当前位置:文档之家› 开题报告——基于单片机的锂离子电池电量检测系统设计

开题报告——基于单片机的锂离子电池电量检测系统设计

南昌工程学院

09 级毕业(设计)论文开题报告机械与电气工程学院系(院)电气工程及其自动化专业

题目基于单片机的锂离子电池电量检测系统设计学生姓名纪炜焕

班级09电气工程及其自动化(1)班

学号2009100106

指导教师饶繁星

日期2013 年 1 月 4 日

南昌工程学院教务处订制

题目:基于单片机的锂离子电池电量检测系统设计

一、选题的依据及课题的意义

随着手机、数码相机、摄像机、手提电脑、音频视频播放器等便携式电子设备的迅猛发展,由于其便携性的特点,便携式设备必须由电池来进行供电。目前,便携式仪表的主流供电电池有铅酸电池,镍镉电池,镍氢电池,锂电池和锂聚合物电池等。与其它主流可充电电池相比,具有高单体电池电压、高功率密度、长循环寿命、无记忆效应、低自放电率等优点。锂电池是指以锂为负极材料的化学电池的总称,大致可分为两类:锂金属电池和锂离子电池。锂离子电池不含有金属态的锂,该类电池具有较高能量/质量比和能量/体积比。

为了提高电池的使用率及全面掌握电池的状态,大多数设备在应用场合需要显示电池组的剩余电量信息,以供使用者明确电池组的工作状态,及时对电池组进行充电。在电池放电过程中,电池电压与剩余电量、工作时间之间并不是线性关系,所以并不能简单地采用电压采样、函数计算剩余电量。针对该要求,设计了一种基于单片机的锂离子电池电量检测系统,该检测系统的设计对全面掌握锂离子电池的电量状态,提高其利用率具有现实意义。本设计的研究成果若能广泛应用于便携式电子产品,为人类日常生活和生活质量的提高有着深远的意义。

二、研究概况及发展趋势综述

锂电池常用的电量检测方法有两种,一种是利用库仑计,根据电池工作的电流与时间进行计算出电池的实际容量,此种检测方法是最准确的检测方法,一般用的芯片有TI,美信等电池管理芯片,但是成本太高,调试复杂。另一种方法是利用电池工作的电压曲线来分析出电池的容量,这种方式比较简单,成本也低,由于直接采用比较器如LM339,LM324等,检测精度低,检测相对很不准确,温漂大,功耗大。

在满足要求的前提下,本设计尽可能采用简单的锂离子电池电量检测方案,提出的基于单片机的锂离子电池电量检测方案,抗干扰能力强,并且可以实现对锂离子电池电量的高精度检测。

在本设计方案中,没有考虑电池老化等复杂因素对电量检测精度产生的负面影响,所以检测结果稍有误差。未来在要求更高精度的锂离子电池电量检测应用中,该检测系统必须考虑这些复杂问题对检测精度的影响,还需要做进一步的改进,让检测精度提高一个水平。

三、研究内容及实验方案

本课题是设计一个锂离子电池电量检测系统,研究对象为符合国标GB/T 18287-2000的锂离子电池,其主要参数有:标称电压3.7V,标称容量1050mAH,充电电压4.2V。自己通过网络、图书馆书籍等各种途径的资料搜索并进行充分学习与理解,对锂离子电池电量检测原理、以及一些单片机的程序编写有充分的了解。

该系统由模拟量参数采集、电量检测、中央处理控制(单片机)及LED驱动显示等相应模块组成。基于单片机,电量检测模块主要采用BQ2040,BQ2040电池能源管理集成电路可以用来精确记录独立电池组或安装状态电池的电量,它支持镍镉电池、镍氢电池、锂离子电池的电量测量,BQ2040采用电源系统管理Vei1.0(SMBus)协议,支持智能电池数据管理命令(SBData)和智能电池充电控制(SBData)功能,通过串行接口可以测试电池充电状态、剩余电量、放电剩余时间、电池材料等信息。电池状态可用LED形象地来表示,通过内部计数器和温度传感器估算自放电程度,也通过放电周期来校准和更新电池实际容量,外接EEPROM内写有初始化程序,控制电池的管理工作。

此外还要对其进行硬件设计和软件设计。硬件设计要将各功能模块组装起来形成一个合理的方案,软件设计要根据系统功能要求,进行单片机软件设计,并对单片机进行模块的编程,用Protel、Proteus等软件画原理图进行仿真和测试。

四、目标、主要特色及工作进度

1、明确电池相关的技术参数,查阅以及收集相关资料,进行系统总体规划设计。(2月

27日---3月15日)

2、单片机外围电路及相关电路设计。(3月16日--4月1日)

2、根据系统功能规划,完成系统电气部分的设计。(4月2日---4月15日)

3、控制软件设计。(4月16日---5月1日)

4、总体调试、绘制总电路图及测量数据。(5月2日--5月15日)

5、整理设计材料,编写毕业设计论文。(5月16日--5月31日)

五、主要参考文献

1、张友德,赵志英,涂时亮.单片机微型机原理、应用与实验.上海:复旦大学出版社,2004

2、张培根,孙占辉,张欣,张村峰.MCS-51单片机原理与应用.北京:清华大学出版社

3、吴宇平,锂离子电池应用与实践.北京:化学工业出版社,2004

4、郭炳焜,锂离子电池.长沙:中南大学出版社,2002

5、BQ2040 Gas Gauge IC With SMBus Interface, Texas Instruments Incorporated,2005

指导教师

年月日

系意见:

年月日

电动汽车用锂离子动力蓄电池包和系统测试规程完整

电动汽车用锂离子动力电池包和系统测试规程 1 范围 本标准规定了电动汽车用锂离子动力电池包和系统基本性能、可靠性和安全性的测试方法。 本标准适用于高功率驱动用电动汽车锂离子动力电池包和电池系统。 2 规范性引用文件(其中的一部分) 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2423.4-2008 电工电子产品环境试验第2部分:试验方法试验Db 交变湿热(12h+12h循环)(IEC 60068-2-30:2005,IDT) GB/T 2423.43-2008 电工电子产品环境试验第2部分:试验方法振动、冲击和类似动力学试验样品的安装(IEC 60068-2-47:2005,IDT) GB/T 2423.56-2006 电工电子产品环境试验第2部分:试验方法试验Fh:宽带随机振动(数字控制)和导则(IEC 60068-2-64:1993,IDT) GB/T 18384.1-2001 电动汽车安全要求第1部分:车载储能装置(ISO/DIS 6469-1:2000,EQV)GB/T 18384.3-2001 电动汽车安全要求第3部分:人员触电防护(ISO/DIS 6469-3:2000,EQV)GB/T 19596-2004 电动汽车术语(ISO 8713:2002,NEQ) GB/T xxxx.1- xxxx 道路车辆电气及电子设备的环境条件和试验第1部分:一般规定(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 1: General,MOD) GB/T xxxx.3- xxxx 道路车辆电气及电子设备的环境条件和试验第3部分:机械负荷(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 3: Mechanical loads,MOD) GB/T xxxx.4- xxxx 道路车辆电气及电子设备的环境条件和试验第4部分:气候负荷(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 4: Climatic loads,MOD) 3 术语和定义 3.1 蓄电池电子部件 采集或者同时监测蓄电池单体或模块的电和热数据的电子装置,必要时可以包括用于蓄电池单体均衡的电子部件。 注:蓄电池电子部件可以包括单体控制器。单体电池间的均衡可以由蓄电池电子部件控制,或者通过蓄电池控制单元控制。 3.2 蓄电池控制单元 battery control unit (BCU) 控制、管理、检测或计算电池系统的电和热相关的参数,并提供电池系统和其他车辆控制器通讯的电子装置。

锂离子电池设计原理教材

锂离子电池原理及设计教材 原理篇 电池原材料 化工类材料:正极:钴酸锂、锰酸锂、镍酸锂、磷酸铁锂、三元材料 负极:人造石墨、中间相碳微球(沥青基)、针状焦、改性天然石墨 其他:隔膜、电解液、导电剂、PVDF、NMP、草酸、SBR、CMC、高温胶纸、铜箔、铝箔等 五金类材料:钢壳、铝壳、盖帽、隔圈、铝带、镍带、铝镍复合带等、铝塑膜等电池原材料是决定电池性能的最重要的因素,电池性能的提升归根结底来自于电池材料的优化及更新。 锂离子电池反应机理 锂离子电芯的反应机理是随着充放电的进行,锂离子在正负极之间嵌入脱出,往返穿梭电芯内部而没有金属锂的存在,因此锂离子电芯更加安全稳其反应示意图如下所示: 电芯的正极是LiCoO2加导电剂和粘合剂,涂在铝箔上形成正极板,负极是层状石墨加导电剂及粘合剂涂在铜箔基带上,目前比较先进的负极层状石墨颗粒已采用纳米碳。 根据上述的反应机理,正极采用LiCoO2、LiNiO2、LiMn2O2等,其中LiCoO2是一种层状结构很稳定的晶型,但当从LiCoO2拿走XLi后,其结构可能发生变化,但是否发生变化取决于X的大小。通过研究发现当X>0.5时Li(1-X)CoO2的结构表现为极其不稳定,会发生晶型瘫塌,其外部表现为电芯的电压及安全性能。所以电芯在使用过程中应通过限制充电电压来控制Li1-XCoO2中的X值,一般充电电压不大于4.2V。那么X小于0.5 ,这时Li1-XCoO2的晶型仍是稳定的。负极C6其本身有自己的特点,当第一次化成后,正极LiCoO2中的Li被充到负极C6中,当放电时Li回到正极LiCoO2中,但化成之后必须有一部分Li 留在负极C6中,以保证下次充放电Li的正常嵌入,否则电芯的寿命很短,为了保证有一部分Li留在负极C6中,一般通过限制放电下限电压来实现。所以锂电芯的安全充电上限电压≤4 .2V,放电下限电压≥2.5V。 锂离子电池的主要制造过程 Li-ion电池的工艺技术比较严格、复杂,这里只能简单介绍一下其中的几个主要工序。

锂电硕士开题报告赵阳

开题报告 题目:锂离子电池正极材料镍钴锰酸锂的制备 及电化学性能研究 院系名称:化学化工学院专业:化学 学生姓名:赵阳学号:20139167 指导老师:曹晓雨职称:副教授 2014 年11 月8 日

锂离子电池正极材料镍钴锰酸锂的制备及 电化学性能研究 一、本课题研究的目的和意义 随着现代社会的快速发展,能源的消耗也急剧增加,目前全世界己探明的化石燃料(煤、石油、天然气)的贮量在不久以后将会枯竭,面对严峻的能源短缺形式,探索新型的能源模式已成为21世纪必须解决的重大课题[1]。 目前人类可以利用的能源主要包括一次能源中不可再生的化石燃料(煤、石油、天然气)和可再生的太阳能、核能、风能、潮汐能、地热、生物能、海洋能等以及通过一次能源经过加工转换以后得到的二次能源中的电能、煤气、汽油、液化石油气、酒精、沼气、蒸汽、氢能源等。而如何使这些新能源转化成人类可以直接利用的能源呢?其中的一些能源转化则是依靠新能源材料,新能源材料是指能实现能源的最大化转化的过程中所用到得一些无机材料和有机材料,目前主要是以电池材料为代表的化学材料等,由此可见电池材料在实现能源转化过程中占有重要的地位。 电池材料的最大特点是在提供能源的高效率转化时,由于自身的优点能实现清洁生产和消耗,即能充分实现最佳原子利用率,实现原料的“零排放”,从而能减少对原材料的损耗,达到最优化的利用地球上有限的自然资源,实现社会的和谐发展。由此可见电池材料对解决今后的能源危机及其目前所造成的环境污染起着关键的作用,而锂离

子电池则是能实现高效能量储存与能源转换的最佳材料而得到社会的认可,是新型化学电源,具有高电压、高能量、体积小、内阻小、自放电小、循环寿命长、无记忆效应等特点[2-5]。锂离子电池自上世纪90年代问世以来,因其卓越的性能迅速占领了许多应用领域,像大家熟知的手机、笔记本电脑、小型摄像机等产品的电源,而后又积极地渗透到其他领域,如电动交通工具、空间技术和国防工业等重大领域。美国著名的巴特尔研究所己把先进电池和燃料电池列为2020年十大关键技术。可见电池产业作为促进全球信息经济、绿色能源和环境友好的一个可行性方案,在技术、生产、市场上将获得长足的发展,即将形成一个全球性的支柱型产业。另外,中国是贫油的国家,从长远的国家战略来看,传统化石燃料等矿物能源将会很快枯竭,能源短缺的形式将更为严峻,因此促使锂离子电池的稳定快速的发展,使之成为一种产业化的新的能源模式具有重大的战略意义。 二、锂离子电池工作原理 锂离子电池是指用两个可逆的嵌入与脱嵌锂离子的化合物作为正负极构成的二次电池。锂离子电池主要由正极、负极、电解质和隔膜组成,其实质是锂离子浓度差电池:充电时,锂离子从正极化合物中脱出并嵌入负极晶格,正极处于贫锂态;放电时,锂离子从负极脱出并插入正极,正极处于富锂态[6]。在充放电过程中,锂离子在正极和负极之间来回的迁移,所以锂离子电池被形象的称为“摇椅式电池”。在此过程中,由于锂离子在正、负极材料中有相对固定的空间和位置,因此电池充放电反应的可逆性良好,从而保证了电池的长循

锂离子动力电池PACK部BMS系统

先给初学者一个简单的科普,因为几年前我和人家说起BMS,大部分是不知道是什么东西。BMS就是Battery Management System,中文就是电池管理系统,一般针对动力电池组,很多电芯串并的情况来说的。 BMS的作用是保护电池安全,延长电池的使用寿命,实时监测电池的状态并把电池的情况告诉给上位机系统。 为什么说BMS才是动力电池PACK厂的核心竞争力,两个方面的原因,第一个原因是电芯最终要成为一个标准品,第二个原因是BMS很复杂,且非常重要。 针对第一个原因,电芯最终要成为一个没有科技含量的标准品,一起来分析一下。 动力电池的电芯最后的发展会像手机电池一样,用不了几年的时间就会达到这种状态。最后能够在动力电池领域活的很好的电芯厂不会很多的,一大批电芯厂会慢慢出局的。 现在这个状态是因为动力电池的需求还没有完全起来,加之电芯的工艺还没有成熟和稳定,且电芯的尺寸和材料体系各式各样。 其实统一到几种电芯用不了多长时间。这是市场决定的,一旦动力电池放量,竞争就会加剧,成本的要求就会苛刻,市场就会趋于同质化竞争,慢慢把需求不大的类型淘汰掉,因为没有量的支撑就不会有竞争力(一些高性能或特殊领域的小众应用另当别论),这是自然竞争的结果。 不得不说另外一个事,所有的电芯厂,全球任何一家电芯厂,都是研究电化学和材料相关的,绝大部分的人才都是集中在这个领域的,他们对BMS这种对电子和系统要求极高的东西很难有好的理解,也不会有好的建树,更不可能做出有竞争力的BMS产品和电池PACK了。 因此最后电芯厂和PACK厂一定会分化,一定会专业分工,这是自然规律,市场竞争的规律。 针对第二个原因,BMS的复杂和系统要求较高,是PACK竞争的基础。 为什么说BMS比较复杂,因为BMS涉及到的东西很多,不但要求懂电池知识很多,还要对整个系统(电动汽车或储能等)很懂,不但要懂电子,还要懂结构,不仅要会硬件,还要会软件,要做好BMS,要对电子技术、电工技术、微电子及功率器件技术、散热技术、高压技术、通信技术、抗干扰及可靠性技术等很多东西都要专业才行,它是一个负责的系统工程。 BMS一般会涉及到几个功能: 1、电池保护及安全管理功能; 2、数据采集与分析; 3、SOC/SOH等功能; 4、电量均衡及控制; 5、充放电管理与控制; 6、数据通信与传输; 7、热管理与控制; 8、高压绝缘等检测; 9、异常诊断与分析等。 所有这些功能最终都围绕一个主题,电池与系统的安全。BMS的核心就是电池状态的检测与系统安全的控制。 BMS是整车或其他整个系统的核心部件,甚至是中央控制单元,设计之初就要结合整个系统去考虑结构,布线,散热,通信等很多问题。如果对BMS的认识还停留在消费电池的过充过放过温及过流保护的粗浅认识,那就不要去碰动力电池,也别想做好动力电池。 动力电池的PACK除了要考虑成组时电芯的分容配对等问题,更多的还要设计好BMS系

锂离子电池设计总结

锂离子电池设计总结 (一)液锂电池设计 (1)根据壳子推算卷芯 1、核算容量:(设计最低容量= average * 0.935) 2、极片宽度: 隔膜宽度= 壳子高- 0.6 - 2 - 0.3 - 0.5 图纸高壳子底厚盖板厚绝缘垫厚余量 负极片宽度= 隔膜纸宽度- 2mm 正极片宽度= 负极片宽度- (1~2mm) 注:核算后正负极片宽度要去查找分切刀,最好有对应分切刀;箔材的选择也要依分切刀而定。比如:40mm的分切刀,可以一次分裁8片,则箔材尺寸应该为40*8+(10~15余量)=330~335mm,若没有合适的也可以选择40*7+(10~15mm)的箔材。 3、卷芯宽度: 卷芯设计宽度= 壳子宽度- 0.6 -(0.5~1.5) 图纸宽度两层壳壁厚余量 4、卷芯厚度: (1)卷芯设计厚度= 壳子厚度- 0.6 - 0.6 图纸厚度两层壳壁厚余量 (2)卷芯设计厚度= (规格厚度–0.2 –0.6)/ 1.08 规格书厚度max 余量两层壳壁厚膨胀系数 5、卷尺宽度: 卷尺= 卷芯宽–卷芯厚–卷尺厚(0.5mm)–(1.5~2.5)余量 6、最后根据(2、3、4)进行调整、确认。 7、估算卷芯/电芯最终尺寸 卷芯厚度= 正极片厚+ 负极片厚+ (隔膜厚*2) 卷芯宽度= 卷尺宽+ 卷尺厚+ 卷芯厚+(1~2.5)余量 最终电芯厚度= 卷芯厚度* 1.08 + 壳子厚度+(0.2~0.5) 层数单层厚度卷芯厚卷芯厚* 1.08 +(0.3~0.4)≤规格要求 (二)电池设计注意事项: 1、极耳距极片底部≤极片宽度*1/4 2、极耳外露≥12mm~15mm 负极耳外露:6~10mm 3、小隔膜= 加垫隔膜处光泊区尺寸+(2~3mm) 4、壳子底部铝镍复合带尺寸: 4mm * 13mm * 0.1mm (当壳子底部宽w ≥7mm时) 3mm * 13mm * 0.1mm (当壳子底部宽w <7mm时) 5、极片称重按涂布时箔材和敷料计算

叠片式聚合物锂离子电池设计规范

一、叠片式聚合物锂离子电池设计规范 1. 设计容量 为保证电池设计的可靠性和使用寿命,根据客户需要的最小容量来确定设计容量。 设计容量(mAh)= 要求的最小容量×设计系数(1) 设计系数一般取1.03~1.10。 2. 极片尺寸设计 根据所要设计电池的尺寸,确定单个极片的长度、宽度。 极片长度Lp: Lp = 电池长度-A-B (2) 极片宽度Wp: Wp = 电池宽度-C (3) 包尾极片的长度Lp′: Lp′= 2Lp+ T'-1.0 (4) 包尾极片的宽度Wp′: Wp′= Wp-0.5 (5) 其中: A —系数,取值由电池的厚度T决定,当 (1)T≤3mm时,对于常规电芯A一般取值4.5mm,大电芯一般取值4.8mm; (2) 3mm<T≤4mm时,对于常规电芯A一般取值4.8mm,大电芯一般取值5.0mm; (3) 4mm<T≤5mm时,对于常规电芯A一般取值5.0mm,大电芯一般取值5.2~6.0mm; (4) 5mm<T≤6mm时,对于常规电芯A一般取值5.2mm, 大电芯一般取值5.4~6.0mm。

B —间隙系数,一般取值范围为3.6~4.0mm; C —取值范围一般为2.5~2.6mm(适用于双折边); T'—电芯的理论叠片厚度,T'的确定见6.1节. 图1.双面极片、单面正极包尾极片示意图 3. 极片数、面密度的确定: 确定极片的数量N,并根据电池的设计容量来确定电极的面密度,电池的设计容量一般由正极容量决定,负极容量过剩。在进行理论计算时,一般正极活性物质的质量比容量取140mAh/g,负极活性物质的质量比容量取300mAh/g。 N =(T-0.2)/0.35±1(6) 注:计算时N取整,并根据面密度的值来调整N。 S 极片 = Lp×Wp(7) C 设 = C 正比 ×S 极片 ×N×ρ 正 ×η 正 (8) C 负 = C 设 ×υ(9) = C 负比×S 极片 ×N×ρ 负 ×η 负 (10) 其中: S 极片 —单个极片的面积; C 正比 —正极活性物质的质量比容量,一般取值140mAh/g; η正—正极活性物质的百分含量; ρ正—正极极片的双面面密度(g/m2); C 负 —负极的设计容量; υ—负极容量过剩系数,一般常规电池取值1.00~1.06;DVD电池以及容量大于2000mAh的取值1.05~1.12; C 负比 —负极活性物质的质量比容量,一般取值300mAh/g;

锂电池的综合测试系统的研究

锂电池的综合测试系统的研究 摘要:随着锂电池的应用越来越多,对生产的锂电池产品质量提出了更高的要求。与此同时,对锂电池检测系统也提出了更高的要求。本文主要介绍了一种基于单片机控制的锂电池全面综合测试系统。对其工作原理进行了叙述。 关键词:锂电池;检测系统;单片机;采集电路 1.引言 现在,使用的各种电池中,锂电池是近几十年发展起来的一种新型电源,具有很高的能量、没有记忆性、无污染等优点,成为首选的便携式设备的电源。自90年代的时候,日本的索尼公司成功开发了锂电池开始,锂电池一直是各个国家研究和开发的热点。随着快速发展的电子设备,锂电池需求越来越多。对锂电池测试设备的需要变得也越来越多。在我国许多的电池制造商引入外国电池的测试设备,但是非常的昂贵。国内的检测设备的测量精度、系统的稳定性、设备的利用率和自动化程序等都非常的低。 因此,研制开发一套成本合理,并可以满足需求的大规模生产的自动化的锂电池化成、测量、分选系统,是众多的锂电池制造商非常需要的。 2.锂电池检测系统的总体设计 在电池充电和放电的过程中电流、电压的精度确保控制在规定范围内是系统的核心控制方法。系统采用恒定电流电压的方法,即在恒流充电状态,不断检测每节电池的电压,当检测到充电电池电压达到饱和值时,充电状态从恒流充电状态自动进入恒压充电状态。恒压充电状态下,保持恒定的充电电压,当充电电流下降到规定值时,恒压充电状态终止。还设置最大恒压充电状态下时间值,一旦方式转换在恒压充电状态下,充电的时间过长,立即停止充电,是锂电池安全充放电的保证。 该系统采用模块化结构,使设备安装简单易于维护。共有512个检测点在每一台设备中,分为8个部分,有64个检测点在每一部分中,配置单独的恒流源在每个检测点上,实现单点独立控制和彼此互不影响的系统。该系统采用DSP 控制器作为主控器控制,8位单片机作为分控制器来控制,一个分控制器控制一个部分。因此使用DSP、单片机、开关恒流源相结合,形成智能的锂电池综合测试系统。如图1所示系统的结构框图。主要组成由 2.1.上位机 上位机通过串行总线发送数据到DSP主控制器,控制器控制系统操作启动、停止、分类的信息等,并实时接收主控制器电池测试数据。进行数据显示,并绘制曲线图。我们选用PC机作为上位机。

锂离子电池开题报告

一、国内外研究动态、选题依据和意义 锂离子电池是20世纪70年代以后发展起来的一种新型储能电池。由于其具有高能量、寿命长、低能耗、无公害、无记忆效应以及自放电小、内阻小、性价比高、污染少等优点,锂离子电池在逐步应用中显示出巨大的优势,广泛应用于移动电话、笔记本电脑、摄像机、数码相机、电动汽车、储能、航天等领域。[1]锂离子电池主要由正极、负极、和电解质溶液等组成。电极材料是决定锂离子电池的整体性能水平的关键。电解质溶液的性质、组成和浓度也是决定锂离子电池充放电性能的重要因素,对于锂离子电池的制备工艺也起重要的作用。锂离子电池正极、负极和电解质材料的研究是整个锂离子电池研究领域的重点,备受世界的重视。[3] 在第215届电化学会议中,新型电极材料仍是锂离子电池的研究热点之一,与传统正极材料LiMn204、LiCoO2、LiMnPO4相比,LiFePO4正极材料所特有的安全性能引起了人们的重视。其中粘结剂作为非导电的活性材料在锂离子电池中的重要性开始逐渐被认识和接受。美国劳伦斯伯克利国家实验室研究了电极循环性能与电极片机械能的关系,发现电极的机械能与长期循环性能的关系密切,电极的损坏,特别是碳负极的损坏主要源于极片力学性能的下降,指出电极材料并不是决定电极性能的唯一因素,粘结剂的性能和极片的制备方法、工艺也是必须考虑的。[4] 近年来,许多研究者不再局限于对某一材料的制备与优化,开始着眼于整个系统的匹配,优化电极片和制备方法,瞄准动力汽车的需求设计高能量电池和高功率电池,分析电池衰退的原因,开发满足动力电池需要的3000至5000次循环寿命的长寿命锂离子电池。[7] 涉及锂离子电池的研究内容和手段不断的丰富,对于锂离子电池制备工艺的提高也有很大的促进与提高。锂离子电池的制备工艺涉及多个方面的研究与创新,本课题的学习与研究是对我们大学学习的一个重要的总结与检验。[10] 二、研究的基本内容,拟解决的主要问题 1.研究内容 本研究主要是通过对电池正极片、负极片的制备工艺(包括原料的选择和原料配比等)以及电池组装工艺的优化来制备容量和循环性能较好的扣式电池。 2.解决的问题 (1)研磨充分、搅拌均匀、浆液粘度适中以保证制得的正极片无粉末脱落。(2)涂布均匀、涂层厚度适中以获得较好的循环性能。 (3)使组装好的电池的工装紧密度适中以保证测试结构具有较好的准确性和可靠性。[1]

开题报告——基于单片机的锂离子电池电量检测系统毕业设计论文

(此文档为word格式,下载后您可任意编辑修改!) 南昌工程学院 09 级毕业(设计)论文开题报 告 机械与电气工程学院系(院)电气工程及其自动化专 业 题目基于单片机的锂离子电池电量检测系统设计 班级09电气工程及其自动化(1)班 学号 指导教师饶繁星

日期2013 年 1 月 4 日 南昌工程学院教务处订制

题目:基于单片机的锂离子电池电量检测系统设计 一、选题的依据及课题的意义 随着手机、数码相机、摄像机、手提电脑、音频视频播放器等便携式电子设备的迅猛发展,由于其便携性的特点,便携式设备必须由电池来进行供电。目前,便携式仪表的主流供电电池有铅酸电池,镍镉电池,镍氢电池,锂电池和锂聚合物电池等。与其它主流可充电电池相比,具有高单体电池电压、高功率密度、长循环寿命、无记忆效应、低自放电率等优点。锂电池是指以锂为负极材料的化学电池的总称,大致可分为两类:锂金属电池和锂离子电池。锂离子电池不含有金属态的锂,该类电池具有较高能量质量比和能量体积比。 为了提高电池的使用率及全面掌握电池的状态,大多数设备在应用场合需要显示电池组的剩余电量信息,以供使用者明确电池组的工作状态,及时对电池组进行充电。在电池放电过程中,电池电压与剩余电量、工作时间之间并不是线性关系,所以并不能简单地采用电压采样、函数计算剩余电量。针对该要求,设计了一种基于单片机的锂离子电池电量检测系统,该检测系统的设计对全面掌握锂离子电池的电量状态,提高其利用率具有现实意义。本设计的研究成果若能广泛应用于便携式电子产品,为人类日常生活和生活质量的提高有着深远的意义。

二、研究概况及发展趋势综述 锂电池常用的电量检测方法有两种,一种是利用库仑计,根据电池工作的电流与时间进行计算出电池的实际容量,此种检测方法是最准确的检测方法,一般用的芯片有TI,美信等电池管理芯片,但是成本太高,调试复杂。另一种方法是利用电池工作的电压曲线来分析出电池的容量,这种方式比较简单,成本也低,由于直接采用比较器如LM339,LM324等,检测精度低,检测相对很不准确,温漂大,功耗大。 在满足要求的前提下,本设计尽可能采用简单的锂离子电池电量检测方案,提出的基于单片机的锂离子电池电量检测方案,抗干扰能力强,并且可以实现对锂离子电池电量的高精度检测。 在本设计方案中,没有考虑电池老化等复杂因素对电量检测精度产生的负面影响,所以检测结果稍有误差。未来在要求更高精度的锂离子电池电量检测应用中,该检测系统必须考虑这些复杂问题对检测精度的影响,还需要做进一步的改进,让检测精度提高一个水平。

18650锂电池生产工艺设计2

18650锂电芯诞生全过程揭秘(图) 2014-12-01 10:47:42来源:充电头 导读: 18650是目前最常见的锂电封装方式,无论是当下最流行的三元材料,还是国家力推的磷酸铁锂,以及尚未普及的钛酸锂,均有18650的规格。18650型电芯,采用Cylindrical圆柱形封装方式,这种电芯直径18mm,长度65mm,广泛应用于充电宝、电动车、笔记本、强光手电筒等领域。 OFweek锂电网讯:锂电池是目前数码领域使用最多的电池。其最突出的优点是能量密度高,适用于非常注重体积、便携的数码产品。同时,相对于以往的干电池,锂离子电池可以循环利用,在环保方面也有优势。锂离子电池的正负极材料都可以吸收、释放锂离子。但是锂离子在正极和负极中的化学势能有所不同。负极中的锂离子化学势能高,正极中的锂离子化学势能低。锂离子放电时,负极中存储的锂离子释放出来,被正极所吸收。由于负极中锂离子的化学势能高于正极,这部分势能差就以电能的形式释放出来。充电过程则是上述过程的逆转,将正极中的锂离子释放到负极中。由于这种锂离子在正负极中的来回迁移,锂离子电池又被称为摇椅电池。 18650是目前最常见的锂电封装方式,无论是当下最流行的三元材料,还是国家力推的磷酸铁锂,以及尚未普及的钛酸锂,均有18650的规格。18650型电芯,采用Cylindrical圆柱形封装方式,这种电芯直径18mm,长度65mm,广泛应用于充电宝、电动车、笔记本、强光手电筒等领域,这类封装的好处是规格统一,方便自动化、规模化生产,具有机械强度高、耐冲击性强、良品率高等特点;此外还有Prismatic方形软包封装,常见于手机和平板电脑,这类封装最直接的好处是轻薄,体积小,便携。 在笔记本电脑时代,18650电芯还只是数码产品的幕后英雄。随着智能手机和平板等智能设备的普及,移动电源成为了人们出行必不可少的装备,18650也得以开始从幕后走向前台,被大众所熟知。那么,看似简单的18650电芯是如何诞生?它有什么秘密呢?接下来,让我们一起去探索它的诞生过程。近日笔者有幸进入东莞一家电芯厂拜访学习,将从涂布、组装、测试三方面图文并茂,为大家介绍18650电芯的诞生过程。 电芯的生产过程一:涂布

锂电池各种认证

锂电池要做CCC认证还是CQC认证 锂电池是做CQC认证,测试标准:GB31241 一、什么是CCC认证: 国家强制性产品认证标志名称为“中国强制认证”(China Compulsory Certificatio n), 英文缩写为“CCC”,也可简称“CCC”标志。标志图案和种类国家质检总局和国家认监委公布了第一批实施强制性产品认证目录,该目录以原进口商品安全质量许可制度的产品和安全认证强制性监督管理的产品为基础,进行了少量调整。目录涉及安全、EMC、环保要求,包括19大类,132种产品。 二、CQC认证流程: 1)认证申请和受理; 2)型式试验; 3)工厂审查; 4)抽样检测; 5)认证结果评价和批准; 6)获得认证后的监督。

三、CQC认证资料: 1)填写附件CQC申请表; 2)填写附件工厂检查调查表 3)提供申请人、制造商、生产厂的营业执照、组织机构代码 4)电池和电芯规格书 5)安全关键元器件清单; 6)IC,MOS,PTC等规格书; 7)电池标签 四、CQC认证价格及周期: 正常周期:4-6周 企业申请印度BIS认证时要注意哪些问题 现在很多厂商都将产品出口印度,在印度的产品需要申请BIS认证。对于申请者来说,强制性注册法令主要强调了以下内容,注册申请者应予以关注: 1. 实施日期。 对于本地制造的产品自生产日期起算,对于进口产品自进口日期起算。

对于在生效日期以后到达印度的产品,必须遵守强制性注册要求并加贴自我声明。 如果在该日期以后进入印度,如果没有加贴自我声明标签,将不能清关。 2. 注册申请人。 注册证书申请人/持有人可以是国内制造商或工厂,但注册申请必须由其在印度当地的分公司进行,或授权印度当地代理商向BIS递交申请,直至完成注册。 3. 产品注册码。 产品注册码应由制造商或进口商申请,注册码由BIS提供。 注册码与制造商、工厂地址(即使工厂在海外)和产品相关联。 每个制造单元都需要独立申请注册,即使是由同一家工厂在不同厂址生产的同一产品。制造商(工厂)的本地授权代表可代表工厂进行注册申请。 4. 测试报告。 如果产品是通过OEM方式生产的,且产品已经在海外实验室或是CB实验室按照国际安全标准进行测试或加贴了CE、UL、FCC标志,也需要重新进行测试。 法令要求提交BIS认可的实验室出具的有效测试报告(90天内)提交强制注册。 5. 自我声明标签。

锂电池生产线涂布模块电气控制系统的设计【开题报告】

开题报告 电气工程及其自动化 锂电池生产线涂布模块电气控制系统的设计 一、课题研究意义及现状 锂离子电池是目前理想的新一代绿色能源,它具有储能比能量高、循环寿命长、不会产生污染等优点。由于锂电池有着显著的优越性,世界各国都很重视,尤其是动力锂电池更备受关注。 我国现在已是世界上的电池制造大国,目前的电池产量和出口量都位居世界第一。但需要知道的是,国内目前涉足动力锂电池的企业,无论是材料生产商,电芯制造企业,还是其他配套的企业,多数对行业、市场缺乏深刻了解,在技术上也存在着各种瓶颈,并且一时难以找到有效解决方案。此外,由于锂电技术发展迅速,随着锂电池材料、型号、质量要求以及工艺需求的不断改变,国内还没有建立一套统一的锂电池行业标准。由此可见,我国的整体技术比国外要落后的多,要想在国际市场上占有一席之地,必须要有自己的核心技术。 今后,国内各大锂电池生产企业必须以全自动化、高精度设备为发展方向,生产出具有自主产权的高性能专用生产设备,保证产品的高品质,不断扩大市场需求,走向世界。目前,中国锂电已经进入自足时代,量产能力迅速成长,在性价比上拥有外资品牌暂时无法比拟的优势。不过,在保证电池一致性方面,半自动生产方式显然无法企及全自动化生产。因此不少厂商在市场上初步站稳脚跟之后,不惜投入大量资金引进全自动生产线。由于国内在该行业的落后,技术上的瓶颈得不到解决,国内很多专门生产锂电池设备的大公司也只能先通过引进国外的先进设备,然后经过一段时间的调试和熟悉,摸透生产设备的设计原理和机器性能之后,然后由工程师模仿人家的技术做出自己的设备来。 锂电池属于一个新兴的绿色能源行业,锂电池生产技术也是一门新兴科技。目前,国内从事锂电池设备研究和生产的企业为数很少,主要以深圳雅康、浩能、鸿宝、锂易安等几家公司为主。这几家公司主要以生产间歇式涂布机、连续涂布机、连续分条机、微电脑裁切机、全自动卷绕机、半自动卷绕机等设备为主。在锂电池生产工艺过程中,包含以下环节:搅料、涂布、对辊、剪裁、焊接、卷绕、封装、注液、高温老化、检测、包装。其中,涂布环节显得尤为重要。锂电池的性能和使用寿命等优越性是通过每一道生产工艺过硬的技术参数和生产技术体现出来的,而在涂布这个生产工艺要求最高,极片的厚度、致密度、粘稠度、留白都是随时要调节的重要参数,还有张力、速度、温度等方面的控制,这一系列的技术参数都要求设备具备高精准、高精度的特性,而这一系列动作都要依靠于电气控制,而国内从事于锂电池生产设备研发的相关人员又很少,所以把涂布模块的电气控制系统的研究作为我的毕业设计相当有意义。

电芯正负极的容量匹配设计是个难题,讲明白可不是件容易的事

电芯正负极的容量匹配设计是个难题,讲明白可不是件容易的事 锂电前沿原创作品:网上已有较多的N/P的文章,内容非常不错,也非常有深度。比如:锂圈人的《锂电池设计的N/P比》(见文末延伸阅读)的文章和锂想生活的《Overhang设计对锂电池性能的影响》(见文末延伸阅读)的文章。但是,从业新手普遍对文章中提到的传统石墨负极锂离子电池的N/P设计的实例运用和钛酸锂负极锂电池的N/P比两个问题感到迷茫。本文着重讲述这两个问题,当然由于水平所限,讲述不足的地方,请大牛多多指教。 正文:在设计锂电池时,正确计算正负极容量合理的配比系数非常重要。对于传统石墨负极锂离子电池,电池充放电循环失效短板主要在于负极侧发生析锂、死区等,因此通常采用负极过量的方案。在这种情况下,电池的容量是由正极容量限制,负极容量/正极容量比大于1.0(即N/P 比>1.0)。如果正极过量,在充电时,正极中出来的多余的锂离子无法进入负极,会在负极表面形成锂的沉积以致生成枝晶,使电池循环性能变差,也会造成电池内部短路,引发电池安全问题。因此一般石墨负极锂电池中负极都会略多于正极,但也不能过量太多,过量太多会消耗正极中的锂;另外也会造成负极浪费,降低电池能量密度,提高电池成本。

对于钛酸锂负极电池,由于LTO负极结构较稳定,具有高的电压平台,循环性能优异且不会发生析锂现象,循环失效原因主要发在正极端,电池体系设计可取的方案是采用正极过量,负极限容(N/P 比<1.0),这样可以缓解当电池接近或处于完全充电状态时在高电位区域正极电位较高导致电解质分解。 图1、石墨负极不足和负极过量时电池性能趋势图 传统石墨负极锂离子电池 N/P比的计算实例 N/P比(Negative/Positive)是指负极容量和正极容量的比值,其实也有另外一种说法叫CB(cell Balance)。 一般情况下,电池中的正负极配比主要由以下因素决定: ①正负极材料的首次效率:要考虑所有存在反应的物质,包括导电剂,粘接剂,集流体,隔膜,电解液。 ②设备的涂布精度:现在理想的涂布精度可以做到100%,如果涂布精度差,要加以考虑。 ③正负极循环的衰减速率:如果正极衰减快,那么N/P比设计低些,让正极处于浅充放状态,反之如果负极衰减快,那么N/P比高些,让负极处于浅充放状态 ④电池所要达到的倍率性能。

2020年锂电池检测系统行业分析

2020年锂电池检测系统行业分析 一、行业变动趋势及原因 (2) 二、影响行业发展的因素 (2) 1、有利因素 (2) (1)国家政策对锂电池及其设备制造行业的大力支持 (2) (2)锂电池行业市场需求旺盛,下游厂商寻求产能扩张 (3) (3)下游厂商对设备性能、可靠性和智能化的需求增加 (3) (4)全球锂电池生产线逐步向中国转移 (4) (5)充电基础设施有望进入快速发展阶段 (5) (6)消费类和小动力锂电池市场增长 (6) (7)电化学储能装机规模快速增长 (7) 2、不利因素 (8) (1)国内企业在资金、技术、规模等方面与国际先进水平尚存差距 (8) (2)缺乏综合型专业人才 (8) (3)行业标准缺乏 (8) 三、行业经营模式 (9) 四、行业竞争格局 (10)

一、行业变动趋势及原因 经过多年发展与积累,新能源汽车产业技术水平显著提升、产业体系日趋完善,产销量、保有量提升,电动化、网联化、智能化发展势头强劲,共享化市场孕育兴起,产业进入叠加交汇、融合发展新阶段。根据中国汽车工业协会数据显示,2019年我国新能源汽车产销量分别达到124.2万辆和120.6万辆,相较于2014年10.32万辆与9.74万辆的产销量,年复合增长率分别为164.47%和165.41%,新能源汽车市场正处于快速发展阶段,进而带动了锂电池行业的发展,直接促进了多家大型锂电池厂商进行产能扩容或兴建新厂。 市场的快速发展将带动锂电池检测系统、锂电池智能制造设备、储能相关产品及智能充电基础设施等相关产业快速发展。但由于国家逐步降低对新能源汽车的补贴,造成新能源汽车企业利润下降,也对锂电池成本的降低提出了新的要求,成本压力将传导至锂电池设备企业,因此,不排除未来锂电池检测系统产品价格下降的可能。 二、影响行业发展的因素 1、有利因素 (1)国家政策对锂电池及其设备制造行业的大力支持 锂电池技术是解决大规模电网储能、新能源汽车动力电池等领域技术的主要发展方向,而锂电池生产工艺的提升离不开锂电池设备制造行业的发展。国家目前将电动汽车等新能源行业列入重点发展的新

电池测试系统说明书

电池测试系统使用说明书 2012年09月

目录 第一章简介 (1) 第二章性能概述 (2) 第三章硬件结构 (5) 一、机箱前面板示意图 (5) 二、机箱后面板示意图 (5) 三、电池夹具使用说明 (5) 四、与计算机连接 (6) 第四章控制软件BXTech-BTS使用说明 (7) 一、软件运行环境 (7) 二、安装方法 (7) 三、软件启动 (7) 四、软件功能概述 (8) 五、软件的使用 (9) 第五章售后服务承诺 (20) 第六章附件 (21) 一、设备的安全操作 (21) 二、测试过程的安全保护设置 (22) 警告: 1.使用测试设备前,请仔细阅读本说明书中的安全事项。 2.不正当的测试操作,会导致电池损坏或者发生危险。 3.设备在测试中,设备外壳必须接地,以确保安全正常工作。 4.设备在通电中,不得强行拆拔器件,否则会导致设备损坏

第一章简介 BXTech系列电池测试系统是针对锂聚合物、锂离子、镍氢、镍镉等电池而研制的新一代通用型电池测试系统。该系统支持包括材料研究、电池循环测试、电池化成、容量分选、组合电池测试、成品电池测试、电池测试数据处理等电池测试领域的绝大部分应用。 根据锂离子电池测试标准,锂离子电池在恒流充电后必须经过一个恒压充电过程,才能将电池充满(大约有10-20%甚至多的电能是靠恒压充电充入的),因此,BXTech 系列电池测试系统为每个电池通道设有独立的恒压源及恒流源,恒压源及恒流源均可任意编程控制,这就为锂离子电池测试提供了符合国际测试设备标准的硬件平台。 另外,针对动态内阻测试的需求,每一电池通道可增设独立的脉冲源。 BXTech系列电池测试系统采用模块化结构,系统可升级性好。 模块外形图

卷绕式锂离子电池设计规范

卷绕式锂离子电池设计规范 一、观察给定型号和客户需求 1、型号制定了电池的尺寸(以063048为例,尺寸为6.0×30×48mm) 2、客户要求的容量和电池的放电类别(动力型、高温型、普通型),通常而言电 池所能达到的容量一般为普通型>高温型>动力型(以便确定所需要的材料) 3、材料的选用: 3.1容量≥1000mAh的型号,如果客户无容量或高温要求的用正极CN55系列 3.2有高温要求的型号,正极材料必须使用Co系列,电解液必须用高温电解液 二、卷芯设计 1、容量设计 根据客户要求的最小容量来确定设计容量。 设计容量(mAh)= 要求的最小容量×设计系数=(长×2-刮粉)×宽÷10000×面密度×理论克容量 注:设计系数: 标称容量≤200mAh设计系数一般取1.10~1.20; 标称容量200<C≤350mAh设计系数一般取1.08±0.02; 标称容量C>350mAh设计系数一般取1.07±0.02。 2、卷针的设计 2.1 卷针的宽度 Wj=电芯的宽度-卷针厚度-电芯的厚度-1.7(根据实际情况而定) 2.2 卷针厚度 Tj由卷针的宽度决定,具体见卷针统计表。

3、包装膜尺寸设计 3.1包装膜膜腔长度的确定: 膜腔长度=成品高-顶封宽度(5mm) 3.2包装膜膜腔长度的确定: 膜腔宽度=成品宽-1.2mm 3.3 槽深的设计: 槽深H与电芯厚度的关系如下:H = T-α 其中: T —电芯的厚度; α—当型号为双坑电池时,α取0.2 当型号为单坑电池时,α取-0.2 3.4 包装袋长、宽尺寸的确定: 3.4.1 包装袋宽度: a. 厚度≤5mm的电池铝塑膜宽度为电池本体宽度+(45~50mm),取代5mm 的整数倍为规格; b. 厚度﹥5mm的电池铝塑膜宽度为电池本体宽度+(55~60mm),取代5mm 的整数倍为规格; 3.4.2包装袋长度: 铝塑膜长度=成品电池长度×2+10mm 5、极片的设计: 5.1隔膜宽度=卷芯高度=电芯高度-5mm,(客户容量要求高的小型号电池或极片较 宽的各别型号除外);

bq24032锂电池充电的开题报告

毕业设计(论文) 开题报告 题目基于BQ24032的 锂电池充电管理系统 专业电气工程与自动化 班级 学生 指导教师 重庆交通大学 2012年

一、选题目的的理论价值和现实意义 随着社会经济的迅速发展,电动汽车、移动电话、数码相机、笔记本电脑等便携式电子产品的普及,消费者对电池电能要求日渐提高;人们希望在获得大容量电能的同时, 能够尽量减轻重量, 提高整个电源系统的使用效率和寿命。锂电池作为上世纪九十年代发展起来的一种新型电池, 因具有能量密度高、性能稳定、安全可靠和循环寿命长等一系列的优点,很快在便携式电子设备中获得广泛应用,更获得了广大消费者的青睐。由此可见,设计一套高精度锂电池充电管理系统对于锂电池应用至关重要。它能够实现蓄电池充放电过程的智能化监测、控制与管理,提高电池的功率因数,对于节约能源和提高能源利用率,有积极的意义,能够真正体现“绿色”电能变换,具有较高的使用价值! 今天,由于人们对系统性能和成本控制要求的不断提高,嵌入式系统凭借其优良的性价比和独特的便利性得到了越来越多的人们的青睐,而嵌入式系统由于其使用环境的特殊性,要求电源性能稳定、体积小、能量大、续航时间长,锂电池就是符合这些要求的一种电源。但锂电池的充放电特点导致其管理要求比较高。BQ24032是TI公司推出的锂电池专用电源管理电路集成芯片,适用于1组锂电池的正常充电控制、快速充电控制等。其主要特点是能够可靠的控制充电终止,确保锂电池的充电安全、充电状态指示、以及充电的同时给系统提供高效率的电源。故对基于BQ24032的锂电池充电管理电路进行研究。 二、本课题在国内外的研究状况及发展趋势 在国家鼓励支持及市场前景的推动下,锂离子电池关键技术、关键材料和产品研究都取得了重大进展。其技术和经济性优势显著,推广应用的条件已经日趋成熟。如中信国安盟固利公司提供给北京奥运电动车的新型锂离子动力电池总成比能量已经超过90wh/kg。 但是此前一阶段锂离子电池工作关注重点是关键技术、关键材料和产片研究。锂离子电池的成组技术,成组充电、放电和维护管理等应用技术没有得到应有的重视,致使锂离子电池的充电、放电和维护管理技术及设备研究严重滞后于电池技术达到发展。当前仍然普遍采用的是不能适应锂离子电池特点的电池应用

锂离子电池设计公式

锂离子电池设计公式 一、叠片式聚合物锂离子电池设计规范 1.设计容量 为保证电池设计的可靠性和使用寿命,根据客户需要的最小容量来确定设计容量。 设计容量(mAh)=要求的最小容量 x设计系数(1) 设计系数一般取 1.03?1.10。 2.极片尺寸设计 根据所要设计电池的尺寸,确定单个极片的长度、宽度。 极片长度Lp : Lp =电池长度—A -B (2) 极片宽度Wp : Wp =电池宽度—C (3) 包尾极片的长度 Lp': Lp ' = 2Lp+ T1.0 (4) 包尾极片的宽度 Wp : Wp = Wp0.5 (5) 其中: A —系数,取值由电池的厚度T决定,当 (1) T<3mm时,对于常规电芯 A 一般取值4.5mm,大电芯一般取值 4.8mm; (2) 3mm < T<4mm时,对于常规电芯 A 一般取值 4.8mm,大电芯一般取值 5.0mm ; (3) 4mm < T<5mm时,对于常规电芯 A 一般取值 5.0mm,大电芯一般取值 5.2~6.0mm ; (4) 5mm < T<6mm时,对于常规电芯 A 一般取值 5.2mm, 大电芯一般取值 5.4~6.0mm。 B —间隙系数,一般取值范围为 3.6?4.0mm ; C —取值范围一般为 2.5?2.6mm (适用于双折边); T'—电芯的理论叠片厚度,T'的确定见6.1节. 图1.双面极片、单面正极包尾极片示意图 3.极片数、面密度的确定: 确定极片的数量 N,并根据电池的设计容量来确定电极的面密度,电池的设计容量一般由正极容量决定,负极容量过剩。在进行理论计算时,一般正极活性物质的质量比容量取140mAh/g,负极活性物质的质量比容量取 300mAh/g。 N = (T-0.2 ) /0.35 ± (6) 注:计算时N取整,并根据面密度的值来调整N。 S 极片=Lp XWp ( 7) C 设=C 正比xS 极片x NXpE X TJE ( 8)

相关主题
文本预览
相关文档 最新文档