当前位置:文档之家› 防钻绒性测试试验方法分类

防钻绒性测试试验方法分类

防钻绒性测试试验方法分类
防钻绒性测试试验方法分类

防钻绒性测试试验方法分类

羽毛羽绒是一种天然材料,具有其他材料所不可替代的优势,羽绒制品以其轻、软、暖的优良特性深受消费者的青睐。但羽绒制品的钻绒问题一直困扰着生产企业和消费者,也是羽毛绒制品质量投诉的热点之一。因此,研究织物防钻绒性能试验方法对于提高羽绒制品质量,减少因羽绒钻绒引起的质量纠纷,具有十分重要的现实意义。

1、羽毛羽绒钻绒机理

防钻绒性能是指织物阻止羽毛羽绒从其表面钻出的性能,采用在规定条件作用下的钻绒根数表示。

羽绒纤维是以绒朵形式存在,在每个绒朵里,包含着若干根内部结构基本相同的纤维,每根纤维之间都会产生一定的斥力并使其距离保持最大,这样就使羽绒产生了蓬松性。当羽绒被填充到制品内时,靠近面料的羽绒受到内部羽绒的斥力,被向外挤压,产生了一个向外推的力使羽绒贴近面料。羽绒具有良好的回弹性,无论从哪个方向压下去,纤维都能迅速恢复原样,而通常防绒面料的透气性较差,致使羽绒制品的充绒内腔停滞了大量的静止空气。当羽绒制品受到外界挤压或者摩擦,静止空气从面料的孔隙或缝线的针眼透出,羽绒则乘机跟随空气钻出内腔,形成了钻绒[1—2]。

2、防钻绒性试验方法分类

织物防钻绒性试验方法的研究一直是制约羽绒制品发展的瓶颈,在国际羽毛羽绒局发布的2008版官方测试规则中,没有对防钻绒测试方法的表述,而在我国羽绒服装的产品标准中,也没有对防钻绒性指标的具体要求。科学有效的测试方法和试验设备对羽绒制品防钻绒性能的研究影响重大。

根据测试原理和试验设备,目前国内外织物防

钻绒性能的测试方法可以分为3类[3]:转箱法:根据GB/T12705.2—2009《纺织品织物防钻绒性试验方法第2部分:转箱法》,FTMS191AMethod5530—1978《织物防钻绒性试验方法转箱法》测试。

摩擦法:根据GB/T12705.1—2009《纺织品织物防钻绒性试验方法第1部分:摩擦法》,EN12132.1—1998《羽毛和羽绒织物防钻绒性试验方法第1部分:摩擦测试》测试。

冲击法:根据EN12132.2—1998《羽毛和羽绒织物防钻绒性试验方法第2部分:冲击测试》测试。

2.1转箱法

转箱法最初来源于美国联邦政府1978年制定的标准FTMS191AMethod5530—1978《织物防钻绒性试验方法转箱法》,1991年我国也参照美国标准制定了GB/T12705—1991《织物防钻绒性试验方法》,并在2009年更新为GB/T12705.2—2009《纺织品织物防钻绒性试验方法第2部分:转箱法》。转箱法的基本原理是:将试样制成具有一定尺寸的试样袋,内装一定质量的羽绒羽毛填充料,将其放在装有硬质橡胶球的试验仪器回转箱内,通过回转箱的定速转动,将橡胶球带至一定高度,冲击箱内的试样,达到模拟羽绒制品在服用中所受的各种挤压、揉搓、碰撞等作用,通过计数从试样袋内部所钻出的羽绒和羽毛的根数来评价织物的防钻绒性能。转箱法仪器如图1所示。

转箱法的2种试验方法在测试技术上存在一定差异,异同点如表1所示。

由表1可知,2种试验方法采用的均是回转箱法,样品在回转箱内随机翻转并通过橡胶球的冲击,模拟羽绒制品在穿用时的随机状态。不同点在于试样的尺寸、橡胶球的数量与质量、回转箱的转速、试验时间的控制以及对试验结果的评价等。对于试验结果的评价,GB/T12705.2—2009《纺织品织物防钻绒性试验方法第2部分:转箱法》采用统计钻绒根数,而FTMS191AMethod5530—1978《织物防钻绒性试验方法转箱法》只有合格与不合格2项指标,相比而言,前者在结果评价上更为科学。

2.2摩擦法

摩擦法采用的GB/T12705.1—2009《纺织品织物防钻绒性试验方法第1部分:摩擦法》是我国2009年新发布的防钻绒试验方法,其内容主要参照EN12132.1—1998《羽毛和羽绒织物防钻绒性试验方法第1部分:摩擦测试》制定。摩擦法的基本原理是:将试样制成具有一定尺寸的试样袋,内装一定质量的羽毛羽绒填充物,将试样安装在仪器的塑料袋中,经过挤压、揉搓和摩擦等作用,通过计数从试样袋内部钻出的羽毛羽绒根数来评价织物的防钻绒性能。摩擦法的原理图与仪器图如图2所示(单位:mm)。

摩擦法2种试验方法的技术参数基本一样,二者相同点比较如表2所示。

GB/T12705.1—2009《纺织品织物防钻绒性试验方法第1部分:摩擦法》与EN12132.1—1998《羽毛和羽绒织物防钻绒性试验方法第1部分:摩擦测试》相比,增加了在细节方面的要求[4]:

①试样袋制备:增加了缝制的要求,缝纫线的规格、性能与面料相适应,采用家用11号缝纫针。

②试样袋密封:用黏封液将试样袋缝线处黏封,防止羽毛、羽绒从缝线处钻出。

③填充料:采用与被测制品对应的填充料,如无规定,则采用70%的灰鸭绒填充。

④试样袋洗涤和干燥:增加了试样袋洗涤和干燥方式的规定。

⑤结果评价:增加了对试样的放钻绒评价方式。

2.3冲击法

冲击法的主要试验方法采用欧盟EN12132.2—1998《羽毛和羽绒织物防钻绒性试验方法第2部分:冲击测试》,目前应用不多,其测试原理为:将试样制成具有一定尺寸的圆柱形枕头,内装一定质量的羽绒、羽毛填充物,将试样放在试验仪器的倾斜轨道上,试样沿斜面被底部冲击杆推动至顶部的冲击杆,试样枕头即被压缩。一次撞击之后,试样沿着轨道下滑并恢复至原状,重复此步骤达到模拟羽毛绒制品在使用中所受的各种挤压、揉搓、碰撞等作用,通过计数从试样枕头内部所钻出的羽毛、羽绒和绒丝根数来评价织物的防钻绒性能。冲击法的测试原理图如图3所示。

冲击法的主要技术参数为:试样尺寸与数量:至少经向与纬向各制作一个枕头样品,样品面料的尺寸为750mm×全幅宽,制成样品枕头的表面积为210mm×476mm,直径约为(151.5±1)mm。

冲击频率:35次/min,冲击动程为500mm。

冲击次数:1/1平纹织物,2000次;斜纹织物,4000次;4/1缎纹织物1500次(用于被套等)。以500次为测试周期。

填充料质量要求如表3所示

结果评价:每500次测试后计数从样品内钻出、伸出和落下的羽毛、羽绒总根数,测试完成后分别计算经纬向钻出的总根数,从枕头底部和缝线处钻出的根数不计数。

3、防钻绒性试验方法比较

本文研究的3类防钻绒性试验方法,基本原理都是通过撞击、摩擦及挤压等物理机械作用,模拟羽绒制品在实际穿用过程中所受到的外力,使羽绒、羽毛等钻出织物表面,通过计数钻出的根数来评价织物的防钻绒性能。由于3类测试方法具体的测试原理和测试条件差异较大,测试结果之间没有可比性。下面对3类试验方法涉及的主要问题进行简要分析比较。

3.1试样放置位置

由于测试原理不同,转箱法样品放置于回转箱内,摩擦法样品装在塑料袋内,而冲击法则是放在倾斜的轨道上。回转箱和塑料袋均为封闭容器,虽然封闭容器有利于试验结束后对钻绒根数的统计,但不利于空气的交换流动,样品受力后,试样的蓬松性由于缺乏足够的空气在短时间内很难恢复原状,从而对钻绒的试验效果产生影响[5]。相比而言,冲击法的测试样品能够在受力后得到充分恢复,试验效果较前2类有一定改善。

3.2对仪器作用力

转箱法对样品的作用力是通过橡胶球对样品的击打作用产生,而且样品一直处于连续被击打状态,这样可能导致试样始终无法恢复到蓬松状态,在干瘪状态下羽毛羽绒从织物中钻出会很困难,试验效果会受到较大影响。摩擦法的作用力是试样2部分之间相互摩擦并挤压产生,样品主要受到的是摩擦力,由于试样放置在塑料袋中,在摩擦过程中也很难恢复到蓬松状态,钻绒效果同样受到较大影响。冲击法是通过冲击杆对样品的挤压作用来模拟实际使用状态,样品受到挤压和撞击作用力,也受到一定的摩擦作用力,在一个测试来回过程中,样品能够充分恢复到蓬松状态,因此冲击法的作用力方式较前

2类也有一定改进。

3.3钻绒根数统计方式

3类试验方法对钻绒根数的统计方式存在较大差异。转箱法2种测试方法中,

FTMS191AMethod5530—1978《织物防钻绒性试验方法转箱法》中未有涉及钻绒根数的统计,

GB/T12705.2—2009《纺织品织物防钻绒性试验方法第2部分:转箱法》中对钻绒根数的统计则较为详细,即钻绒根数为回转箱内钻出的羽毛羽绒根数与钻出试样袋表面的羽毛羽绒根数之和,其中钻出试样袋表面的

羽毛绒根数不考虑其钻出的长短程度只要钻出布面即为1根,因此在统计过程中需分清试样袋表面绒毛与钻出羽毛羽绒的区别。摩擦法2种测试方法的统计方式相似,钻绒根数为塑料袋内钻出的羽毛羽绒根数与钻出试样袋大于2mm的羽毛羽绒根数之和,大于2mm的描述在统计方式上比转箱法更为准确。冲击法钻绒根数的统计方式为钻出试样袋表面的羽毛羽绒根数,其中从样品枕头底部和锋线处钻出的根数不计数,对于如何确定“钻出试样袋表面”并没有明确的表述,且由于样品枕头是直接暴露在空气中,从样品枕头钻出的羽毛羽绒根数则无法统计,因此建议改进冲击法仪器设备,如在仪器的倾斜轨道上增加透明玻璃罩等。

3.4防钻绒性评价

无论采用哪类测试方法,得到一个合适的防钻绒性评价结果是最终目的,但3大类5种测试方法的防钻绒性评价却各不相同。转箱法中,FTMS191AMethod5530—1978《织物防钻绒性试验方法转箱法》的评价结果是通过与标准中的参考图相对比,得出满意与不满意2种评价,没有给出具体的钻绒根数评

价;GB/T12705.2—2009《纺织品织物防钻绒性试验方法第2部分:转箱法》将防钻绒性评价结果分为3个等级,并给出了具体的参考根数。摩擦法中,EN12132.1—1998《羽毛和羽绒织物防钻绒性试验方法第1部分:摩擦测试》只表述了当钻绒根数大于50时停止计数,并没有给出防钻绒性能的结果评价;GB/T12705.1—2009《纺织品织物防钻绒性试验方法第1部分:摩擦法》也将防钻绒性评价结果分为3个等级,但给出的参考根数与GB/T12705.2—2009《纺织品织物防钻绒性试验方法第2部分:转箱法》不同,二者比较如表4所示。

EN12132.2—1998《羽毛和羽绒织物防钻绒性试验方法第2部分:冲击测试》冲击法中未有对防钻绒性评价的描述,测试报告中只显示具体的钻绒根数。

通过对上述几方面问题的分析,也考虑到羽毛羽绒制品实际穿用过程中的问题与实际情况的相符性,建议采用冲击法测试织物的防钻绒性能,对冲击法的防钻绒性评价指标可以参照国标的相关要求。

4、结语

目前,国内外对织物防钻绒性试验方法的研究较少,转箱法在日常检测过程中有一定应用,而摩擦法和冲击法应用较少。通过比较可知,3类试验方法无论是测试仪器,还是测试原理以及结果评价等方面各不相同,对同一种测试样品,3类试验方法得出的测试结果可能也不尽相同。在国际羽绒羽毛局的官方测试方法中并未有对防钻绒测试的描述,因此建议国际羽绒羽毛局尽快制定规范的测试方法并给出对应的防钻绒性评价指标。本文针对3类试验方法存在的问题进行了简单分析,但并没有提出有效的解决办法,今后将逐步通过实践测试进行深入研究。

页岩全尺度孔径分布测试方法及特征研究

龙源期刊网 https://www.doczj.com/doc/8414126419.html, 页岩全尺度孔径分布测试方法及特征研究 作者:吴魏 来源:《中国化工贸易·上旬刊》2017年第05期 摘要:本文分别用高压压汞、液氮吸附及低温二氧化碳吸附方法获取了页岩的不同孔径 分布,分析了三种方法的适用范围,获取了页岩全尺度孔径分布。 关键词:页岩;孔径分布;压汞;液氮 目前研究页岩孔隙分布特征的方法主要有电镜扫描、高压压汞、液氮吸附及低温二氧化碳吸附等方法。因此本文旨在用这三种方法测试同一岩样的孔径分布并分析三种孔径分布的特征,研究页岩全尺度孔径分布的特征,为评价及优选有利储层提供技术支持。 1 实验方法 1.1 实验材料 页岩样品取自川南龙马溪组页岩。为排出水分对孔径分布测试的影响及获取样品较为真实的孔径分布,样品取回后在100℃下烘48小时,然后再根据不同实验的要求处理样品。 1.2 实验设备 高压压汞孔径分布实验采用国外引进的Poremaster高压压汞仪器,液氮孔径分布实验采用Autosorb-6B吸附仪,低温二氧化碳孔径分布实验采用Autosorb-IQ吸附仪。 2 高压压汞孔径分布特征 实验发现进汞退汞曲线不重合现象明显,而且进汞饱和度普遍偏低,分布在25%~58%之间,说明巨大的毛管力阻碍了退汞,同时意味着样品存在大量的微孔,而且还存在相当一部分微孔未被汞侵入,因此高压压汞不能得到整个样品的孔径分布。 4块样品的峰值均出现在60nm及800-1000nm左右,说明样品高压压汞孔径分布均呈双峰形态。又因为取样储层的破裂压力约在85MPa左右,同样压力下的汞能进入直径约为20nm的孔隙,因此进汞压力大于85MPa时页岩样品(或孔隙)很有可能被破坏,所以认为孔径小于20nm的孔径分布可信度不高。排除20nm及以下的孔径分布后,发现孔隙体积分布仍然呈双 峰形态,孔隙度越大对应分布曲线的峰值也越大,说明孔径分布特征与孔隙度间存在良好的对应关系,即在孔径大于20nm的范围内高压压汞能有效表征样品的孔径分布特征,而且我们认为具体的适用范围与储层破裂压力密切相关。

产品可靠性测试操作步骤

产品可靠性测试操作规范 为保证产品在各种使用过程、在不同的使用环境、受到不同的环境影响而确保其能正常工作,保证其在较长时间内无故障工作,同时也满足客户的要求。现要求按以下步骤进行可靠性测试,并将测试结果以《可靠性测试报表》的形式体现。 本试验由品质部进行,产品部协助。 一、来料阶段须进行的可靠性测试项目: 1.附着力测试 目的:提供产品表面涂层(喷油、丝印、移印、电镀)粘附强度及试验标准 适用范围:所有含表面涂层的产品 样品数量:3PCS 试验条件:界刀、3M810胶纸 试验程序:A.用界刀在表面涂层划相距1/16英寸11条平行直线,再划11条与其垂直的平行线(每一条应深至油漆的底层) B.用胶带贴于上面,并用手指压平,保证充分接触90+-30秒,然后以45度角往反方向均匀 迅速拉起 C.同一位置执行上述操作10次 D.测试完毕后检查,涂层脱落面积应小于规定范围 E.将测试结果记录于《可靠性测试报表》 2.耐磨性测试 目的:提供产品表面涂层的耐磨擦性能及试验标准 适用范围:所有含表面涂层的产品 样品数量:3PCS 试验条件:专用橡皮、负载 试验程序:A.用专用的日本砂质橡皮(橡皮型号:LER902K),施加500g的载荷,以40至60次每分钟的速度,以20mm左右的行程,在样品表面来回磨擦100个循环 B.测试完毕后检查,产品表面涂层应不露底 C.将测试结果记录于《可靠性测试报表》 3.耐醇性测试

目的:提供产品表面涂层的耐磨性及抵抗酒精性能及试验标准 适用范围;所有含表面涂层的产品 样品数量:3PCS 试验条件:纯棉布、酒精浓度>99%的酒精、砝码 试验程序:A.用纯棉布蘸满无水酒精,包在专用的500g砝码头上(包上棉布后的砝码测试头面积约为1CM 平方),以40至60次每分钟的速度,20mm左右的行程,在样品表面来回擦试100次 B.测试完毕后检查,产品表面涂层应不露底 C.将测试结果记录于《可靠性测试报表》 4.硬度测试 目的:提供产品表面涂层在正常使用、贮存或运输过程中抵抗外界物品刮伤的试验标准 适用范围:适用于含表面涂层的产品 样品数量:3PCS 试验条件:专用三菱牌2H铅笔、硬度测试仪 试验程序:A. 用2H铅笔(三菱牌),将笔芯削成圆柱形并在400目砂纸上磨平后,装在专用的铅笔硬度测试仪上( 施加在笔尖上的载荷为1Kg,铅笔与水平面的夹角为45°),推动铅笔向 前滑动约5mm长,共划5条,再用橡皮擦将铅笔痕擦拭干净。 B.测试完毕后检查,应无划痕 C.将测试结果记录于《可靠性测试报表》 二、半成品阶段须进行的可靠性测试项目: 老化寿命测试: 目的:提供产品在正常使用过程中的稳定性能及试验标准 适用范围:半成品 样品数量:20PCS以上 试验条件:常温常湿条件下,连续工作48小时 试验程序:A.于测试前先对产品的外观、功能进行检查并记录 B-1.音乐播放测试: B-1-1. 选取5台进行音乐播放:将样品在开机正常工作状态下,且音量调最大带负载情况下 连续工作48小时

可靠性测试标准

Q/.质量管理体系第三层次文件 可靠性试验规范

拟制:审核:批准: 海锝电子科技有限公司版次:C版 可靠性试验规范 1. 主题内容和适用范围 本档规定了可靠性试验所遵循的原则,规定了可靠性试验项目,条件和判据。 2. 可靠性试验规定 根据IEC国际标准,国家标准及美国军用标准,目前设立了14个试验项目(见后目录〕。 根据本公司成品标准要求,用户要求,质量提高要求及新产品研制、工艺改进等加以全部或部分采用上述试验项目。 常规产品规定每季度做一次周期试验,试验条件及判据采用或等效采用产品标准;新产品、新工艺、用户特殊要求产品等按计划进行。 采用LTPD的抽样方法,在第一次试验不合格时,可采用追加样品抽样方法或采用筛选方法重新抽样,但无论何种方法只能重新抽样或追加一次。 若LTPD=10%,则抽22只,0收1退,追加抽样为38只,1收2退。抽样必须在OQC检验合格成品中抽取。 3.可靠性试验判定标准。 (各电气性能的测试条件,参照器件各自的说明书所载内容) 环境条件 (1)标准状态 标准状态是指预处理, 后续处理及试验中的环境条件。论述如下:

环境温度: 15~35℃ 相对湿度: 45~75% (2)判定状态 判定状态是指初测及终测时的环境条件。论述如下: 环境温度: 25±3℃ 相对湿度: 45~75% 4.试验项目。 目录 高温反向偏压试验------------------------------------第4页压力蒸煮试验------------------------------------第6页正向工作寿命试验------------------------------------第7页高温储存试验------------------------------------第8页低温储存试验------------------------------------第9页温度循环试验------------------------------------第10页温度冲击试验------------------------------------第11页耐焊接热试验------------------------------------第12页可焊性度试验------------------------------------第13页拉力试验------------------------------------第14页弯曲试验------------------------------------第15页稳态湿热试验------------------------------------第16页变温变湿试验------------------------------------第17页正向冲击电流(浪涌电流)试验--------------------------第18页

粉 体 比 表 面 积 的 测 定

粉体比表面积的测定 吸附法测试 目的意义 在工业中,钢铁冶炼及粉末冶金;电子材料;水泥、陶瓷、耐火材料;燃料、磨料;化工、药品等许多行业的原料是粉末状的。在生产中,一些化学反应与物理化学反应需要有较大的表面积以提高反应速度,要有适当的比表面积来控制生产过程;许多产品要求有一定的粒度分布才能保证质量或者是满足某些特定的要求。 本实验的目的: ①了解吸附理论; ②掌握比表面积测定仪工作原理及测定方法。 实验器材 ①比表面积测定仪; ②氦氮气瓶及液氮杯; ③标准样; ④万分之一天平; ⑤烘箱; ⑥相关玻璃器皿; 实验原理 本试验是以吸附理论为依据的。吸附是指在固-气相、固-液相、固-固相、液-气相、液-液相等体系中,某个相的物质密度或溶于该相中的溶质浓度在界面上发生改变(于本体相不同)的现象。几乎所有的吸附现象都是界面浓度高

于本体相(正吸附),被吸附的物质称为吸附质,具有吸附作用的物质称为吸附剂,吸附质一般是比吸附剂小的多的粒子。吸附质离开界面引起吸附量减少的的现象称为脱附。当吸附量不发生变化时称为吸附平衡,让被吸附的物质发生脱附,托附量与吸附量相等时就是可逆吸附。吸附过程按作用力的性质可分为物理吸附和化学吸附,化学吸附时吸附体(固体)与吸附质(气体)之间发生电子转移,而物理吸附时不发生这种电子转移。 BET吸附理论基础是多分子层的吸附理论。其基本假设是:在物理吸附中,吸附体与吸附质之间的作用力是范德华力,而吸附质分子之间的作用力也是范德华力。所以,当气相中的吸附质分子被吸附在多孔固体表面之后,它们还可能从气相中吸附其他同类分子,所以吸附是多层的;吸附平衡是动平衡。在物理吸附中,吸附质几乎完全覆盖固体表面,根据单分子层吸附量和一个吸附分子的占有面积能够求得固体比表面积。 以BET等温吸附理论为基础来测定比表面积的方法有两种,一种是静态吸附法,一种是动态吸附法。本试验是采用是静态吸附法,静态吸附法是将吸附质与吸附剂放在一起达到平衡后测定吸附量。根据吸附量测定方法的不同,又可分为容量法与质量法。目前,国际、国内测量粉体比表面积常用的方法是容量法。在容量法测定仪中,传统的装置是Emmett表面积测定仪。该仪器以氮气作为吸附质,在液态氮(-196℃)的条件下进行吸附。本实验的测试仪器是JW —004型氮吸附比表面积测试仪。 仪器工作原理 该仪器是根据BET理论及F-MNELSON气相色谱原理采用对比法研制而成的。仪器用氮气作吸附气;氦气作载气, He气N2气分装在高压气瓶内。按使用测

华为客户可靠性测试标准

1 测试标准框架 1.1 整体框架 1.2 测试样品数 1.3 不同工艺测试项选择 2 外观等级面划分 2.1 外观等级面定义 3 测量条件及环境的要求 3.1 距离 3.2 时间 3.3 位置 3.4 照明 3.5 环境 4 表面处理可靠性测试方法 4.1 膜厚测试 4.1.1 试验目的 4.1.2 试验条件 4.1.3 合格判据 4.2 抗MEK(丁酮)测试 4.2.1 试验目的 4.2.2 试验条件 4.2.3 程序 4.2.4 合格判据 4.3 附着力测试 4.3.1 试验目的 4.3.2 试验条件 4.3.3 程序 4.3.4 合格判据 4.3.5 等级描述说明 4.3.6 测试工具 4.4 RCA纸带耐磨测试 4.4.1 试验目的 4.4.2 试验条件 4.4.3 程序 4.4.4 合格判据 4.5 酒精摩擦测试 4.5.1 试验目的 4.5.2 试验条件 4.5.3 程序 4.5.4 合格判据 4.6 橡皮摩擦测试 4.6.1 试验目的 4.6.2 试验条件 4.6.3 程序 4.6.4 合格判据 4.7 振动摩擦测试 4.7.1 试验目的 4.7.2 试验条件 4.7.3 程序 4.7.4 合格判据 4.7.5 说明 4.8 铅笔硬度测试

4.8.1 试验目的4.8.2 试验条件4.8.3 程序 4.8.4 合格判据4.8.5 测试工具4.9 抗脏污测试 4.9.1 试验目的4.9.2 试验条件4.9.3 程序 4.9.4 合格判据4.10 牛顿笔测试 4.10.1 试验目的4.10.2 试验条件4.10.3 程序 4.10.4 合格判据4.10.5 说明 4.11 显微维氏硬度测试4.11.1 试验目的4.11.2 试验条件4.11.3 程序 4.11.4 合格判据4.12 耐化妆品测试 4.12.1 试验目的4.12.2 试验条件4.12.3 程序 4.12.4 合格判据4.13 耐手汗测试 4.13.1 试验目的4.13.2 试验条件4.13.3 程序 4.13.4 合格判据4.13.5 说明 4.14 低温存储 4.14.1 试验目的4.14.2 试验条件4.14.3 程序 4.14.4 合格判据4.15 高温存储 4.1 5.1 试验目的4.15.2 试验条件4.15.3 程序 4.1 5.4 合格判据4.16 交变湿热 4.16.1 试验目的4.16.2 试验条件4.16.3 程序 4.16.4 合格判据4.17 温度冲击 4.17.1 试验目的4.17.2 试验条件4.17.3 程序

可靠性测试规范

手机可靠性测试规范 1. 目的 此可靠性测试检验规范的目的是尽可能地挖掘由设计,制造或机构部件所引发的机构部分潜在性问题,在正式生产之前寻找改善方法并解决上述问题点,为正式生产在产品质量上做必要的报证。 2. 范围 本规范仅适用于CECT通信科技有限责任公司手机电气特性测试。 3. 定义 UUT (Unit Under Test) 被测试手机 EVT (Engineering Verification Test) 工程验证测试 DVT (Design Verification Test) 设计验证测试 PVT (Product Verification Test) 生产验证测试 4. 引用文件 GB/T2423.17-2001 盐雾测试方法 GB/T 2423.1-2001 电工电子产品环境试验(试验Ab:低温) GB/T 2423.2-1995 电工电子产品环境试验(试验Bb:高温) GB/T 2423.3-1993 电工电子产品环境试验(试验Ca:恒定湿热) GB/T 2423.8-1995 电工电子产品环境试验(自由跌落) GB/T 2423.11-1997 电工电子产品环境试验(试验Fd: 宽频带随机振动) GB 3873-83 通信设备产品包装通用技术条件 《手机成品检验标准》XXX公司作业指导书 5. 测试样品需求数 总的样品需求为12pcs。 6. 测试项目及要求 6.1 初始化测试 在实验前都首先需要进行初始化测试,以保证UUT没有存在外观上的不良。如果碰到功能上的不良则需要先记录然后开始试验。在实验后也要进行初始化测试,检验经过实验是否造成不良。具体测试请参见《手机成品检验标准》。 6.2 机械应力测试 6.2.1 正弦振动测试 测试样品: 2 台

I T可靠性测试方法

IGBT可靠性测试方法 IGBT的寿命通常长达数十年,因此倘若不采取特殊的测试手段而使器件在正常情况下工作直至失效是不现实的,寻求一种有效地测试手段就显得非常必要。通常的测试手段有加速寿命测试(HALT,HighLyAcceLeratedLifeTest),HASS (HighLyAcceLeratedStressScreen)、功率循环、温度循环几种。本文着重介绍功率循环和温度循环测试方法。 1.功率循环测试 在给定的温度和循环次数条件下,收集工作中器件的相关参数。在测试前,器件的工作温度已经被调节到合适的点并且器件已经上电。功率循环可以通过以下几种方式实现[7]; a)恒功率:对于任何单个器件,功率在加热期间置为预先设定的值,在关断 期间要么不加功率负载。这通常涉及开环控制,预先设定的值也会因散热区别而异; b)变功率:为了使散热达到最快的速率,在加热或散热期间功率出于变化状 态,此模式下闭环控制很受人们亲睐; c)恒散热:同恒功率相匹配,散热要么控制在预先设定的值(散热期间或整 个测试期间),要么关断(加热期间),此模式为开环控制; d)变散热:在加热或散热期间,散热的速率是变化的。此模式可增加循环速 率。 图1是恒功率/恒散热和变功率/恒散热测试的对比。 图1功率循环方式 2.温度循环测试 将器件放在温度控制箱中,不断调节温度箱内的温度如图2所示。通常情况下,实验将高温条件设为150℃,放置20分钟,低温设为-40℃,放置20分钟,常温25℃,放置10分钟。温度变化的步长大约10℃每分钟[10]。 图2温度循环测试方式

3.IGBT失效判定标准[9] 因IGBT芯片以及续流二极管均被封装在模块的内部,因此不能实时监测出内部发生的变化,只有通过测量电气参数的方法间接推断器件的状态,通常包括集射极电压、阈值电压和漏电流。 Vce偏移量超出初始值的20% 该方法是极容易被提出的,使用该准则时必须注意两点:①门极电压必须保持在15V;②通过器件的电流必须为额定电流。看似简单的测试手段在实际中并没有那么实用,原因在于:不同的功率测试中,条件不一样,测出的Vce千差万别。例如在铝导线脱落造成的器件失效模型中,Vce仍然会在很长一段时间内不发生明显的变化,而在器件内部金属重构造成的失效模型中,Vce在实验的起点就发生线性增长的情况。 阈值电压变化超出初始值的20% 该测试准则为:2000,5000,10000次循环测试结束后中断实验,并进行测量,在测量时要保证不加门极电阻。 器件漏电流变化 在门极电压为20V时,如果门极的漏电流超出1uA,则可认为该器件失效。

可靠性测试标准

更履历 审核批准

4214电池/电池盖装配寿命测试 ........................................ ... .. (13) 4.2.15手写笔插拔寿命测试 (14) 4.2.16触摸屏点击/划线寿命测试 ...................................... (14) 4.2.17手机反复拆卸/重组装寿命测试...................................... ..14 4.2.18手机喇叭寿命测试 .................................................... .14 4.3环境应力测试. (15) 4.3.1样机数量及其分配....................................... . .. (15) 4.3.2高温操作测试 (15) 4.3.3高温储存测试 (15) 4.3.4低温操作测试 (16) 4.3.5低温储存测试 (16) 4.3.6温度冲击测试 (16) 4.3.7 湿热测试 (17) 4.4特殊条件测试 (17) 4.4.1盐雾测试......................................................... 17.. 4.4.2沙尘测试........................................... .. .. (18) 4.4.3ESD 测试.......................................................... .18 4.4.4EMC 测试......................................................... ..19 4.5包装测试................................................................. 20.. 4.5.1 包装振动测试...................................... .... . (20) 4.5.2包装跌落测试........................................ .... . (20) 4.5.3 包装储存测试...................................... .. .. (21)

产品可靠性测试规范

产品可靠性测试规范 1.目的 本文制定产品可靠性测试的要求和方法,确保产品符合可靠性测试要求。 2. 范畴 本文件适用于此CPIT有限公司所生产的所有产品。 3. 定义 N/A 4. 职责 5.1 品控部QC/QA人员负责本文件所规定的通讯产品的可靠性测试内 容要求在检查过程中的实施. 5.2 品控部经理或其授权人负责本文件所规定的内容与实际情形相符并正确, 并监督品控部QC/QA人员对本文件的实施. 5.内容 5.1 实验顺序 除非专门要求,试验样品进行试验时,一样按下表的顺序进行: 5.2 实验条件及容差: 5.2.1 实验条件:

5.2.2 试验条件容差: a.温度容差:试验样品除必要的支承点外,应完全被空气包围。试验 区测量系统的温度和包围试验样品空气各处的温度容差:高温为 +/-2℃,低温为+/-3℃. b.湿度容差:+/-5%. c.振动振幅容差:+/-15%. d.振动频率容差:+/-1Hz. 5.2.3落地实验标准 5.2.3.1 落地实验应以箱体一角三棱六面按规定高度自由落下的方式进行。 重量高度

0~10kg以内75cm 10~20kg以内60 cm 20kg以上53 cm 5.2.3.2 注意事项: 5.2.3.2.1 体内机台及包材在每个步骤后应该检验。 5.2.3.2.2 任一步骤发觉部件有损坏的应赶忙更换。 5.2.3.2.3 详细记录。 5. 3 样品数量: 5.4 测试时机: 6.4.1 产品处于PP时. 6.4.3 当产品的材质,设计等变更时. 6.4.5 生产显现专门时. 6.4.6 新客户需重新进行产品评估时. 6.4.7 客户投诉与之相关时. 6.程序 6.1 从QA PASS的成品机中随机抽取20台,重新检查其外观及功能,确保其为合格 产品方可进行以下步骤. 6.2 按6.1试验顺序分不完成各项测试.关于每个测试中所显现的不合格品交测试组 或相关技术部门分析其缘故. 6.3 关于不合格品必须有相应的备份成品机进行补充或进行修理使其重新达到合格要 求.

比表面积、孔径分布及孔隙度测定理论方法介绍

气体吸附(氮气吸附法)比表面积测定 比表面积分析测试方法有多种,其中气体吸附法因其测试原理的科学性,测试过程的可靠性,测试结果的一致性,在国内外各行各业中被广泛采用,并逐渐取代了其它比表面积测试方法,成为公认的最权威测试方法。许多国际标准组织都已将气体吸附法列为比表面积测试标准,如美国ASTM的D3037,国际ISO标准组织的ISO-9277。我国比表面积测试有许多行业标准,其中最具代表性的是国标GB/T19587-2004《气体吸附BET法测定固体物质比表 面积》。 气体吸附法测定比表面积原理,是依据气体在固体表面的吸附特性,在一定的压力下,被测样品颗粒(吸附剂)表面在超低温下对气体分子(吸附质)具有可逆物理吸附作用,并对应一定压力存在确定的平衡吸附量。通过测定出该平衡吸附量,利用理论模型来等效求出被测样品的比表面积。由于实际颗粒外表面的不规则性,严格来讲,该方法测定的是吸附质分子所能到达的颗粒外表面和内部通孔总表面积之和,如图所示意位置。 氮气因其易获得性和良好的可逆吸附特性,成为最常用的吸附质。通过这种方法测定的比表面积我们称之为“等效”比表面积,所谓“等效”的概念是指:样品的比表面积是通过其表面密排包覆(吸附)的氮气分子数量和分子最大横截面积来表征。实际测定出氮气分子在样品表面平衡饱和吸附量(V),通过不同理论模型计算出单层饱和吸附量(Vm),进而得出分子个数,采用表面密排六方模型计算出氮气分子等效最大横截面积(Am),即可求出被测样品 的比表面积。计算公式如下: sg:被测样品比表面积(m2/g) Vm:标准状态下氮气分子单层饱和吸附量(ml) Am:氮分子等效最大横截面积(密排六方理论值Am=0.162nm2) W:被测样品质量(g) N:阿佛加德罗常数(6.02x1023) 代入上述数据,得到氮吸附法计算比表面积的基本公式: 由上式可看出,准确测定样品表面单层饱和吸附量Vm是比表面积测定的关键。 测试方法分类 比表面积测试方法有两种分类标准。一是根据测定样品吸附气体量多少方法的不同,可分为:连续流动法、容量法及重量法,重量法现在基本上很少采用;再者是根据计算比表面积理论方法不同可分为:直接对比法比表面积分析测定、Langmuir法比表面积分析测定和BET法比表面积分析测定等。同时这两种分类标准又有着一定的联系,直接对比法只能采用

可靠性测试标准

Q/GSXH.Q. 质量管理体系第三层次文件1004.03-2001 可靠性试验规范

拟制:审核:批准: 海锝电子科技有限公司版次:C版 可靠性试验规范 1. 主题内容和适用范围 本档规定了可靠性试验所遵循的原则,规定了可靠性试验项目,条件和判据。 2. 可靠性试验规定 2.1 根据IEC国际标准,国家标准及美国军用标准,目前设立了14个试验项 目(见后目录〕。 2.2 根据本公司成品标准要求,用户要求,质量提高要求及新产品研制、工艺 改进等加以全部或部分采用上述试验项目。 2.3 常规产品规定每季度做一次周期试验,试验条件及判据采用或等效采用产 品标准;新产品、新工艺、用户特殊要求产品等按计划进行。 2.4 采用LTPD的抽样方法,在第一次试验不合格时,可采用追加样品抽样方 法或采用筛选方法重新抽样,但无论何种方法只能重新抽样或追加一次。 2.5 若LTPD=10%,则抽22只,0收1退,追加抽样为38只,1收2退。 抽样必须在OQC检验合格成品中抽取。 3.可靠性试验判定标准。

环境条件 (1)标准状态 标准状态是指预处理, 后续处理及试验中的环境条件。论述如下: 环境温度: 15~35℃ 相对湿度: 45~75% (2)判定状态 判定状态是指初测及终测时的环境条件。论述如下: 环境温度: 25±3℃ 相对湿度: 45~75% 4.试验项目。 目录 4.1 高温反向偏压试验------------------------------------ 第4页4.2 压力蒸煮试验------------------------------------ 第6页4.3 正向工作寿命试验------------------------------------ 第7页4.4 高温储存试验------------------------------------ 第8页4.5 低温储存试验------------------------------------ 第9页4.6 温度循环试验------------------------------------ 第10页4.7 温度冲击试验------------------------------------ 第11页4.8 耐焊接热试验------------------------------------ 第12页4.9 可焊性度试验------------------------------------ 第13页4.10 拉力试验------------------------------------ 第14页

水泥比表面积测定方法(勃氏法)

水泥比表面积测定方法(勃氏法) 1目的、适用范围 本方法规定采用勃氏法进行水泥比表面积测定。 本方法适用于硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰硅酸盐水泥、粉煤灰硅酸盐水泥、道路硅酸盐水泥以及指定采用本方法的其它粉状物料。本方法不适用于测定多孔材料及超细粉状物料。 2 仪器设备 2.1Blaine 透气仪:由透气圆筒、压力计、抽气装置等三部分组成。 2.2透气圆筒:内径为12.70±0.05mm,由不锈钢制成。 2.3穿孔板:由不锈钢或其他不受腐蚀的金属制成,厚度为 1.0~0.1mm。捣器:用不锈钢制成,插入圆筒时,其间隙不大于 0.1mm。 2.4压力计:U形压力计,由外径为 9mm 的,具有标准厚度的玻璃管制成。 2.5抽气装置:用小型电磁泵,也可用抽气球。 2.6滤纸:采用符合国标的中速定量滤纸。 2.7分析天平:分度值为 1mg。 2.8计时秒表:精确读到 0.5s。 2.9烘干箱。 3材料 3.1压力计液体压力计液体采用带有颜色的蒸馏水。 3.2基准材料基本材料采用中国水泥质量监督检验中心制备的标准试样。 4 仪器校准 4.1漏气检查。将透气圆筒上口用橡皮塞塞紧,接到压力计上。用抽气 装置从压力计一臂中抽出部分气体,然后关闭阀门,观察是否漏气。如发现 漏气,用活塞油脂加以密封。 4.2试料层体积的测定 4.2.1用水银排代法将二片滤纸沿圆筒壁放入透气圆筒内,用一直径比透气圆筒略小一细长棒往下按,直到滤纸平整放在金属的空孔板上。然后装满水银,用一小块薄玻璃板轻压水银表面,使水银面与圆筒口平齐,并须保证在玻璃板和水银表面之间没有气泡或空洞存在。从圆筒中倒出水银,称量,精确至 0.05g。重复几次测定,到数值基本不变为止。然后从圆筒中取出一片滤纸,试用约 3.3g 的水泥,按照 5.3 条要求压实水泥层。再在圆筒上部空间注入水银,同上述方法除去气泡、压平、倒出水银称量,重复几次,直到水银称量值相差小于 50mg 为止。 4.2.2圆筒内试料层体积V按式(1)计算。精确到 0.005cm3。 V=(P1-P2)/ρ水银 (1)式中:V ──试料层体积,cm3; P1──未装水泥时,充满圆筒的水银质量,g; P2──装水泥后,充满圆筒的水银质量,g; ρ水银──试验温度下水银的密度,g/cm3(见附录A表A1)。

产品生命周期的可靠性测试类型

产品生命周期的可靠性测试类型 可靠性的主要测试类型根据产品生命周期的各个阶段大约分为四类,即HALT(研发早期)、ALT(研发中期)、RDT(研发末期暨生产导入期)、ORT(量产期)。 其他的一些可靠性GoTest由于目的单纯,所以样品数往往是经验值或与可靠性目标相关的统计学方法值,此处暂不赘述。 这四个阶段的测试对于样品数的要求都有所不同,下面给出一些参考意见。 HALT:此测试主要目的是找出设计中的重大问题和主要失效模式,增加产品的稳健度(Robustness),确定产品的四个极限即Low&HighDL(DestructiveLimit)和Low&HighOL(OperatingLimit)。所以,样品数非常少,通常每次仅2-4个。当然根据不同产品类型和测试条件,相应作出调整,但此时,样品数并不依据统计学方法给出。 ALT:此测试主要目的是验证MTBF目标。此时,样品数的选择和几个因素有关,主要是MTBF目标、加速因子(AF)、GEMFactor、测试时间。而加速因子与加速老化测试的条件(condition)相关,如温度、温湿度、温湿度加开关交变加速率等;GEMFactor同可接受失效数和置信度相关。下面的表示温湿度ALT测试时间与样品数之间关系的公式可以进一步说明: Duration(hrs)=(MTBFspecxGEMfactorCL)/(SampleSizexAFtempxAFRH). GEMfactor如下表 RDT:此测试目的是为了验证可出货产品是否满足可靠性目标。RDT可分为加速和非加速两种。做RDT 计划,首先要知道产品寿命分布曲线(lifedistribution)。然后根据lifedistribution,确定以下三种测试方法中的一种,即二项式参数(ParametricBinomial)、非二项式参数(Non-ParametricBinomial)、指数卡方(ExponentialChi-Squared)。 最后根据可靠性目标与相关参数的关系确定测试计划。例如要确认产品的lifedistribution为非二项式参数(Non-ParametricBinomial)的可接受失效数为零的测试样品数公式为 当然,以上的计算可以通过一些商业软件非常容易地计算出来。 有时RDT是持续性测试(SequentialTesting),持续数周,数量也比较多。 加速RDT可以通过增加应力级数(stresslevel)相应缩短测试时间和样品数。 ORT:此测试主要目的就是为了筛除那些受到生产流程中的各种因素影响而导致可靠性下降不能满足目标的产品。此时可以使用统计学方法计算样品数。但是,由于产品类型的不同和量产时的情况复杂多变,包括样品数在内的各种测试条件和类型往往都是定制的。没有一个统一的定论。 总结:每个阶段的测试条件各不相同,人们总想要最少的样品,最短的测试时间,而我也不认为可靠性越高对公司就越好。要知道,可靠性也是合适的才是最好的。所以,在定制测试计划时,不应一成不变,而是要充分了解产品特性、客户要求、自身能力等因素,从中找到一个平衡点,制定出合理的计划。

电池部件结构表征,比表面积、孔径、孔容、孔隙率

相关领域:负极、正极、电池隔膜、超级电容器、电池行业、能源行业 现如今,已经有多种不同的技术手段表征诸如比表面积、孔径及密度等电池部件的结构性质。本文讨论了使用气体吸附法、压汞法和毛细管流动法测试正负极和隔膜材料实例。 1 为什么要测试电池材料的比表面积、孔径、孔容 和密度 电池行业的研发人员一直在寻找最安全有效的电池技术来满足当今和未来世界的能源需求。为了优化设计,电池研发人员更加需要准确地表征负极、正极和隔膜等电池部件的物理性质。这些性质包括比表面积、孔径、孔容、孔隙率(开孔率)和密度。 1.1 比表面积 对于正负极以及隔膜材料来说,比表面积是一个重要的特性指标。比表面积的差异会影响电池的容量、阻抗、充电放电速率等性能。如果样品比表面积测试结果与预期的比表面积不同,那么可以说明供应商提供的材料纯度或者粒径不符合要求。通常,使用BET比表面积测量法评估电池部件的比表面积,它可以测试极低比表面积,最低可至0.01 m2/g。对于BET比表面积的测量,有静态压力法或者动态流动法两种测试方法供选择。 1.2 孔径和孔容 对于电池材料来说,孔径分布也同样重要。例如,某电极材料的孔径分布发生变化,可能导致材料在实际使用过程中的发生相变或结构变化。这些测试结果也可用于确定材料的压缩和退火温度与其孔径分布之间的关系。孔容也是一个重要的性质。例如,电池隔膜必须有足够的孔容才能容纳足够的电解液。这样的电池隔膜才有良好的导电性。 通常使用压汞法和气体吸附法测试以上材料性质。依照材料的孔径范围选取不同的测试方法。气体吸附法可用于测试微孔材料(d<2 nm)和介孔材料(d:2-50 nm);对于孔径较大的介孔材料(d>5 nm)和大孔材料(d>50 nm)可采用压汞法。1.2.1 通孔尺寸和渗透性 对于电池隔膜来说,通孔(两端连通的孔)的孔径分布在某些情况下可能比孔径分布更重要。利用毛细管流动法可以对通孔进行表征,还可以进行渗透性分析来了解孔隙的结构性质。例如,一个弯曲的孔道有助于将正极材料及负极材料隔开,但也增加了隔膜产生的有效电阻,从而降低了电池效率和寿命。 1.3 密度 由于电池装置的工作空间有限,容量就成为了一个重要的性能指标。电极材料本身所占的体积以及相应的内部自由空间的大小(通常称为材料的孔隙度),是预测电池性能的必要参数。 在检测电极原材料时,常需要知道该粉末的质量体积比值信息,振实密度分析仪就可以用来提供该信息。其中的体积包括颗粒内部和颗粒之间的空间。气体置换法用于测量材料的真实密度或骨架密度,它排除了任何可接触到样品外部的孔隙的影响。对于规则形状的样品,由于可以测量边长,孔隙率可以直接从气体比重数据中计算出来。对于粉末或不规则形状的样品,通过气体置换法所测得的体积和密度通常需要与其他技术相结合,比如气体吸附或压汞仪,它们可以提供完整的孔隙体积信息,从而确定材料的孔隙率。 2 应用实例 2.1 正负极材料的比表面积测定 石墨负极和金属氧化物正极材料(LiNiCoMnO2)的比 表面积可使用N2,77k下的BET比表面积进行表征, 其线性范围为P/P0= 0.05-0.3,如图1所示。计算得出 负极的比表面积为2.5 m2/g,正极的比表面积为1.5 m2/g。

可靠性测试标准

丝印、喷油产品测试要求 1.0目的 指导检查员正确地进行可靠性测试,保证本公司产品满足客户品质要求。 2.0适用范围 适用于本公司生产的所有需丝印、喷油加工产品的可靠性测试。 3.0定义 3.1.可靠性:即产品在规定条件下进行的环境模拟测试,其品质特性和耐受性能达到规定的要求。 3.2.测试周期,即在往返测试中,往返各一次为一个测试周期。 3.3.单项测试:即每一个产品有多项测试要求时每一个部件只完成其中的一项测试。 3.4.多项测试:即每一个产品有多项测试要求时,每一个部件要完成2个或以上的测试项目。4.0职责 检查员应按此指引作业,保证产品达到客户的品质要求。 5.0工作步骤 5.1产品的丝印、喷油可靠性测试(包括没有明确测试要求的产品) 5.1.1测试材料及工具 5.1.1.1 78%浓度的酒精 5.1.1.2 95%浓度的酒精 5.1.1.3 200g的铁锤 5.1.1.4 粗纹的干净白布 5.1.1.5 3M 600测试胶纸 5.1.1.6 界刀 5.1.1.7 恒温恒湿炉 5.1.1.8 RCA纸带测试机 5.1.1.9 测试专用纸带 5.1.1.10 热熔胶 5.1.1.11剪钳 5.1.2 酒精测试(每次测试1—2PCS) 5.1.2.1 把粗纹的干净白布包在200g的铁锤上,包好之后用95%浓度的酒精浸润,然后将此浸润后的铁锤在丝印字钮上水平移动来回摩擦,行程30mm,频率20周期(40次)/分钟,连续摩擦50周期(100次),(移印字钮用95%浓度的酒精进行测试)。 5.1.2.2 字钮之外的其它物料用78%浓度的酒清进行测试,方法同5.1.2.1 5.1.2.3 酒清测试接受标准:测试样品测试后不褪色,不脱油,无臌胀。 5.1.3 胶纸测试(每次测试2—4PCS) 5.1.3.1 胶纸测试方法:取样品平坦部分,用界刀纵横划100个1mmX1mm的小方格(如图1),丝印也需要划方格,深度以能见底材为准,不宜过深,过深刀口附近漆膜将会翻起,影响测试,然后用3M测试胶纸紧贴在上面,用手指肉体部分或橡皮压平,然后拉着胶纸尾部以90°角方向突然向上提起同一部位连续测试10次(如图2)。 5.1.3.2 胶纸测试接受标准: a.附著力=未脱落漆膜的方格数/100; b.每小格内如果漆膜脱落面积小于方格面积的1/5可视为未脱落(如图3) c.按前a,b点判定胶纸测试接受标准:附著力为100/100方为合格 5.1.4 高温高湿测试(每种货每天平均取样不少于测试3PCS,此测试当客户有要求时才做) 5.1.4.1 将塑胶喷油试样在过炉烘干4小时后存在温度为60±2°C,温度90%±3%之恒温恒湿炉中存放48H 5.1.4.2 高温高湿测试接受标准:室温后观察漆膜无皱纹、起泡、裂纹、剥落及明显的失光等现象 为合格(由于底材老化引起的变色,失色应不影响判定)。 5.1.5 RCA测试(现只有中建产品需做此项测试) 5.1.5.1 测试方法:用剪钳将需测试之胶件取较平坦处剪下2—3cm2 ,用热熔胶纸将其固定在RCA 纸带测试机上,将测试头对需测试位置,装好纸带,根据各种胶件测试规格的不同相应的

比表面积测试方法分类

测试方法分类 比表面积测试方法有两种分类标准。一是根据测定样品吸附气体量多少方法的不同,可分为:连续流动法、容量法及重量法(重量法现在基本上很少采用);另一种是根据计算比表面积理论方法不同可分为:直接对比法比表面积分析测定、Langmuir法比表面积分析测定和BET法比表面积分析测定等。同时这两种分类标准又有着一定的联系,直接对比法只能采用连续流动法来测定吸附气体量的多少,而BET法既可以采用连续流动法,也可以采用容量法来测定吸附气体量。连续流动法 连续流动法是相对于静态法而言,整个测试过程是在常压下进行,吸附剂是在处于连续流动的状态下被吸附。连续流动法是在气相 色谱原理的基础上发展而来,由热导检测器 来测定样品吸附气体量的多少。连续动态氮 吸附是以氮气为吸附气,以氦气或氢气为载 气,两种气体按一定比例混合,使氮气达到指定的相对压力,流经样品颗粒表面。当样品管置于液氮环境下时,粉体材料对混合气中的氮气发生物理吸附,而载气不会被吸附,造成混合气体成分比例变化,从而导致热导系数变化,这时就能从热导检测器中检测到信号电压,即出现吸附峰。吸附饱和后让样品重新回到室温,被吸附的氮气就会脱附出来,形成与吸附峰相反的脱附峰。吸附峰或脱附峰的面积大小

正比于样品表面吸附的氮气量的多少,可通过定量气体来标定峰面积所代表的氮气量。通过测定一系列氮气分压P/P0下样品吸附氮气量,可绘制出氮等温吸附或脱附曲线,进而求出比表面积。通常利用脱附峰来计算比表面积。 特点:连续流动法测试过程操作简单,消除系统误差能力强,同时具有可采用直接对比法和BET方法进行比表面积理论计算。 容量法 容量法中,测定样品吸附气体量多少是利用气态方程来计算。在预抽真空的密闭系统中导入一定量的吸附气体,通过测定出样品吸脱附导致的密闭系统中气体压力变化,利用气态方程P*V/T=nR换算出被吸附气体摩尔数变化。 直接对比法 直接对比法比表面积分析测试是 利用连续流动法来测定吸附气体量, 测定过程中需要选用标准样品(经严 格标定比表面积的稳定物质)。并联 到与被测样品完全相同的测试气路 中,通过与被测样品同时进行吸附,分别进行脱附,测定出各自的脱

可靠性验收试验

可靠性验证试验 1 概述 1.1 试验目的与分类 可靠性验证试验的目的是验证产品的可靠性是否达到规定的要求。 可靠性验证试验根据产品的性质分为可靠性鉴定试验和可靠性验收试验。 可靠性鉴定试验是为了验证新开发产品的设计是否达到规定的最低可接收的可靠性定量要求。 验收试验是对正式转入批生产产品是否达到可靠性定量要求的试验。 1.2 统计概念 可靠性指标是产品性能的时间表征,是随机变量,无法用仪表检测,只有通过抽样试验或全寿命统计才能检验。 产品的可靠性使用指标,也是可靠性目标值,在合同中又称规定值,试验方案中可为θ0。 产品必须达到的可靠性使用指标称可靠性门限值,在合同中叫最低可接受值,试验方案中为θ1。 可靠性验证试验方案建立在统计数学基础上,与“个体”、“总体”、“批”、“样本”、“样本量”、“随机抽取”、“分布”等等统计学概念有关。 电子产品在寿命的随机失效期的故障率为常数,符合指数分布。 1.3 一般要求 试验大纲必须经过有关方面讨论批准。 统计试验方案由订购方在合同中规定,从有关标准中选定。 试验样品的技术状态应是经过批准的。 试验剖面应代表实际使用环境条件。 试验应在授权的实验室在用户代表监督下进行。 2 可靠性验证试验大纲 2.1 试验大纲内容 试验对象和数量; 试验目的、进度; 试验方案; 试验条件:试验设备提供的应力及其容差、检测设备及其精度要求; 试验场所,经订购方认可按以下顺序选定:独立实验室,合同乙方以外的实验室,合同乙方的实验室; 设置评审点、开展FRACAS要求。 2.2 试验方案 A 根据大纲要求制定试验方案,内容包括: 试验项目; 选定统计试验方案:号码、鉴别比D、风险α和β、试验时间T、样品数量、是否可替换; 试验剖面; 故障判据及分类; 有关试验方职责分工; 计划进度、经费、人员、维修器材等资源保证条件; 其它可靠性活动信息。 B 试验方案选定因素 定时截尾试验,累积试验时间是确定的,便于试验计划安排和管理,但不一定是最经济的; 定数截尾试验,累计相关故障数是确定的,在采取不可替换的试验时,样品数量是也确定的,也不一定是最经济的。 等概率比序贯试验,做出判据所需的故障数和累计试验时间比定时截尾和定数截尾试验的少,事前只能确定它们的最大值,但样品数量和试验时间难以确定,不便于试验计划安排和管理,最大累积试验时间和累计故障数有可能超过定时截尾或定数截尾的试验。 2.3 试验条件 可靠性验证试验剖面应典型代表产品的使用条件: 功能模式,当产品有超过1种使用模式时,应分析各自所占时间的百分比,确定模式转换的方

相关主题
文本预览
相关文档 最新文档