当前位置:文档之家› 80C51的结构和原理

80C51的结构和原理

第2章80C51的结构和原理

80C51系列概述

2.1

80C51的基本结构与应用模式

2.2

80C51典型资源配置与引脚封装2.3

80C51单片机的CPU

2.480C51的存储器组织2.580C51的并行口结构与操作

2.6

山东交通学院息科学与电气工程学

2.180C51系列概述

2.1.1 MCS-51系列

8051/8751/80318052/8752/803280C 51/87C 51/80C 3180C 52/87C 52/80C 32等

MCS-51是Intel公司生产的一个单片机系列名称。这一系列的单片机有多种,如:

山东交通学院息科学与电气工程学

生产工艺有两种:

在产品型号中凡带有字母“C ”的即为C HMOS 芯片,CHMOS 芯片的电平既与TTL 电平兼容,又与CMOS 电平兼容。如87C 51。

一是HMOS工艺(高密度短沟道MOS工艺)。二是C HMOS工艺(互补金属氧化物的HMOS工艺)。

山东交通学院息科学与电气工程学

功能上,有基本型和增强型2大类:

增强型:

8052/8752/803280C52/87C52/80C32

基本型:

8051/8751/803180C51/87C51/80C31山东交通学院息科学与电气工程学

在片内程序存储器配置上,有3种形式,即掩膜ROM 、EPROM 和ROMLess 。如:

80C 51有4K字节的掩膜ROM 87C51有4K字节的EPROM

80C 31在芯片内无程序存储器。

山东交通学院息科学与电气工程学

2.1.2 80C51系列

各厂商以8051为基核开发出的CMOS单片机统称为80C51系列。常用产品有:

Intel :80C31、80C51、87C51,80C32、80C52、87C52等;

ATMEL :89C51、89C52、89C2051等;

Philips 、华邦、Dallas 、Siemens 等公司的许多产品。

本课程主要是讲解关于AT89C51/S51

山东交通学院息科学与电气工程学

2.280C51的基本结构与应用模式

2.2.1 80C51的基本结构

山东交通学院息科学与电气工程学

2.2.2 80C51的应用模式

带总线扩展引脚的产品

74L S 373

扩展总线的应用模式

不扩展总线的应用模式

山东交通学院息科学与电气工程学

没有总线扩展引脚的产品

引脚数减少、体积减小。对于不需进行并行外围扩展,装置的体积要求苛刻且程序量不大的系统极其适合。

典型产品,如:

AT89S2051/AT89S4051。

山东交通学院息科学与电气工程学

2.380C51典型产品资源配置与引脚封装

2.3.1 80C51典型产品资源配置

山东交通学院息科学与电气工程学

由表可见:

增强型与基本型的几点不同:片内ROM:从4K增加到8K 片内RAM:从128增加到256定时/计数器:从2个增加到3个中断源:从5个增加到6个。

山东交通学院息科学与电气工程学

无ROM 型,要在片外扩展程序存储器;掩膜ROM 型,程序由芯片生产厂写入;EPROM 型,程序通过写入装置写入;FlashROM 型,程序可电写入(常用)。

片内ROM的配置形式:

还有OTPROM 型,具有较高的可靠性

型,具有较高的可靠性。山东交通学院息科学与电气工程学

2.3.2 80C51的引脚封装

1 2 3 4 5 6 7 8 9 1011121314151617181920

40393837363534333231302928 27 26 25 24 23 22 21

1 2 3 4 5 6 7 8 9 10

201918 17 16 15 14 13 12 11

RST P3.0/RXD P3.1/TXD XTAL2XTAL1P3.2/INT0P3.3/INT1 P3.4/T0P3.5/T1GND

Philips

87LPC6420 8XC748/750/75124

8X74975228 8XC75428

山东交通学院息科学与电气工程学

引脚简介

P3口线的第二功能

VCC VSS

XTAL2XTAL1RST P0. 0P0.1P0.2 P0.3 P0.4 P0.5 P0.6 P0.7P1. 0

P1.1P1.2 P1.3 P1.4 P1.5 P1.6 P1.7P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2. 0

ALE P3. 0P3.1P3.2 P3.3 P3.4 P3.5 P3.6 P3.72、振荡电路:XTAL1、XTAL2

3、复位引脚:RST

4、并行口:P0、P1、P2、P3

7、ALE :地址锁存控制信号

1、电源线:VCC(+5V)、VSS(地)EA PSEN 5、EA :访问程序存储控制信号6、PSEN :外部ROM 读选通信号

RXD/TXD/INT0/ INT1/ T0/ T1/WR/RD/1234567891011121314151617181920

4039383736353433323130292827262524242221

80318051 8751

89C51

山东交通学院息科学与电气工程学

40只引脚按功能分为3类:

(1)电源及时钟引脚: Vcc、Vss;XTAL1、XTAL2。

(2)控制引脚:PSEN *、EA *、ALE、RESET (即RST)。(3)I/O口引脚:P0、P1、P2、P3,为4个8位I/O口的外部引脚。

1 电源及时钟引脚

1.电源引脚

(1)Vcc(40脚):+5V电源;(2)Vss(20脚):接地。

山东交通学院息科学与电气工程学

2.时钟引脚

(1)XTAL1(19脚):如果采用外接晶体振荡器时,此引脚应接地。

(2)XTAL2(18脚):接外部晶体的另一端。

2 控制引脚

提供控制信号,有的引脚还具有复用功能。(1) RST/V PD (9脚):复位与备用电源。

(2) ALE/PROG *(30脚):第一功能ALE为地址锁存允许,可驱动8个LS型TTL负载。

PROG *为本引脚的第二功能。为编程脉冲输入端。

山东交通学院息科学与电气工程学

(3) PSEN *(29脚):外部程序存储器的读选通信号。可以驱动8个LS型TTL负载。

(4) EA */V PP (Enable Address/Voltage

Pulse

of

Programing,31脚)

EA *为内外程序存储器选择控制端。EA *=1,访问片内程序存储器,但在PC(程序计数器)值超过0FFFH (对于8051、8751)时,即超出片内程序存储器的4K 字节地址范围时,将自动转向执行外部程序存储器内的程序。

EA *=0,单片机则只访问外部程序存储器。

山东交通学院息科学与电气工程学

V PP 为本引脚的第二功能。用于施加编程电压(例如+21V或+12V)。对89C51,加在V PP 脚的编程电压为+12V或+5V。3 I/O口引脚

(1) P0口:双向8位三态I/O口,此口为地址总线(低8位)及数据总线分时复用口,可驱动8个LS型TTL负载。(2) P1口:8位准双向I/O口,可驱动4个LS型TTL负载。(3) P2口:8位准双向I/O口,与地址总线(高8位)复用,可驱动4个LS型TTL负载。

山东交通学院息科学与电气工程学

(4) P3口:8位准双向I/O口,双功能复用口,可驱动4个LS型TTL负载。

注意:准双向口与双向三态口的差别。 当3个准双向I/O口作输入口使用时,要向该口先写“1”。

准双向I/O口无高阻的“浮空”状态。

山东交通学院息科学与电气工程学

单片机原理及应用电子教案

电子教案2.4 80C51的CPU

山东交通学院息科学与电气工程学

旋光仪工作原理

旋光仪工作原理 从光源 (1)射出的光线,通过聚光镜 (3)、滤色镜 (4)经起偏镜 (5)成为平面偏振光,在半波片 (6)处产生三分视场。通过检偏镜 (8)及物、目镜组 (9)可以观察到如图二所示的三种情况。转动检偏镜,只有在零度时 (旋光仪出厂前调整好)视场中三部分亮度一致当放进存有被测溶液的试管后,由于溶液具有旋光性,使平面偏振光旋转了一个角度,零度视场便发生了变化 (如图二a或c)转动检偏镜一定角度,能再次出现亮度一致 的视场。这个转角就是溶液的旋光度,它的数值可通过放大镜 (10)从度盘 (11)上读出。测得溶液的旋光度后,就可以求出物质的比旋度。根据比旋度的大小,就能确定该物质的纯度和含量了为便于操作,旋光仪的光学系统以倾斜20°安装在基座上。光源采用20瓦钠光灯(波长λ=5893A°)。钠光灯的限流器安装在基座底部,毋需外接限流器。旋光仪的偏振器均为聚乙烯醇人造偏振片。三分视界是采用劳伦特石英板装置(半波片)。转动起偏镜可调整三分视场的影荫角 (旋光仪出厂时调整在3°左右)。旋光仪采用双游标读数,以消除度盘偏心差。度盘分360格,每格1°,游标分20格,等于度盘19格,用游标直接读数到0.05°(如图四)。度盘和检偏镜固为一体,借手轮(1)能作粗、细转动。游标窗前方装有两块4倍的放大镜,供读数时用。 二、旋光仪使用方法: (1)将旋光仪接于220V交流电源。开启电源开关,约5分钟后钠光灯发光正常,就可开始工作。 (2)检查旋光仪零位是否准确,即在旋光仪未放试管或放进充满蒸馏水的试管时,观察零度时视场亮度 是否一致。如不一致,说明有零位误差,应在测量读数中减去或加上该偏差值。或放松度盘盖背面四只螺钉,微微转动度盘盖校正之(只能校正0.5°左右的误差,严重的应送制造厂检修) (3)选取长度适宜的试管,注满待测试液,装上橡皮圈,旋上螺帽,直至不漏水为止。螺帽不宜旋得太紧,否则护片玻璃会引起应力,影响读数正确性。然后将试管两头残余溶液揩干,以免影响观察清晰度及测定精度。 (4)测定旋光读数:转动度盘、检偏镜、在视场中觅得亮度一致的位置,再从度盘上读数。读数是正的为右旋物质,读数是负的为左旋物质。 (5)采用双游标读数法可按下列公式求得结果:式中:A和B分别为两游标窗读数值。如果A=B,而且度盘转到任意位置都符合等式,则说明旋光仪没有偏心差(一般出厂前旋光仪均作过校正),可以不用对项读数法。 (6)旋光度和温度也有关系。对大多数物质,用λ=5893A°(钠光)测定,当温度升高1℃时,旋光度约减少0.3%。对于要求较高的测定工作,最好能在 20℃±2℃的条件下进行。 三、旋光仪的维护

AT89C51单片机的基本结构和工作原理

AT89C51单片机的主要工作特性: ·内含4KB的FLASH存储器,擦写次数1000次; ·内含28字节的RAM; ·具有32根可编程I/O线; ·具有2个16位可编程定时器; ·具有6个中断源、5个中断矢量、2级优先权的中断结构; ·具有1个全双工的可编程串行通信接口; ·具有一个数据指针DPTR; ·两种低功耗工作模式,即空闲模式和掉电模式; ·具有可编程的3级程序锁定定位; AT89C51的工作电源电压为5(1±0.2)V且典型值为5V,最高工作频率为24MHz. AT89C51各部分的组成及功能: 1.单片机的中央处理器(CPU)是单片机的核心,完成运算和操作控制,主要包括运算器和控制器两部分。

(1)运算器 运算器主要用来实现算术、逻辑运算和位操作。其中包括算术和逻辑运算单元ALU、累加器ACC、B寄存器、程序状态字PSW和两个暂存器等。 ALU是运算电路的核心,实质上是一个全加器,完成基本的算术和逻辑运算。算术运算包括加、减、乘、除、增量、减量、BCD码运算;逻辑运算包括“与”、“或”、“异或”、左移位、右移位和半字节交换,以及位操作中的位置位、位复位等。 暂存器1和暂存器2是ALU的两个输入,用于暂存参与运算的数据。ALU的输出也是两个:一个是累加器,数据经运算后,其结果又通过内部总线返回到累加器;另一个是程序状态字PSW,用于存储运算和操作结果的状态。 累加器是CPU使用最频繁的一个寄存器。ACC既是ALU处理数据的来源,又是ALU运算结果的存放单元。单片机与片外RAM或I/O扩展口进行数据交换必须通过ACC来进行。 B寄存器在乘法和除法指令中作为ALU的输入之一,另一个输入来自ACC。运算结果存于AB寄存器中。 (2)控制器 控制器是识别指令并根据指令性质协调计算机内各组成单元进行工作的部件,主要包括程序计数器PC、PC增量器、指令寄存器、指令译码器、定时及控制逻辑电路等,其功能是控制指令的读入、译码和执行,并对指令执行过程进行定时和逻辑控制。AT89C51单片机中,PC是一个16位的计数器,可对64KB程序存储器进行寻址。复位时PC的内容是0000H. (3)存储器 单片机内部的存储器分为程序存储器和数据存储器。AT89C51单片机的程序存储器采用4KB的快速擦写存储器Flash Memory,编程和擦除完全是电器实现。 (4)外围接口电路 AT89C51单片机的外围接口电路主要包括:4个可编程并行I/O口,1个可编程串行口,2个16位的可编程定时器以及中断系统等。 AT89C51的工作原理: 1.引脚排列及功能 AT89C51的封装形式有PDIP,TQFP,PLCC等,现以PDIP为例。 (1)I/O口线 ·P0口 8位、漏极开路的双向I/O口。 当使用片外存储器及外扩I/O口时,P0口作为低字节地址/数据复用线。在编程时,P0口可用于接收指令代码字节;程序校验时,可输出指令字节。P0口也可做通用I/O口使用,但需加上拉电阻。作为普通输入时,应输出锁存器配置1。P0口可驱动8个TTL负载。 ·P1口 8位、准双向I/O口,具有内部上拉电阻。 P1口是为用户准备的I/O双向口。在编程和校验时,可用作输入低8位地址。用作输入时,应先将输出锁存器置1。P1口可驱动4个TTL负载。 ·P2 8位、准双向I/O口,具有内部上拉电阻。 当使用外存储器或外扩I/O口时,P2口输出高8位地址。在编程和校验时,P2口接收高字节地址和某些控制信号。 ·P3 8位、准双向I/O口,具有内部上拉电阻。 P3口可作为普通I/O口。用作输入时,应先将输出锁存器置1。在编程/校验时,P3口接收某些控制信号。它可驱动4个TTL负载。 (2)控制信号线

WZZ-2型自动旋光仪的原理与使用

WZZ-2型自动旋光仪的原理与使用 (一)仪器的用途 旋光仪是测定物质旋光度的仪器。通过对样品旋光度的测定,可以分析确定物质的浓度、含量及纯度等。WZZ-2自动旋光仪采用光电检测自动平衡原理,进行自动测量。测量结果由数字显示。它既保持了WZZ-1自动指示旋光仪稳定可靠的优点,又弥补了它的读数不方便的缺点,具有体积小,灵敏度高,没有人差,读数方便等特点。对目视旋光仪难以分析的低旋光度样品也能适应。因此广泛应用于医药、食品、有机化工等各个领域。 农业:农用抗菌素、农用激素、微生物农药及农产品淀粉含量等成份分析。 医药:抗菌素、维生素、葡萄糖等药物分析,中草药药理研究。 食品:食糖、味精、酱油等生产过程的控制及成品检查,食品含糖量的测定。 石油:矿物油之分析、石油发酵工艺的监视。 香料:香精油之分析。 卫生事业:医院临床糖尿病分析。 (二)仪器的性能 (1)测定范围:±45o (2)准确度:±(0.01°+测量值X5/10000) (3)可测样品最低透过率:10%(对钠黄光而言) (4)读数重复性:≤0.01o (5)显示器自动数字显示 最小示值:0.005o 速度:1.30o/秒 (6)单色光源:钠光灯加滤色片(589.3毫微米) (7)试管:200毫米、100毫米两种

(8)电源:200伏±10伏50赫兹220伏安 (9)仪器尺寸:606毫米×310毫米×212毫米 (10)仪器净重:27公斤 仪器的结构及原理 仪器采用20瓦钠光灯作光源,由小孔光栏和物镜组成一个简单的点光源平行光管(图一),平行光经偏振镜(一)变为平面偏振光,其振动平面为00(图二a),当偏振光经过有法拉弟效应的磁旋线圈时,其振动平面产生50赫兹的β角往复摆动(图二b),光线经过偏振镜(二)投射到光电倍增管上,产生交变的电讯号。

旋光仪测定溶液的浓度及旋光度

实验二 旋光仪测定溶液的浓度及旋光度 【实验目的】 1、 加深对旋光现象的理解,观察线偏振光通过旋光物质的旋光现象。 2、 掌握旋光仪的构造原理和使用方法。 3、 测定糖溶液的比旋光率及其浓度。 【实验仪器】 4、 1、WXG-4小型旋光仪 5、 2、烧杯 3、蔗糖 4、葡萄糖 5、蒸馏水 6、物理天平 7、玻璃棒 8、温度计 等。 【实验原理】 光是电磁波,它的电场和磁场矢量互相垂直,且又垂直于光的传播方向。通常用电矢量代表光矢量,并将光矢量与光的传播方向所构成的平面称为振动面。在传播方向垂直的平面内,光矢量可能有各种各样的振动状态,被称为光的偏振态。若光的矢量方向是任意的,且各方向上光矢量大小的时间平均值是相等的,这种光称为自然光。若光 矢量可以采取任何方向,但不同的方向其振幅不同,某一方向振动的振幅最强,而与该方向垂直的方向振动最弱,则称为部分偏振光。若光矢量的方向始终不变,只是其振幅随位相改变,光矢量的末端轨迹是一条直线,则称为线偏振光。 当线偏振光通过某些透明物质(例如糖溶液)后,偏振光的振动面将以光的传播方向为轴线旋转一定角度,这种现象称为旋光现象。旋转的角度φ称为旋光度。能使其振动面旋转的物质称为旋光性物质。旋光性物质不仅限于像糖溶液、松节油等液体,还包括石英、朱砂等具有旋光性质的固体。不同的旋光性物质可使偏振光的振动面向不同方向旋转。若面对光源,使振动面顺时针旋转的物质称为右旋物质;使振动面逆时针旋转的物质称为左旋物质。 实验证明,对某一旋光溶液,当入射光的波长给定时,旋光度φ与偏振光通过溶液的长度l 和溶液的浓度c 成正比,即 cl φα= (1) 式中旋光度φ的单位为“度”,偏振光通过溶液的长度l 的单位为dm ,溶液浓度的单位为1 -?ml g 。α为该物质的比旋光率,它在数值上等于偏振光通过单位长度(m)单位浓度(1 -?ml g )的溶液后引起的振动面的旋转角度。其单位为度·ml ·dm-1·g-1由于测量时的温度及所用波长对物质的比旋光率都有影响,因而应当标明测量比旋光率时所用波长及测量时的温度。例如 C A ?505893][ α=66.5°, 它表明在测量温度为50°,所用光源的波长为5893A 时,该旋光物质的比旋光率为66.5°。 若已知某溶液的比旋光率,且测出溶液试管的长度l 和旋光度φ,可根据式1求出待测溶液的浓度,即 []t c l λ φ α= (2)

89C51单片机硬件结构和原理

第1部分 89C51单片机硬件结构和原理 1. 89C51单片机片内包含哪些主要逻辑功能部件? 答:89C51单片机是个完整的单片微型计算机。芯片内部包括下列硬件资源: (1)8位CPU; (2)4KB的片内Flash ROM。可寻址64KB程序存储器和64KB外部数据存储器;(3)256B内部 RAM/SFR; (4)21个 SFR; (5)4个8位并行I/O口P0~P3(共32位I/O线); (6)一个全双工uart的异步串行I/O口,用于实现单片机之间或单片机与PC机之间的串行通讯; (7)两个16位定时器/计数器; (8)5个中断源,两个中断优先级; (9)内部时钟发生器。 2. 89C51的EA端有何用途? 答:作外部程序存储器地址允许输入端和固化编程电压输入端。 3. 89C51的存储器分哪几个空间?如何区别不同空间的寻址? 答:89C51存储器包括程序存储器和数据存储器,从逻辑结构上看,可以分为三个不同的空间: (1)64KB的程序存储器地址空间:0000H~FFFFH,其中0000H~0FFFH为片内4KB的Flash ROM地址空间,1000H~FFFFH为外部ROM地址空间; (2)256B的内部数据存储器地址空间,00H~FFH,分为两大部分,其中00H~7FH(共128B单元)为内部静态RAM的地址空间,80H~FFH为特殊功能寄存器的地址空间,21个特殊功能寄存器离散地分布在这个区域; (3)64KB的外部数据存储器地址空间:0000H~FFFFH,包括扩展I/O地址空间。 MCS-51单片机存储器三类空间地址存在重叠,单片机设计了不同的数据传送指令符号来区分:CPU访问片内、片外ROM指令用MOVC,访问片外RAM指令用MOVX,访问片内RAM 指令用MOV。 4. 简述89C51片内RAM的空间分配。 答:89C51内部256B的数据RAM区,包括有工作寄存器组区、可直接位寻址区和数据缓冲区、特殊功能寄存器组区。各区域的特性如下: (1)00H~1FH为工作寄存器组区,共分4组,每组占用8个RAM字节单元,每个单元作为一个工作寄存器,每组的8个单元分别定义为8个工作寄存器 R0~R7。当前工作寄存器组的选择是由程序状态字PSW的RS1、RS0两 位来确定。如果实际应用中并不需要使用工作寄存器或不需要使用4组

CA6140普通车床结构剖析

实验课教案 实验名称:CA6140普通车床结构剖析实验学时:2 实验班级:机制09-1机制09-1(专)实验时间:11-12-1学期第周节一、实验目的及要求: 1、了解机床的用途,总体布局以及机床的主要技术性能;2、对照机床传动系统图,分析机床的传动路线; 3、了解和分析机床主要零件的构造和工作原理。 二、设备及器材: CA6140普通车床 三、环节安排及组织实施: 讲解、示范、指导、总结布置作业。 四、预作报告: 五、课后札记: 六、讲稿及指导计划

实验二CA6140普通车床结构剖析 一、实验目的和要求 1、了解机床的用途,总体布局以及机床的主要技术性能; 2、对照机床传动系统图,分析机床的传动路线; 3、了解和分析机床主要零件的构造和工作原理. 二、车床简介 1、车床的用途 车床类机床:能加工各种零件的回转表面。 内外圆柱面、圆锥面、成形回转表面和旋转体的端面,有的车床还能加工螺纹面及孔加工。 车床上使用工具:主要是车刀、有些车床可用孔加工刀具,如钻头、扩孔钻及铰刀等,和螺纹刀具如丝锥、板牙等。 对车螺纹:主轴的旋转和刀架的移动是两个分运动。(主运动) 对车圆柱面:主轴的旋转和刀架移动是两个独立运动。(主运动和进给运动)。 车床除了能实现表面成形运动外,还有一些不可缺少的辅助运动,如切入运动、退刀运动、有的车床还有刀架的横纵向的机动快移,重型车床还有尾架的机动快移。2、车床的分类,在车床类机床中,按其用途和结构不同可分为: ①卧式车床和落地车床②立式车床③转塔车床④单轴和多轴、自动和半自动车床⑤仿形车床和多刀车床⑥数控车床和车削中心 3、卧式车床,能加工轴类、套类的用途和布局 ①用途、盘类和环类零件上的回转表面(内外圆柱面、圆锥面、环槽及成形回转面)能加工端面、螺纹面;能加工孔(钻孔、扩孔、铰孔)和滚花.见下图

单片机的基本结构与工作原理

第二章单片机的基本结构与工作原理 2·1 80C51 系列单片机在片内集成了哪些主要逻辑功能都件?各个逻辑部件的主要功能是 什么? 答:80C51 系列单片机在片内集成了以下主要逻辑功能部件及分别有如下的主要功能。 (l)CPU(中央处理器):8 位 功能:中央处理器由中央控制器与运算器一起构成。中央控制器是识别指令,并根据指 令性质控制计算机各组成部件进行工作的部件。 (2)片内RAM:128B 功能:在单片机中,用随机存取存储器(RAM)来存储程序在运行期间的工作变量和数据, 所以称为数据存储器。一般,在单片机内部设置一定容量(64B 至256B)的RAM。这样小容 量的数据存储器以高速RAM 的形式集成在单片机内,以加快单片机运行的速度。同时, 这种结构的RAM 还可以使存储器的功耗下降很多。 (3)特殊功能寄存器:21 个 功能:特殊功能寄存器(SFR)是80C51 单片机中各功能部件所对应的寄存器,用以存放 相 应功能部件的控制命令、状态或数据的区域。这是80C51 系列单片机中最有特色的部分。 现在所有80C51 系列功能的增加和扩展几乎都是通过增加特殊功能寄存器(SFR)来达到的。 80C51 系列单片机设有128B 内部数据RAM 结构的特殊功能寄存器(SFR)空间区。除 程序计数器PC 和 4 个通用工作寄存器组外,其余所有的寄存器都在这个地址空间之内。(4)程序存储器:4KB 功能:80C51 单片机的程序存储器用于存放经调试正确的应用程序和表格之类的固定常 数。由于采用16 位的程序计数器PC 和16 位的地址总线,因而其可扩展的地址空间为 64KB,而且这64KB 地址空间是连续、统一的。 (5)并行I/O 口:8位,4 个 功能:为了满足面向控制实际应用的需要,80C51 系列单片机提供了数量多、功能强、 使用灵活的并行I/O 口。80C51 系列单片机的并行I/O 口,不仅可灵活地选作输人或输出,而且还具有多种功能。例如,它既是I/O 口,又是系统总线或是控制信号线等,从而为扩展外部存储器和I/O 接口提供了方便,大大拓宽了单片机的应用范围。 (6)串行接口:全双工,1 个 功能:全双工串行I/O 口,提供了与某些终端设备进行串行通信,或者和一些特殊功能 的器件相连的能力;甚至可用多个单片机相连构成多机系统,使单片机的功能更强和应用更 广。 (7)定时器/计数器:16 位,2 个 功能:在单片机的实际应用中,定时器/计数器提供精确的定时,或者对外部事件进行 计 数。为了减少软件开销和提高单片机的实时控制能力,因而均在单片机内部设置定时器/计 数器电路,通过中断,实现定时/计数的自动处理。 (8)片内时钟电路:1 个 功能:计算机的整个工作是在时钟信号的驱动下,按照严格的时序有规律地一个节拍一 个节拍地执行各种操作的。各种计算机均有自己的固定时序和定时电路。同样,80C51 系

旋光仪三分视野的原理及固体旋光率的测定(精)

旋光仪三分视野的原理及固体旋光率的测定 化学与化工学院2006级化学专业高东亮 20061101023 摘要:旋光仪是测量液体旋光率的仪器,它通过使用三分视野,从而使得测量更为准确,本文介绍了旋光仪三分视野的形成原理。固体的旋光率的测定比较麻烦,很难有合适的仪器测量,本文介绍了用分光光度计改装,从而测量固体旋光率的方法。 关键词:旋光仪三分视野固体旋光率测定 旋光仪三分视野的形成原理 偏振光通过某些晶体或某些物质的溶液以后,偏振光的振动面将旋转一定的角度,这种现象称为旋光现象。这个角α称为旋光角。 当两个尼科尔棱镜的主截面(为折射光线与晶体光轴所构成的平面) 相平行时,第一块尼科尔棱镜射到第二块尼科尔棱镜的平面偏振光全部透过,视野光亮;当两个尼科尔棱镜的主截面相垂直时,则平面偏振光全部不能透过第二块尼科尔棱镜,视野漆黑;当两个尼科尔棱镜的主截面夹角在0~90o之间时,则平面偏振光部分透过第二块尼科尔棱镜,视野半明半暗。 当两块尼科尔棱镜主截面互相垂直(或平行)时,视野是漆黑(或明亮) 的。但在两块尼科尔棱镜中间放入一个装有旋光性物质溶液的旋光管时,因溶液使平面偏振光旋转了一个角度,所以从视野中可见到一定的光度,这时如将检偏镜相应旋转一个角度,又可使视野重新变为 漆黑(或明亮) ,此时检偏镜旋转的角度就是平面 偏振光透过溶液后的旋光度α。 由于肉眼鉴别漆黑(或明亮) 的视野误差较 大,为精确确定旋光度,常采用比较方法即三分视 野法。 原理是在起偏镜后面加一块石英晶体片,石 英片和起偏镜的中部在视场中重叠,如图2所示, 将视场分为三部分。并在石英片旁边装上一定厚度 的玻璃片,以补偿由于石英片的吸收而发生的光亮 度变化,石英片的光轴平行于自身表面并与起偏镜 的偏振化方向夹一小角θ(称影荫角)。由光源发出 的光经过起偏镜后变成偏振光,其中一部分再经过石英片,石英是各向异性晶体,光线通过它将发生双折射。可以证明,厚度适当的石英片会使穿过它的偏振光的振动面转过2θ角,这样进入测试管的光是振动面间的夹角为2θ的两束偏振光。图3中OP表示通过起偏镜后的光矢量,而OP′则表示通过起偏镜与石英片后的偏振光的光矢量,OA表示检偏镜的偏振化方向,OP和OP′与OA的夹角分别为β和β',

WXG-4圆盘旋光仪 原理和结构

旋光仪的原理和结构 1. 旋光现象和旋光度 一般光源发出的光,其光波在垂直于传播方向的一切方向上振动,这种光称为自然光,或称非偏振光。而只在一个方向上有振动的光称为平面偏振光。当一束平面偏振光通过某些物质时,其振动方向会发生改变,此时光的振动面旋转一定的角度,这种现象称为物质的旋光现象,这种物质称为旋光物质。旋光物质使偏振光振动面旋转的角度称为旋光度。尼柯尔(Nicol)棱镜就是利用旋光物质的旋光性而设计的。 2. 旋光仪的构造原理和结构 旋光仪的主要元件是两块尼柯尔棱镜。尼柯尔棱镜是由两块方解石直角棱镜沿斜面用加拿大树脂粘合而成.当一束单色光照射到尼柯尔棱镜时,分解为两束相互垂直的平面偏振光,一束折射率为1.658的寻常光,一束折射率为1.486的非寻常光,这两束光线到达加拿大树脂粘合面时,折射率大的寻常光(加拿大树脂的折射率为1.550)被全反射到底面上的墨色涂层被吸收,而折射率小的非寻常光则通过棱镜,这样就获得了一束单一的平面偏振光。用于产生平面偏振光的棱镜称为起偏镜,如让起偏镜产生的偏振光照射到另一个透射面与起偏镜透射面平行的尼柯尔棱镜,则这束平面偏振光也能通过第二个棱镜,如果第二个棱镜的透射面与起偏镜的透射面垂直,则由起偏镜出来的偏振光完全不能通过第二个棱镜。如果第二个棱镜的透射面与起偏镜的透射面之间的夹角α在0°~90°之间,则光线部分通过第二个棱镜,此第二个棱镜称为检偏镜。通过调节检偏镜,能使透过的光线强度在最强和零之间变化。如果在起偏镜与检偏镜之间放有旋光性物质,则由于物质的旋光作用,使来自起偏镜的光的偏振面改变了某一角度,只有检偏镜也旋转同样的角度,才能补偿旋光线改变的角度,使透过的光的强度与原来相同。旋光仪就是根据这种原理设计的。 3. 影响旋光度的因素 (1) 溶剂的影响 旋光物质的旋光度主要取决于物质本身的结构。另外,还与光线透过物质的厚度,测量时所用光的波长和温度有关。如果被测物质是溶液,影响因素还包括物质的浓度,溶剂也有一定的影响。因此旋光物质的旋光度,在不同的条件下,测定结果通常不一样。因此一般用比旋光度作为量度物质旋光能力的标准。(2) 温度的影响 温度升高会使旋光管膨胀而长度加长,从而导致待测液体的密度降低。另外,

ca6140普通车床参数及结构特点【全面解析】

ca6140普通车床参数及结构特点【全面解析】 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 一、CA6140普通车床传动系统分析与结构组成分析 1.性能简介 CA6140 型普通车床是普通精度级的万能机床,它适用于加工各种轴类,套筒类和盘类零件上的内外回转表面,以及车削端面。它还能加工各种常用的公制、英制、模数制和径节制螺纹,以及作钻孔、扩孔、铰孔、滚花等工作。其加工范围较广,由于它的结构复杂,而且自动化程度低,所以适用于单件小批生产及修配车间。 2.主要部件 图1 CA6140普通车床的结构 1.主轴箱(床头箱) 它固定在床身的左端。在主轴箱中装有主轴,以及使主轴变速和变向的传动齿轮,通过卡盘等夹具装夹工件,使主轴带动工件按需要的转速旋转,实现主运动。 2.刀架它装在刀架导轨上,并可沿刀架导轨作纵向移动,刀架部件由床鞍(大拖板)、横拖板、小拖板和四方刀架等组成。刀架部件是用于装夹车刀,并使车刀作纵向、横向和斜向

的运动。 3.尾架它装在床身右端,可沿尾架导轨作纵向位置的调整,尾架的功能 1.是用后顶尖支承工件, 还可安装钻头,铰刀等孔加工工具,以进行孔加工,尾架作适当调整,以实现加工长锥形的工件。 4.进给箱它位于床身的左前侧,进给箱中装有进给运动的变速装置及操纵机构,其功能是改变被加工螺纹的螺距或机动进给时的进给量。它用来传递进给运动,改变进给箱的手柄位置,可得到不同的进给速度,进给箱的运动通过光杠或丝杠传出。 5.溜板箱它位于床身前侧和刀袈部件相连接,它的功能是把进给箱的运动(光杠或丝杠的旋转运动)传递给绐刀架,使刀架实现纵向进给、横纵向进给、快速移动或车螺纹。 6.床身它固定在左右床腿上,它是车床的基本支承元件,是机床各部件的安装基准,是使机床各部件在工作过程中保持准确的相对位置。 7.光杠和丝杠是将运动由进给箱传到溜板箱的中间传动元件。光杠用于一般车削,丝杠用于车螺纹。 3.传动系统简介 图2 CA6140普通车床的传动系统方框图

MCS-51单片机的结构与原理

第1章MCS-51单片机的结构与原理主要内容:典型单片机( MCS-51, MSP430, EM78, PIC, Motorola, AVR )的性能,MCS-51内部结构、特点、工作方式、时序和最小应用系统。为学生后续学习单片机应用系统设计、利用单片机解决工程实际问题打下坚实的基础。重点在于基本概念、组成原理、特点及MCS-51的最小应用系统,难点在于时序。 1.1 典型单片机性能概览 典型单片机有MCS-51、MSP430、EM78、PIC、Motorola、AVR等。MSP430为低功耗产品,功能较强。EM78为低功耗产品,价格较低。PIC为低电压、低功耗、大电流LCD驱动、低价格产品。Motorola是世界上最大的单片机生产厂家之一,品种全、选择余地大、新产品多。其特点是噪声低,抗干扰能力强,比较适合于工控领域及恶劣的环境。AVR为高速、低功耗产品,支持ISP、IAP,I/O口驱动能力较强。 1.2 MCS-51单片机硬件结构及引脚 MCS-51系列单片机都是以Intel公司最早的典型产品8051为核心,增加了一定的功能部件后构成的,因此,本章以8051为主介绍MCS-51系列单片机。 1.2.1 MCS-51单片机的内部结构 MCS-51单片机的组成: CPU(进行运算、控制)、RAM(数据存储器)、ROM(程序存储器)、I/O口(串口、并口)、内部总线和中断系统等。组成框图如下: 内部结构如下:

1. 中央处理器(CPU) 组成:运算器、控制器。8051的CPU包含以下功能部件: (1)8位CPU。 (2)布尔代数处理器,具有位寻址能力。 (3)128B内部RAM数据存储器,21个专用寄存器。 (4)4KB内部掩膜ROM程序存储器。 (5)2个16位可编程定时器/计数器。 (6)32个(4×8位)双向可独立寻址的I/O口。 (7)1个全双工UART(异步串行通信口)。 (8)5个中断源、两级中断优先级的中断控制器。 (9)时钟电路,外接晶振和电容可产生1.2MHz~12 MHz的时钟频率。 (10)外部程序/数据存储器寻址空间均为64KB。 (11)111条指令,大部分为单字节指令。 (12)单一+5V电源供电,双列直插40引脚DIP封装。 (1)运算器 组成:8位算术逻辑运算单元ALU(Arithmetic Logic Unit)、8位累加器A(Accumulator)、8位寄存器B、程序状态字寄存器PSW(Program Status Word)、8位暂存寄存器TMP1和TMP2 等。

旋光仪测定溶液的浓度及旋光度(最新整理)

但不同的方向其振幅不同,某一方向振动的振幅最 则称为部分偏振光。若光矢量的方向始终 光矢量的末端轨迹是一条直线,则称为线偏振光。当线偏振光通过某些透明物质(例如糖溶液)后,偏振光的振动面将以光 这种现象称为旋光现象。旋转的角度φ称为旋能使其振动面旋转的物质称为旋光性物质。旋光性物质不仅限于像糖溶液、 朱砂等具有旋光性质的固体。不同的旋光性物质可 若面对光源,使振动面顺时针旋转的物质称

由于在亮度不太强的情况下,人眼辨别亮度微小差别的能力较大,所以常取b)所示的视场为参考视场。并将此时检偏镜的位置作为刻度盘的零点,故称该视场为零度视场。 当放进了待测旋光液的试管后,由于溶液的旋光性,使线偏振光的振动面旋转了一定角度,使零度视场发生了变化,只有将检偏镜转过相同的角度,才能再

旋光度为6.33o。且可以通过此旋光度反推溶液的浓度。在做未知蔗糖浓度的眩光实验时,当眩光液停放的时间越久(由于钠光灯发光发热)时,通过旋光度反推出来的溶液浓度越来越大,暨溶质的溶解量越来越大。可推出物质的最大溶解度与温度有光。 【注意事项】 1.配置溶液时要注意天平的使用方法和溶液搅拌的方式。 2.每一种溶液配制时不要超过25ml。 3.溶液注满试管,旋上螺帽,两端不能有气泡,螺帽不宜太紧,以免玻璃窗受力而发生双折射,引起误差。 4.注入溶液后,试管及其两端均应擦拭干净方可放入旋光仪。 5.在测量中应维持溶液温度不变。试管的两端经精密磨制,以保证其长度为确定值,使用要十分小心,以防损坏试管。 6.试管中溶液不应有沉淀,否则应更换溶液。每次调换溶液,试管应清洁——先用蒸馏水荡涤试管,然后再用少许将要测试的溶液荡涤,并同上法操作。7.实验完毕后务必将所用过的试管、烧杯、玻璃棒等用具置于镂空盘中用水冲洗干净!并将糖归置于防潮柜中。 【思考题】 1.测量糖溶液浓度的基本原理? 答:由对于某一眩光溶液,当入射光的波长给定时,旋光度Φ与偏振光通过溶液的长度l和溶液的浓度C成正比,暨 Φ=αcl 所以只要知道溶液的比眩光率,且测出溶液试管的长度l和旋光度φ即可计算出糖的浓度。 2. 什么是旋光现象、比旋光率?比旋光率与哪些因素有关? 答:当线偏振光通过某些透明物质(例如糖溶液)后,偏振光的振动面将以光的传播方向为轴线旋转一定角度,这种现象称为旋光现象。旋转的角度φ称为旋光度。比眩光率与物质本身性质、环境温度、照射波长等有光。 2.什么叫左旋物质和右旋物质?如何判断? 面对光源,使振动面顺时针旋转的物质称为右旋物质;使振动面逆时针旋转的物质称为左旋物质。

旋光仪的使用及注意事项

旋光仪的使用及注意事项 a.测定前应将仪器及样品置20℃士0.5℃的恒温室中或规定温度的恒温室中,也可用恒温水浴保持样品室或样品测试管恒温lh以上,特别是一些对温度影响大的旋光性物质,尤为重 要。 b.未开电源以前,应检查样品室内有无异物,钠光灯源开关是否在规定位置,示数开关是 否在关的位置,仪器放置位置是否合适,钠光灯启辉后,仪器不要再搬动。 c. 开启钠光灯后,正常起辉时间至少20min,发光才能稳定,测定时钠光灯尽量采用直流供 电,使光亮稳定。如有极性开关,应经常于关机后改变极性,以延长钠灯的使用寿命。 d.测定前,仪器调零时,必须重复按动复测开关,使检偏镜分别向左或向右偏离光学零位。 通过观察左右复测的停点,可以检查仪器的重复性和稳定性。如误差超过规定,仪器应维修 后再使用。 e.将装有蒸馏水或空白溶剂的测定管,放入样品室,测定管中若混有气泡,应先使气泡浮 于凸颈处,通光面两端的玻璃,应用软布擦干。测定时应尽量固定测定管放置的位置及方向, 做好标记,以减少测定管及盖玻片应力的误差。 f.同一旋光性物质,用不同溶剂或在不同pH值测定时,由于缔合、溶剂化和解离的情况不 同,而使比旋度产生变化,甚至改变旋光方向,因此必须使用规定的溶剂。 g.浑浊或含有小颗粒的溶液不能测定,必须先将溶液离心或过滤,弃去初滤液测定。有些 见光后旋光度改变很大的物质溶液,必须注意避光操作。有些放置时间对旋光度影响较大的, 也必须在规定时间内测定读数。 h.测定空白零点或测定供试液停点时,均应读取读数三次,取平均值。严格的测定,应在 每次测定前,用空白溶剂校正零点,测定后,再用试剂核对零点有无变化,如发现零点变化 很大,则应重新测定。 i.测定结束时,应将测定管洗净晾干放回原处。仪器应避免灰尘放置于干燥处,样品室内 可放少许干燥剂防潮。 二、技术参数 1. 旋光度测定范围: -180°∽+180° 2. 度盘格值:1° 3. 度盘游标读数值:0.05° 4. 放大镜放大倍数: 4* 5. 单色光源(钠灯)波长: 589.44mm 6. 试管长度: 100mm、200mm各1支

普通车床结构剖析

实验一车床结构剖析 一、目的要求: 1. 了解机床的用途,总体布局,以及机床的主要技术性能。 2. 了解和分析机床主要零部件的构造和工作原理。 3.对照机床传动系统图,分析机床的传动路线。 二、实验仪器及材料: 1. CA6140 普通车床模型一台。 2.挂图一套。 三、实验内容: 1?以CA6140车床为例,介绍机床的用途、布局、各操纵手柄的作用及操作方法。然后开车、空载运转表演,以观察机床各部件的运动。 2.揭开主轴箱盖,根据机床传动系统图和主轴箱展开图,看清各档传动路线及传动件的构造。 2.1 .了解主传动系统的传动路线,主轴的正转、反转、高速、低速是如何调整实现的。 2.2.了解摩擦离合器的结构原理及其调整操纵情况。2.3.观察卸荷皮带轮的结构。 3.挂轮架 了解挂轮架的构造、用途和调整方法。 4.进给箱 观察基本组、增倍组操纵机构,螺纹种类移换机构,以及光杠、丝杠传动的操纵机构。 5.溜板箱 纵向、横向的机动进给及快速移动的操纵机构。丝杠、光杠进给的互锁机构、对开螺母机构。 6.刀架 刀架总本是由床鞍、横刀架、转盘、小刀架及方刀架五部分组成。结合这些部件的结构和装配图分析其工作原理。 7.尾架 观擦尾架的构造,尾架套筒的夹紧方法。尾架套筒与机床主轴中心线同轴度的调整方法。

8.床身 了解床身的整体结构,床身导轨分几组?各组的作用是什么? 四、分析整理实验数据,写出实验报告。 五、思考题:1.机床的主要组成部件有几个?2.卸荷皮带轮是如何使皮带的拉力不传给轴而传给箱体?带轮的扭距又是怎样传给轴的?用简图说明之。 3.摩擦片离合器的工作原理是什么?控制摩擦离合器,完成主轴正、反转,通过什么环节以保持离合器的自锁? 4.超越离合器、安全离合器的用途和工作原理是什么?5.操纵滑移齿轮变速的基本结构是什么?6.根据所列螺纹参数, 列出所加工螺纹的运动平衡式; 并了解螺纹加工过程中的各手柄作用。 7.尾座的功用有哪些?为什么尾座的中心线要比主轴的中心线高出0.06mm?

单片机硬件电路设计

单片机应用设计

概述 单片机是一种大规模的具有计算机基本功能的单片 单片机是一种大规模的具有计算机基本功能的单片集成电路。可以与少量外围电路构成一个小而完善的计算机系统。芯片内置和外围的电路能在软件的控制下准确、迅速、高效地完成程序设计者事先规定的任务。 单片机具有体积小、功耗低、控制功能强、扩 单片机具有体积小、功耗低、控制功能强、扩展灵活、使用方便等优点,广泛应用于仪器仪表、家用电器、医用设备、航空航天、通信产品、智能玩具、汽车电子、专用设备的智能化管理及过程控制等领域。 制等领域。

单片机类型 集中指令集(CISC)和精简指令集(RISC)–采用CISC结构的单片机数据线和指令线分时复 用,即所谓冯.诺伊曼结构。它的指令丰富,功 能较强,但取指令和取数据不能同时进行,速度 受限,价格亦高。 –采用RISC结构的单片机,数据线和指令线分离 ,即所谓哈佛结构。这使得取指令和取数据可同 时进行,且由于一般指令线宽于数据线,使其指 令较同类CISC单片机指令包含更多的处理信息 ,执行效率更高,速度亦更快。同时,这种单片 机指令多为单字节,程序存储器的空间利用率大 大提高,有利于实现超小型化。

常用的几个系列单片机 MCS-51及其兼容系列: –英特尔公司的MCS-51系列单片机是目前应 用最广泛的8位单片机之一,并且ATMEL、 PHILIPS、ADI、MAXIM、LG、 SIEMENS等公司都有其兼容型号的芯片。 这个系列的单片机具有运算与寻址能力强, 存储空间大,片内集成外设丰富,功耗低等 优点,其中大部分兼容芯片都含有片内 FLASH程序存储器,价格便宜。适合应用于 仪器仪表、测控系统、嵌入系统等开发。

单片机结构以及开发设计流程

模块一单片机结构及开发设计流程 课题一单片机结构 1、画出89C51单片机的引脚排列图。 2、画出89C51单片机的引脚功能图。 3、画出89C51单片机的基本组成框图。 4、叙述89C51单片机各部分的具体组成情况。 课题二单片机工作条件 1、画出51系列单片机内部时钟和外部时钟电路接线图。 2、画出51系列单片机上电复位和按键复位电路接线图。 3、画出51系列单片机工作条件接线图。 课题三单片机输入/输出端口结构 1、画出51系列单片机P0、P1、P 2、P3口位结构图。 2、叙述51系列单片机P0~P3口使用注意事项。 课题四单片机开发设计流程 1、用Protel软件画出按键左移亮灯电路原理图。 2、用Protel软件设计出按键左移亮灯电路印制电路板图。 3、制作按键左移亮灯电路板。 4、连接仿真器。 5、运行仿真软件,输入按键左移亮灯程序,编译、调试及仿真运行 程序。 6、连接编程器。 7、运行编程器软件,将调试通过的按键左移亮灯程序目标代码写入 89C51单片机。 8、将经过编程的89C51单片机插入电路板上的单片机IC插座中,脱 机运行,观察电路运行情况。 模块二单片机指令系统及汇编语言程序设计 课题一程序设计基础 1、简述单片机存储器总体分配情况。

2、简述单片机片内数据存储器结构。 3、简述单片机七种寻址方式。 4、简述单片机不同存储器空间的寻址方式。 5、回答下列指令的寻址方式: (1) MOV A, #6AH (2) MOV A, #0E#H (3) MOV A, 3FH (4) MOV A, 7BH (5) MOV A, R1 (6) MOV A, R3 (7) MOV A, @R0 (8) MOV A, @R1 (9) MOVX A, @DPTR (10) MOVC A, @A+DPTR (11) MOV A, @A+PC (12) JZ 50H (13) SETB 01H 课题二延时程序 1、将本课题任务二中的R3的值改为01H、02H和08H,观察亮灯的 间隔时间有何变化? 2、将本课题任务二中的RL A指令改为RR A指令,观察亮灯的顺序 有何变化? 3、将本课题任务二中的亮灯数据初值改为03H、07H和55H,观察亮 灯规律有何变化? 4、设计一延时5S的延时程序,并替代任务二中的延时程序,观察亮 灯间隔时间。 5、设单片机振荡频率为6MHz,试精确计算下列延时子程序的延时时间。 DEL: MOV R7, #0FAH

单片机io口工作原理及结构框图

单片机IO口工作原理及结构框图 8051单片机I/O引脚工作原理 一、P0端口的结构及工作原理 P0端口8位中的一位结构图见下图: 由上图可见,P0端口由锁存器、输入缓冲器、切换开关、一个与非门、一个与门及场效应管驱动电路构成。再看图的右边,标号为P0.X引脚的图标,也就是说P0.X引脚可以是P0.0到P0.7的任何一位,即在P0口有8个与上图相同的电路组成。 下面,我们先就组成P0口的每个单元部份跟大家介绍一下: 先看输入缓冲器:在P0口中,有两个三态的缓冲器,在学数字电路时,我们已知道,三态门有三个状态,即在其的输出端可以是高电平、低电平,同时还有一种就是高阻状态(或称为禁止状态),大家看上图,上面一个是读锁存器的缓冲器,也就是说,要读取D锁存器输出端Q的数

据,那就得使读锁存器的这个缓冲器的三态控制端(上图中标号为‘读锁存器’端)有效。下面一个是读引脚的缓冲器,要读取P0.X引脚上的数据,也要使标号为‘读引脚’的这个三态缓冲器的控制端有效,引脚上的数据才会传输到我们单片机的内部数据总线上。 D锁存器:构成一个锁存器,通常要用一个时序电路,时序的单元电路在学数字电路时我们已知道,一个触发器可以保存一位的二进制数(即具有保持功能),在51单片机的32根I/O口线中都是用一个D触发器来构成锁存器的。大家看上图中的D锁存器,D端是数据输入端,CP是控制端(也就是时序控制信号输入端),Q是输出端,Q非是反向输出端。 对于D触发器来讲,当D输入端有一个输入信号,如果这时控制端CP 没有信号(也就是时序脉冲没有到来),这时输入端D的数据是无法传输到输出端Q及反向输出端Q非的。如果时序控制端CP的时序脉冲一旦到了,这时D端输入的数据就会传输到Q及Q非端。数据传送过来后,当CP时序控制端的时序信号消失了,这时,输出端还会保持着上次输入端D的数据(即把上次的数据锁存起来了)。如果下一个时序控制脉冲信号来了,这时D端的数据才再次传送到Q端,从而改变Q端的状态。多路开关:在51单片机中,当内部的存储器够用(也就是不需要外扩展存储器时,这里讲的存储器包括数据存储器及程序存储器)时,P0 口可以作为通用的输入输出端口(即I/O)使用,对于8031(内部没有ROM)的单片机或者编写的程序超过了单片机内部的存储器容量,需要外扩存储器时,P0口就作为‘地址/数据’总线使用。那么这个多路选

51单片机IO口工作原理

51单片机I/O口工作原理 一、P0端口的结构及工作原理 P0端口8位中的一位结构图见下图: 由上图可见,P0端口由锁存器、输入缓冲器、切换开关、一个与非门、一个与门及场效应管驱动电路构成。再看图的右边,标号为P0.X引脚的图标,也就是说P0.X引脚可以是P0.0到P0.7的任何一位,即在P0口有8个与上图相同的电路组成。 下面,我们先就组成P0口的每个单元部份跟大家介绍一下: 先看输入缓冲器:在P0口中,有两个三态的缓冲器,在学数字电路时,我们已知道,三态门有三个状态,即在其的输出端可以是高电平、低电平,同时还有一种就是高阻状态(或称为禁止状态),大家看上图,上面一个是读锁存器的缓冲器,也就是说,要读取D锁存器输出端Q的数据,那就得使读锁存器的这个缓冲器的三态控制端(上图中标号为…读锁存器?端)有效。下面一个是读引脚的缓冲器,要读取P0.X引脚上的数据,也要使标号为…读引脚?的这个三态缓冲器的控制端有效,引脚上的数据才会传输到我们单片机的内部数据总线上。 D锁存器:构成一个锁存器,通常要用一个时序电路,时序的单元电路在学数字电路时我们已知道,一个触发器可以保存一位的二进制数(即具有保持功能),在51单片机的32根I/O口线中都是用一个D触发器来构成锁存器的。大家看上图中的D锁存器,D端是数据输入端,CP是控制端(也就是时序控制信号输

入端),Q是输出端,Q非是反向输出端。 对于D触发器来讲,当D输入端有一个输入信号,如果这时控制端CP没有信号(也就是时序脉冲没有到来),这时输入端D的数据是无法传输到输出端Q及反向输出端Q非的。如果时序控制端CP的时序脉冲一旦到了,这时D端输入的数据就会传输到Q及Q非端。数据传送过来后,当CP时序控制端的时序信号消失了,这时,输出端还会保持着上次输入端D的数据(即把上次的数据锁存起来了)。如果下一个时序控制脉冲信号来了,这时D端的数据才再次传送到Q端,从而改变Q端的状态。 多路开关:在51单片机中,当内部的存储器够用(也就是不需要外扩展存储器时,这里讲的存储器包括数据存储器及程序存储器)时,P0口可以作为通用的输入输出端口(即I/O)使用,对于8031(内部没有ROM)的单片机或者编写的程序超过了单片机内部的存储器容量,需要外扩存储器时,P0口就作为…地址/数据?总线使用。那么这个多路选择开关就是用于选择是做为普通I/O口使用还是作为…数据/地址?总线使用的选择开关了。大家看上图,当多路开关与下面接通时,P0口是作为普通的I/O口使用的,当多路开关是与上面接通时,P0口是作为…地址/数据?总线使用的。 输出驱动部份:从上图中我们已看出,P0口的输出是由两个MOS管组成的推拉式结构,也就是说,这两个MOS管一次只能导通一个,当V1导通时,V2就截止,当V2导通时,V1截止。 与门、与非门:这两个单元电路的逻辑原理我们在第四课数字及常用逻辑电路时已做过介绍,不明白的同学请回到第四节去看看。 前面我们已将P0口的各单元部件进行了一个详细的讲解,下面我们就来研究一下P0口做为I/O口及地址/数据总线使用时的具体工作过程。 1、作为I/O端口使用时的工作原理 P0口作为I/O端口使用时,多路开关的控制信号为0(低电平),看上图中的线线部份,多路开关的控制信号同时与与门的一个输入端是相接的,我们知道与门的逻辑特点是“全1出1,有0出0”那么控制信号是0的话,这时与门输出的也是一个0(低电平),与让的输出是0,V1管就截止,在多路控制开关的控制信号是0(低电平)时,多路开关是与锁存器的Q非端相接的(即P0口作为I/O口线使用)。 P0口用作I/O口线,其由数据总线向引脚输出(即输出状态Output)的工作过程:当写锁存器信号CP 有效,数据总线的信号→锁存器的输入端D→锁存器的反向输出Q非端→多路开关→V2管的栅极→V2的漏极到输出端P0.X。前面我们已讲了,当多路开关的控制信号为低电平0时,与门输出为低电平,V1管是截止的,所以作为输出口时,P0是漏极开路输出,类似于OC门,当驱动上接电流负载时,需要外接上拉

相关主题
文本预览
相关文档 最新文档