光栅探头以其独特的体积小、重量轻,可深入到常规传感器所不能达到的的部位进行特性检测,完全适用于变压器绕组温度和其它参量的在线监测。

参考文献

[1]杨子东陈远宏,红外测温及其应用,昆明工大学学报 1999,24(5):p59-61

[2]江毅刘莉, 基于波分耦合器的光纤布拉格光栅传感器光学学报2004.1(4):p21-23.

[3]戚风云赵乐军周又玲, 基于DSP的分布式光纤测温系统及高速数据采集与处理今日电子 2005,15(7):p64-70

[4] Normann R,Weiss J . Krumhansl development of fibers optic cables for permanent geothermal wellbore deployment[A] . Proceedings , Twenty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University[C] . 2001 ,29231.

变压器用绕组温度计的误差分析

变压器用绕组温度计的误差分析 一.概述 随着对变压器运行安全要求的不断提高,绕组温度计(以下简称温度计)作为一种运行监护元件已愈来愈广泛地应用在变压器产品上。虽然一般温度计的使用说明中指出:“温度计内电热元件温度的增加正比于绕组与油箱顶部(油面)温度之差的增加”。严格来说,这一说法是不确切的.因为对不同结构的变压器绕组,虽然可使电热元件内流过的电流与统组负载电流成正比,但由于电热元件与绕组的冷却条件不可能完全相同,这就使得相同的电流变化却不一定在统组和电热元件内引起相同的温度变化,换句话说,在某些情况下,温度计显示的温度可能是“虚假”的.因而有必要对温度计应用的实际情况作一分析. 二.绕组温度计的工作原理 统组温度计是利用“热模拟”(thermalimage)原理间接测量统组热点温度的,其主要组成部分如图1所示.温度计的主要组 成部分:温包、测量波纹管及连接二者的毛细管,组成反映变压器顶层油温的测量系统;电流互感器、电流匹配器及电热元件,组成反映绕组负载电流变化的热模拟部分以及用于补偿环境温度的补偿波纹管. 测量系统中注满一种体积随温度变化的液体,将该系统中的温包置于

油箱顶部,以感应变压器顶层油温,顶层油温的变化,引起测量系统中液体的胀缩,导致测量波纹管的位移。 由电流互感器取得的与负载电流成正比的电流Ip经电流匹配器调整后,Ip变化为Is,加到测量波纹管内的电热元件上,该电流在电热元件上所产生的热量,使测量波纹管在原有位移的基础上产生一相应的位移增量,加大后的位移量经机械放大带动指针转动,从而在仪表上显示出对应负载电流的统组温度. 若通过电热元件的电流Is所产生的热量,使测量波纹管位移变化所带来的温度增量近似等于被测绕组热点温度对变压器顶层油温(即温包放置处油温)之差,则绕组温度计所显示的温度就反映了绕组的热点温度. 图2 三.绕组温度计的误差分析 在变压器的热计算完成以后,需要确定温度计的基准工作点,即所谓“整定”,它是以一定的绕组负载电流为基准,选取电流互感器电流

变压器光纤测温装置光纤测温点布置典型示例安装方法示例

附录 A (资料性附录) 变压器光纤测温装置测温点布置典型示例 A.1 概述 光纤温度传感器的安装位置和数量应以尽可能监测到绕组热点温度为目的,并同时对绕组温度分布、顶层油、底层油、铁芯和环境温度实施监测。因此传感器安装位置和数量宜按下述要求执行,也可根据用户具体需求进行安装。 A.2 传感器安装位置和数量要求 按制造方与用户协议,也可以采用不同的布置方式。但由于传感器和光纤均属于易碎器件,因此在确定数量时,要考虑到绕组在工厂制造和在不同运行情况下发生损坏的风险。 光纤温度传感器在110kV(66kV)~330kV(三相三柱式或三相五柱式)油浸变压器上的安装数量见表A.1,分别监测A、B、C三相高低压绕组、铁芯、油的温度。传感器在三相三柱式和三相五柱式变压器的建议安装位置见图A.1和图A.2中的方式。 表A.1 110kV(66kV)~330kV变压器传感器安装数量和监测位置要求

A.1传感器在三相三柱式变压器中的建议安装位置图 传感器在三相五柱式变压器中的建议安装位置图A.2分别监测单相,光纤温度传感器在500kV 及以上单相油浸变压器上的安装数量见表A.2及以上电压等级单相变压器中的500kV高低压绕组、铁芯、油的温度。图A.3为传感器在安装位置。变压器传感器安装数量和监测位置要求表

传感器在单相变压器中的安装方式图A.3 A.3 传感器在绕组热点上的安装绕组高度的区域内的绕组热点位置或者变压器厂商提传感器宜安装在距离绕组顶部1/4 供的绕组热点位置。无特别说明,测点位置不应超出建议的测温区域。相同绕组不同位置的温度测量,可以采用光纤光栅传 感器串的方式实现。 绕组域区置油道布度器垫块高感圈传线组绕: 图A.4 传感器在绕组上的安装位置 A.4 传感器串在绕组轴向温度分布测量上的安装位置 将1串含有8-10个传感器的光纤光栅温度传感器串内置于开好槽的撑条内,传感器在绕组高度上均布以测量绕组轴向上的温度分布,见图A.2或者图A.3中“撑条”标示处。 A.5 传感器在铁芯上的安装位置 铁芯上的光纤光栅温度传感器放置在铁芯顶部,A、B、C绕组上方的对应位置,如图所示,推荐采用光纤光栅传感器串的方式实现。A.5. 铁芯高压绕组 低压绕组传感器 传感器在铁心上的安装位置A.5 图传感器在油中的安装位置A.6 油中传感器的安装位置,可参考《GB 1094.2 电力变压器第2部分温升》。顶层油温安装1-2

数字温度传感器测温显示系统说明书

数字温度传感器测温显示系统说明书 学院:机械与电子控制工程学院 班级:0907班 组长:段晗晗 组员:兰天宝、侯晨、李楠楠、王珂、赵亮 时间:2011-7-1

目录 任务书------------------------------------------------------------------------------3 摘要---------------------------------------------------------------------------------4 正文---------------------------------------------------------------------------------4 总体设计方案 第1章主控制器 1.1AT89C51 特点及特性--------------------------------------------------------4 1.2管脚功能说明-----------------------------------------------------------------5 1.3振荡器特性--------------------------------------------------------------------7 1.4芯片擦除-----------------------------------------------------------------------7 第2章温度采集部分设计 2.1.DS18B20 技术性能描述----------------------------------------------------7 2.2.DS18B20 管脚排列及内部结构-------------------------------------------8 2.3.DS18B20 工作原理----------------------------------------------------------8

WZPK型温度传感器使用说明书

WZPK型温度传感器 使用说明书 泰兴市热工仪表厂2015年01月10日

隔爆温度传感器 ■应用 通常和显示仪表、记录仪表、电子计算机等配套使用。直接测量生产现场存在碳氢化合物等爆炸的0~500℃范围内液体、蒸汽和气体介质以及固体表面温度。 ■特点 ●压簧式感温元件,抗振性能好; ●测量范围大; ●毋须补偿导线,节省费用; ●进口薄膜电阻元件,性能可靠稳定。 ●防爆标志:Ex dⅡBT1~T5,防爆合格证号:GYB ■主要技术参数 ●产品执行标准 JB/T8622-1997 《工业铂热电阻技术条件》 《爆炸性气体环境用电气设备第1部分:设备通用要求_部分2》和《爆炸性气体环境用电气设备第2部分:隔爆型“d”保护的设备》,《设备保护等级(EPL)为Gb级的设备产品防爆标志为Ex d ⅡB T1~T5 Gb ■常温绝缘电阻 防爆热电阻在环境温度为15~35℃,相对湿度不大于80%,试验电压为10~100V(直流)电极及外套管之间的绝缘电阻≥100MΩ.m。

■测温范围及允差 ●测温范围及允差 注:t为感温元件实测绝对值。 ●防爆分组形式 d Ⅱ□ T □ 温度组别:T1~T5 防爆等级:A、B、C 工厂用电气设备 d:隔爆型 ai:本质安全型 ○电气设备类别 Ⅰ类——煤矿井下用电气设备 Ⅱ类——工厂用电气设备 ○防爆等级 防爆热电偶的防爆等级按其使用于爆炸性气体混合物最大安

全间隙分为A、B、C三级。 ○温度组别 防爆热电偶的温度组别按其外漏部分允许最高表面温度分为T1~T5 ●防爆等级 ●Exd Ⅱ□T□ ●Exia Ⅱ□T□ ●防护等级:IP65 ■接线盒形式

变压器绕组温度计

一、概述 绕组温度计是一种适用热模拟测量技术测量电力变压器绕组最热点温度的专用监测(控制)仪表。所谓热模拟测量技术是在易测量的变压器顶层油温T O 基础上,再施加一个变压器负荷电流变化的附加温升△T ,由此二者之和T=T O +△T 即可模拟变压器最热点温度。 本公司研制生产的新型BWR (WTYK )-04绕组温度计有信号报警、冷却器控制和事故跳闸等多项功能,用户可根据实际需要选择使用。该仪表具有良好的防护性能,抗干扰性强,可靠性高,接线安装方便,在户外条件下能正常工作。同时能将变压器绕组温度计信号远传至控制中心,通过XMT-288数显仪或计算机系统,实现同步显示,控制变压器,确保变压器正常运作。 二、型号说明: a)输出信号 A —直接输出DC (4-20)mA 电流信号,也可通过XMT-288数显仪显示其相应温度同时输出DC (4-20)mA 电流信号及DC (0-5)V 电压信号; V —直接输出DC (0-5)电压信号; RS —直接输出端为DC (4-20)mA 电流信号,也可通过XMT-288数显仪显示其相应温度同时输出RS-485计算机接口。 三、产品成套性: 绕组温度计组成有三部分: 1、现场一只嵌装电热元件的温度计BWR (WTYK )-04,如图1所示; B W R - -□ □ TH 适用于湿热带 输出信号a) 开关数目 绕组 温度计 变压器类产品用

2、现场一只BL型电流匹配器,如图1所示; 3、中心机房一台遥测控制仪(XMT-288)。 四、工作原理: 当变压器带上负荷后,如图2所示,通过变压器电流互感器取出与负荷成正比的电流,经电流匹配器调整后,通过嵌装在弹性元件内的电热元件产生热量,使弹性元件的位移量增大。因此当变压器带上负荷后,弹性元件的位移量是由变压器顶层油温和变压器负荷电流二者所决定。则BWR(WTYK)-04指示的温度是变压器顶层油温与绕组对油的温升之和,反映了被测变压器绕组的最热部位平均温度。 电流匹配器是一种电流变换装置,它的作用是为BWR(WTYK)-04提供工作电流.从变压器的电流互感器输出的电流经电流匹配器变换后,向BWR(WTYK)-04内部的电热元件提供一个可调电流,从而能够达到模拟变压器绕组最热部位温度。 XMT-288仪表具有遥测变压器绕组温度及超温报警等功能。通过BWR

DS18B20温度传感器使用方法以及代码

第7章 DS18B20温度传感器 7.1 温度传感器概述 温度传感器是各种传感器中最常用的一种,早起使用的是模拟温 度传感器,如热敏电阻,随着环境温度的变化,它的阻值也发生线性变化,用处理器采集电阻两端的电压,然后根据某个公式就可以计算出当前环境温度。随着科技的进步,现代的温度传感器已经走向数字化,外形小,接口简单,广泛应用在生产实践的各个领域,为我们的生活提供便利。随着现代仪器的发展,微型化、集成化、数字化、正成为传感器发展的一个重要方向。美国DALLS半导体公司推出的数字化温度传感器DS18B20采用单总线协议,即单片机接口仅需占用一个 I/O端口,无需任何外部元件,直接将环境温度转化为数字信号,以数码方式串行输出,从而大大简化了传感器与微处理器的接口。 7.2 DS18B20温度传感器介绍 DS18B20是美国DALLAS^导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9?12位的数字 值读数方式。可以分别在93.75 ms和750 ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入 DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的 DS18B20供电,而无需额外电源。因而使用

DS18B20可使系统结构更趋简单,可靠性更高。他在测温精度、转换时间、传输距离、分辨率等方面较 DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。 1. DS18B20温度传感器的特性 ①独特的单线接口方式:DS18B20与微处理器连接时仅需要一条口 线即可实现微处理器与DS18B20勺双向通讯。 ②在使用中不需要任何外围元件。 ③可用数据线供电,电压范围:+3.0~ +5.5 V。 ④测温范围:-55 ~+125 C。固有测温分辨率为0.5 C。 ⑤通过编程可实现9~12位的数字读数方式。 ⑥用户可自设定非易失性的报警上下限值。 ⑦支持多点组网功能,多个 DS18B20可以并联在惟一的三线上,实现多点测温。 ⑧负压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。 2. 引脚介绍 DS18B20有两种封装:三脚TO-92直插式(用的最多、最普遍的封装)和八脚SOIC贴片式。下图为实验板上直插式 DS18B20的原理图。 3. 工作原理 单片机需要怎样工作才能将DS18B2 0中的温度数据独取出来呢?F面将给出详细分析

GFSIGNET2350温度传感器操作说明书.

? SIGNET 2820 Series Conductivity Sensor Instruction Manual ENGLISH 1. Wiring 2. Recommended Position 3. 2819/2820/2821 In-line Installation SAFETY INSTRUCTIONS FOR IN-LINE ELECTRODE INSTALLATION 1.Do not remove from pressurized lines.2.Do not exceed maximum temperature/pressure specifications.3.Wear safety goggles or face shield during installation/service.4.Do not alter product construction. Failure to follow safety instructions may result in severe personal injury! Customer supplied pipe tee/reducer Standard fitting kit Hole up Mark hole position 3/4 in. NPT Hand tighten only! Optional fitting kit Hole up Mark hole position

Customer supplied pipe tee/reducer 1/2 in. NPT Hand tighten only! O-ring O-ring Sealant Sealant +GF + SIGNET 5800CR ?Use three conductor shielded cable for cable extensions up to 30 m (100 ft max.? Shield must be maintained through cable splice RED WHITE BLACK SILVER (SHLDS h l d S i g n a l I N T e m p . I N I s o . G n d CH 2 CH 1 RED SILVER (SHLD BLACK

变压器温度计相关知识

变压器温度计相关知识 由于变压器的使用寿命取决于它的绕组温度,绕组温度对绝缘材料起着决定性的作用。DL/T 572—1995《电力变压器运行规程》规定变压器的上层油温,一般不得超过95℃。上层油温如果超过95℃,变压器绕组的温度就要超过绕组绝缘物的耐热强度,从而加速绝缘物的老化。故变压器运行中,一般规定了85℃这个上层油温的界限。 为防止变压器油温过高,加速变压器的老化。故变压器一般安装温度计,油面温度计用来测量变压器油箱上层油温,监视变压器运行状态是否正常。 早期变压器一般只安装一只温度计,最近几年变压器油面温度计一般安装两只,主要对于容量较大的变压器,油箱内空间较大,变压器的发热和散热也是不均匀的,在变压器内不同的区域,温度相差可能较大,为了安全起见,需要较准确地测出变压器的油温,所以有时在变压器的长轴两端各设个信号温度计来检测其油温,以确保变压器更安全地运行。这样也可当其中一只温度计故障,由于一时无法安排停电处理,而无法监测变压器的油面温度。 这一年随着绕组温度计技术成熟,更在在1110kV安装绕组温度计,直接监测绕组温度计。 一、温度计的原理 变压器温度计是用来测量油箱里面上层油温的,起到监视电力变压器是否正常运行的作用。温度计按变压器容量大小可分为水银温度计、压力式(信号)温度计、电阻温度计三种测温方法。 通常800kVA以下的电力变压器箱盖上设有水银温度计座。当欲以水银温度计测量油面温度时,旋开水银温度计水银温度计是膨胀式温度计的一种,水银的冰点是:-38.87℃,沸点是:356.7℃,用来测量0--150℃或500℃以内范围的温度,它只能作为就地监督的仪表。用它来测量温度,不仅比较简单直观,而且还可以避免外部远传温度计的误差。使用水银温度计时应注意以下几点:座上的盖子(运输时防雨用的)在座内注满变压器油,将水银温度计插入进行测量。

光纤温度传感器

光纤温度传感器 电子092班 张洪亮 2009131041

光纤温度传感器 摘要 本文从光纤和光纤传感器以及光纤温度传感器的发展历程开始详细分析国内外 主要光纤温度测温方法的原理及特点,比较了不同方法的温度测量范围和性能指标以及各自的优缺点。通过研究发现了当前的光纤温度传感器的种类和特点,详细介绍了光纤温度传感器的原理,种类和各自的特点和优缺点。可以根据这些传感器各自特点将各种传感器应用到不同的领域,本文也简要分析了各种光纤温度传感器的运用范围和领域。本文还通过图文并茂的方式比较详细地分析了介绍了空调器的基本结构,工作电气原理和基本的热力学过程。本文对毕业设计主要内容和拟采用的研究方案也做出了详细地介绍分析。 关键词:光纤传感器,光纤温度传感器,运用领域,空调器,空调器原理 1 引言: 光纤温度传感器是一种新型的温度传感器.它具有抗电磁干扰、耐高压、耐腐蚀、防爆防燃、体积小、重量轻等优点,其中几种主要的光纤温度传感器:分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器和基于弯曲损耗的光纤温度传感器更有着自己独特的优点。与传统的传感器相比具有一下优点:灵敏度高;是无源器件,对被测对象不产生影响;光纤耐高压,耐腐蚀,在易燃、易爆环境下安全可靠;频带宽,动态范围大;几何形状具有多方面的适应性;可以与光纤遥测技术相配合,实现远距离测量和控制;体积小,重量轻等。它将在航空航天、远程控制、化学、生物化学、医疗、安全保险、电力工业等特殊环境下测温有着广阔的应用前景。在本论文中将详细分析当前光纤温度传感器的主要种类和各自的原理,特点和应用范围。70 年代中期,人们开始意识到光纤不仅具有传光特性,且其本身就可以构成一种新的直接交换信息的基础,无需任何中间级就能把待测的量与光纤内的导光联系起来。1977 年,美国海军研究所开始执行光纤传感器系统计划,这被认为是光纤传感器问世的日子。从这以后,光纤传感器在全世界的许多实验室里出现。从70 年代中期到 80 年代中期近十年的时间,光纤传感器己达近百种,它在国防军事部门、科研部门以及制造工业、能源工业、医学、化学和日常消费部门都得到实际应用。从目前的情况看,己有一些形成产品投入市场,但大量的是处在实验室研究阶段。光纤传感器与传统的传感器相比具有一下优点:灵敏度高; 是无源器件,对被测对象不产生影响;光纤耐高压,耐腐蚀,在易燃、易爆环境下安全可靠;频带宽,动态范围大;几何形状具有多方面的适应性;可以与光纤遥测技术相配合,实现远距离测量和控制;体积小,重量轻等。目前,世界各国都对光纤传感器展开了广泛,深入的研究,几个研究工作开展早的国家情况如下:美国对光纤传感器研究共有六个方面:这些项目分别是: 光纤传感系统;现代数字光 纤控制系统;光纤陀螺;核辐射监控;飞机发动机监控; 民用研究计划。以上计划仅在 1983 年就投资 12-14 亿美元。美国从事光纤传感器研究的有美国海军研究所、美国宇航局、西屋电器公司、斯坦福大学等 28 个主要单位。美国光纤

光纤测温

光纤测温 1.概述 光导纤维是一种利用光完全内反射原理而传输光的器件。一般光导纤维用 石英玻璃制成,通常有三层:最里面直径仅有几十微米的细芯称芯子,其折射率 为n;外面有一层外径为10 00~20 00μm的包层,其折射率为n2,通常n略小于 n1;芯子和包层一起叫做心线;心线外面为保护层,其折射率为n3,n3≥n2。这种结构可保证按一定角度入射的光线在芯子和包层的界面发生全反射, 使光线只集中在芯子内向前传输。与温度测量有关的光导纤维的特征参数主要 是数值孔径NA,其表达式为 NA=n0sinθ0=n21-n22(6-32) 式中,n0为空气折射率,其值为1;n1为芯子材料的折射率;n2 为包层材料的折 射率;θ为临界入射角(指保证入射光在芯子和包层界面间发生全反射,从而集 中在芯子内部向前传输的最大入射角)。 NA大,表示可以在较大入射角范围内输入并获得全反射光;它与心线直径 无关,仅与它们材料的折射率有关。一般光学玻璃组成的光纤,其NA约为0.4;而石英玻璃组成的光纤,其NA约为0.25。 2.光纤温度传感器 光纤温度传感器是采用光纤作为敏感元件或能量传输介质而构成的新型测 温传感器,它有接触式和非接触式等多种型式。 光纤传感器由光源激励、光源、光纤(含敏感元件)、光检测器、光电转换及处 理系统和各种连接件等部分构成。光纤传感器可分为功能型和非功能型两种型 式,功能型传感器是利用光纤的各种特性,由光纤本身感受被测量的变化,光纤 既是传输介质,又是敏感元件;非功能型传感器又称传光型,由其他敏感元件感 受被测量的变化,光纤仅作为光信号的传输介质。 (1)功能型光纤温度传感器 功能型光纤温度传感器是由光纤本身感受被测目标物体的温度变化,并引 起传输光的相应变化,然后据此确定被测目标物体的温度高低与发生变化的位 置。这类传感器目前仍处于研究阶段,下面介绍其中两种功能型光纤温度传感 器。 ①黑体辐射型 这种温度传感器与辐射光纤传感器很相似,其工作原理是基于光纤芯线受 热产生黑体辐射现象来测量被测物体内热点的温度。此时,光纤本身成为一个 待测温度的黑体腔,它与辐射温度计的区别在于辐射不是固定在头部,而是光纤 整体。在光纤长度方向上的任何一段,因受热而产生的辐射都在端部收集起来, 并用来确定高温段的位置与温度。因此,它属于接触式温度传感器范畴。这种 传感器是靠被测物体加热光纤,使其热点产生热辐射,所以,它不需要任何外加 敏感元件,可以测量物体内部任何位置的温度。而且,传感器对光纤要求较低, 只要能承受被测温度就可以。 光纤温度传感器的热辐射能量取决于光纤温度、发射率与光谱范围。当一 定长度的光纤受热时,光纤的所有部分都将产生热辐射,但光纤各部分的温度可 能相差很大,所辐射的光谱成分也不同。由于热辐射随物体温度增加而显著增 加,所以,在光纤终端探测到的光谱成分将主要取决于光纤上最高温度,即光纤 中的热点,而与其长度无关。

T255温度传感器使用说明

T255温度传感器使用说明 T255温度传感器是一款用来检测功率半导体温升的理想模拟器件,主要配合运放整形或直接送入单片机A/D口采集温度信息,并作出实时显示或过温保护等动作。 T255是以其阻值变化来反映温度变化的,故选用相应电阻分压来获取对应电压值是非常重要的参数。 典型:R(25℃)=5.000kΩ ,静动态特性好,灵敏度高。 阻值-温度特性表 温度℃ 阻值KΩ 温度℃ 阻值KΩ 温度℃ 阻值KΩ 温度℃ 阻值KΩ -20 37.49 11 8.801 42 2.674 73 0.980 -19 35.53 12 8.439 43 2.582 74 0.951 -18 33.76 13 8.093 44 2.493 75 0.923 -17 32.09 14 7.764 45 2.409 76 0.896 -16 30.52 15 7.451 46 2.327 77 0.870 -15 29.03 16 7.151 47 2.249 78 0.844 -14 27.62 17 6.866 48 2.174 79 0.820 -13 26.29 18 6.593 49 2.102 80 0.796 -12 25.03 19 6.333 50 2.032 81 0.773 -11 23.84 20 6.085 51 1.966 82 0.751 -10 22.72 21 5.848 52 1.902 83 0.729 -9 21.65 22 5.621 53 1.840 84 0.709 -8 20.64 23 5.405 54 1.780 85 0.689 -7 19.68 24 5.198 55 1.723 86 0.670 -6 18.77 25 5.000 56 1.668 87 0.650 -5 17.91 26 4.811 57 1.615 88 0.632 -4 17.10 27 4.630 58 1.564 89 0.614 -3 16.32 28 4.457 59 1.514 90 0.597 -2 15.59 29 4.291 60 1.467 91 0.581 -1 14.89 30 4.132 61 1.421 92 0.565 0 14.23 31 3.980 62 1.376 93 0.549 1 13.60 3 2 3.835 6 3 1.33 4 94 0.534 2 13.01 3 3 3.696 6 4 1.292 9 5 0.520 3 12.4 4 34 3.562 6 5 1.252 9 6 0.506 4 11.90 3 5 3.434 6 6 1.214 9 7 0.492 5 11.39 3 6 3.311 6 7 1.177 9 8 0.479 6 10.90 3 7 3.194 6 8 1.141 9 9 0.466 7 10.44 38 3.081 69 1.107 100 0.453 8 10.00 39 2.973 70 1.073 9 9.580 40 2.869 71 1.041 10 9.181 41 2.769 72 1.010

变压器油面绕组温度计的基本知识

1、这里着重介绍油面温度计,因为绕组温度计的温度指示并非真实绕组温度体征,而是通过油顶层温度与电流互感器小信号叠加而成的模拟信号。 2、绕组温度计的信号介绍: B W Y -80 4 A J (TH) 湿热带防护 J、机电一体化、输出(4-20)mA A、铂电阻 开关数量 线性刻度 油面 温度计 变压器 BWY-804AJ(TH)油面温度计:仪表内装有四组可调控制开关,可分别用于变压器冷却系统控制及讯号报警。同时能输出与温度值对应的(4-20)mA电流信号和Pt100铂电阻值,供计算机系统和二次仪表使用。 组成:主要由弹性元件、传感导管、感温部件、温度变送器、数字式温度显示仪组成。由弹性元件、传感导管和感温部件构成的密封系统内充满感温介质,当被测温度变化时,感温部件内的感温介质的体积随之变化,这个体积增量通过传感导管传递到仪表内弹性元件,使之产生一个相对应的位移,这个位移经机构放大后便可指示被测温度,并驱动微动开关,输出开、关控制信号以驱动冷却系统,达到控制变压器温升的目的。通过嵌装在一次仪表内的变送器,输出(4-20)m A标准信号,输入计算机系统和二次仪表,实现无人电站管理使用说明: 1、仪表在运行中必须垂直安放。 2温包安装:使用前必须确认温度计座内注满了油且油面能够完全浸没PT100。 3、温包与表头间的软管必须有相应的固定,间距在300mm为宜。弯曲半径不得小于R100mm。多余的软管应按大于直径Φ200mm盘成圆,固定在变压器本体上。(毛细管内为惰性液体) 4、调整温度表必须在专用设备特定温度下进行。 5、切忌用手随意拨动表指针动作。 常见故障: 1、表盘指针不动作且回零---毛细管内液体泄露,该故障为不可修复故障。 2、数显显示异常:极性接反,变送器故障 绕组温度计的工作原理: 变压器绕组温度计的温包插在变压器油箱顶层的油孔内,当变压器负荷为零时,绕组温度计的读数为变压器油的温度。当变压器带上负荷后,通过变压器电流互感器取出的与负荷成正比的电流,经变流器调整后流经嵌装在波纹管内的电热元件。电热元件产生的热量,使弹性元件的位移量增大。因此在变压器带上负荷后,弹性元件的位移量是由变压器顶层油温和变压器负荷电流二者所决定。变压器绕组温度计指示的温度是变压器顶层油温与线圈对油的温升之和,反映了被测变压器线圈的最热部位温度。 绕组温度计的档位选定: 1、选定档位需要的几个参数:变压器一次额定电流、CT变比、铜油温差 2、计算公式:IP=I*/CT变比,得出二次互感器额定电流.根据铜油温差查曲线得到IS

变压器光纤测温装置常见故障及原因分析

变压器光纤测温装置常见故障及原因分析 发表时间:2018-09-04T14:33:32.047Z 来源:《建筑学研究前沿》2018年第11期作者:程自宽 [导读] 电力系统中,维护电力变压器的正常运行是整个系统可靠供电的基本保证。 特变电工股份有限公司新疆变压器厂新疆昌吉 831100 摘要:变压器绕组温度过高会影响绕组绝缘,并导致变压器绝缘等级下降,减少变压器的运行寿命。光纤测温装置是变压器产品的一种可选配件,可较真实地测量并显示变压器内部测量点的热点温度,为变压器产品的负荷预测、寿命评估和状态评估提供参考数据。变压器是电网一次设备的重要组成部分,变压器的绕组热点温度是决定其绝缘寿命的主要因素。近些年,由于光纤温度传感器具有耐高电压、耐高温、抗强电磁场等优良特性,越来越多地应用到特殊场合的温度测量中。光纤温度传感器种类繁多,其中基于半导体吸收原理的光纤温度传感器由于结构简单、可靠性高、成本较低等特点在近年来的研究中越来越受重视。 关键词:变压器;光纤测温装置;故障;原因 引言 电力系统中,维护电力变压器的正常运行是整个系统可靠供电的基本保证.近年来,我国用电需求快速增长,电力系统发展方向为超高压、大容量.因此,变压器的故障率也随之增加.据相关资料统计,110kV及以上变压器的平均事故率在0.69%以上.尤其是近年来,变压器因过载运行,导致绝缘老化、变压器绕组击穿、烧毁事故率高达75%以上.高压油浸电力变压器的寿命主要取决于固体绝缘(纤维纸)的寿命,温度、水分和氧气是促使其绝缘老化的主要因素.热效应为变压器老化的决定性因素,热点温度的高低决定了变压器的使用寿命.随着光电子技术的高速发展,光纤传感器的诞生为变压器温度测量提供了一种新的技术手段.相对于传统的电信号测量传感器,光纤传感器具有体积小、抗腐抗电磁干扰、耐高温、耐高压等诸多优势,能有效监测电力变压器内部的热点温度.当前最为成熟技术为基于荧光光纤的温度传感器,应用最为广泛的是点式光纤测温产品.该技术最开始从国外进行应用,20世纪80年代,著名的变压器制造厂商如ABB、西门子、东芝的产品上均使用过荧光光纤温度传感器。 变压器的内部温度可以通过以下3种方法获得:热模拟测量法、间接计算法和直接测量法.对于热模拟法,就是通过在变压器中安装热模拟法测温仪表,从而换算出变压器的绕组温度.其优点是经济、冷却系统可以被直接启动.但是,该方法准确性差,测量温度有一定的时差性.在法国电网中,该方法已经被停止使用.间接计算法,就是根据假设的变压器热模型,结合各国的实用经验、国际电工委员会的IEC345-1991标准和我国的GB/T15164-1994《油浸式电力变压器负载导则》标准,推导出热点温升计算公式,具有一定的精度,具有经济、简便、实用性强等特点,但是该方法计算复杂,尤其是由经验得出的计算参数,通用性不强,在变压器现场使用时受到限制.且热模法和间接计算法只能求解热点温度值,不能得到热点的具体位置,实际应用过程中具有一定的局限性.直接测量法是在绕组靠近导线部分埋设传感器,然后通过检测仪表获取传感器附近的温度值,它是一种在线检测设备.直接测量法可以实时、准确测量出绕组热点温度;通过及时启动制冷设备,可以避免因变压器绕组过热引发的事故.该方法最典型的应用代表为荧光光纤温度传感器和半导体光纤温度传感器。 1.概述 光纤测温装置主要由内部光纤、贯通板及贯通器、贯通器防护罩、外部光纤、光纤测温主机及主机控制箱等组成,整体安装结构如图1所示。光纤测温装置结构及操作复杂、精细,使用和装配过程中经常发生损坏故障,笔者对我公司近几年来发现的问题进行了汇总。 图1 整体结构图 2故障情况及原因分析 2.1光纤测量不通 (1)发现光纤探头损坏见图2,光纤探头受力开裂,其内部材料已膨胀出来,清晰可见(见图2中标识位置),测量结果显示光纤不

变压器绕组温度计说明书

BWR(WTYK)-04 WINDING TEMPERATURE INDICATOR 一、概述 绕组温度计是一种适用热模拟测量技术测量电力变压器绕组最热点温度的专用监测(控制)仪表。所谓热模拟测量技术是在易测量的变压器顶层油温T O 基础上,再施加一个变压器负荷电流变化的附加温升△T,由此二者之和T=T O+△T即可模拟变压器最热点温度。 本公司研制生产的新型BWR(WTYK)-04绕组温度计有信号报警、冷却器控制和事故跳闸等多项功能,用户可根据实际需要选择使用。该仪表具有良好的防护性能,抗干扰性强,可靠性高,接线安装方便,在户外条件下能正常工作。同时能将变压器绕组温度计信号远传至控制中心,通过XMT(XST)数显仪或计算机系统,实现同步显示、控制变压器绕组温度,确保变压器正常运作。 二、型号说明: B W R - 04 TH 适用于湿热带 开关数目 绕组 温度计 变压器类产品用 输出信号: 1. 直接输出DC(4-20)mA电流信号,也可通过XMT数显仪显示其相应温度同时输出DC(4-20)mA电流信号及DC(0-5)V电压信号; 2. 直接输出端为DC(4-20)mA电流信号,也可通过XST数显仪显示其相应温度同时输出RS-485计算机接口。

BWR(WTYK)-04 WINDING TEMPERATURE INDICATOR 三、产品成套性: 绕组温度计组成有二部分: 1、现场一只嵌装电热元件及BL型电流匹配器的温度控制BWR(WTYK)-04, 如图1所示; 2、中心机房一台遥测控制仪XMT、(XST)。 四、工作原理: 当变压器带上负荷后,如图2所示,通过变压器电流互感器取出与负荷成正比的电流,经电流匹配器调整后,通过嵌装在弹性元件内的电热元件产生热量,使弹性元件的位移量增大。因此当变压器带上负荷后,弹性元件的位移量是由变压器顶层油温和变压器负荷电流二者所决定。则BWR(WTYK)-04指示的温度是变压器顶层油温与绕组对油的温升之和,反映了被测变压器绕组的最热部位平均温度。

DS18B20温度传感器使用方法以及代码

第7章DS18B20温度传感器 7.1 温度传感器概述 温度传感器是各种传感器中最常用的一种,早起使用的是模拟温度传感器,如热敏电阻,随着环境温度的变化,它的阻值也发生线性变化,用处理器采集电阻两端的电压,然后根据某个公式就可以计算出当前环境温度。随着科技的进步,现代的温度传感器已经走向数字化,外形小,接口简单,广泛应用在生产实践的各个领域,为我们的生活提供便利。随着现代仪器的发展,微型化、集成化、数字化、正成为传感器发展的一个重要方向。美国DALLS半导体公司推出的数字化温度传感器DS18B20采用单总线协议,即单片机接口仅需占用一个I/O端口,无需任何外部元件,直接将环境温度转化为数字信号,以数码方式串行输出,从而大大简化了传感器与微处理器的接口。7.2 DS18B20温度传感器介绍 DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。可以分别在93.75 ms和750 ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源。因而使用

DS18B20可使系统结构更趋简单,可靠性更高。他在测温精度、转换时间、传输距离、分辨率等方面较DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。 1.DS18B20温度传感器的特性 ①独特的单线接口方式:DS18B20与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。 ②在使用中不需要任何外围元件。 ③可用数据线供电,电压范围:+3.0~ +5.5 V。 ④测温范围:-55 ~+125 ℃。固有测温分辨率为0.5 ℃。 ⑤通过编程可实现9~12位的数字读数方式。 ⑥用户可自设定非易失性的报警上下限值。 ⑦支持多点组网功能,多个DS18B20可以并联在惟一的三线上,实现多点测温。 ⑧负压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。 2.引脚介绍 DS18B20有两种封装:三脚TO-92直插式(用的最多、最普遍的封装)和八脚SOIC贴片式。下图为实验板上直插式DS18B20的原理图。 3.工作原理 单片机需要怎样工作才能将DS18B20中的温度数据独取出来呢?下面将给出详细分析。

详细剖析光纤温度传感器的工作原理和应用场景

详细剖析光纤温度传感器的工作原理和应用场景 温度是度量物体冷热程度的物理量,许多物理现象和化学过程都是在一定温度下进行,人们的日常生活也和温度密切相关。随着科学技术的迅猛发展,对温度的测量也提出了更多更高的要求。以电信号为工作基础的传统的光纤温度传感器特点光纤测温传感器测量温度的方法光纤传感器的基本原理几种光纤温度传感器的原理基于布里渊散射的分布式光纤传感技术基于布里渊光频域分析(BOFDA)技术的分布式光纤传感器光纤温度传感器的应用 光纤温度传感自问世以来, 主要应用于电力系统、建筑、化工、航空航天、医疗以至海洋开发等领域,并已取得了大量可靠的应用实绩。 1、光纤温度传感器在电力系统有着重要的应用,电力电缆的表面温度及电缆密集区域的温度监测监控; 高压配电装置内易发热部位的监测; 发电厂、变电站的环境温度检测及火灾报警系统; 各种大、中型发电机、变压器、电动机的温度分布测量、热动保护以及故障诊断; 火力发电厂的加热系统、蒸汽管道、输油管道的温度和故障点检测; 地热电站和户内封闭式变电站的设备温度监测等等。 2、光纤温度传感特别是光纤光栅温度传感器很容易埋入材料中对其内部的温度进行高分辨率和大范围地测量, 因而被广泛的应用于建筑、桥梁上。美国、英国、日本、加拿大和德国等一些发达国家早就开展了桥梁安全监测的研究, 并在主要大桥上都安装了桥梁安全监测预警系统, 用来监测桥梁的应变、温度加速度、位移等关键安全指标。1999 年夏, 美国新墨西哥Las Cruces 10 号州际高速公路的一座钢结构桥梁上安装了120 个光纤光栅温度传感器,创造了单座桥梁上使用该类传感器最多的记录。 3、航空航天业是一个使用传感器密集的地方,一架飞行器为了监测压力、温度、振动、燃料液位、起落架状态、机翼和方向舵的位置等, 所需要使用的传感器超过100 个, 因此传感器的尺寸和重量变得非常重要。光纤传感器从尺寸小和重量轻的优点来讲, 几乎没有其他传感器可以与之相比。 4、传感器的小尺寸在医学应用中是非常有意义的, 光纤光栅传感器是现今能够做到最小的

Pt100温度传感器接线说明

Pt100温度传感器接线说明 Pt100就是说它的阻值在 0度时为100 欧姆,PT100 温度传感器。是一种以铂(Pt)作成的电阻式温度传感器,属于正电阻系数,其电阻和温度变化的关系式如下:R=Ro(1+αT) Pt100温度传感器的主要技术参数如下: 测量范围:-200℃~+850℃;允许偏差值△℃:A 级±(0.15+0.002│t│),B 级±(0.30+0.005│t│);热响应时间<30s;最小置入深度:热电阻的最小置入深度≥200mm;允通电流≤5mA。另外,Pt100 温度传感器还具有抗振动、稳定性好、准确度高、耐高压等优点。 PT100 温度传感器三根芯线的接法: PT100铂电阻传感器有三条引线,可用 A、B、C(或黑、红、黄)来代表三根线,三根线之间有如下规律:A 与 B 或 C之间的阻值常温下在 110 欧左右,B 与 C 之间为 0欧,B 与 C 在内部是直通的,原则上 B 与 C 没什么区别。 仪表上接传感器的固定端子有三个: A 线接在仪表上接传感器的一个固定的端子. B 和 C 接在仪表上的另外两个固定端子,B 和 C 线的位置可以互换,但都得接上。如果中间接有加长线,三条导线的规格和长度要相同。 热电阻的 3 线和 4 线接法:是采用 2 线、3 线、4 线,主要由使(选)用的二次仪表来决定。 一般显示仪表提供三线接法,PT100 一端出一颗线,另一端出两颗线,都接仪表,仪表内部通过桥抵消导线电阻。一般 PLC 为四线,每端出两颗线,两颗接 PLC 输出恒流源,PLC 通过另两颗测量 PT100上的电压,也是为了抵消导线电阻,四线精确度最高,三线也可以,两线最低,具体用法要考虑精度要求和成本。 PT100温度传感器 产品特征: 1、不锈钢套管封装,经久耐用; 2、活动螺丝固定,使用方便; 3、按照国际IEC751 国际标准制造,即插即用; 4、多种探头尺寸可选、适应面广; 5、高精度、高稳定、高灵敏; 6、外形小巧,经济实用。

光纤温度传感器简介

光纤温度传感器 摘要:本文分析了光纤温度传感器在温度探测中的优势,分别介绍了分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器的工作原理,最后综述了光纤温度感器在现代工业及生活的应用。 关键字:光纤传感温度应用 1引言 在科研和生产中,有很多温度测量问题,传统的温度传感器有热电偶,热电阻温度传感器,热敏电阻温度传感器,半导体温度传感器等等。光纤温度传感器是20世纪70年代发展起来的一种新型传感器。与传统的温度传感器相比,它具有灵敏度高,体积小,质量轻,易弯曲,不产生电磁干扰,不受电磁干扰,抗腐蚀性好等等优点,特别适用于易燃,易爆,空间狭窄和具有腐蚀性强的气体,液体以及射线污染等苛刻环境下的温度检测。 2光纤温度传感器分类 光纤温度传感器按照调制机理可分为相位调制,振幅调制,偏振态调制;按工作原理分,光纤温度传感器可分为功能性和传输型两种。功能型温度传感器中光纤作为传感器的同时也是光信号的载体,而传输型温度传感器中光纤则只传输光信号。传光型与传感型相比,虽然灵敏度稍差,但可靠性高,实用的传感器大多是这种类型。 目前主要的光纤温度传感器包括分布式光纤温度传感器、光纤光栅温度传感器、光纤荧光温度传感器、干涉型光纤温度传感器等。 2.1光纤光栅温度传感器 光纤光栅温度传感器是利用光纤材料的光敏性在光纤纤芯形成的空间相位光栅来进行测温的。光纤光栅以波长为编码,具有传统传感器不可比拟的优势,近年来光纤光栅成为发展最为迅速,最具代表性的光纤无源器件之一,已广泛用于建筑、航天、石油化工、电力行业等。 光纤光栅温度传感器主要有Bragg光纤光栅温度传感器和长周期光纤光栅传感器。Bragg光纤光栅是指单模掺锗光纤经紫外光照射成栅技术而形成的全新光纤型Bragg光栅,成栅后的光纤纤芯折射率呈现周期性分布条纹并产生Bragg 光栅效应,其基本光学特性就是以共振波长为中心的窄带光学滤波器,满足如下光学方程: =2nA 式中:为Bragg波长,A为光栅周期,n为光纤模式的有效折射率。 长周期光纤光栅是一种特殊的光纤光栅,其传光原理是将前向传输的基模耦合到前向传输的包层模中。由于其宽带滤波、极低的背景发射等特点引起人们的重视,是一种新型的宽带带阻滤波器。 光纤温度监测系统主要由光纤光栅传感器、传输信号用的光纤和光纤光栅解调器组成。光纤光栅解调器用于对光纤光栅传感器的信号检测和数据处理,以获得测量结果,传输光纤用于传输光信号,光纤光栅传感器则主要用于反射随温度变化中心波长的窄带光,如图1所示:

相关主题
文本预览
相关文档 最新文档