当前位置:文档之家› 正余弦定理的多种证明方法

正余弦定理的多种证明方法

正余弦定理的多种证明方法
正余弦定理的多种证明方法

利用向量统一正、余弦定理的证明

正、余弦定理是解三角形强有力的工具,关于这两个定理有好几种不同的证明方法,[1]人教版中等职业教育国家规划教材《数学》(提高版)是用向量的数量积(内积)给出证明的,如是在证明正弦定理时用到:作辅助单位向量并对向量的等式作同一向量的数量积,这种构思方法过于独特,不易被初学者接受。本文通过三角函数的定义,利用向量相等和向量的模统一正、余弦定理的证明,方法较为简单。从本文的证明中又一次显示数学中“数”与“形”的完美结合。

定理:在△ABC中,AB=c,AC=b,BC=a,则

(1)(正弦定理)==;

(2)(余弦定理)

c2=a2+b2-2abcos C,

b2=a2+c2-2accos B,

a2=b2+c2-2bccos A。

证明:建立如下图所示的直角坐标系,则A=(0,0)、B=(c,0),又由任意角三角函数的定义可得:

C=(bcos A,bsin A),以AB、BC为邻边作平行四边形ABCC′,则∠BAC′=π-∠B,

∴C′(acos(π-B),asin(π-B))

=C′(-acos B,asin B)。

根据向量的运算:

=(-acos B,asin B),

=-=(bcos A-c,bsin A),

(1)由=:得

asin B=bsin A,即

=。

同理可得:=。

∴==。

(2)由=(b-cos A-c)2+(bsin A)2=b2+c2-2bccos A,又||=a,

∴a2=b2+c2-2bccos A。

同理:

c2=a2+b2-2abcos C;

b2=a2+c2-2accos B。

余弦定理证明过程(完整版)

余弦定理证明过程 余弦定理证明过程 =a,∠da=π-∠ba=π-,根据三角函数的定义知d点坐标是,asin)即d点坐标是,∴ad=而ad=b∴=∴asin=sina………… ①-aos=osa-b…… ②由 ①得asina=sin,同理可证asina=bsinb,∴asina=bsinb=sin.由 ②得aos=b-osa,平方得: a2os2=b2-2bosa+2os2a,即a2-a2sin2=b2-2bosa+2-2sin2a.而由 ①可得a2sin2=2sin2a∴a2=b2+2-2bosa.同理可证b2=a2+2- 2aosb,2=a2+b2-2abos.到此正弦定理和余弦定理证明完毕。3△ab的三边分别为a,b,,边b,a,ab上的中线分别为ma.mb,m,应用余弦定理证明: mb= m=ma=√^2-a*osb) =√ 由b^2=a^2+^2-2a*osb 得,4a*osb=2a^2+2^2-2b^ 2,代入上述ma表达式: ma=√ =√ 同理可得: mb=

m= 4 ma=√^2-a*osb) =√ 由b^2=a^2+^2-2a*osb 得,4a*osb=2a^2+2^2-2b^ 2,代入上述ma表达式: ma=√ =√ 证毕。 第五篇: 余弦定理的多种证明 余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活. 对于任意三角形三边为a,b, 三角为a,b, 满足性质 a^2=b^2+^2-2*b**osa b^2=a^2+^2-2*a**osb ^2=a^2+b^2-2*a*b*os os=2ab osb=2a osa=2b 证明:

立体几何证明垂直专项含练习题及答案

立体几何证明------垂直 一.复习引入 1.空间两条直线的位置关系有:_________,_________,_________三种。 2.(公理4)平行于同一条直线的两条直线互相_________. 3.直线与平面的位置关系有_____________,_____________,_____________三种。 4.直线与平面平行判定定理:如果_________的一条直线和这个平面内的一条直线平行, 那么这条直线和这个平面平行 5.直线与平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这 个平面相交,那么_________________________. 6.两个平面的位置关系:_________,_________. 7.判定定理1:如果一个平面内有_____________直线都平行于另一个平面,那么这两 个平面平行. 8.线面垂直性质定理:垂直于同一条直线的两个平面________. 9.如果两个平行平面同时和第三个平面相交,那么它们的________平行. 10.如果两个平面平行,那么其中一个平面内的所有直线都_____于另一个平面. 二.知识点梳理 知识点一、直线和平面垂直的定义与判定 定义判定 语言描述如果直线l和平面α内的任意一条直 线都垂直,我们就说直线l与平面 互相垂直,记作l⊥α一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直. 图形 条件b为平面α内的任一直线,而l对这 一直线总有l⊥αl⊥m,l⊥n,m∩n=B,m?α,n?α 结论l⊥αl⊥α 要点诠释:定义中“平面内的任意一条直线”就是指“平面内的所有直线”,这与“无数条直线”不同(线线垂直线面垂直) 知识点二、直线和平面垂直的性质 性质 语言描述一条直线垂直于一个平面,那么这条 直线垂直于这个平面内的所有直线 垂直于同一个平面的两条直线平行.

余弦定理的八种证明方法

余弦定理的八种证明方法 2011年高考数学卷(陕西卷)考出了“说明并证明余弦定理”这个考题,使平时不注重翻阅课本的同学大部分吃了亏,虽然这是书本上的知识,且课本上只给出了一种证明方法,但仍让同学们很难想到会考这个证明题,因此我们利用这次研究性学习活动,以论文的方式来介绍一下多种余弦定理的证明方法,来增强我们对课本知识的理解。 用多种方法证明余弦定理,扩展思维,了解更多的过程。 余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形便可适当移于其它知识。 一余弦定理的内容 对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质 a2 = b2 + c2- 2·b·c·cosA b2 = a2 + c2 - 2·a·c·cosB c2 = a2 + b2 - 2·a·b·cosC 二证明方法 方法一:平面几何法 ∵如图,有a+b=c ∴c·c=(a+b)·(a+b) ∴c2=a·a+2a·b+b·b ∴c2=a2+b2+2|a||b|cos(π-θ) 又∵Cos(π-θ)=-Cosθ∴c2=a2+b2-2|a||b|cosθ 再拆开,得c^2=a2+b2-2*a*b*cosC

方法二:勾股法 在任意△ABC中 做AD⊥BC. ∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC2=AD2+DC2 b2=(sinB*c)2+(a-cosB*c)2 b2=(sinB*c)2+a2-2ac*cosB+(cosB)2*c2 b2=(sinB2+cosB2)*c2-2ac*cosB+a2 b2=c2+a2-2ac*cosB 方法三:解析法 在三角形ABC建立直角坐标系,使A点为原点,B点落在x轴正半轴上,设三角形三边abc 则有三点坐标为A(0,0)B(c,0)C(bcosA,bsinA) ∵BC=a 则由距离公式得a=(c-bcosA)2-(bsinA)2 化简得a=c2+b2-2bccosA ∴a2=c2+b2-2bccosA 方法四:面积法 S△ACQ=(1/2)bc(cos∠BAC), S△PBC=(1/2)ac(cos∠CBA),

勾股定理与几何证明答案(可编辑修改word版)

1、勾股定理与几何证明的综合问题练习一、利用勾股定理证明一些重要的几何定理 1、如图,在Rt△ABC 中,∠ACB=90°,CD 是AB 边上的高. 证明:(1)CD2=AD ?BD (这个结果表明,利用勾股定理可以导出三角形相似的一系列结果) 1 1 1 (2)AC 2+ BC 2 = CD2 练习二、将勾股定理应用于四边形 1、四边形ABCD 的对角线为AC 和BD. (1)证明:若AC ⊥BD ,则AB2+CD2=AD2+BC 2; 2、一个四边形的顶点分别在一个边长为1 的正方形各边上,其边长依次为a、b、c、d. 求证: 2 ≤a2+b2+c2+d 2≤ 4 . 假设MNPQ 分别将正方形ABCD 的四个边分成了线段:m1 m2 n1 n2 p1 p2 q1 q2 ∵MNPQ 都在正方形ABCD 的四个边上,所以有四个直角三角形 ∴a2+b2+c2+d2=m12+m22+n12+n22+p12+p22+q12+q22∵m1+m2=正方形边长即为“1”(其他同理)∴a2+b2+c2+d2=m12+(1-m1)2+n12+(1-n1)2+p12+(1-p1)2+q12+(1-q1)2整理之后得到: a2+b2+c2+d2=2*(m1-/2)2+1/2+2*(n1-/2)2+1/2+2*(p1-/2)2+1/2+2*(q1-/2)2+1/2=2*[(m1-1/2)2+(n1-1/2)2+(p1-1/2)2+(q1-1/2)2] + 2 m1、n1、p1、q1 的长都是最大为1 最小为0 它们都等于1/2 时值最小,都等于1 时值最大那么a2+b2+c2+d2的最小值就是2,最大值就是4

立体几何证明题定理推论汇总

立体几何公理、定理推论汇总 一、公理及其推论 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。 符号语言:,,,A l B l A B l ααα∈∈∈∈?? 作用: ① 用来验证直线在平面内; ② 用来说明平面是无限延展的。 公理2 如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。(那么它们有且只有一条通过这个公共点的公共直线) 符号语言:P l P l α βαβ∈?=∈且 ! 作用:① 用来证明两个平面是相交关系; ② 用来证明多点共线,多线共点。 公理3 经过不在同一条直线上的三点,有且只有一个平面。 符号语言:,,,,A B C A B C ?不共线确定一个平面 推论1 经过一条直线和这条直线外的一点,有且只有一个平面。 符号语言:A a A a a αα??∈?有且只有一个平面,使, 推论2 经过两条相交直线,有且只有一个平面。 符号语言:a b P a b ααα?=???有且只有一个平面,使, ) 推论3 经过两条平行直线,有且只有一个平面。 符号语言://a b a b ααα???有且只有一个平面,使, 公理3及其推论的作用:用来证明多点共面,多线共面。 公理4 平行于同一条直线的两条直线平行(平行公理)。

符号语言://////a b a c c b ???? 图形语言: 作用:用来证明线线平行。 二、平行关系 - 公理4 平行于同一条直线的两条直线平行(平行公理)。(1) 符号语言://////a b a c c b ???? 图形语言: 1.线面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。(2) 符号语言: ////a b a a b ααα???????? 图形语言: 线面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。(3) 符号语言:////a b a a b βαβα??????=? 图形语言: 2.面面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(4) 符号语言://(/,///),a b b b O a a ββαααβ??=?????? 图形语言: ! 面面平行的判定 如果两个平面垂直于同一条直线,那么这两个平面平行。(5) 符号语言:,,//oo oo ααββ???? ⊥⊥ 图形语言:

两角和与差的余弦公式证明

两角和与差的余弦公式的五种推导方法之对比 沈阳市教育研究院王恩宾 两角和与差的余弦公式是三角函数恒等变换的基础,其他三角函数公式都是在此公式 基础上变形得到的,因此两角和与差的余弦公式的推导作为本章要推导的第一个公式,往 往得到了广大教师的关注. 对于不同版本的教材采用的方法往往不同,认真体会各种不同 的两角和与差的余弦公式的推导方法,对于提高学生的分析问题、提出问题、研究问题、 解决问题的能力有很大的作用.下面将两角和与差的余弦公式的五种常见推导方法归纳如下:方法一:应用三角函数线推导差角公式的方法 设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β. 过点P作PM⊥x轴,垂足为M,那么OM即为α-β角的余弦线,这里要用表示α,β 的正弦、余弦的线段来表示OM. 过点P作PA⊥OP1,垂足为A,过点A作AB⊥x轴,垂足为B,再过点P作PC⊥AB,垂 足为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是OM=OB+BM=OB +CP=OA cosα+AP sinα=cosβcosα+sinβsinα. 综上所述,. 说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解. 但这种推 导方法对于如何能够得到解题思路,存在一定的困难. 此种证明方法的另一个问题是公式是在均为锐角的情况下进行的证明,因此还要考虑的角度从锐角向任意角的推 广问题. 方法二:应用三角形全等、两点间的距离公式推导差角公式的方法

设P1(x1,y1),P2(x2,y2),则有|P1P2 |= . 在直角坐标系内做单位圆,并做出任意角α,α+β和,它们的终边分别交单位圆于P2、P3和P4点,单位圆与x轴交于P1,则P1(1,0)、P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、. ∵,且, ∴,∴, ∴ , ∴, ∴,. 说明:该推导方法巧妙的将三角形全等和两点间的距离结合在一起,利用单位圆上与角有关的四个点, 建立起等式关系,通过将等式的化简、变形就可以得到符合要求 的和角与差角的三角公式. 在此种推导方法中,推导思路的产生是一个难点,另外对于三点在一条直线和三点在一条直线上时这一特殊情况,还需要加以解释、说明.

正弦定理、余弦定理知识点总结及最全证明

正弦定理、余弦定理知识点总结及证明方法 ——王彦文青铜峡一中1.掌握正弦定理、余弦定理,并能解决一 些简单的三角形度量问题. 2.能够运用正弦定理、余弦定理等知识和 方法解决一些与测量和几何计算有关的实际问 题. 主要考查有关定理的应用、三角恒等变换 的能力、运算能力及转化的数学思想.解三角 形常常作为解题工具用于立体几何中的计算或 证明,或与三角函数联系在一起求距离、高度 以及角度等问题,且多以应用题的形式出现. 1.正弦定理 (1)正弦定理:在一个三角形中,各边和它 所对角的正弦的比相等, 即.其中R是三角形外接圆的 半径. (2)正弦定理的其他形式: ①a=2R sin A,b=,c =; ②sin A=a 2R,sin B=, sin C=; ③a∶b∶c=______________________. 2.余弦定理 (1)余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即 a2=,b2=, c2=. 若令C=90°,则c2=,即为勾股定理. (2)余弦定理的变形:cos A =,cos B=,cos C=. 若C为锐角,则cos C>0,即a2+b2______c2;若C为钝角,则cos C<0,即a2+b2______c2.故由a2+b2与c2值的大小比较,可以判断C为锐角、钝角或直角. (3)正、余弦定理的一个重要作用是实现边角____________,余弦定理亦可以写成sin2A=sin2B+sin2C-2sin B sin C cos A,类似地,sin2B=____________;sin2C=__________________.注意式中隐含条件A+B+C=π. 3.解斜三角形的类型 (1)已知三角形的任意两个角与一边,用____________定理.只有一解. (2)已知三角形的任意两边与其中一边的对角,用____________定理,可能有___________________.如在△ABC中,已知a, 时,只有一解. (4)已知两边及夹角,用____________定理,必有一解.

高中数学立体几何证明定理及性质总结

一.直线和平面的三种位置关系: 1. 线面平行 2. 线面相交 l 符号表示: 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。方法二:用面面平行实现。 m l m l l // // ? ? ? ? ? ? = ? ? β α β α m l m l// // ? ? ? ? ? ? = ? = ? β γ α γ β α 方法三:用线面垂直实现。若α α⊥ ⊥m l,,则m l//。 2.线面平行: 方法一:用线线平行实现。 α α α// // l l m m l ? ? ? ? ? ? ? ? 方法二:用面面平行实现。 α β β α // // l l ? ? ? ? ? 3.面面平行: 方法一:用线线平行实现。方法二:用线面平行实现 β α α β // ' ,' , ' // ' // ? ? ? ? ? ? ? ? ? ? 且相交 且相交 m l m l m m l l 。β α β α α // , // // ? ? ? ? ? ? ?且相交 m l m l 三.垂直关系: l

1. 线面垂直: 方法一:用线线垂直实现。 方法二:用面面垂直实现。 α α⊥??? ????? ?=?⊥⊥l AB AC A AB AC AB l AC l , αββαβα⊥???? ???⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 方法二:计算所成二面角为直角。 βαβα⊥?? ?? ?⊥l l 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥????

勾股定理逆定理八种证明方法

勾股定理逆定理八种证 明方法 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

证法1 作四个的直角三角形,把它们拼成如图那样的一个多边形,使D、E、F在一条上(设它们的两条直角边长分别为a、b ,斜边长为c.)。过点C作AC的延长线交DF于点P. ∵ D、E、F在一条直线上,且RtΔGEF ≌ RtΔEBD, ∴ ∠EGF = ∠BED, ∵ ∠EGF + ∠GEF =90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180°―90°= 90° 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形。 ∴ ∠ABC + ∠CBE = 90° ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90° 即∠CBD= 90° 又∵ ∠BDE = 90°,∠BCP = 90°,BC = BD = a. ∴ BDPC是一个边长为a的正方形。 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 证法2 作两个的直角三角形,设它们的两条直角边长分别为a、b(b>a),做一个边长为c的正方形。斜边长为c. 再把它们拼成如图所示的多边形,使E、A、C 三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90°,QP∥BC, ∴ ∠MPC = 90°, ∵ BM⊥PQ, ∴ ∠BMP = 90°, ∴ BCPM是一个矩形,即∠MBC =90°。 ∵ ∠QBM + ∠MBA = ∠QBA = 90°,∠ABC + ∠MBA = ∠MBC = 90°, ∴ ∠, 又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF.即 证法3 作两个全等的直角三角形,同证法2,再作一个边长为c的正方形。把它们拼成如图所示的多边形. 分别以CF,AE为边长做正方形FCJI和AEIG, ∵EF=DF-DE=b-a,EI=b, ∴FI=a, ∴G,I,J在同一直线上, ∵CJ=CF=a,CB=CD=c,∠CJB = ∠CFD = 90°,

立体几何平行证明题复习过程

立体证明题(2) 1.如图,直二面角D﹣AB﹣E中,四边形ABCD是正方形,AE=EB,F为CE上的点,且BF⊥ 平面ACE. (1)求证:AE⊥平面BCE; (2)求二面角B﹣AC﹣E的余弦值. 2.等腰△ABC中,AC=BC=,AB=2,E、F分别为AC、BC的中点,将△EFC沿EF折起,使得C到P,得到四棱锥P﹣ABFE,且AP=BP=. (1)求证:平面EFP⊥平面ABFE; (2)求二面角B﹣AP﹣E的大小.

3.如图,在四棱锥P﹣ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且 PA=PD=AD,若E、F分别为PC、BD的中点. (Ⅰ)求证:EF∥平面PAD; (Ⅱ)求证:EF⊥平面PDC. 4.如图:正△ABC与Rt△BCD所在平面互相垂直,且∠BCD=90°,∠CBD=30°. (1)求证:AB⊥CD; (2)求二面角D﹣AB﹣C的正切值. 5.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,四边形ABCD 是平行四边形,∠ADC=120°,AB=2AD. (1)求证:平面PAD⊥平面PBD; (2)求二面角A﹣PB﹣C的余弦值.

6.如图,在直三棱柱ABC ﹣A 1B 1C 1中,∠ACB=90°,AC=CB=CC 1=2,E 是AB 中点. (Ⅰ)求证:AB 1⊥平面A 1CE ; (Ⅱ)求直线A 1C 1与平面A 1CE 所成角的正弦值. 7.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,∠DAB 为直角,AB ∥CD ,AD=CD=2AB=2,E ,F 分别为PC ,CD 的中点. (Ⅰ)证明:AB ⊥平面BEF ; (Ⅱ)若PA= ,求二面角E ﹣BD ﹣C . 8.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,PA=AB=AD=2,四边形ABCD 满足AB ⊥AD ,BC ∥AD 且BC=4,点M 为PC 中点. (1)求证:DM ⊥平面PBC ; (2)若点E 为BC 边上的动点,且λ=EC BE ,是否存在实数λ,使得二面角P ﹣DE ﹣B 的余弦值为 3 2 ?若存在,求出实数λ的值;若不存在,请说明理由.

垂心余弦定理证明

垂心余弦定理证明 垂心余弦定理证明如右图,在ABC中,三内角A、B、C所对的边分别是a、b、c . 以A为原点,AC所在的直线为x轴建立直角坐标系,于是C点坐标是(b,0),由三角函数的定义得B 点坐标是(ccosA,csinA) . ∴CB = (ccosA-b,csinA). 现将CB平移到起点为原点A,则AD = CB . 而|AD| = |CB| = a ,∠DAC = π-∠BCA = π-C , 根据三角函数的定义知D点坐标是(acos(π-C),asin(π-C)) 即D点坐标是(-acosC,asinC), ∴ AD = (-acosC,asinC) 而AD = CB ∴ (-acosC,asinC) = (ccosA-b,csinA) ∴ asinC = csinA …………① -acosC = ccosA-b ……② 由①得asinA = csinC ,同理可证asinA = bsinB , ∴ asinA = bsinB = csinC . 由②得acosC = b-ccosA ,平方得: a2cos2C = b2-2bccosA + c2cos2A , 即a2-a2sin2C = b2-2bccosA + c2-c2sin2A . 而由①可得a2sin2C = c2sin2A ∴ a2 = b2 + c2-2bccosA . 同理可证b2 = a2 + c2-2accosB , c2 = a2 + b2-2abcosC . 到此正弦定理和余弦定理证明完毕。 2 正、余弦定理是解三角形强有力的工具,关于这两个定理有好几种不同的证明方法.人教A 版教材《数学》(必修5)是用向量的数量积给出证明的,如是在证明正弦定理时用到作辅助单位向量并对向量的等式作同一向量的数量积,这种构思方法过于独特,不易被初学者接受.本文试图通过运用多种方法证明正、余弦定理从而进一步理解正、余弦定理,进一步体会向量的巧妙应用和数学中“数”与“形”的完美结合. 定理:在△ABC中,AB=c,AC=b,BC=a,则 (1)(正弦定理) = = ; (2)(余弦定理) c2=a2+b2-2abcos C, b2=a2+c2-2accos B, a2=b2+c2-2bccos A. 一、正弦定理的证明 证法一:如图1,设AD、BE、CF分别是△ABC的三条高。则有 AD=bsin∠BCA, BE=csin∠CAB, CF=asin∠ABC。 所以S△ABC=abcsin∠BCA =bcsin∠CAB =casin∠ABC. 证法二:如图1,设AD、BE、CF分别是△ABC的3条高。则有 AD=bsin∠BCA=csin∠ABC,

全国通用版中考数学:勾股定理有关的几何证明(一)—详解版

【例1】如图,在Rt△ABC中,∠C=90°,AM是中线,MN⊥AB,垂足为点N,求证:AN2-BN2=AC2. 证明:∵MN⊥AB于N,∴BN2=BM2-MN2,AN2=AM2-MN2,∴BN2-AN2=BM2-AM2,又∵∠C=90°,∴AM2=AC2+CM2 ,∴BN2-AN2=BM2-AC2-CM2, 又∵BM=CM,∴BN2-AN2=-AC2,即AN2-BN2=AC2. 【例2】四边形ABCD,AC⊥BD ,探究AB2,CD2,BC2,AD2之间的数量关系. 【解析】AD2+BC2=AB2+CD2,设AC与BD的交点为E ∵AC⊥BD, ∴∠AED=∠AEB=∠BEC=∠CED=90°, 由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2, AB2+CD2=AE2+BE2+CE2+DE2, ∴AD2+BC2=AB2+CD2; 故答案为:AD2+BC2=AB2+CD2, 1.我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个 四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD,DC,∠DCB=30°.求证:四边形ABCD是以DC、BC为勾股边的勾股四边形. 证明:连接CE, ∵△DBE是由△ABC的顶点B按顺时针方向旋转60°而得, ∴AC=DE,BC=BE,∠CBE=60°,

∴△BCE是等边三角形, ∴∠BCE=60°,EC=BC, 又∵∠DCB=30°, ∴∠DCE=90°, ∴在Rt△DCE中,DE2=DC2+CE2 ∴AC2=DC2+BC2即四边形ABCD是以DC,BC为勾股边的勾股四边形. 2.在△ABC中,AD⊥BC于D,求证:AB2+CD2=AC2+BD2. 证明:在Rt△ABD中,根据勾股定理得:AB2-BD2=AD2; 在Rt△ACD中,根据勾股定理得:AC2-CD2=AD2, ∴AB2-BD2=AC2-CD2=AD2, 则AB2+CD2=AC2+BD2. 3.如图,△ABC中,AB=AC,∠BAC=90°,D是BC边上任意一点,求证:BD2+CD2=2AD2. 证明:作AE⊥BC于E,如图所示: ∵在△ABC中,∠BAC=90°,AB=AC, ∴BD2+CD2=(BE+DE)2+(CE-DE) 2=2AE2+2DE2=2AD2. 4.如图,在△ABC中,∠C=90°,点P、Q分别在BC、AC上,求证:AP2+BQ2=AB2+PQ2. 证明:∵在RT△APC中,AP2=AC2+CP2,在RT△BCQ中,BQ2=BC2+CQ2, ∴AP2+BQ2=AC2+CP2+BC2+CQ2, ∵在RT△ABC中,AC2+BC2=AB2,在RT△APC中,PC2+CQ2=PQ2, ∴AP2+BQ2=AC2+CP2+BC2+CQ2=AB2+PQ2. 5.如图,在△ABC中,∠C=90°,D是AC的中点,DE⊥AB于点E.求证:BC2=BE2-AE2.

立体几何证明定理及性质总结

一.直线和平面的三种位置关系: 1. 线面平行 2. 线面相交 l 符号表示: 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。方法二:用面面平行 实现。 m l m l l // // ? ? ? ? ? ? = ? ? β α β α m l m l// // ? ? ? ? ? ? = ? = ? β γ α γ β α 方法三:用线面垂直实现。若α α⊥ ⊥m l,,则m l//。 2.线面平行: 方法一:用线线平行实现。 α α α// // l l m m l ? ? ? ? ? ? ? ? 方法二:用面面平行实现。 α β β α // // l l ? ? ? ? ? 3.面面平行: 方法一:用线线平行实现。方法二:用线面 平行实现 l

βααβ//',',' //'//??? ?? ? ? ? ??且相交且相交m l m l m m l l 。βαβαα//,////??? ????且相交m l m l 三.垂直关系: 1. 线面垂直: 方法一:用线线垂直实现。 方法二:用面面垂直实现。 α α⊥??? ????? ?=?⊥⊥l AB AC A AB AC AB l AC l , αββαβα⊥???? ???⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 方法二:计算所成二面角为直角。 βαβα⊥?? ?? ?⊥l l 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥????

余弦定理证明过程

余弦定理证明过程(精选多篇) 余弦定理证明过程ma=√ -ac*cosb) =√ 由b =a +c -2ac*cosb 得,4ac*cosb=2a +2c -2b ,代入上述ma表达式: ma=√ =√ 证毕。 2 在任意△abc中,作ad⊥bc. ∠c对边为c,∠b对边为b,∠a对边为a--> bd=cosb*c,ad=sinb*c,dc=bc-bd=a-cosb*c

勾股定理可知: ac2=ad2+dc2 b2=2+2 b2=sin2b*c2+a2+cos2b*c2-2ac*cosb b2=*c2-2ac*cosb+a2 b2=c2+a2-2ac*cosb 所以,cosb=/2ac 2 如右图,在abc中,三内角a、b、c 所对的边分别是a、b、c.以a为原点,ac 所在的直线为x轴建立直角坐标系,于是c点坐标是,由三角函数的定义得b 点坐标是.∴cb=.现将cb平移到起点为原点a,则ad=cb.而|ad|=|cb|=a,∠dac=π-∠bca=π-c,根据三角函数的定义知d点坐标是,asin)即d点坐标是,∴ad=而ad=cb∴=∴asinc=csina…………①-acosc=ccosa-b……②由①得asina=csinc,同理可证asina=bsinb,∴asina=bsinb=csinc.由②得acosc=b-ccosa,平方得:a2cos2c=b2-2bccosa+c2cos2a,即a2-a2sin2c=b2-2bccosa+c2-c2sin2a.而

由①可得a2sin2c=c2sin2a∴a2=b2+c2-2bccosa.同理可证b2=a2+c2-2accosb,c2=a2+b2-2abcosc.到此正弦定理和余弦定理证明完毕。3△abc 的三边分别为a,b,c,边bc,ca,ab上的中线分别为,mc,应用余弦定理证明: mb= mc=ma=√ -ac*cosb) =√ 由b =a +c -2ac*cosb 得,4ac*cosb=2a +2c -2b ,代入上述ma表达式: ma=√ =√ 同理可得: mb= mc= 4 ma=√ -ac*cosb) =√ 由b =a +c -2ac*cosb 得,4ac*cosb=2a +2c -2b ,代入

最新勾股定理与几何证明答案

1、勾股定理与几何证明的综合问题 1 2 练习一、利用勾股定理证明一些重要的几何定理 3 4 1、如图,在Rt △ABC 中,∠ACB =90°,CD 是AB 边上的高. 证5 明: 6 (1)BD AD CD ?=2 7 (这个结果表明,利用勾股定理可以导出三角形相似的一系列结果) 8 (2) 222111CD BC AC =+ 9 10 11 12 13 14 15 练习二、将勾股定理应用于四边形 16 1、四边形ABCD 的对角线为AC 和BD . 17 (1)证明:若BD AC ⊥,则2222BC AD CD AB +=+; 18 19 20 21 22 23 24 25 26 27

2、一个四边形的顶点分别在一个边长为1的正方形各边上,其边长依次为a 、28 b 、 c 、 d . 29 求证:422222≤+++≤d c b a . 30 31 假设MNPQ 分别将正方形ABCD 的四个边分成了线段:m1 m2 n1 n2 p1 p2 q1 q2 32 ∵MNPQ 都在正方形ABCD 的四个边上,所以有四个直角三角形33 ∴a2+b2+c2+d2=m12+m22+n12+n22+p12+p22+q12+q22∵m1+m2=正方形边长即为34 “1”(其他同理)35 ∴a2+b2+c2+d2=m12+(1-m1)2+n12+(1-n1)2+p12+(1-p1)2+q12+(1-q1)2整理之36 后得到:37 a2+b2+c2+d2=2*(m1-1/2)2+1/2+2*(n1-1/2)2+1/2+2*(p1-1/2)2+1/2+2*(q1-1/38 2)2+1/2=2*[(m1-1/2)2+(n1-1/2)2+(p1-1/2)2+(q1-1/2)2] + 2m1、n1、p1、q139 的长都是最大为1最小为0它们都等于1/2时值最小,都等于1时值最大那么40 a2+b2+c2+d2的最小值就是2,最大值就是4 41 42 43 44 45 46 练习三、勾股定理结合图形变换 47 48 1、如图,在△ABC 中,∠BAC =45°,AD ⊥BC ,BD =3,CD =2,求△ABC 的面49 积。 50 51 52 53

用复数证明余弦定理

用复数证明余弦定理法一:证明:建立如下图所示的直角坐标系,则A=(0,0)、B=(c,0),又由任意角三角函数的定义可得:C=(bcos A,bsin A),以AB、BC为邻边作平行四边形ABCC′,则∠BAC′=π-∠B, ∴C′(acos(π-B),asin(π-B))=C′(-acos B,asin B). 根据向量的运算: =(-acos B,asin B), = - =(bcos A-c,bsin A), (1)由 = :得 asin B=bsin A,即 = . 同理可得: = . ∴ = = . (2)由 =(b-cos A-c)2+(bsin A)2=b2+c2-2bccos A, 又| |=a, ∴a2=b2+c2-2bccos A. 同理: c2=a2+b2-2abcos C; b2=a2+c2-2accos B. 法二:如图5, ,设轴、轴方向上的单位向量分别为、,将上式的两边分别与、作数量积,可知 , 即 将(1)式改写为 化简得b2-a2-c2=-2accos B. 即b2=a2+c2-2accos B.(4) 这里(1)为射影定理,(2)为正弦定理,(4)为余弦定理. 2 在△ABC中,AB=c、BC=a、CA=b 则c^2=a^2+b^2-2ab*cosC a^2=b^2+c^2-2bc*cosA b^2=a^2+c^2-2ac*cosB 下面在锐角△中证明第一个等式,在钝角△中证明以此类推。 过A作AD⊥BC于D,则BD+CD=a 由勾股定理得: c^2=(AD)^2+(BD)^2,(AD)^2=b^2-(CD)^2 所以c^2=(AD)^2-(CD)^2+b^2 =(a-CD)^2-(CD)^2+b^2 =a^2-2a*CD +(CD)^2-(CD)^2+b^2 =a^2+b^2-2a*CD 因为cosC=CD/b 所以CD=b*cosC 所以c^2=a^2+b^2-2ab*cosC 题目中^2表示平方。 2

立体几何判定定理与性质定理汇总

文字语言:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行. 符号语言:α?a ,α?b ,且b a //α//a ?. 图形语言: 定理二(平面与平面平行的判定定理) 文字语言:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行. 符号语言:β?a ,β?b ,P b a = ,α//a ,α//b αβ//?. 图形语言: 定理三(直线与平面平行的性质定理) 文字语言:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行. 符号语言:α//a ,β?a ,且b =βα b a //?. 图形语言: 证明:因为b =βα ,所以α?b . 又因为α//a ,所以a 与b 无公共点. 又因为β?a ,β?b ,所以b a //. 定理四(平面与平面平行的性质定理) 文字语言:如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 符号语言:βα//,a =γα ,b =γβ b a //?. 图形语言: α b a P βα b a a α βa b αγ a b αβ

文字语言:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直. 符号语言:a c ⊥,b c ⊥,P b a = ,α?a ,α?b α//c ?. 图形语言: 定理六(平面与平面垂直的判定定理) 文字语言:一个平面过另一个平面的垂线,则这两个平面垂直. 符号语言:α⊥a ,β?a ,αβ⊥?. 图形语言: 定理七(直线与平面垂直的性质定理) 文字语言:垂直于同一平面的两条直线平行. 符号语言:α⊥a ,α⊥b b a //?. 图形语言: 定理八(平面与平面垂直的性质定理) 文字语言:对于两个相互垂直的平面,在一个平面内垂直交线的直线垂直另一平面. 符号语言:βα⊥,m =βα ,β?a ,m a ⊥α⊥?a . 图形语言: c a b αP αβa αb a βa m α

余弦定理的六种证法

余弦定理的六种证法 法一(平面几何):在△ABC 中,已知,,AC b BC a C ==∠及,求 c 。 过A 作sin sin AD BC D AD AC C BC C ⊥=于,是=, cos cos ,CD AC b c == 在Rt ABD ?中,2222222(sin )(cos )2cos AB AD BD b c a b c a b ab c =+=+-=+-, 法二(平面向量): 222()()22||||AB AB AC BC AC BC AC AC BC BC AC AC BC ?=+?+=??+=+? 2 22 cos(180)2cos B BC b ab B a -+=-+ ,即:2222cos c a b ab c =+- 法三(解析几何):把顶点C 置于原点,CA 落在x 轴的正半轴上,由于△ABC 的AC=b , CB=a ,AB=c ,则A ,B ,C 点的坐标分别为A(b ,0),B(acosC ,asinC),C(0,0). |AB|2=(acosC -b)2+(asinC -0)2 =a 2cos2C -2abcosC+b 2+a 2sin2C =a 2+b 2-2abcosC , 即c 2=a 2+b 2-2abcosC . 法四(利用正弦定理): 先证明如下等式:C B A C B A cos sin sin 2sin sin sin 2 2 2 =-+ ⑴ 证明:C B A 2 2 2 sin sin sin -+ C

()()()()()[] C B A B A B A C C B A B A C B A c o o s C B A c o s s i n s i n 2c o s c o s c o s c o s c o s c o s 2 2c o s 12c o s 22 122c o s 12 2c o s 122c o s 12 =+--=+-+-=++ +- =-- -+ -= 故⑴式成立,再由正弦定理变形,得 )2(s i n 2s i n 2s i n 2?? ? ??===C R c B R b A R a 结合⑴、)2(有 () . c o s 2c o s s i n s i n 24s i n s i n s i n 42 2 2 2 2 2 2 2 C ab C B A R C B A R c b a =?=-+=-+ 即 C ab b a c cos 22 22-+=. 同理可证 A bc c b a cos 22 2 2 -+=;B ca a c b cos 22 2 2 -+=. 法五(用相交弦定理证明余弦定理): 如图,在三角形ABC 中,∠A=α,AB=a ,BC=b ,AC=c 。现在以B 为圆心,以长边AB 为半径做圆,这里要用长边的道理在于,这样能保证C 点在圆内。BC 的延长线交圆B 于点D 和E 这样以来,DC=a-b ,CE=a+b ,AC=c 。因为AG=2acosα,所以CG=2acosα-c 。根据相交弦定理有: DC×CE=AC×CG ,带入以后就是 (a-b)(a+b)=c(2acosα-c) 化简以后就得b 2=a 2+c 2+2accosα。也就是我们的余弦定理。 法六(面积解释): 如图9,以△ABC 的三边为边长向外作三个正方形,, 交AB 于K 。据说欧几里德就是利用此图形证明勾股定理的。易证(最好是将 看作是 旋转而成),进而可得;同理,所以直角三角形斜边上的正方 形面积等于两直角边上两正方形面积之和。

勾股定理的证明方法

勾股定理的证明方法 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

勾股定理的证明方法 勾股定理是初等几何中的一个基本定理。这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨和研究它的证明.下面结合几种图形来进行证明。 一、传说中毕达哥拉斯的证法(图1) 左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为、,斜边为的直角三角形拼成的。右边的正方形是由1个边长为的正方形和4个直角边分别为、,斜边为的直角三角形拼成的。因为这两个正方形的面积相等(边长都是),所以可以列出等式 ,化简得。 在西方,人们认为是毕达哥拉斯最早发现并证明这一定理的,但遗憾的是,他的证明方法已经失传,这是传说中的证明方法,这种证明方法简单、直观、易懂。 二、赵爽弦图的证法(图2) 第一种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为的直

角三角形围在外面形成的。因为边长为的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式,化简得。 第二种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为的 角三角形拼接形成的(虚线表示),不过中间缺出一个边长为的正方形“小洞”。 因为边长为的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式,化简得。 这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。 三、美国第20任总统茄菲尔德的证法(图3) 这个直角梯形是由2个直角边分别为、,斜边为的直角三角形和1个直角边为 的等腰直角三角形拼成的。因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式,化简得。

立体几何证明题定理推论汇总

立体几何公理、定理推论汇总 一、公理及其推论 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。 符号语言:,,,A l B l A B l ααα∈∈∈∈?? 作用: ① 用来验证直线在平面内; ② 用来说明平面是无限延展的。 如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。(那么它们有且只有一条通过这个公共点的公共直线) 符号语言:P l P l αβαβ∈?=∈且 作用:① 用来证明两个平面是相交关系; ② 用来证明多点共线,多线共点。 经过不在同一条直线上的三点,有且只有一个平面。 符号语言:,,,,A B C A B C ?不共线 确定一个平面 经过一条直线和这条直线外的一点,有且只有一个平面。 符号语言:A a A a a αα??∈?有且只有一个平面 ,使, 经过两条相交直线,有且只有一个平面。 符号语言:a b P a b ααα?=???有且只有一个平面,使 , 经过两条平行直线,有且只有一个平面。 符号语言://a b a b ααα???有且只有一个平面,使, 公理3 及其推论的作用:用来证明多点共面,多线共面。 平行于同一条直线的两条直线平行(平行公理)。 符号语言://////a b a c c b ???? 图形语言: 作用:用来证明线线平行。

二、平行关系 平行于同一条直线的两条直线平行(平行公理)。(1) 符号语言://////a b a c c b ???? 图形语言: 1如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。(2) 符号语言: ////a b a a b ααα???????? 图形语言: 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。(3) 符号语言:////a b a a b βαβα??????=? 图形语言: 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(4) 符号语言://(/,///),a b b b O a a ββαααβ??=?????? 图形语言: 如果两个平面垂直于同一条直线,那么这两个平面平行。(5) 符号语言:,,//oo oo ααββ????⊥⊥ 图形语言: 如果两个平行平面同时和第三个平面相交,那么它们的交线平行。(6) 符号语言:////a a b b αγβγαβ??=???=? 图形语言: 如果两个平面平行,那么其中一个平面内的直线平行于另一个平面。(7) 符号语言:////a a βααβ???? ? 图形语言:

相关主题
文本预览
相关文档 最新文档