当前位置:文档之家› 空调冷水系统演变与一次泵变流量系统

空调冷水系统演变与一次泵变流量系统

空调冷水系统演变与一次泵变流量系统
空调冷水系统演变与一次泵变流量系统

空调冷水系统演变与一次泵变流量系统标签: 一次泵变流量系统

《空调冷水系统演变与一次泵变流量系统简介》。其中一次泵变流量系统对空调冷水系统演变和一次泵变流量系统从理论和实践两方面进行了可贵的探索,但所得结论值得商榷。

1 传统的一次泵系统不是定流量系统

将图1(a)定义为一次泵定流量系统,既通过蒸发器的冷水流量不变[1]。负荷侧末端采用变流量,在表冷器出口设置电动两通阀。在冷水的供水总管和回水总管上设置一根旁通管,旁通管内流量是冷源侧流量与用户侧流量之差,旁通管上装有电动阀[1]。旁通水量由旁通阀控制,而旁通阀开度则由压差控制器控制。图1(b)仅是在制冷机组进水处增设了供水总管。

(a)

(b)

图1一次泵系统原理图

1.1 以系统设计流量控制旁通流量

如果根据通过蒸发器的流量Qj不变和旁通流量Qp是冷源侧流量Qj与用户侧流量Qm 之差的技术要求,旁通阀的开启压力应保障2台制冷机组标称流量之和不变。既Qj=Q2,水泵工作点始终维持在(Q2、H2)不变(参见图2)。在图2中分别给出单台和双台制冷机组设计流量Q1、Q2和扬程H1、H2。当用户侧流量Qm

图2水泵工作点分析图

但是,在单台机组运行工况时情况就不同了。当用户侧流量Q0

=0,Qj =Qm是变量。若要满足Qj恒定不变,在1台制冷机组运行工况下,要同时运行两台冷水泵,显然是不妥的。可见在传统一次泵系统中要求“通过蒸发器的冷水流量不变”是有条件的。

1.2 以机组最低允许流量控制旁通流量

在图1所示的一次泵系统中,尽管图1(a、b)的分析方式不同,但是,在部分冷负荷工况下,当末端恒温控制阀关小或关闭时,管网特性随之产生变化的属性是相同的。管网阻力增加,图2中水泵工作点就会左移,水泵流量相应减少,扬程相应升高。虽然系统压力的增加会使其余末端用户的资用压头升高,流量相对增多。但是,其温控阀随后会相应关小,实施水量调节。所以,其他末端流量增加的现象是暂时状态。温控阀的调节又会致使系统管道阻力进一步增大,由于温控阀具有延迟属性,需要经过一段时间的动态调节后,水泵才稳定运行在新的工作点上,系统达到新的平衡,直到下一次新的负荷调节出现。

由于制冷机组变流量的范围不是从0%~100%,因此当用户侧的流量低于制冷机组最低允许流量时,需旁通部分水流量,保证蒸发器内水流量不低于机组最低允许流量[1]。如果将机组最小允许流量理解成单台制冷机组最小安全允许流量是正确的话,并按此原则整定旁通阀控制。那么,当系统流量低于这个最低安全流量之前,旁通阀并不开启。图2中给出了10%和50%两种单机标称流量控制参数,冷源侧流量Qj的变化范围由Q0~Q1区间扩大到Q0.5(Q0.1)~Q2。既可在系统最小安全流量和最大设计流量之间变化,蒸发器内实际流量将跟随末端流量的变化而不断变化,既Qp=0,Qj =Qm还是变量。

可见无论如何设定旁通阀动作值都不能稳态地实现文献[1]所期望的“通过蒸发器的冷

水流量不变”,在具备空调末端主动性调节属性的空调系统中,传统的一次泵系统并不是惯性思维中的定流量系统。空调末端流量变化是主动性的,是决定因素;而冷源侧变流量则是被动的,是次要矛盾[4]。所以简单地将传统一次泵系统定义为定流量系统是不严谨的。

2 制冷机组流量变化率

从文献[1]基于图3一次泵变流量系统原理图定义之上,提供的模型(图4a)看,当流量从约280m3/h降低到约150m3/h,流量变化率约为50%,所用时间应以秒计。假如图3

系统中各台主机规格相同,当并联启动第二台制冷机组时,如果错误地采用先开制冷机组,然后开冷水泵的操作程序。那么,第一台在线机组的流量就可能出现图4-a的情况,甚至导致两台机组停运。

图3 一次泵变流量系统原理图

而在图1(a)系统中,因第二台冷水泵尚未投入运行,水系统中靶流开关或机组保护功能动作将导致第二台机组起动失败,第一台在线机组流量则不会因出现图4-a现象停机。

显然,任何最终可能导致制冷机组停运的运行控制策略在工程中都是不允许的。在操作程序中必须严格遵守先运行冷水泵然后启动制冷机组的操作程序来避免图4-a事故中发生,即使是配置具有前馈控制和变流量补偿功能的机组(图4-b)也不例外,毕竟保证系统安全运行才是根本。

图4 两种机组比较

3 系统流量变化范围

蒸发器水流量变化必然引起制冷机组的出水温度波动,甚至导致制冷机组运行不稳定。因此制冷机组的流量许可变化范围和流量许可变化率是衡量制冷机组性能的指标[1]。过去几乎所有的厂家都说制冷机组的流量不能低于厂家规定的标称流量,科学技术发展到今天,大多数制冷机组实际最低安全流量都已经达到50%标称流量以下。个别机器运行到10%[3]。由于市场竞争激烈,有的厂家在产品资料上标明最低允许流量为50%,但是当实际流量低于70%时,机组就启动保护动作。

仅从制冷机组的角度出发,为了提高换热器的换热效果,希望保持较高水的流速。为了减少震动和对管壁的冲蚀,又希望水的流速不要过高。制冷机组变流量的前提是在部分负荷工况下安全运行,为了评价制冷机组在不同部分负荷下的综合性能,ARI 550/590-1998标准给出了部分负荷综合性能测评标准:

IPLV = 0.01A+ 0.42B + 0.45C + 0.12D (1)

式中 A—100%负荷率时单位冷量制冷机组的能耗;

B—75%负荷率时单位冷量制冷机组的能耗;

C—50%负荷率时单位冷量制冷机组的能耗;

D—25%负荷率时单位冷量制冷机组的能耗。

A+B权重之和为0.01+0.42=0.43,小于C的权重0.45。从系统节能的角度讲,当50%负荷率时仍然保持相对流量不低于标称流量70%是欠妥的。机组的流量允许变化范围越大,越有利于制冷机组的加、减机控制。尽管目前采用变频调速技术实施的一次泵变流量系统要实现10%~100%的调速控制还有许多技术门槛需要跨越。但是,制冷机组最低安全流量越小,留给空调系统的节能空间也就越大,空调系统运行也越安全。制造商对最低安全流量的设定实际上从另一侧面表达出其产品制造技术的科技水平。

目前大多数设计师认为最低流量达到60%就可以了。理由是真正用到30%到40%可能不一定经济,频率很低的时候水泵的效率就很低,并不合理[3]。事实上,工程中空调系统最小流量的决定因素既不是制冷机组的技术指标也不是水泵的效率,而是空调末端用户侧流量Qm。如果系统中Qm=常数,冷源侧的变流量也就无从谈起了。文献[5]通过概率计算,提出在某些确定的中、高负荷率下,空调系统末端通断控制的风机盘管水系统的阻力特性和总水量将波动不大,此时水系统可取消制冷机的旁通管,并且直接应用一次泵变频的观点。

4 一次泵变流量系统

一次泵变流量系统最小流量的控制除了保障制冷机组安全运行之外,还应同时受到系统安全、服务质量和节能效率等三个方面的制约。

4.1 一次泵变流量系统安全

一次泵变流量系统安全运行是基本要求。简单地说就是系统在最低安全流量工况下,有效避免可能导致制冷机组冻管、喘震和水泵电机温升超标等恶性故障发生。

4.2 服务质量

保障系统中所有空调末端服务质量是用户的根本利益所在。不应发生因空调末端负荷回水温度高于设计要求,甚至缺水的投诉事件发生。在冷源侧不论是对制冷机组还是水泵的流量控制都要依据空调末端负荷的变化而调节,是被动性的,不能越俎代庖。采用变频调速控制水泵流量的同时寄生着水泵扬程和空调末端资用压头的变化。不论制冷机组的最小允许水流量多少,也不论系统冷量负荷率是多少,在所有工况下都必须确保系统中所有末端,尤其是最不利端用户对水量和冷量的需求,不能设想一个连空调末端服务水量都不能保证的一次泵变流量系统会是一个好系统[4]。

4.3 节能效益

4.3.1 对制冷机组能耗的影响

目前业内对一次泵变流量系统的研究大多还局限于大流量与小流量之间量的变化对制冷机组的安全和水泵节能的贡献上,相对小温差与大温差之间质的变化可能带来的制冷机组能耗增加的研究就少了许多。实际上一次泵变流量系统在调节系统水量的同时也会改变流入蒸发器的水温,从而改变蒸发温度和压力,导致制冷机组的COP发生变化。文献[6]就一次泵变流量运行对制冷机COP影响的热力学研究结果表明:冷冻水流量的减少导致了蒸发器

传热系数的降低,在相对流量不低于设计流量60%的情况下,蒸发温度与COP均随冷冻水相对水量的减少呈下降趋势,蒸发温度下降在1℃以内;COP下降10%左右。

制冷机组在不同冷负荷率、不同冷水进水温度和不同环境气象条件工况下的COP(coe fficient of performance)不同,所以根据图5得出先进的变流量制冷机组在部分负荷时,蒸发器变流量与定流量相比,COP变化小于5%[1]的结论就值得商榷。

追求包括制冷机组能耗在内的系统能耗最小化才是一次泵变流量系统根本目的。这里所强调的是系统整体能耗的最小化,而不是单一制冷机组子系统或者水泵子系统的能耗最小化。图6给出了厦门某模糊控制变流量节能技术项目从2005年2月4日至10月17日,每月对比测试3次(5/15/25日)的节电率趋势,在此期间甲乙双方协议节电量为1705738.41 kW·h。即便如此还是出现了在辅机节能21.94%时,制冷机的节电率为-21.26%,系统节电率竟为-7.21%。尽管该项目采用的测试方式还值得商讨,但是一次泵变流量技术对制冷机组能耗的负面影响应引起业内重视。目前基于水系统一次泵变流量技术之上的变流量节能系统多难避免节能、不节能和更耗能三种工况并存的尴尬局面,尚有待完善。

图6 某案例节电率趋势图

与一次泵变流量系统相比,大流量和小流量的变化是两者之间量的区别,而小温差和大温差则是其质的变化。在对一次泵变流量系统的分析研究中不能只看到其量变的影响,而忽视其质变的作用。

5 结论

仅从冷源侧简单地将具备空调末端主动性调节属性的一次泵系统定义为定流量系统是不严谨的。也就是说,水流量变化是绝对的,是常态;而不变则是相对的,是暂时状态。空调末端用户侧流量变化是主动性的,是决定因素;而冷源侧变流量则是被动的,是次要矛盾。系统最小流量的控制除了保障冷源侧制冷机组安全运行之外,还应同时受到系统安全、服务质量和节能效率等三个方面的制约。

必须严格遵守先运行冷水泵然后启动制冷机组的开机操作程序,保证系统安全运行。即便是配置具有前馈控制和变流量补偿功能的机组也不能例外。

虽然,配置不仅能根据冷水机组出水温度变化调节机组负荷,而且还能根据制冷机组进水温度变化来预测和补偿空调负荷变化对出水温度的影响[1],且制冷机组允许流量变化率较大的机组更有利于系统安全和冷水流量变化,但并不是一次泵变流量系统的必要条件。

一次泵变流量系统的大温差属性造成流入蒸发器的水温升高,从而改变蒸发温度、压力和制冷机组的COP,甚至会导致制冷机组能耗增加,其负面影响应引起业内重视。目前基于水系统一次泵变流量技术之上的变流量节能系统多难避免节能、不节能和更耗能三种工况并存的尴尬局面,尚待完善。

二次泵系统与一次泵变流量系统优缺点、设计要点及控制逻辑

一次泵变流量系统(VPF) 1、控制方式 冰机控制 负荷测定:蒸发器的流量和温差 冷量调节: 与活塞机组的介跃调节不一样,离心冷水机组的控制是根据实际需求负荷的大小来控制压缩机的运行状态,最终通过改变导叶开度的大小来控制。改变导叶开度的大小,可调节制冷剂循环流量,控制蒸发温度,调节制冷量,最终达到加载、卸载,控制出水温度的目的。这种调节可实现无级连续调节,可精确调节到负荷要求,精密控制出水温度。模糊逻辑根据温度误差(与设定值的偏差) 和变化速度求出所需的加载/卸载量,从而将冷水温度控制在设定的范围内。导叶电机根据4~20mA 的电流输入信号,每0. 3 %地增加或减小导叶的开启度,这样的调节足以保证经导叶调节后流量的连续性,实现无级调节。加载时,导叶开启度增大;卸载时导叶开度减小。高精度的导叶连续调节可精确控制水温在±0. 3 ℃以内。见图2。控制系统根据温度偏差值和温度变化速度来确定是否需要加载、卸载或保持容量不变。见表1。 在接近系统的安全阈值时,会进行加载或卸载限制。图3示出了出水温度控制的循环。

“—→”代表系统控制 “—→”代表控制系统实施操作后有可能引起的现象如图3 所示,系统控制和实施控制操作后而需要的进一步控制形成封闭循环。控制操作的实施最终通过导叶开并增大或减小来完成。控制系统经过综合使导叶维持在某一开启度进行制冷或达到安全限而关机。 例如机组刚开机过程的加载过程,在电流限制的同时导叶由小逐渐开大,冷水温度不断下降, 达到制冷的目的。当机组达到负荷后,出水温度已达到或低于设定点的温度,这时进行卸载过程,导叶逐渐关小,出水温度基本维持不变,电流逐渐减小,最终维持在部分负荷运行。如果负荷过低,使机组导叶关小到某一值时,排气温度达到保护限,控制导叶不能继续关小(或导叶已关 到最小) ,则导叶维持该状态运行,出水温度将进一步下降,当下降到低于出水温度设定点3 ℃以下时,则机组由控制系统控制进行安全关机。或进入再循环运行模式控制。 冰机加减机: 加机(4种方式?): 1. 冷冻水系统供水温度T S1高于系统设定温度T SS并持续一段时间

二次泵系统与一次泵变流量系统优缺点设计要点及控制逻辑

一次泵变流量系统(VPF) 1、 控制方式 冰机控制 负荷测定:蒸发器的流量和温差 冷量调节: 与活塞机组的介跃调节不一样,离心冷水机组的控制是根据实际需求负荷的大小来控制压缩机的运行状态,最终通过改变导叶开度的大小来控制。改变导叶开度的大小,可调节制冷剂循环流量,控制蒸发温度,调节制冷量,最终达到加载、卸载,控制出水温度的目的。这种调节可实现无级连续调节,可精确调节到负荷要求,精密控制出水温度。模糊逻辑根据温度误差(与设定值的偏差) 和变化速度求出所需的加载/卸载量,从而将冷水温度控制在设定的范围内。导叶电机根据4~20mA 的电流输入信号,每0. 3 %地增加或减小导叶的开启度,这样的调节足以保证经导叶调节后流量的连续性,实现无级调节。加载时,导叶开启度增大;卸载时导叶开度减小。高精度的导叶连续调节可精确控制水温在±0. 3 ℃以内。见图2。控制系统根据温度偏差值和温度变化速度来确定是否需要加载、卸载或保持容量不变。见表1。 在接近系统的安全阈值时,会进行加载或卸载限制。图3示出了出水温度控制的循环。 “ —→”代表系统控制 “ —→”代表控制系统实施操作后有可能引起的现象如图3 所示,系统控制和实施控制操作 后而需要的进一步控制形成封闭循环。控制操作的实施最终通过导叶开并增大或减小来完成。控制系统经过综合使导叶维持在某一开启度进行制冷或达到安全限而关机。 例如机组刚开机过程的加载过程,在电流限制的同时导叶由小逐渐开大,冷水温度不断下降,达到制冷的目的。当机组达到负荷后,出水温度已达到或低于设定点的温度,这时进行卸载过程,导叶逐渐关小,出水温度基本维持不变,电流逐渐减小,最终维持在部分负荷运行。如果负荷过低,使机组导叶关小到某一值时,排气温度达到保护限,控制导叶不能继续关小(或导叶已关到最小) ,则导叶维持该状态运行,出水温度将进一步下降,当下降到低于出水温度设定点3 ℃以下时,则机组由控制系统控制进行安全关机。或进入再循环运行模式控制。 冰机加减机: 加机(4种方式?): 1. 冷冻水系统供水温度T S1高于系统设定温度T SS 并持续一段时间 2. 压缩机运行电流百分比(适用于出水温度精度要求高的场合,需要注意机组出力和运行电流不符合的情况) 3.计算负载 4.如运转中主机已达最大流量,则须加开一台主机(发生机率不高)。 减机: 1.依压缩机电流百分比(1 运行机组台数%RLA(运行机组)%设定-∑≥ ) 2. flow*△T 3.系统流量

一次泵变流量系统的设计

一次泵变流量系统的设计 郝庆1) 张子平1) 穆丽慧2) 1)(河北工程大学) 2)(海南元正建筑设计咨询有限责任公司天津分公司) 摘 要 一次泵变流量V PF(variable primary flow)系统是中央空调系统的最新布置形式,与一二次泵系统相比在初投资和运行费用上更具有优势。目前国内一些采用一次泵变流量系统的工程在运行中出现许多问题,本文从制冷机组的选择、旁通流量的设计、机组的启停控制、泵和机组的布置方式、一次泵变流量控制方式的选择、机房外的布置6个方面说明V PF的设计要点。 关键词 V PF 设计 一二次泵系统 大流量小温差 The design of variable primary flow system H ao Qing1) Zhang Ziping1) M u Lihui2) 1)(Hebei Eng ineering University) 2)(H ainan Yuanzheng Architectural Design&Consultation Co.,Ltd.) ABSTRACT Variable primary flow system is the new est system of center air conditioning sys tems,which has larg e advantages in first cost and operational cost than primary/secondary sys tems.M any domestic eng ineering applying VPF ex ists many questions.The key of VPF design is advised from six sides of chiller selection,bypass flow design,chiller sequencing,pump and chiller configuration,VPF control modes selection and configuration outside plant. KEY WORDS VPF;design;primary/secondary systems;low temperature difference and high flow 中央空调系统是根据最大冷/热负荷设计的。由于冷/热负荷受气候等因素影响经常变化,使中央空调系统大多数时间在部分负荷工况下运行,同时由于风机盘管除污器未及时清理,风机盘管选型不合适,风机盘管内空气的分布不均匀,末端使用的三通阀、管网的布置不合理等原因,使中央空调2个水系统绝大多数时间在大流量小温差下运行,造成系统运行费用的增加[1]。因此提高中央空调水系统的供/回水温差,降低空调运行成本,受到越来越多的关注。随着空调机组自动控制技术的发展,空调机组蒸发器和冷凝器的流量已经允许在一定范围内变化,一般为设计流量的30%~130%,这使得水泵变流量运行成为可能。中央空调水系统形式经历了一二次泵系统(一次泵定速,二次泵定速),一二次泵系统(一次泵定速,二次泵变速),移除了自力式流量控制阀,一次泵变流量系统,压差变送器代替流量表,独立压力流量控制阀的使用,风机盘管控制阀的发展(控制水泵频率的压差传送器从供回水干管上移到最不利环路上和将压力独立控制阀安装在风机盘管上),热回收机组8个发展阶段[1]。一次泵变流量系统作为中央空调水系统的最新布置方式,更好地解决了一二次泵系统出现的问题,特别在初投资、运行费用方面具有突出优势[2]。国内很多工程都采用了一次泵变流量系统,但出现了系统运行不稳定、末端过冷或者过热、压差旁通控制阀长期关闭、变频器频率变化范围过小等现象。 1 一二次泵系统存在的问题 1)所有的一二次泵系统在一次网和二次网的管接处都有一个汇合点,如图1上O点。当二次 第7卷 第6期 2007年12月 制冷与空调 REFRI GERA T ION AN D AIR-CON DIT I ON ING 47 51 收稿日期:2006 09 01 通讯作者:郝庆,Email:haoqing8866@https://www.doczj.com/doc/8c13686916.html,

一次泵变流量系统

随着设计水平及机械加工水平的进步,冷水机组的效率越来越。这使得冷水机房的能耗结构发生了较大的变化。水泵的能耗比例已经成为一个比较重要部分,所以如何在水泵的节能措施上去的取得进展已成为一项重要课题。 通常来说,空调系统是按照满负荷设计的,当负荷变化时,虽然冷水机组可以根据负荷调节相应的冷量输出,但是常规冷水系统在在冷水机组的蒸发器侧的流量配置是固定的,定流量的冷冻水泵能耗没有跟随主机的部分负荷运行而变化水量。也没跟着冷水机组减载。近年来在电子及自控技术的辅助下,冷水机组的制造技术得到有效提高,尤其是机组对负荷变化的响应时间大大缩短。先进的冷水机组可以在极大的范围内变流量运行;同时,与通过供水温度来控制机组负荷一样,变蒸发侧水流量控制机组负荷运行,同样能够保证出水温度在允许的偏差范围内正常运行。因此,当负荷变化时,可以使冷水机组的蒸发器侧流量随用户的需求而变化,从而节约蒸发器侧水泵的能耗,同时可使用流量保护措施使机组在流量允许的范围内运行。 在管路系统固定不变的前提下,变频水泵的效率特性和水系统的阻力特性接近,理论上水泵的能耗与流量成3次方的关系,系统的阻力随着部分负荷时流量的下降而下降[(水量1/水量2)2=水阻1/水阻2]。如果蒸发侧的流量允许随着负荷的变化而变化,那么蒸发侧的水泵就无需全年保持夏季设计日的满载流量,在部分负荷运行时段,水泵如冷水机组一样,部分负荷时流量减小,与此同时水泵的能耗大幅降低从而达到节能的目的。 目前,较通行的水系统设计通常有两种方式:1.一次泵定流量系统2.二次泵变流量系统。相对于这两 一次泵变流量系统中选择可变流量运行的冷水机组,当机组运行时,蒸发器的供回水温差基本恒定,蒸发侧流量随负荷侧流量的变化而改变,从而达到“按需供应”,并使得降低水泵在部分负荷时的供水量成为可能,最终降低系统运行能耗。末端冷量由冷冻水量调配,冷水机组生产的冷量由流经蒸发器的水流量和相对固定的温差决定。其系统形式类似于一次泵定流量系统,增加了一套自控系统,同时定流量水泵变

一次泵冷水变流量系统设计及控制策略

一次泵冷水变流量系统设计及控制策略 摘要一次泵变流量系统与一次泵定流量/二次泵变流量系统相比具有初投资小、节省制冷机房占地面积和降低运行费用等优点。本文阐述了一次泵变流量系统在工程应用时在设计上应注意的问题以及应采取的相关控制策略。 关键词一次泵冷水变流量系统设计控制策略

0 引言 随着经济的发展和人们生活水平的提高,空调能耗在生产和生活总能耗的比重越来越大,目前国内空调能耗占居民建筑能耗的25%~35%,占公共建筑能耗的30%~45%。空调系统年能耗中冷水机组的能耗约占33%,水泵能耗约占22%,冷却塔能耗约占2%,风机能耗约占43%,尽管水泵功率较小,但水泵能耗却占到制冷机房能耗的2/3[1]。可见,如果水系统采用节能技术,具有很大的节能空间。空调水系统的发展经历了定流量,一次泵定流量/二次变流量,随着制冷机组控制技术的发展,近年来一次泵变流量系统也不断得到应用。目前离心机蒸发器最小冷水流量可降到设计流量的30%左右[2],螺杆机蒸发器最小冷水流量可降到设计流量的40%左右[3],蒸发器最小允许水流量与冷水机组品牌有关,在工程应用中须向产品制造厂家进行详细咨询。在一定范围内改变蒸发器水流量,不会对冷水机组的效率及稳定性产生影响,这为一次泵变流量系统的工程应用提供的技术保障,但是要充分发挥一次泵变流量系统减少初投资及节能潜力,在实际应用中应如何进行系统设计,怎样进行系统控制,是暖通设计师值得关注的问题。 1 冷水变流量系统常用类型 “变流量系统”是指在水路系统的空调末端使用二通调节阀的系统,是与水路系统末端使用三通调节阀或不使用调节阀的“定流量系统”相对而言的。所谓“变流量”与“定流量”均是指输送冷水的水路系统的流量是变化的。变流量系统根据其系统构成形式不同,又可分为“相对的变流量系统”,即冷量制备环路是定流量,而冷量输送环路是变流量(如一次泵定流量/二次泵变流量系统(图1)、传统的一次泵变流量系统(图2));和“真正的变流量系统”,即冷水机组蒸发器变流量系统(如一次泵变流量系统(图3))。 图1 一次泵定流量/二次泵变流量系统 一次泵定流量/二次泵变流量系统利用旁通管将冷量制备环路和冷量输配环路在水力上分离开来,因此这里的旁通管除了具有旁通流量使冷量制备环路保持定流量运行的作用外,另外还有“解耦”的作用,防止一次泵和二次泵串联运行。这种系统型式有时会在旁通管上设一个止回阀,以防止回水通过旁通管回流到供水端与冷水机组的出水混合而升高系统供水

次泵系统与一次泵变流量系统优缺点设计要点及控制逻辑

一次泵变流量系统(VPF ) 1、 控制方式 冰机控制 负荷测定:蒸发器的流量和温差 冷量调节: 与活塞机组的介跃调节不一样,离心冷水机组的控制是根据实际需求负荷的大小来控制 压缩机的运行状态,最终通过改变导叶开度的大小来控制。改变导叶开度的大小,可调节 制冷剂循环流量,控制蒸发温度,调节制冷量,最终达到加载、卸载,控制出水温度的目的。 这种调节可实现无级连续调节,可精确调节到负荷要求,精密控制出水温度。模糊逻辑根 据温度误差(与设定值的偏差)和变化速度求出所需的加载/卸载量,从而将冷水温度控 制在设定的范围内。导叶电机根据4?20mA 的电流输入信号,每%地增加或减小导叶的 开启度,这样的调节足以保证经导叶调节后流量的连续性,实现无级调节。加载时,导叶开 启度增大;卸载时导叶开度减小。高精度的导叶连续调节可精确控制水温在土C 以内。 见图2。控制系统根据温度偏差值和温度变化速度来确定是否需要加载、卸载或保持容 量不变。见表1。 在接近系统的安全阈值时,会进行加载或卸载限制。图3示出了出水温度控制的循环。 “一-”代表系统控制 “一-”代表控制系统实施操作后有可能引起的现象如图 3所示,系统控制和实施控制操 作 后而需要的进一步控制形成封闭循环。控制操作的实施最终通过导叶开并增大或减小 来完成。控制系统经过综合使导叶维持在某一开启度进行制冷或达到安全限而关机。 例如机组刚开机过程的加载过程,在电流限制的同时导叶由小逐渐开大,冷水温度不断 下降,达到制冷的目的。当机组达到负荷后,出水温度已达到或低于设定点的温度,这时进 行卸载过程,导叶逐渐关小,出水温度基本维持不变,电流逐渐减小,最终维持在部分负荷 运行。如果负荷过低,使机组导叶关小到某一值时,排气温度达到保护限,控制导叶不能继 续关小(或导叶已关到最小),则导叶维持该状态运行,出水温度将进一步下降,当下降到 低于出水温度设定点3C 以下时,则机组由控制系统控制进行安全关机。或进入再循环运 行模式控制。 冰机加减机: 加机(4种方式?): 1?冷冻水系统供水温度T si 高于系统设定温度T ss 并持续一段时间 2?压缩机运行电流百分比(适用于出水温度精度要求高的场合,需要注意机组出力和运 行电流不符合的情况) 3?计算负载 4.如运转中主机已达最大流量,则须加开一台主机 (发生机率不高)。 减机: * △ T 3.系统流量 加减机逻辑:冷冻站管理器将监测供回水总管的温度,同时监测冷机的负荷。 当水系统的计算冷负荷达到运行冷机额定制冷量的 80%(可调),并持续 20 分钟(可 调),则冷冻站管理器将增开站房内下一个可用的运行时间最短的制冷单元。 当水系统的冷负荷低于运行冷机的总名义额定制冷量的 20%,并持续 20 分钟(可调), 1.依压缩机电流百分比(%没定 %RLA 运行机组)) 运行机组台数 1

一次泵变流量水系统控制策略的研究

一次泵变流量水系统控制策略的研究 随着我国经济的高速发展,建筑能耗占社会总能耗的比例越来越大,已由2007年的24.5%增加到2012年的32%,而大型公共建筑能耗占建筑总能耗的22%,中央空调系统的耗电量占大型公共建筑总耗电量的50~60%,中央空调系统必将成为建筑节能的重点。作为目前最有效的节能措施之一,中央空调一次泵变流量水系统的研究和应用逐渐受到人们的重视。但是在实际运行过程中,变频水泵往往不能按照设计要求进行变频,达不到理想的节能效果。 本文针对一次泵变流量水系统的控制方式及控制策略进行研究,主要包括以下内容:本文阐述了一次泵变流量水系统的一些基本理论和常用的控制方式,提出了一次泵变流量水系统设计及应用中的几个关键技术问题。对一次泵变流量水系统在不同控制方式下的水力工况进行了比较分析,探讨了不同控制方式的适用条件及节能效果。几种控制方式节能效果为:定温差>变压差控制>定末端压差>定干管压差。 另外针对目前实际工程中存在的问题进行了分析,为设计人员提供参考。然后以重庆某办公楼为研究对象,对其地源热泵机组及冷冻水泵进行测试。通过数据分析,发现水系统存在“大流量小温差”的问题,且冷冻水泵也没有按照设计进行变流量运行。 造成此问题的主要原因为其控制策略没有起到实际的调节作用。接着根据水系统测试的分析情况,对该办公楼的控制策略提出了两点改进建议:针对采用的定末端压差控制法提出了阀位控制加温度控制的改进建议,通过对控制原理的详细分析指出该控制法具有节能效果好且控制稳定等优点,并给出了具体的调节策略,针对办公楼末端风机盘管过多的问题提出了等效阀门开度的计算方法并以

一次泵冷水变流量系统设计及控制策略正文

一次泵冷水变流量系统设计及控制策略 华东交通大学 罗新梅 摘要一次泵变流量系统与一次泵定流量/二次泵变流量系统相比具有初投资小、节省制冷机房占地面积和降低运行费用等优点。本文阐述了一次泵变流量系统在工程应用时在设计上应注意的问题以及应采取的相关控制策略。 关键词一次泵冷水变流量系统设计控制策略 0 引言 随着经济的发展和人们生活水平的提高,空调能耗在生产和生活总能耗的比重越来越大,目前国内空调能耗占居民建筑能耗的25%~35%,占公共建筑能耗的30%~45%。空调系统年能耗中冷水机组的能耗约占33%,水泵能耗约占22%,冷却塔能耗约占2%,风机能耗约占43%,尽管水泵功率较小,但水泵能耗却占到制冷机房能耗的2/3[1]。可见,如果水系统采用节能技术,具有很大的节能空间。空调水系统的发展经历了定流量,一次泵定流量/二次变流量,随着制冷机组控制技术的发展,近年来一次泵变流量系统也不断得到应用。目前离心机蒸发器最小冷水流量可降到设计流量的30%左右[2],螺杆机蒸发器最小冷水流量可降到设计流量的40%左右[3],蒸发器最小允许水流量与冷水机组品牌有关,在工程应用中须向产品制造厂家进行详细咨询。在一定范围内改变蒸发器水流量,不会对冷水机组的效率及稳定性产生影响,这为一次泵变流量系统的工程应用提供的技术保障,但是要充分发挥一次泵变流量系统减少初投资及节能潜力,在实际应用中应如何进行系统设计,怎样进行系统控制,是暖通设计师值得关注的问题。 1 冷水变流量系统常用类型 “变流量系统”是指在水路系统的空调末端使用二通调节阀的系统,是与水路系统末端使用三通调节阀或不使用调节阀的“定流量系统”相对而言的。所谓“变流量”与“定流量”均是指输送冷水的水路系统的流量是变化的。变流量系统根据其系统构成形式不同,又可分为“相对的变流量系统”,即冷量制备环路是定流量,而冷量输送环路是变流量(如一次泵定流量/二次泵变流量系统(图1)、传统的一次泵变流量系统(图2));和“真正的变流量系统”,即冷水机组蒸发器变流量系统(如一次泵变流量系统(图3))。 图1 一次泵定流量/二次泵变流量系统 一次泵定流量/二次泵变流量系统利用旁通管将冷量制备环路和冷量输配环路在水力上分离开来,因此这里的旁通管除了具有旁通流量使冷量制备环路保持定流量运行的作用外,另外还有“解耦”的作用,防止一次泵和二次泵串联运行。这种系统型式有时会在旁通管上设一个止回阀,以防止回水通过旁通管回流到供水端与冷水机组的出水混合而升高系统供水温度,影响供冷效果。 一次泵定流量/二次泵变流系统的出现是为了适应末端负荷变化时,节约流量输送能量的需要;在多环路水系统中,如果各环路阻力损失相差太大,或因使用功能、运行时间不同,要求分别管理等情况的需要;把一个系统的泵送压头分成两部分,当满负荷时一次泵二次泵串联运行,而在部分负荷时为旁通分流系统,节省冷水输送能量的需要;在超高层建筑中采用二级泵结合板式换热器,实现水系统竖向分区,解决系统底部承压的问题的需要。

一次泵二次泵变流量系统能耗分析

一次泵/二次泵变流量 系统能耗分析 同济大学 董宝春☆ 刘传聚 刘 东 赵德飞 摘要 以上海通用汽车有限公司制冷站为例,比较了一次泵和二次泵变流量系统的能耗,结果表明,一次泵系统的耗电量仅为二次泵系统的68%。 关键词 一次泵 二次泵 变流量 变频控制 En e r g y c o ns u m p ti o n a n a l ysis of p ri m a ry p u m p a n d p ri m a ry2s e c o n d a ry p u m p s yst e ms wit h v a ri a bl e fl o w r a t e By Dong Baochun★,Liu Chuanju,Liu Dong and Z hao Defei Abst r a ct Taking t he ref rigeration station of Shanghai GM Co.L t d.as a n example,comp ares t he energy consump tion betwee n p rimary p ump and p rimary2secondary p ump syste ms wit h variable flow rate. The result shows t hat t he elect ricity consump tion of p rimary p ump system is only68%of t hat of t he p rimary2 secondary p ump syste m. Keywor ds p rimary p ump,secondary p ump,variable flow rate,variable f reque ncy cont rol ★Tongji University,Shanghai,China 0 引言 在空调系统能耗中,水泵耗能占很大一部分。变频技术在冷水泵中的合理应用,可以有效地减少空调能耗。然而,水泵变频控制技术在国内的应用并不很普及,空调工程中水泵采用变频技术的仅占10%左右[1],由于人们对一次泵变频系统的可靠性存在怀疑,故对一次泵进行变频的应用实例尤其少,但它有着较大的节能空间。二次泵变频控制技术用于空调冷水泵在美国已将近30年[2],在我国也有成功运行的例子。二次泵变频系统比较适合系统大、空调负荷变化大、能源中心与空调建筑相对位置较远的情况。本文以一大型工厂制冷站为例,对一次泵和二次泵水系统变流量控制进行能耗分析。 1 工程概况 上海通用汽车有限公司(以下简称通用公司)占地面积55万m2,建筑面积23万m2,设有冲压、车身、油漆、总装和动力总成五大车间。所有生产车间的供冷、供热都由制冷站负担,总冷负荷为54 MW,总热负荷为16.4MW。配置16DF100直燃双效溴化锂吸收式机组15台;23XL290螺杆式冷水机组2台;初级泵15台,每台流量608m3/h,扬程15m,功率37kW;次级泵8台,每台流量1140m3/h,扬程47m,功率200kW。整个冷水循环系统采用次级泵变流量、初级泵定流量,水系统图见图1。 2 运行工况 在冷水二次泵变流量系统中,次级泵负责将冷水分配给用户,初级泵满足一次循环回路中的流量恒定。初级泵回路与次级泵回路通过连通管连接,这样次级泵不受最小流量的限制,可采用二通阀加

空调冷冻水一次泵变流量系统的节能与控制

空调冷冻水一次泵变流量系统的节能与控制 【摘要】文章简单介绍了一次泵变流量系统,对一次泵变流量系统的能耗做出了分析,提出了空调冷冻水一次泵变流量系统的节能与控制方法。 【关键词】:空调;冷冻水系统;节能 引言 建筑物中央空调系统的冷冻水一次泵,传统上都采用固定转速水泵。空调水的变一次流量控制系统(VPF:Variable-Primary-Flow,也称为:冷冻水一次泵变频调速控制系统)是近年才开始出现的先进控制方案。配置变频调速冷冻水泵,可以对冷冻水流量进行调节,达到精细化控制的目标。虽然在负荷侧都是变水量控制,但变频调速的一次侧控制和传统固定转速的一次泵系统不同,它比传统方式控制要求高得多。要求楼宇自控系统的工程服务者设计合理的变一次流量控制解决方案,提供满足要求的控制功能。本文结合某大型建筑的变一次流量控制工程方案,对这种解决方案进行讨论。 1一次泵变流量系统的特点 一次泵变流量系统(VPF)的定义概述如下,当末端空调负荷变化时,电动二通阀调节开度,改变冷冻水量,此时采用一定的控制措施,变频水泵和冷冻机组的水流量都随负荷的改变而改变,在旁通管上增设了旁通控制阀,以维持运行冷冻机的最小流量,如下图所示。 图1 和二次泵变流量系统相比,最显著的一个特点是少了一组定速泵。另外在旁通管上多了一个控制阀,当系统水量小于单台冷冻机最小允许流量时,旁通阎打开,旁通一部分水量使冷冻机运行在最小允许流量之上。最小流量由流量计或压差传感器测得。系统末端仍然安装二通调节阀,水泵的转速由系统最远端压差的变化控制或供回水温差控制。冷冻机和水泵的台数不必一一对应,它们的台数变化和启停也分别独立控制。VPF系统可以改变整个系统中的循环水量,既包括流经蒸发器的冷冻水流量,和冷却盘管中的冷冻水流量。VPF不仅仅节省了二次泵变流量系统中低效率的一次定流速泵,而且省去了管线,接头及其工程费用,电力设备等,机房空间的需求也随之降低,这些都可观的节省初投资。它较之二次泵系统不但初投资小,而且能减少水泵的运行能耗。 2一次泵变流量系统的节能分析

一次泵变流量系统中温差控制法的正确应用

一次泵变流量系统中温差控制法的正确应用 武汉市建筑设计院 张再鹏 陈焰华 武汉科技大学 符永正 摘 要: 指出能量守恒特性所反映的温差变化情况与热交换器静特性所反映的温差变化情况是相互矛盾的。在定流量系统中,两者之间的矛盾是统一的,从单个末端设备来讲,温差按照热交换器静特性变化,从整体上讲,温差按照能量守恒特性变化。在变流量系统中,当末端设备主要采用流量可调型阀门调节时,矛盾不能解决。针对阀门的不同,给出了变流量系统正确的温差控制方法。 关键词: 热交换器静特性 能量守恒特性 变流量系统 压差旁通 1 概述 在定流量空调冷冻水系统中,人们对冷冻水供回水温差(以下简称温差)与负荷之间的变化关系取得了较一致的认识,即:负荷减小时,温差将减小,负荷增大时,温差将增大。该规律是从能量守恒层面给出的温差和与负荷之间的变化关系,简称为能量守恒特性。工程实际也证明了温差是按照能量守恒特性变化的。 将该规律直接应用于一次泵变流量系统,当负荷减小时,温差将减小,根据该信号控制水泵减速,减小水流量,使系统按定温差变流量运行,从而实现了水系统的输送节能。该控制方法即是众多文献所 说的温差控制法[1~5]。文献[1~4]还比较了温差控制法和其它控制方法的节能性,并取得了较一致的结论:温差控制法的管网特性曲线是一个无背压的管网特性曲线,而压差控制法的管网特性曲线是一个有背压的管网特性曲线,因此温差控制法的节能性优于压差控制法。由此可见,温差控制法是一个受到推崇的水泵控制方法。 但是能量守恒特性并不能反映末端设备的工作状况,并与末端设备的热交换器静特性所反映的温差变化情况不一致。末端设备的工作状况就是末端设备的作用压差或者流量随负荷的变化情况。热交换器静特性就是热交换器的换热量与流量之间的关系。事实上,在变流量系统中,末端设备的工作状况不同于定流量系统,末端设备的热交换器静特性所反映的温差变化情况与能量守恒特性的温差变化情况正好相反。将能量守恒特性直接应用于一次泵变流量系统,会使水泵的实际变化情况与预期的变化情况正好相反,并造成控制失败。本文将解释定流量系统中,热交换器静特性与能量守恒特性之间的矛盾,并给出一次泵变流量系统中适用于不同场合的两种温差控制法,及其应注意的问题。 2 热交换器静特性 本文所指热交换器是指末端设备中的加热器和表冷器,不包括冷热源侧的蒸发器和冷凝器。热交换 器静特性可以采用下列公式粗略计算[6]: ??? ??-+=1111 q a p (1)

二次泵系统与一次泵变流量系统优缺点设计要点及控制逻辑

一次泵变流量系统(VPF) 1、控制方式 冰机控制 负荷测定:蒸发器的流量和温差 冷量调节:与活塞机组的介跃调节不一样,离心冷水机组的控制是根据实际需求负荷的大小来控制压缩机的运行状态,最终通过改变导叶开度的大小来控制。改变导叶开度的大小,可调节制冷剂循环流量,控制蒸发温度,调节制冷量,最终达到加载、卸载,控制出水温度的目的。这种调节可实现无级连续调节,可精确调节到负荷要求,精密控制出水温度。模糊逻辑根据温度误差(与设定值的偏差)和变化速度求出所需的加载/卸载量, 从而将冷水温度控制在设定的范围内。导叶电机根据4?20mA勺电流输入信号,每0.3%地增加或减小导叶的开启度,这样的调节足以保证经导叶调节后流量的连续性,实现无级调节。加载时,导叶开启度增大;卸载时导叶开度减小。高精度的导叶连续调节可精确控制水温在士0.3 C以内。见图2。控制系统根据温度偏差值和温度变化速度来确定是否需要加载、卸载或保持容量不变。见表1。 在接近系统的安全阈值时,会进行加载或卸载限制。图3示出了出水温度控制的循环。 “一宀”代表系统控制 “一-”代表控制系统实施操作后有可能引起的现象如图3所示,系统控制和实施控制操作

后而需要的进一步控制形成封闭循环。控制操作的实施最终通过导叶开并增大或减小来完成。控制系统经过综合使导叶维持在某一开启度进行制冷或达到安全限而关 机。 例如机组刚开机过程的加载过程,在电流限制的同时导叶由小逐渐开大,冷水温度不断下降,达到制冷的目的。当机组达到负荷后,出水温度已达到或低于设定点的温度这时进行卸载过程,导叶逐渐关小,出水温度基本维持不变,电流逐渐减小,最终维持在部分负荷运行。如果负荷过低,使机组导叶关小到某一值时,排气温度达到保护限控制导叶不能继续关小(或导叶已关到最小),则导叶维持该状态运行,出水温度将进一步下降,当下降到低于出水温度设定点3C以下时,则机组由控制系统控制进行安全关机。或进入再循环运行模式控制。 冰机加减机: 加机(4种方式?): 1.冷冻水系统供水温度T si高于系统设定温度T ss并持续一段时间 2.压缩机运行电流百分比(适用于出水温度精度要求高的场合,需要注意机组出力和运行电流不符合的情况) 3.计算负载 4.如运转中主机已达最大流量,则须加开一台主机(发生机率不高)。 减机: 1.依压缩机电流百分比(%殳定运行机组运行机组1) 2.f low* △ T 3. 系统流量加减机逻辑:冷冻站管理器将监测供回水总管的温度,同时监测冷机的负荷。 当水系统的计算冷负荷达到运行冷机额定制冷量的80%(可调),并持续20 分钟(可

二次泵系统与一次泵变流量系统优缺点、设计要点及控制逻辑资料讲解

二次泵系统与一次泵变流量系统优缺点、设计要点及控制逻辑

一次泵变流量系统(VPF) 1、控制方式 冰机控制 负荷测定:蒸发器的流量和温差 冷量调节: 与活塞机组的介跃调节不一样,离心冷水机组的控制是根据实际需求负荷的大小来控制压缩机的运行状态,最终通过改变导叶开度的大小来控制。改变导叶开度的大小,可调节制冷剂循环流量,控制蒸发温度,调节制冷量,最终达到加载、卸载,控制出水温度的目的。这种调节可实现无级连续调节,可精确调节到负荷要求,精密控制出水温度。模糊逻辑根据温度误差(与设定值的偏差) 和变化速度求出所需的加载/卸载量,从而将冷水温度控制在设定的范围内。导叶电机根据4~20mA 的电流输入信号,每0. 3 %地增加或减小导叶的开启度,这样的调节足以保证经导叶调节后流量的连续性,实现无级调节。加载时,导叶开启度增大;卸载时导叶开度减小。高精度的导叶连续调节可精确控制水温在±0. 3 ℃以内。见图2。控制系统根据温度偏差值和温度变化速度来确定是否需要加载、卸载或保持容量不变。见表1。

在接近系统的安全阈值时,会进行加载或卸载限制。图3示出了出水温度控制的循环。 “—→”代表系统控制 “—→”代表控制系统实施操作后有可能引起的现象如图3 所示,系统控制和实施控制操作 后而需要的进一步控制形成封闭循环。控制操作的实施最终通过导叶开并增大或减小来完成。控制系统经过综合使导叶维持在某一开启度进行制冷或达到安全限而关机。 例如机组刚开机过程的加载过程,在电流限制的同时导叶由小逐渐开大,冷水温度不断下降,达到制冷的目的。当机组达到负荷后,出水温度已达到或低于设定点的温度,这时进行卸载过程,导叶逐渐关小,出水温度基本维持不变,电流逐渐减小,最终维持在部分负荷运行。如果负荷过低,使机组导叶关小到某一值时,排气温度达到保护限,控制导叶不能继续关小(或导叶已关到最小) ,则导叶维持该状态运行,

二次泵系统与一次泵变流量系统优缺点设计要点及控制逻辑

二次泵系统与一次泵变流量系统优缺点设计要点及 控制逻辑 This model paper was revised by the Standardization Office on December 10, 2020

一次泵变流量系统(VPF) 1、控制方式 冰机控制 负荷测定:蒸发器的流量和温差 冷量调节: 与活塞机组的介跃调节不一样,离心冷水机组的控制是根据实际需求负荷的大小来控制压 缩机的运行状态,最终通过改变导叶开度的大小来控制。改变导叶开度的大小,可调节制冷剂循环流量,控制蒸发温度,调节制冷量,最终达到加载、卸载,控制出水温度的目的。这种调节可实现无级连续调节,可精确调节到负荷要求,精密控制出水温度。模糊逻辑根据温度误差(与设定值的偏差) 和变化速度求出所需的加载/卸载量,从而将冷水温度控制在设定 的范围内。导叶电机根据4~20mA 的电流输入信号,每0. 3 %地增加或减小导叶的开启度,这样的调节足以保证经导叶调节后流量的连续性,实现无级调节。加载时,导叶开启度增大;卸载时导叶开度减小。高精度的导叶连续调节可精确控制水温在±0. 3 ℃以内。见图2。控制系统根据温度偏差值和温度变化速度来确定是否需要加载、卸载或保持容量不变。见表1。 在接近系统的安全阈值时,会进行加载或卸载限制。图3示出了出水温度控制的循环。“—→”代表系统控制 “—→”代表控制系统实施操作后有可能引起的现象如图3 所示,系统控制和实施控制操作

后而需要的进一步控制形成封闭循环。控制操作的实施最终通过导叶开并增大或减小来完成。控制系统经过综合使导叶维持在某一开启度进行制冷或达到安全限而关机。 例如机组刚开机过程的加载过程,在电流限制的同时导叶由小逐渐开大,冷水温度不断下降,达到制冷的目的。当机组达到负荷后,出水温度已达到或低于设定点的温度,这时进行卸载过程,导叶逐渐关小,出水温度基本维持不变,电流逐渐减小,最终维持在部分负荷运行。如果负荷过低,使机组导叶关小到某一值时,排气温度达到保护限,控制导叶不能继续关小(或导叶已关到最小) ,则导叶维持该状态运行,出水温度将进一步下降,当下降到低于出水温度设定点3 ℃以下时,则机组由控制系统控制进行安全关机。或进入再循环运行模式控制。 冰机加减机: 加机(4种方式): 1. 冷冻水系统供水温度T S1高于系统设定温度T SS 并持续一段时间 2. 压缩机运行电流百分比(适用于出水温度精度要求高的场合,需要注意机组出力和运行电流不符合的情况) 3.计算负载 4.如运转中主机已达最大流量,则须加开一台主机(发生机率不高)。 减机: 1.依压缩机电流百分比(1 运行机组台数%RLA(运行机组)%设定-∑≥) 2. flow*△T

一次泵和二次泵系统

在冷源侧和负荷侧合用一组循环泵的称为一次泵或称单式泵)系统;在冷源侧和负荷侧分别配置循环泵的称为二次泵(或称复式泵)系统。 1. 一次泵系统 (1)一次泵定流量系统 (2)一次泵变流量系统 冷水机组与循环水泵一一对应布置,并将冷水机组设在循环泵的压出口,使得冷水机组和水泵的工作较为稳定。只要建筑高度不太高(<100m),这样布置是可行的,也是目前用得较多的一种方式。如果建筑高度高(>100m),系统静压大,则将循环泵设在冷水机组蒸发器出口,以降低蒸发器的工作压力。 当空调负荷减小到相当的程度,通过旁通管路的水量基本达到一台循环泵的流量时,就可停止一台冷水机组的工作,从而达到节能的目的。旁通管上电动两通阀的最大设计水流量应是一台循环泵的流量,旁通管的管径按一台冷水机组的冷水量确定。 一次泵变流量系统的控制方法压差旁通控制法恒定用户处两通阀前后压差的旁通控制法 设置负荷侧调节阀是为了缓解在系统增加或减少水泵运行时,在末端处产生的水力失调和水泵启停的振荡。 一次泵变流量系统的特点是简单、自控装置少、初投资较低、管理方便,因而目前广泛应用。但是它不能调节泵的流量,难以节省系统输送能耗。特别是当各供水分区彼此间的压力损失相差较为悬殊时,这种系统就无法适应。因此,对于系统较小或各环路负荷特性或压力损失相差不大的中小型工程,宜采用一次泵系统。 2. 二次泵变流量系统 该系统用旁通管AB将冷水系统划分为冷水制备和冷水输送两个部分,形成一次环路和二次环路。一次环路由冷水机组、一次泵,供回水管路和旁通管组成,负责冷水制备,按定流量运行。二次环路由二次泵、空调末端设备、供回水管路和旁通管组成,负责冷水输送,按变流量运行。设置旁通管的作用是使一次环路保持定流量运行。旁通管上应设流量开关和流量计,前者用来检查水流方向和控制冷水机组、一次泵的启停;后者用来检测管内的流量。旁通管将一次环路与二次环路两者连接在一起。 二次泵变流量系统的控制方法二次泵采用压差控制、一次泵采用流量盈亏控制二次泵采用流量控制、一次泵采用负荷控制

二级泵变流量系统设计实例探讨

二级泵变流量系统设计实例探讨 作者:任照峰于… 文章来源:互联网点击数:180 更新时间:2006-3-11 11:29:59 解压缩密码:https://www.doczj.com/doc/8c13686916.html, 本文结合某大学区域冷冻站工程设计实例,介绍了二级泵变流量系统的特点,分析了二级泵变流量系统设计中需要注意的几个问题(如负荷计算分析、设备选型、水泵设置、自控节能等),最后给出了该工程设计实例中用到的二级泵变流量系统,并做了简要分析。 关键词:二级泵变流量系统设计实例 1 引言 目前,国内普遍采用的空调水变流量系统主要有一次泵系统和二次泵系统,其简单流程图如图一、二所示。 1.1 一次泵系统。这种空调水系统靠在供回水干管之间设置旁通管来调节负荷侧流量,使负荷侧流量根据空调负荷的变化而变化,以达到节能的目的。在这种空调系统中,只设置

有一次冷水循环泵,定流量运行,仍然存在浪费能源的问题,因此该系统形式只适用于中小型工程。 1.2 二次泵系统。这种空调水系统在冷源侧设置一次冷水泵,定流量运行,保证冷水机组蒸发器流量恒定;在负荷侧设置二次冷水泵,分别满足各供冷环路不同需求。因为二次泵系统中负荷侧的二次泵可以根据各供冷环路需要分别设置,并且可以变频运行,所以适合用于系统较大、阻力较高且各环路负荷特性或阻力相差悬殊的场合,并且节能效果显著。 随着我国节能政策的实施,变流量系统设计越来越多,下面就重点介绍一下二次泵变流量系统的设计中做一些探讨。 2 二次泵变流量系统设计要点; 随着二次泵变流量系统在国内的应用实例越来越多,二次泵变流量系统的设计也越来越受到重视,新颁布的《采暖通风与空气调节设计规范》(2001版)(以下简称《规范》)及该规范2002年送审稿就针对二次泵变流量系统的设计给出了一些原则性的要求。下面结合某大学区域供冷站工程实例对二次泵变流量系统设计中需要注意的问题做一探讨。 2.1 各供冷回路冷负荷计算、负荷变化曲线分析、循环阻力计算。 在本工程中,需要由本供冷站提供冷源的单体建筑有三个,分别为图文信息及行政办公中心(冷负荷6600kW)、国际交流中心(冷负荷3300kW)、食堂及超市(冷负荷5400kW)。图文信息及行政办公中心冷负荷的特点是:夏季最热时,学校放暑假,其人员较少,负荷并不处在最大值;学校放暑假前后,室外气温并不是很高,负荷并不处在设计计算最大负荷。食堂及超市冷负荷的特点是有明显的时间性,就餐时间负荷大,平时负荷很少,所以在一天

空调冷水一次泵变流量系统设计探讨_于晓明

空调冷水一次泵变流量 系统设计探讨 山东省建筑设计研究院 于晓明☆ 赵建博 石 颖 李向东 山东大学 刘庆堂 摘要 介绍了空调冷水一次泵变流量系统的工作原理、组成、优点及适用性。阐述了冷水机组的选择、冷水机组的启停控制、冷水泵的选择及控制、旁通管及旁通控制阀的配置、压差及流量传感器的选择等5个方面的设计要点。 关键词 一次泵 变流量系统 适用性 Discussion on the design of variable primary flow chilled water systems B y YuXi a omi n g★,Zh a oJ i a n b o,S h iYi n g,L iXi a n g d o n ga n d L i u Q i n g t a n g Abstract Pr esents the oper a tion pr inciple,composition,advant ages and applic ability of the syste m. Expounds the design points fr om f ive aspe cts,including the chiller unit selection,chille r unit sequencing, chilled water pump selection and contr ol,bypass pipe and valve configur a tion,pressur e-drop and flow sensor sele ction. Keyword s pr im ary pump,var iable flow system,applicability ★Sh andong Provincial Arc hitectural Design In stitute,Jin an,Ch ina 0 引言 随着我国经济的发展和人民生活水平的不断提高,空调得到越来越多的应用,但是空调的普及使得空调能耗在生产和生活总能耗中所占的比例越来越大。空调系统能耗约占整个建筑能耗的35%以上,其中空调冷水和冷却水系统能耗约占空调总能耗的30%。工程实践表明,导致集中空调系统电耗高的主要原因是目前我国大型建筑空调冷水系统多为定流量系统,系统运行中普遍存在“大流量,小温差”的问题,由此造成冷水循环泵扬程过大、电耗过高。空调冷水一次泵变流量系统通过改变输送管网内的冷水流量满足用户负荷要求,可有效降低系统输送能耗,具有较大节能潜力,因此得到了越来越广泛的应用。本文将就空调冷水一次泵变流量系统的设计要点进行探讨,以供同行在工程设计中参考。 1 空调冷水一次泵变流量系统的原理及组成 1.1 原理 空调冷水一次泵变流量系统的工作原理:一方面是在负荷侧通过调节电动两通调节阀的开度改变流经末端设备的冷水流量,以适应末端用户空调负荷的变化;另一方面是在冷源侧采用可变流量的冷水机组和变频调速冷水泵,使蒸发器侧流量随负荷侧流量的变化而改变,从而最大限度地降低冷水循环泵的能耗。同时,要确保通过冷水机组蒸发器的水流量在安全流量范围内变化,维持冷水机组的蒸发温度和蒸发压力相对稳定,保证冷水机组能效比相对变化不大。 1.2 组成 空调冷水一次泵变流量系统的典型配置如图1所示。在冷源侧配置变频泵,每台冷水机组的进(出)水管上设置慢开慢关型隔断阀,冷水泵与冷水 · 67 · 暖通空调HV&AC 2010年第40卷第4期 设计参考 ①☆于晓明,男,1963年5月生,大学,工学学士,研究员,专业总 工程师 250001 济南市经四路小纬四路2号山东省建筑设计研究院 (0531)87913093 E-mail:yyuumm@https://www.doczj.com/doc/8c13686916.html, 收稿日期:2009-07-07 修回日期:2009-11-30

相关主题
文本预览
相关文档 最新文档