当前位置:文档之家› PFOA全氟辛酸铵

PFOA全氟辛酸铵

PFOA全氟辛酸铵
PFOA全氟辛酸铵

Test Report No.: GZ1106084704/CHEM Date: JUL 05, 2011 Page 1 of 4 DONGGUAN LONGSUN SILICONE MATERIAL CO., LTD

NO.13 LIANMA ROAD, XINTANG VILLAGE, DALINGSHAN TOWN, DONGGUAN CITY

The following sample(s) was/were submitted and identified on behalf of the applicant as SILICONE RUBBER

SGS Job No. : SZ13220929

SGS Internal Reference No. : 8.7

Date of Sample Received : JUN 30, 2011

Testing Period : JUN 30, 2011 TO JUL 05, 2011

Test Requested : Selected test (s) as requested by client.

Test Method : Please refer to next page(s).

Test Result(s) : Please refer to next page(s).

Signed for and on behalf of

SGS-CSTC Ltd.

______________________

Jenny Jiang

Approved Signatory

Test Report No.: GZ1106084704/CHEM Date: JUL 05, 2011 Page 2 of 4 Test Results:

Description for specimen 1 : White soft material

PFOA (Perfluorooctanoic acid)

Test Item(s) Unit Test Method (Reference) Result MDL Perfluorooctanoic acid (PFOA) mg/kg EPA 3550C: 2007, LC-MS N.D. 10

Note:

1. mg/kg = ppm

2. N.D. = Not Detected (< MDL)

3. MDL = Method Detection Limit

Test Report

No.: GZ1106084704/CHEM Date: JUL 05, 2011 Page 3 of 4

ATTACHMENTS ATTACHMENTS

PFOA / PFOS PFOA / PFOS Testing Flow Chart Testing Flow Chart

1) Name of the person who made testing: Cindy Huang 2) Name of the person in charge of testing: Ryan Yang

Test Report No.: GZ1106084704/CHEM Date: JUL 05, 2011 Page 4 of 4

Sample photo :

SGS authenticate the photo on original report only

*** End of Report ***

GZ1106084704/CHEM

(抗体的纯化)硫酸铵沉淀法

抗体的纯化( 硫酸铵沉淀法) 一,基本原理 硫酸铵沉淀法可用于从大量粗制剂中浓缩和部分纯化蛋白质。用此方法可以将主要的免疫球从样品中分离,是免疫球蛋白分离的常用方法。高浓度的盐离子在蛋白质溶液中可与蛋白质竞争水分子,从而破坏蛋白质表面的水化膜,降低其溶解度,使之从溶液中沉淀出来。各种蛋白质的溶解度不同,因而可利用不同浓度的盐溶液来沉淀不同的蛋白质。这种方法称之为盐析。盐浓度通常用饱和度来表示。硫酸铵因其溶解度大,温度系数小和不易使蛋白质变性而应用最广。 二,试剂及仪器 1 .组织培养上清液、血清样品或腹水等 2. 硫酸铵(NH 4 )SO 4 3. 饱和硫酸铵溶液(SAS ) 4. 蒸馏水 5. PBS( 含0.2g /L 叠氮钠) 6. 透析袋 7. 超速离心机 8. pH 计 9. 磁力搅拌器 三,操作步骤 以腹水或组织培养上清液为例来介绍抗体的硫酸铵沉淀。各种不同的免疫球蛋白盐析所需硫酸铵的饱和度也不完全相同。通常用来分离抗体的硫酸铵饱和度为33% —50% 。 (一)配制饱和硫酸铵溶液(SAS ) 1.将767g (NH 4 )2 SO 4 边搅拌边慢慢加到1 升蒸馏水中。用氨水或硫酸调到硫酸pH7.0 。此即饱和度为100% 的硫酸铵溶液(4.1 mol/L, 25 °C ). 2.其它不同饱和度铵溶液的配制 (二)沉淀 1.样品(如腹水)20 000 ′g 离心30 min ,除去细胞碎片; 2.保留上清液并测量体积; 3.边搅拌边慢慢加入等体积的SAS 到上清液中,终浓度为1 :1 4.将溶液放在磁力搅拌器上搅拌6 小时或搅拌过夜(4 °C ),使蛋白质充分沉淀。 (三)透析 1.蛋白质溶液10 000 ′g 离心30 min (4 °C )。弃上清保留沉淀; 2.将沉淀溶于少量(10-20ml )PBS -0.2g /L 叠氮钠中。沉淀溶解后放入透析袋对 PBS -0.2g /L 叠氮钠透析24-48 小时(4 °C ),每隔3-6 小时换透析缓冲液一次,以彻底除去硫酸氨; 3.透析液离心,测定上清液中蛋白质含量。 四,应用提示 (一)先用较低浓度的硫酸氨预沉淀,除去样品中的杂蛋白。 1.边搅拌边慢慢加SAS 到样品溶液中,使浓度为0.5:1 (v/v) ; 2.将溶液放在磁力搅拌器上搅拌6 小时或过夜(4 °C ); 3.3000 ′g 离心30 min (4 °C ),保留上清液;上清液再加SAS 到0.5:1(v/v) ,再次离心得到沉淀。将沉淀溶于PBS ,同前透析,除去硫酸氨; 4.上清液再加SAS 到0.5:1 (v/v) ,再次离心得到沉淀。将沉淀溶于PBS ,同前透析,除去硫酸氨; 5.杂蛋白与欲纯化蛋白在硫酸氨溶液中溶解度差别很大时,用预沉淀除杂蛋白是非常有效 (二)为避免体积过大,可用固体硫酸氨进行盐析(硫酸氨用量参考表1 );硫酸氨沉淀法与层析技术结合使用,可得到更进一步纯化的抗体。

硫酸铵分级沉淀

一,基本原理 硫酸铵沉淀法可用于从大量粗制剂中浓缩和部分纯化蛋白质。用此方法可以将主要的免疫球从样品中分离,是免疫球蛋白分离的常用方法。高浓度的盐离子在蛋白质溶液中可与蛋白质竞争水分子,从而破坏蛋白质表面的水化膜,降低其溶解度,使之从溶液中沉淀出来。各种蛋白质的溶解度不同,因而可利用不同浓度的盐溶液来沉淀不同的蛋白质。这种方法称之为盐析。盐浓度通常用饱和度来表示。硫酸铵因其溶解度大,温度系数小和不易使蛋白质变性而应用最广。 二,试剂及仪器 1 . 组织培养上清液、血清样品或腹水等 2. 硫酸铵(NH 4 )SO 4 3. 饱和硫酸铵溶液(SAS ) 4. 蒸馏水 5. PBS( 含0.2g /L 叠氮钠) 6. 透析袋 7. 超速离心机 8. pH 计 9. 磁力搅拌器 三,操作步骤 以腹水或组织培养上清液为例来介绍抗体的硫酸铵沉淀。各种不同的免疫球蛋白盐析所需硫酸铵的饱和度也不完全相同。通常用来分离抗体的硫酸铵饱和度为33% — 50% 。 (一)配制饱和硫酸铵溶液(SAS ) 1.将767g (NH 4 )2 SO 4 边搅拌边慢慢加到1 升蒸馏水中。用氨水或硫酸调到硫酸pH7.0 。此即饱和度为100% 的硫酸铵溶液(4.1 mol/L, 25 ° C ). 2.其它不同饱和度铵溶液的配制 (二)沉淀 1.样品(如腹水)20 000 ′ g 离心30 min ,除去细胞碎片; 2.保留上清液并测量体积; 3.边搅拌边慢慢加入等体积的SAS 到上清液中,终浓度为1 :1 (

4.将溶液放在磁力搅拌器上搅拌6 小时或搅拌过夜(4 ° C ),使蛋白质充分沉淀。(三)透析 1.蛋白质溶液10 000 ′ g 离心30 min (4 ° C )。弃上清保留沉淀; 2.将沉淀溶于少量(10-20ml )PBS -0.2g /L 叠氮钠中。沉淀溶解后放入透析袋对 PBS -0.2g /L 叠氮钠透析24-48 小时(4 ° C ),每隔3-6 小时换透析缓冲液一次,以彻底除去硫酸氨; 3.透析液离心,测定上清液中蛋白质含量。 四,应用提示 (一)先用较低浓度的硫酸氨预沉淀,除去样品中的杂蛋白。 1.边搅拌边慢慢加SAS 到样品溶液中,使浓度为0.5:1 (v/v) ; 2.将溶液放在磁力搅拌器上搅拌6 小时或过夜(4 ° C ); 3.3000 ′ g 离心30 min (4 ° C ),保留上清液;上清液再加SAS 到0.5:1(v/v) ,再次离心得到沉淀。将沉淀溶于PBS ,同前透析,除去硫酸氨; 4.上清液再加SAS 到0.5:1 (v/v) ,再次离心得到沉淀。将沉淀溶于PBS ,同前透析,除去硫酸氨; 5.杂蛋白与欲纯化蛋白在硫酸氨溶液中溶解度差别很大时,用预沉淀除杂蛋白是非常有效(二)为避免体积过大,可用固体硫酸氨进行盐析(硫酸氨用量参考表1 );硫酸氨沉淀法与层析技术结合使用,可得到更进一步纯化的抗体。 今天作的实验是利用硫酸铵沉淀蛋白质,从之前作过的经验知道,这一个步骤是有名的烦,要慢慢用敲的把硫酸铵缓缓的加入蛋白质溶液中。 相关的原理可以在庄荣辉学习网站中找到,与盐溶刚好相反,在蛋白质溶液中加入硫酸铵,会使得蛋白质的溶解度下降,因而沉淀出来。因为硫酸铵所解离的离子容很大,所带的电子数也多(NH4+, SO42-),因此当其溶入水中时,会吸引大量水分子与这些离子水合。 蛋白质分子表面多少有一些较不具极性的区域,水分子会在这些非极性区的表面聚集,形成类似『水笼』的构造(请见下图),以便把蛋白质溶入水中。一旦蛋白质溶液加入硫酸铵,后者吸引了大量水分子,使水笼无法有效隔离蛋白质的非极性区,造成这些非极性区之间的吸引,因而沉淀下来。因此,分子表面上若有越多的非极性区域,就越容易用硫酸铵沉淀下来。 在计算所添加的硫酸铵的重量方面,找到了一个不错的网站——硫酸铵计算机 这个网页上可以靠着输入实验温度、溶液体积、想要到达的百分浓度以及初始的百分浓度这四个数值,就可以得到需要添加的硫酸铵克数,以及在加入固体硫酸铵后所增加的体积,算是一个很不错的网站。 此外另一个比较值得提的,是我有用两种方式加入硫酸铵,第一种是固体的硫酸铵模碎加入,另一种是将硫酸铵溶成饱和溶液再加入,各有各的优缺点,比较如下: 1.造成蛋白质变质的程度:固体的硫酸铵>硫酸铵饱和溶液 利用硫酸铵饱和溶液真的超棒,滴入的速度可以很快而不造成变质(没试过用倒入的)。不像固体的硫酸铵只能磨碎慢慢加入,速度一快蛋白质就坏了(溶液有致密的白色气泡产生)。 2.操作的容易度:硫酸铵饱和溶液>>固体的硫酸铵 固体硫酸铵最大的缺点就是操作不容易,要一直敲敲敲又不能太快,所以当你要溶解的蛋白质很多时,这是很累的步骤。然而硫酸铵饱和溶液比较麻烦只有在配制部分,要先加热让它饱合后,回到操作温度让它过饱和,最后用滤纸把硫酸铵结晶去掉。

全氟辛酸铵简介PFOA

PFOA 全氟辛酸铵 PFOA 是全氟辛酸铵的简称。PFOA代表全氟辛酸及其含铵的主盐,为一种人工合成的化学品,通常是用于生产高效能氟聚合物时所不可或缺的加工助剂这些高效能氟聚合物可被广泛应用于航空科技、运输、电子行业,以及厨具等民生用品。当PFOA 分解后会在环境或人体中释放出来。对环境和人体造成毒性危害,相关产品中对PFOA提出限制要求.国内最常见的含氟聚合物是应用之一是聚四氟乙烯涂层,亦称作“不粘炊具”。此涂层同样被应用于金属基材,如铝、铝化钢和镀锌钢,用作仓库、发电站、纪念碑建筑和其他商业建筑的外部表面。当PFOA 分解后会在环境或人体中释放出来。 2003 年起,美国环境保护局(USEPA)定期更新和提供科学知识引导人们更好地理解PFOA。USEPA 提出PFOA 及其主盐的暴露会导致人体健康的发展和其他方面产生不利影响。PFOA 会残留于人体短至四年长达半生的时间。因此根据“美国有毒物质控制法(US TSCA)”,此类成分被禁止并将其列入化学品目录清单中。事实上,毒性水平是每天每千克人体重量不能超过3 毫克。同时,美国食品及药品管理局CFR 170.30 (GRAS –通用公认安全条例)关注与食品接触的产品的安全性,要求其生产的材料必须是安全的。 欧洲情况在美国的影响下,根据欧盟2004/1935/EC 指令下的一般安全标准(与食品接触的材料和物质的决议),PFOA 也被禁止使用。在德国,联邦风险评估协会BfR 制订了指引条例BfR section LI—针对油炸、烹饪和烘烤器具的耐温聚合物涂层系统。全氟正辛酸及其含全氟-烯基-羟苯磺酸钠铵盐的最大迁移限量为0.005 mg/dm2。 2004 年,某家著名的制造公司被美国环境保护局控告违反了有毒物质报告条款。这些违例由一连串USEPA 中关于PFOA 对人体健康或环境损害风险项的不合格报告构成. PFOS –全氟辛烷磺酸钾化学药品编定注册登记编号: 2795-39-3 PFOA - 全氟辛酸铵化学药品编定注册登记编号: 335-67-1 PFOS全氟辛烷磺酸盐

辛酸硫酸铵纯化抗体

辛酸-硫酸铵法从人血清中纯化IgG 一、 实验目的 1初步掌握从血清中提取纯化 IgG 的方法步骤。 2、了解辛酸-硫酸铵法纯化IgG 的原理。 二、 实验原理 辛酸-硫酸铵法分两步进行。第一步用辛酸沉淀杂蛋白,辛酸为短链脂肪酸,在酸性条件下 可沉淀血清或腹水中的白蛋白或其他非 Ig 蛋白质;第二步利用硫酸铵盐析将 Ig 沉淀下来, 操作步骤如图3-10所示。经SDS-PAGE 电泳检测能得到电泳纯度较高的 Ig 。 _______ ?沉淀(白蛋白和其他ir igG 蛋白质) 匕消液(igG) 硫酸钱沉淀 T 沉淀(IgG) T 溶解沉淀 图3—竹辛酸一硫酸谖法从血漬中纯化IqG 操作流程 三、仪器、原料和试剂 1、仪器 磁力搅拌器、离心机、低温冰柜。 2、原料 抗血清(兔抗鸡血清)。 血清或腹水 丫酸沉淀

3、试剂 (1) 乙酸-乙酸钠缓冲液:60mmol/L, pH4.0。 (2) 10X磷酸盐-NaCI 缓冲液(PBS : 100mmol/L PBS pH7.4。称NaCI 80g、Ns fe HPO12H2O 29g、KCl 2g、KHPQ 2g,加蒸馏水溶解,加入100mmoI/L EDTA 20ml,用去离子水定容至1000ml 。 (3) 透析液10mmol/L Na 2HPQKH2PQ缓冲液,含15mmol/L NaCl,pH7.2。 (4) 硫酸铵。 ⑸辛酸。 四、操作步骤 1、抗血清用4倍体积乙酸-乙酸钠缓冲液稀释,用0.1mol/L NaQH调至血清稀释液为pH4.5。 2、室温下边搅拌(磁力搅拌器或电功搅拌器),边缓慢滴加辛酸( 25ml/L血清稀释液), 滴加完后继续搅拌30min。 3、离心(10000r/min , 30min),收集上清夜,弃去沉淀。 4、上清液用多层纱布过滤。 5、按1/10 体积加入10X PBS 用5mol/L NaQH 调至PH7.4。 6、上清液4 C预冷,计算溶液总体积,在4C按277g/L加入硫酸铵粉沫(45%包和度),边 加边搅拌,加完后继续搅拌30min。 7、离心(5000r/min , 15min)),弃去上清液。收集沉淀。 8、沉淀用少量透析液溶解(一般为血清体积的1/10 ),透析并更换两次透析液或用Sephadex G-50脱盐。 9、Ig溶液在50?55C水浴中加热20min,离心(5000r/min , 20min),上清液-20 C保存或冻干保存。

硫酸铵沉淀

在计算所添加的硫酸铵的重量方面,找到了一个不错的网站——硫酸铵计算机 这个网页上可以靠着输入实验温度、溶液体积、想要到达的百分浓度以及初始的百分浓度这四个数值,就可以得到需要添加的硫酸铵克数,以及在加入固体硫酸铵后所增加的体积,算是一个很不错的网站。 此外另一个比较值得提的,是我有用两种方式加入硫酸铵,第一种是固体的硫酸铵模碎加入,另一种是将硫酸铵溶成饱和溶液再加入,各有各的优缺点,比较如下: 1.造成蛋白质变质的程度:固体的硫酸铵>硫酸铵饱和溶液 利用硫酸铵饱和溶液真的超棒,滴入的速度可以很快而不造成变质(没试过用倒入的)。不像固体的硫酸铵只能磨碎慢慢加入,速度一快蛋白质就坏了(溶液有致密的白色气泡产生)。 2.操作的容易度:硫酸铵饱和溶液>>固体的硫酸铵 固体硫酸铵最大的缺点就是操作不容易,要一直敲敲敲又不能太快,所以当你要溶解的蛋白质很多时,这是很累的步骤。然而硫酸铵饱和溶液比较麻烦只有在配制部分,要先加热让它饱合后,回到操作温度让它过饱和,最后用滤纸把硫酸铵结晶去掉。 3.蛋白质溶液的体积放大程度硫酸铵饱和溶液>>固体的硫酸铵 这是使用硫酸铵饱和溶液最头痛的部分,举例来说,要让100 ml的硫酸铵百分比从0%到25%,如果是加入固体的硫酸铵,只会让溶液从100 ml变成107 ml左右,但若是加入硫酸铵饱和溶液,会让溶液变成125 ml!而且若是要提高到50%,须加等量的硫酸铵饱和溶液,所以会让蛋白质溶液从100 ml变成200 ml。 因此在加入硫酸铵时,若是低百分浓度可以利用硫酸铵饱和溶液,然而如果是高百分浓度的,除非不在意蛋白质溶液体积的放大(反正都要离心离下来),否则还是用固体硫酸铵来的好。 所以今天从0%拉到25%及从25%拉到50%时,都是利用硫酸铵饱和溶液,但是当要从50%拉到75%时,我选择利用固体硫酸铵,因为如果用硫酸铵饱和溶液,离心机无法离那么多的溶液体积。

硫酸铵沉淀

硫酸铵沉淀: 有生物活性的蛋白一般在做硫胺沉淀的时候要小心一点。最保险的做法就是,把硫酸铵配成饱与溶液,把蛋白溶液置于冰浴上,再把饱与硫胺溶液一滴一滴的加到您的蛋白溶液中,最好边加边搅拌,避免局部硫胺浓度过高,但搅拌的时候注意不要搅出气泡。按照您的比例加完之后,最好放冰箱静置至少2h,充分沉淀后离心即可。 4M的硫酸铵pH值为4、6,在这个酸度下可能会有一些蛋白质变性,要小心。硫酸铵会破坏蛋白质水化层,最好就是缓与地加入。边加入边搅拌,如果在磁力搅拌器上搅拌,小漩涡中心有很多泡沫就表示蛋白质变性,使得溶液粘度增加,泡沫难破,那就很难保证您的蛋白质有没有变性了。 溶解度,在一定温度下,某固态物质在100g溶剂中达到饱与状态时所溶解的质量, 其单位就是“g/100g水”。在未注明的情况下,通常溶解度指的就是物质在水里的溶解度。 溶液饱与度(化学) 某种溶液的饱与度就是指在100g该溶液中溶质在溶液中所占质量分数、一般情况下,一种溶液的饱与度在同一温度下不会变、要想使不饱与溶液饱与度增加可以选择增加溶质、在刚好有晶体析出的时候就就是溶液刚好饱与的时候、溶液饱与度不会出现100% 加固体比较好,加得越慢越好。如果加快了,会造成局部浓度过大,造成意想不到的沉淀。

硫酸铵沉淀的时候应该要注意pH值的变化,就我的实验来说,一株产淀粉酶曲霉固态发酵之后用超纯水浸泡离心,得到含有酶的上清液的pH值为6、5,但就是淀粉酶能耐受pH4、5,为了去除更多杂质蛋白质,我把硫酸铵浓度调节到2摩尔每升的同时会控制pH值为4、5,4度过夜之后离心取上清液再调节到pH值7、0,4度放置,离心,又去除一部分杂质蛋白质,上清液直接用pH7、0的疏水层析系统来纯化。 一个纤维素酶的纯化我也用类似的方法,只不过第一步就是用4、0。 硫酸铵就是酸式盐,2M时pH值约为5,4M时更低,用来沉淀蛋白质的时候情况就更复杂了,所以最好知道自己需要的蛋白质的耐受情况,不要搞死了。 透析之前要选用一个不影响自己想要的蛋白质的pH值,硫酸铵沉淀与透析都要保持一致,才能使损失减少。透析时候产生的沉淀不知道就是不就是您想要的蛋白质,不过下次做最好谨慎一点,做我说过的预备实验。 分段盐析的方法 对分离目的蛋白的盐析,最好采用分段盐析。由于不同的蛋白质其溶解度与等电点不同,沉淀时所需的pH值与离子强度也不相同,改变盐的浓度与溶液的pH值,可将混合液中的蛋白质分批盐析分开,这种分离蛋白质

PFOA和PFOS的管控

PFOA PFOA 全氟辛酸铵(Perfluorooctanoic Acid 缩写为PFOA) PFOA 是全氟辛酸铵的简称。PFOA代表全氟辛酸及其含铵的主盐,或称为“C8”,为一种人工合成的化学品,通常是用于生产高效能氟聚合物时所不可或缺的加工助剂。这些高效能氟聚合物可被广泛应用于航空科技、运输、电子行业,以及厨具等民生用品。当PFOA 分解后会在环境或人体中释放出来。对环境和人体造成毒性危害,相关产品中对PFOA提出限制要求. 国内最常见的含氟聚合物是应用之一是聚四氟乙烯涂层,亦称作“不粘炊具”。为提供光滑非粘的特性,不粘涂层已广泛地应用于以健康的目的不含脂肪和低脂肪的煎炒烹调中。此不粘涂层是有机树脂通过在水中或者有机溶剂中均匀分布形成厚度不超过60 µm 的表面层。此涂层同样被应用于金属基材,如铝、铝化钢和镀锌钢,用作仓库、发电站、纪念碑建筑和其他商业建筑的外部表面。当PFOA 分解后会在环境或人体中释放出来。 2003 年起,美国环境保护局(USEPA)定期更新和提供科学知识引导人们更好地理解PFOA。USEPA 提出PFOA 及其主盐的暴露会导致人体健康的发展和其他方面产生不利影响。PFOA 会残留于人体短至四年长达半生的时间。因此根据“美国有毒物质控制法(US TSCA)”,此类成分被禁止并将其列入化学品目录清单中。事实上,毒性水平是每天每千克人体重量不能超过3 毫克。同时,美国食品及药品管理局CFR 170.30 (GRAS –通用公认安全条例)关注与食品接触的产品的安全性,要求其生产的材料必须是安全的。 2004 年,某家著名的制造公司被美国环境保护局控告违反了有毒物质报告条款。这些违例由一连串USEPA 中关于PFOA 对人体健康或环境损害风险项的不合格报告构成. 欧洲情况在美国的影响下,根据欧盟2004/1935/EC 指令下的一般安全标准(与食品接触的材料和物质的决议),PFOA 也被禁止使用。在德国,联邦风险评估协会BfR 制订了指引条例BfR section LI—针对油炸、烹饪和烘烤器具的耐温聚合物涂层系统。全氟正辛酸及其含全氟-烯基-羟苯磺酸钠铵盐的最大迁移限量为0.005 mg/dm2。 PFOA - 全氟辛酸铵化学药品编定注册登记编号: 335-67-1 PFOS –全氟辛烷磺酸钾化学药品编定注册登记编号: 2795-39-3 2006年12月27日,欧洲议会和部长理事会联合发布《关于限制全氟辛烷磺酸销售及使用的指令》(2006/122/EC),该指令是对理事会《关于统一各成员国有关限制销售和使用禁止危险材料及制品的法律法规和管理条例的指令》(76/769/EEC)的第三十次修订。 根据规定,该指令于2008年6月27日开始生效。 ◆PFOS限制指令的内容 1.限制PFOS类产品的使用和市场投放。不得销售以PFOS为构成物质或要素的、浓度或质量等于或超过0.005%的物质。 2.限制在成品和半成品中使用PFOS。不得销售含有PFOS浓度或质量等于或超过0.1%(1000ppm)的成品、半成品及零件。限制范围包括有意添加PFOS的所有产品,包括用于特定的零部件中及产品的涂层表面,其中,纺织品及涂层材料限量为1μg/m2。但限制仅针对新产品,对于已经使用中的以及二手市场上的产品不限制。 3.对指令进行评估。为逐步淘汰PFOS的使用,当有新情况或安全的替代产品出现时,应对指令中的限制范围进行评估。 ◆PF OS/PFOA是什么?

PFOS和PFOA概念

PFOS和PFOA概念 全氟辛烷磺酰基化合物(PFOS)和全氟辛酸(PFOA)是重要的全氟化表面活性剂,具有疏水疏油的特性,广泛应用于工业用品和消费产品,包括防火薄膜、地板上光剂、香波,同时在地毯、制革、造纸和纺织等领域作为表面保护材料。 PFOS是全氟有机化合物家族中的代表性化合物之一,也是含氟系列产品经过化学或 生物降解的最终产物,以阴离子形式存在于盐、衍生体和聚合体中。PFOS性质稳定,不易降解,目前已成为一种全球性的新型环境污染物。经调查发现,全球生态系统各类环境介质、野生动物、职业性暴露人群和非职业性暴露人群体内均普 遍存在PFOS污染。 PFOA[CF3(CF2)7COOH]不仅代表全氟辛酸本身,还代表其主要的盐类,为一种人工合成的化学品,具有很高的化学稳定性和热稳定性。因具有存在地域广泛、分布介质多样、疏水疏脂、易与血浆蛋白结合并在高等动物体内积聚等特性,而成为当前倍受关注的持久性有机污染物之一。

PFOS和PFOA被认为是持久性有机污染物,在生物体内存在蓄积性和蓄积效应,且不易降解,半衰期很长。实验室研究表明,这类物质在一定的剂量下引起生物体体重降低、肝组织增重、肺泡壁变厚、线粒体受损、基因诱导、幼体死亡率增加以及容易感染疾病致死等不良生物学效应。 PFOS/PFOA是目前世界上发现的最难降解的有机污染物之一,具有持久性、生物累积性、远距离环境迁移的可能性,对人类健康和生存环境造成影响。 PFOS/PFOA具有遗传毒性,雄性生殖毒性,神经毒性,干扰甲状腺功能,肝脏毒性,发育毒性和内分泌干扰作用等多种毒性,因此PFOS和PFOA被认为是一类具有全身多脏器毒性的持久性有机污染物。

硫酸铵沉淀

硫酸铵沉淀: 有生物活性的蛋白一般在做硫胺沉淀的时候要小心一点。最保险的做法是,把硫酸铵配成饱和溶液,把蛋白溶液置于冰浴上,再把饱和硫胺溶液一滴一滴的加到你的蛋白溶液中,最好边加边搅拌,避免局部硫胺浓度过高,但搅拌的时候注意不要搅出气泡。按照你的比例加完之后,最好放冰箱静置至少2h,充分沉淀后离心即可。 4M的硫酸铵pH值为,在这个酸度下可能会有一些蛋白质变性,要小心。硫酸铵会破坏蛋白质水化层,最好是缓和地加入。边加入边搅拌,如果在磁力搅拌器上搅拌,小漩涡中心有很多泡沫就表示蛋白质变性,使得溶液粘度增加,泡沫难破,那就很难保证你的蛋白质有没有变性了。 溶解度,在一定温度下,某固态物质在100g溶剂中达到饱和状态时所溶解的质量,叫做这种物质在这种溶剂中的溶解度。固体的溶解度是指在一定的温度下,某物质在100克里达到饱和状态时所的克数,用字母s表示,其单位是“g/100g水”。在未注明的情况下,通常溶解度指的是物质在水里的溶解度。 溶液饱和度(化学) 某种溶液的饱和度是指在100g该溶液中溶质在溶液中所占质量分数.一般情况下,一种溶液的饱和度在同一温度下不会变.要想使不饱和溶液饱和度增加可以选择增加溶质.在刚好有晶体析出的时候就是溶液刚好饱和的时候.溶液饱和度不会出现100%

加固体比较好,加得越慢越好。如果加快了,会造成局部浓度过大,造成意想不到的沉淀。 硫酸铵沉淀的时候应该要注意pH值的变化,就我的实验来说,一株产淀粉酶曲霉固态发酵之后用超纯水浸泡离心,得到含有酶的上清液的pH值为,但是淀粉酶能耐受,为了去除更多杂质蛋白质,我把硫酸铵浓度调节到2摩尔每升的同时会控制pH值为,4度过夜之后离心取上清液再调节到pH值,4度放置,离心,又去除一部分杂质蛋白质,上清液直接用的疏水层析系统来纯化。 一个纤维素酶的纯化我也用类似的方法,只不过第一步是用。 硫酸铵是酸式盐,2M时pH值约为5,4M时更低,用来沉淀蛋白质的时候情况就更复杂了,所以最好知道自己需要的蛋白质的耐受情况,不要搞死了。 透析之前要选用一个不影响自己想要的蛋白质的pH值,硫酸铵沉淀和透析都要保持一致,才能使损失减少。透析时候产生的沉淀不知道是不是你想要的蛋白质,不过下次做最好谨慎一点,做我说过的预备实验。 分段盐析的方法

辛酸硫酸铵纯化方法

所需溶液配制: 1.0.06mol/L pH=4.8醋酸盐缓冲液:无水醋酸钠0.29g,冰醋酸0.141mL,纯水定容至100mL。 2.2mol/L氢氧化钠溶液:16g氢氧化钠固体用于200ml纯水中。 3.2mol/L盐酸溶液:取33m L36.4%的浓盐酸定容至200mL纯水中。 4.0.1mol/L PBS缓冲液:80.0 NaCl,KCl 2.0g,Na2HPO4· 12H2O 29.0g,KH2PO4 2.0g, 加超纯水定容至1L。 单克隆抗体采用辛酸-硫酸铵方法纯化,具体步骤如下: (1)将腹水从-20°C冰箱拿出室温解冻。腹水用双层滤纸过滤,初步除去杂质、脂肪及细胞碎片。4°C,12000r/min,离心15min,收集上清,弃沉淀。精确定量腹水体积。 (2)一份体积的腹水与2-4份体积的醋酸盐缓冲液磁力搅拌混匀,用2mol/L HCL 调PH至4.5-4.8。 (3)磁力搅拌下缓慢加入正辛酸,33μL/mL腹水,加完后室温磁力搅拌半小时,后置4°C静置2h以上。 (4)4°C ,12000r/min,离心5min,收集上清,双层滤纸过滤,收集滤液。 (5)量取滤液体积,加入1/10体积的0.1M pH=7.4 的PBS,用2mol/L NaOH(记录NaOH 体积)调pH至7.4。 (6)将上清冰浴预冷,加硫酸铵固体至0.277g/mL,边加边搅拌,并于30min内加完,置4°C过夜。 (7)12000r/min,离心15min,弃上清。用一定体积的0.01mol/LPBS溶解沉淀。用PB 透析两天后换0.01mol/LPBS 透析两天。收集透析液,12000r/min,离心15min,取上清,置-20°C预冻后真空冻干成粉保存。 张道宏师姐版本:用1/10原腹水体积的0.01mol/L pH值7.4 PBS溶解沉淀;对0.01mol/L pH值7.4的PBS透析一天,离心去掉不溶杂质,用纯水进行透析,优球蛋白析出后离心收集澄清抗体溶液,置于-20°C预冻;冻干保存。

(全考点)氟化工艺操作证模拟考试

氟化工艺操作证模拟考试 1、【判断题】危险物品的生产经营储存单位主要负责人安全资格培训时间不得少于32学时。(×) 2、【判断题】氧气瓶和乙炔瓶等高压钢瓶应可靠固定放置,防止摔倒或滚动。(√) 3、【判断题】聚四氟乙烯树脂包装温度过高,产品会出现水珠和结团现象。(√) 4、【判断题】全氟丙烯储槽的装量系数为0.8,而四氟乙烯单体储槽或钢瓶的装量系数为0.65。(√) 5、【判断题】AHF和氢氟酸对人体造成的危害主要是灼伤。(×) 6、【判断题】动火作业除包括焊接切割熬炼烘烤焚烧废物喷灯等明火作业外,还包括作业本身不用明火,在作业过程中可能产生撞击火花磨擦火花电火花静电火花等火种的检修作业。(√) 7、【判断题】取氢氧化钠应戴布手套和防护面罩。(×) 8、【判断题】四氟乙烯单体在冷冻状态下比较稳定,故在此状态下可对容器或管线进行轻微的敲击。(×) 9、【判断题】化工污染的特点之一:为污染后恢复困难。(√)

10、【判断题】烟头中心温度可达700℃~800℃,它超过了棉麻毛织物纸张家具等可燃物的燃点,若乱扔烟头接触到这些可燃物,容易引起燃烧,甚至酿成火灾。(√) 11、【判断题】扑救爆炸物品火灾时,禁止用沙土盖压,以防造成更大伤害。(√) 12、【判断题】《生产安全事故报告和调查处理条例》将事故的“四不放过”原则贯穿始终,为事故报告和和调查处理工作提供了明确的操作规程。(√)13、【判断题】许用压力是指气瓶在充装使用储运过程中,允许承受的最高压力。(√) 14、【判断题】电工是特种作业人员。(√) 15、【判断题】《消防法》是与危险化学品安全生产有关的法律之一。(√) 16、【判断题】安全阀的校验周期为一年。(√) 17、【判断题】驾驶机动车未携带驾驶人信息卡的,处200元罚款。(√) 18、【判断题】生产氢氟酸的原料为氟化钙,在对氟化钙进行烘燥过程中,里面含有游离二氧化硅而游离二氧化硅含量较高时易造成矽肺病。(√) 19、【单选题】采用焊接等新工艺代替铆接工艺可以减轻作业过程中()对人体的危害。(A ) A、振动 B、高温

德国与食品接触材料FDA

德国与食品接触材料FDA/LFGB测试项目: 1:欧盟指令中要求测试项目 2:德国规定与食品接触的产品要进行 a 感官测试(气味测试和味道测试)b:过氧化值测试 3:德国规定(LFGB)相对欧盟指令增加的测试部分 3.1:PE塑料制品要求测试: a:铬,钒,锆含量测试 3.2:PS, ABS, SAN, Acrylic塑料制品要求: a:有机挥发物总量 3.3:PP塑料制品要求测试: a:铬钒锆含量测试 3.4:PA, PU塑料制品要求测试: a:芳香胺迁移测试 3.5:PET塑料制品要求测试: a:锌铅含量测试 3.6:Silicone Rubber硅橡胶制品要求测试: a:有机挥发物总量 c:有机锡化合物含量测试(七项) 3.7:Rubber, TPR, TPE橡胶制品要求 a:甲醛溶出量测试 b:锌,铅含量测试 d:芳香胺迁移测试 3.8:Paper纸制品要求 a:五氯苯酚测试(PCP) b:重金属溶出量(铅,镉,铬,镍)测试 c:抗菌成分迁移测试 d:甲醛含量测试 e:带颜色的纸制品-附加偶氮染料测试 3.9:Baking paper 烘焙纸制品要求 a:外观 b:热稳定性 c:抗菌成分迁移测试 d:多氯联苯测试(PCBs) e:甲醛溶出量测试 3.10:Wood 木制品要求测试: a:五氯苯酚测试(PCP) 3.11:带不粘涂层制品要求(不粘锅)测试:a:苯酚溶出量测试 b:甲醛溶出量测试 c:芳香胺溶出量测试 d:六价铬溶出量测试 e:三价铬溶出量测试 f:全氟辛酸铵测试 3.12:陶瓷,玻璃,搪瓷制品要求测试:a:重金属溶出测试 3.13:金属,合金及电镀制品要求测试:a:重金属溶出量(铅,镉,铬,镍)测试。 一般情况下,LFGB 德国《食品与日用品法》第30和31条包括以下测试项目: Germany LFGB(LMBG)Food and Feed Law &30,31 a)General Plastic(e.g.PC)一般塑料制品要求(如PC)等 overall migration in deionized water 全面迁移之去离子水浸取法 overall migration in 3% acetic acid 全面迁移之3%醋酸浸取法 overall migration in 10% ethanol 全面迁移之10%酒精浸取法 overall migration in rectified olive oil 全面迁移之橄榄油浸取法 full test of overall migration test 全面迁移全套测试 Sensory test-taste and odour to the integrate product 感官测试-味道和气味对于与食品接触的整体产品 b)PVC塑料制品要求 overall migration in deionized water 全面迁移之去离子水浸取法 overall migration in 3% acetic acid 全面迁移之3%醋酸浸取法 overall migration in 10% ethanol 全面迁移之10%酒精浸取法 overall migration in rectified olive oil 全面迁移之橄榄油浸取法

特氟龙化学方程式及其特性介绍

特氟龙化学方程式及其特性介绍 特氟龙一般指聚四氟乙烯 --(CF2-CF2)n-- 特氟龙分为PTFE、FEP、PFA、ETFE几种基本类型。 特氟龙高性能特种涂料是以聚四氟乙烯为基体树脂的氟涂料,英文名称为Teflon,因为发音的缘故,通常又被称之为铁氟龙、铁富龙、特富龙、特氟隆等等(皆为Teflon 的译音)。特氟龙(铁氟龙)涂料是一种独一无二的高性能涂料,结合了耐热性、化学惰性和优异的绝缘稳定性及低摩擦性,具有其他涂料无法抗衡的综合优势,它应用的灵活性使得它能用于几乎所有形状和大小的产品上。 特氟龙分为PTFE、FEP、PFA、ETFE几种基本类型: ·特氟龙PTFE:PTFE(聚四氟乙烯)不粘涂料可以在260℃连续使用,具有最高使用温度290-300℃,极低的摩擦系数、良好的耐磨性以及极好的化学稳定性。 ·特氟龙FEP:FEP(氟化乙烯丙烯共聚物)不粘涂料在烘烤时熔融流动形成无孔薄膜,具有卓越的化学稳定性、极好的不粘特性,最高使用温度为200℃。 ·特氟龙PFA:PFA(过氟烷基化物)不粘涂料与FEP一样在烘烤时熔融流动形成无孔薄膜。PFA的优点是具有更高的连续使用温度260℃,更强的刚韧度,特别适合使用在高温条件下防粘和耐化学性使用领域。 ·特氟龙ETFE:ETFE是一种乙烯和四氟乙烯的共聚物,该树脂是最坚韧的氟聚合物,可以形成一层高度耐用的涂层,具有卓越的耐化学性,并可在150℃下连续工作。 经过特氟龙涂装后,具有以下特性: 1、不粘性:几乎所有物质都不与特氟龙涂膜粘合。很薄的膜也显示出很好的不粘附性能。 2、耐热性:特氟龙涂膜具有优良的耐热和耐低温特性。短时间可耐高温到300℃,一般在240℃~260℃之间可连续使用,具有显著的热稳定性,它可以在冷冻温度下工作而不脆化,在高温下不融化。 3、滑动性:特氟龙涂膜有较低的摩擦系数。负载滑动时摩擦系数产生变化,但数值仅在0.05-0.15之间。 4、抗湿性:特氟龙涂膜表面不沾水和油质,生产操作时也不易沾溶液,如粘有少量污垢,简单擦拭即可清除。停机时间短,节省工时并能提高工作效率。 5、耐磨损性:在高负载下,具有优良的耐磨性能。在一定的负载下,具备耐磨损和不粘附的双重优点。 6、耐腐蚀性:特氟龙几乎不受药品侵蚀,可以保护零件免于遭受任何种类的化学腐蚀。 “特氟龙不粘涂料”的主要特性 特氟龙涂料(不粘涂料),英文名称为TEFLON,是一种以聚四氟乙稀(PTFE)为基体树脂的氟涂料,因为发音的缘故,通常又被称之为铁氟龙、特氟龙、特富龙、特氟隆、铁弗隆等(皆为TEFLON的译音)。因它具有优越的密着性和润滑性,又被称为不粘涂料或不沾涂料。铁氟龙(特氟龙)涂料是一种特殊性的高性能涂料(油漆),结合了耐热性、化学惰性和优异的绝缘稳定性及低摩擦性,具有其他涂料无法抗衡的综合优势。

蛋白纯化硫酸铵沉淀盐析法

蛋白纯化硫酸铵沉淀盐析 还能想起那些在荧屏中曾经震撼过我们,具有超能力的英雄么? 蜘蛛侠,敏捷,灵活迅速飞流直下,忽闪直冲高楼; 绿巨人浩克,力量,速度,耐力,在我们的想象力中膨胀; 还有,我们随身携带星形盾牌,品格高尚的美国队长…… 幻想里中的人物形象存在我们的记忆力,然而生物背景出身的我们,总归要锻炼出属于自己的实验技能,即便是相同的实验步骤,每个人做出来的结果也不尽相同,差别在哪?反复练习,用心总结出属于自己的心得,转化为自己的实验“超能力”吧。本文总结了蛋白纯化硫酸铵沉淀详细的实验原理、步骤,供大家参考。 -------锻炼属于我们自己的实验“超能力”之一 我是超级蜘蛛精 看我有劲儿不? 冲啊,我是美国队长 而我是一只冷静的科研小蜗牛 这次,我们所要分享的便是一种很常见,但是也很重要的蛋白质纯化方法:硫酸铵沉淀蛋白法,一起走进实验室吧。 硫酸铵沉淀法是粗分离蛋白时常用的纯化和浓缩蛋白的技术。蛋白质的溶解度和盐浓度密切相关,在低浓度的条件下,随着盐浓度的增加,蛋白质的溶解度

增加;但在高浓度的盐溶液里,盐离子竞争性的

结合蛋白表面的水分子,破坏蛋白表面的水化膜,溶解度降低,蛋白质在疏水作用下聚集形成沉淀。每种蛋白质的溶解度不同,因此可以用不同浓度的盐溶液来沉淀不同的蛋白质。硫酸铵的溶解度大,解离形成大量的NH4+、SO42-离子,会结合大量的水分子,使蛋白质的溶解度下降,另外,其温度系数小,不易使蛋白质变性,因此,蛋白质粗分离时硫酸铵沉淀法是很重要的一种技术,后续可采用层析技术进一步纯化蛋白,效率更高。硫酸铵沉淀法是常用的分离免疫球蛋白的方法。 各种不同蛋白质盐析需要不同浓度的硫酸铵溶液。在实验中建议配置不同梯度浓度的硫酸铵溶液来确定蛋白质沉淀所需的最佳浓度。 (1)参照如下表格配置不同浓度的硫酸铵溶液; 例如,在25 ℃条件下,配置饱和度为100 %的硫酸铵溶液,称取767 g的硫酸铵固体,边搅拌边加入到1 L的蒸馏水中,完全溶解后,用氨水或者硫酸调节pH 到7.0。 (2)沉淀蛋白 将样品离心,去除沉淀,保留上清液并测量体积;一边搅拌一边慢慢的加入硫酸

聚四氟乙烯的优良特性

聚四氟乙烯的优良特性 聚四氟乙烯(Polytetrafluoroethene,一般称作“不粘涂层”或“易洁镬物料”; 是一种使用了氟取代聚乙烯中所有氢原子的人工合成高分子材料。这种材料具有抗酸抗碱、抗各种有机溶剂的特点,几乎不溶于所有的溶剂。同时,聚四氟乙烯具有耐高温的特点,它的摩擦系数极低,所以可作润滑作用之余,亦成为了易洁镬和水管内层的理想涂料。 聚四氟乙烯(PTFE) 聚四氟乙烯(英文缩写为Teflon或[PTFE,F4]),被美誉为/俗称“塑料王”,中文商品名“铁氟龙”、“特氟隆”(teflon)、“特氟龙”、“特富隆”、“泰氟龙”等。它是由四氟乙烯经聚合而成的高分子化合物,具有优良的化学稳定性、耐腐蚀性(是当今世界上耐腐蚀性能最佳材料之一,除熔融金属钠和液氟外,能 耐其它一切化学药品,在王水中煮沸也不起变化,广泛应用于各种需要抗酸碱和有机溶剂的)、密封性、高润滑不粘性、电绝缘性和良好的抗老化耐力、耐温优 异(能在+250℃至-180℃的温度下长期工作)。聚四氟乙烯它本身对人没有毒性,但是在生产过程中使用的原料之一全氟辛酸铵(PFOA)被认为可能具有致癌作用。 温度-20~250℃(-4~+482°F),允许骤冷骤热,或冷热交替操作。 压力-0.1~6.4Mpa(全负压至64kgf/cm2)(Fullvacuum to 64kgf/cm2) 聚四氟乙烯与其他塑料相比具有耐化学腐蚀与的特点,它已被广泛地应用作为密封材料和填充材料。 化学性质

耐大气老化性:耐辐照性能和较低的渗透性:长期暴露于大气中,表面及性能保持不变。 不燃性:限氧指数在90以下。 耐酸碱性:不溶于强酸、强碱和有机溶剂。 抗氧化性:能耐强氧化剂的腐蚀。 酸碱性:呈中性。 物理性质 聚四氟乙烯的机械性质较软。具有非常低的表面能。 聚四氟乙烯(F4,PTFE)具有一系列优良的使用性能:耐高温—长期使用温度200~260度,耐低温—在-100度时仍柔软;耐腐蚀—能耐王水和一切有机溶剂;耐气候—塑料中最佳的老化寿命;高润滑—具有塑料中最小的摩擦系数(0.04);不粘性—具有固体材料中最小的表面张力而不粘附任何物质;无毒害—具有生理惰性;优异的电气性能,是理想的C级绝缘材料。聚四氟乙烯材料,广泛应用 在国防军工、原子能、石油、无线电、电力机械、化学工业等重要部门。产品:聚四氟四乙烯棒材、管料、板材、车削板材。聚四氟乙烯是四氟乙烯的聚合物。英文缩写为PTFE。结构式为。20世纪30年代末期发现,40年代投入工业生产。性质聚四氟乙烯相对分子质量较大,低的为数十万,高的达一千万以上,一般为数百万(聚合度在104数量级,而聚乙烯仅在103)。一般结晶度为90~95%,熔融温度为327~342℃。聚四氟乙烯分子中CF2单元按锯齿形状排列,由于氟原子半径较氢稍大,所以相邻的CF2单元不能完全按反式交叉取向,而是形成一个螺旋状的扭曲链,氟原子几乎覆盖了整个高分子链的表面。这种分子结构解释了聚四氟乙烯的各种性能。温度低于19℃时,形成13/6螺旋;在19℃发生相变,分子稍微解开,形成15/7螺旋。

辛酸硫酸铵纯化抗体

辛酸-硫酸铵法从人血清中纯化IgG 一、实验目的 1、初步掌握从血清中提取纯化IgG的方法步骤。 2、了解辛酸-硫酸铵法纯化IgG 的原理。 二、实验原理 辛酸-硫酸铵法分两步进行。第一步用辛酸沉淀杂蛋白,辛酸为短链脂肪酸,在酸性条件下可沉淀血清或腹水中的白蛋白或其他非Ig蛋白质;第二步利用硫酸铵盐析将Ig沉淀下来,操作步骤如图3-10所示。经SDS-PAGE电泳检测能得到电泳纯度较高的Ig。 三、仪器、原料和试剂 1、仪器 磁力搅拌器、离心机、低温冰柜。 2、原料

抗血清(兔抗鸡血清)。 3、试剂 (1) 乙酸-乙酸钠缓冲液:60mmol/L,pH4.0。 (2) 10×磷酸盐-NaCl 缓冲液(PBS):100mmol/L PBS,pH7.4。称NaCl 80g、Na2HPO412H2O 29g、KCl 2g、KH2PO4 2g,加蒸馏水溶解,加入100mmol/L EDTA 20ml,用去离子水定容至l000ml。 (3) 透析液 10mmol/L Na2HPO4-KH2PO4缓冲液,含15mmol/L NaCl,pH7.2。 (4) 硫酸铵。 (5) 辛酸。 四、操作步骤 1、抗血清用4倍体积乙酸-乙酸钠缓冲液稀释,用0.1mol/L NaOH调至血清稀释液为pH4.5。 2、室温下边搅拌(磁力搅拌器或电功搅拌器),边缓慢滴加辛酸(25ml/L血清稀释液),滴加完后继续搅拌30min。 3、离心(10000r/min,30min),收集上清夜,弃去沉淀。 4、上清液用多层纱布过滤。 5、按1/10体积加入10×PBS,用5mol/L NaOH调至PH7.4。 6、上清液4℃预冷,计算溶液总体积,在4℃按277g/L加入硫酸铵粉沫(45%饱和度),边加边搅拌,加完后继续搅拌30min。 7、离心(5000r/min,15min)),弃去上清液。收集沉淀。 8、沉淀用少量透析液溶解(一般为血清体积的1/10),透析并更换两次透析液或用Sephadex G-50脱盐。 9、Ig溶液在50~55℃水浴中加热20min,离心(5000r/min,20min),上清液-20℃保存或冻干保存。

辛酸-硫酸铵法纯化单克隆抗体

辛酸-硫酸铵法纯化单克隆抗体 辛酸-硫酸铵法纯化单克隆抗体 (一) 原理蛋白质在溶液中的溶解度取决于蛋白质周围亲水基团与水形成水化膜的程度, 以及蛋白质分子带有的电荷。如改变这两个因素,蛋白质就容易沉淀折出。 引起蛋白质沉淀的主要方法有 (1) 盐析, 即加入大量中性盐破坏蛋白质的胶体稳定性而使其析出, 沉淀不同蛋白质所需盐浓度及pH 值不同; (2) 生物碱以及某些酸类, 在pH 值小于等电点时可以与蛋白质形成不溶的盐使其沉淀; (3) 重金属离子如隶、铅、铜、银等, 在pH 值大于等电点时可以与蛋白质结合成不溶的盐使其沉淀; (4) 有机溶剂如酒精、甲醇、丙酮等, 对水的亲和力很大, 能破坏蛋白质水化膜, 在等电点时使蛋白质沉淀。辛酸(caprylic acid) 在偏酸条件下能与血清或腹水中除IgG外的其他蛋白质结合并将其沉淀下来,IgG 则溶于上清液中, 再用硫酸镀盐析, 即可达到纯化IgG 的目的。 辛酸-硫酸铵法是目前实验室中较常用的纯化单克隆抗体的方法, 利用该方法纯化单克隆抗体, 回收率和纯度都可达80% 以上。 (二) 试剂和器材 1. 试剂 (1) 小鼠腹水。 (2) 硫酸铵或饱和硫酸铵溶液。称(NH4)2S04(AR)400~425 克, 以50 ℃~80 ℃蒸馆水500ml溶解, 搅拌2O min, 趁热过滤。冷却后以浓氨水(15M NH40H) 调pH 值至7.4 。配制好的饱和硫酸铵, 瓶底应有结晶析出。 (3)0.06M pH 4.8 醋酸盐缓冲液。

贮存液: A 液,0.06M NaAc: 无水NaAc0.49218g 加蒸馆水至100ml B 液,0.06M HAc: 冰醋酸0.344ml 加蒸馆水至100ml 应用液: 取上述 A 液59ml 与B 液41ml 昆合, 用5M NaOH 调pH 值至4.80. (4)0.lM pH 7.4 磷酸盐缓冲液(PBS). 取Na2HP04 · 12H20 28.94g,KH2P04 2.61g, 加蒸馆水至100Om1 (5) 含137mM NaCl 2.6mM KCl 0.2mM EDTA 的pH 7.4 磷酸盐缓冲液(PBS): 取Na2HP04 12H20 28.94g KH2P04 2.61g NaC1 8.Og 、KCl 0.2g EDTA 0.06g, 加蒸馆水至100Oml 2. 器材普通冰箱、低温离心机、电磁搅拌器, 紫外分光光度计、天平; 透析袋、塑料夹、精密pH 试纸; 烧杯、量桶、吸管、滴管、小瓶等。 (三) 操作步骤 方案一( 硫酸铵沉淀法) 1. 腹水4 ℃12000 rpm 离心15min, 去除杂质。 2. 取1 份腹水与2 份醋酸盐缓冲液混合, 室温搅拌下逐滴加入正辛酸33 μ l/ml 腹水。 3. 室温混合30min 4. 4 ℃静置2h 以上, 使其充分沉淀。 5. 4 ℃,12000 rpm 离心3Omin, 弃沉淀。 6. 上清经砂芯漏斗或125 μm 的尼龙网过滤后, 加入1/10 体积的 0.1M pH 7.4 Pbs , 用2M NaOH 调pH 值至7.4. 7. 冰浴下于30min 内加入0.277g/ml 的硫酸铵, 使成45%饱和度。 8. 4 ℃静置1h 以上。 9. 4 ℃,10000 rpm 离心30min, 弃上清。

相关主题
文本预览
相关文档 最新文档