当前位置:文档之家› 实验四:介观动力学模拟_27396教学内容

实验四:介观动力学模拟_27396教学内容

实验四:介观动力学模拟_27396教学内容
实验四:介观动力学模拟_27396教学内容

实验四:介观动力学模拟_27396

《计算材料学》实验讲义

实验八:介观动力学模拟

一、前言

1、介观模拟简介

长期以来,化学家致力于从分子水平研究物质及其变化,而化学工程工作者主要研究物质在宏观体系的行为,介观层次的化学正是联系微观及宏观的桥梁,是从分子到材料的必由之路,同生命过程也有密切的关联。

由于介观模拟能够模拟的空间尺度(纳米到微米)、时间尺度(纳秒到微秒)更大,应用介观模拟方法可以模拟更加复杂的体系,例如:高分子熔体,高分子稀溶液自组装,表面活性剂溶液自组装,磷脂膜等胶体化学,高分子,生物大分子相关的内容。

目前介观模拟的方法很多,例如耗散颗粒动力学模拟方法(dissipative particle dynamics,DPD),它是根据Hoogerbrugge和Koelman提出的一种针对柔性(soft)球模型流体动力学的模拟,并通过引入粒子间的谐振动势,来模拟聚合物的性质;元胞动力学方法(CDS),基于重整化群理论,对时间相关的Ginzburg-Landau方程直接用数值计算的方法在离散空间上进行描述。其中单个元胞的演化通常用双曲正切函数表示;动态密度泛函方法(DDFT或MesoDyn),应用于高分子体系,建立在粗粒化高斯链模型的基础上,实际上是一个动态的自洽场方法,使用了朗之万方程(Langevin’s equation)来描述体系演化的动力学。

(1)MS-Mesocite简介

MS Mesocite是一个基于粗粒度模拟方法的、可以对广泛体系进行模拟研究的分子力学工具集,模拟的对象大小尺寸在纳米到微米尺度范围,相应地,模拟变化的时间范围落在纳秒至微秒区间。MS Mesocite的模拟对象遍及多种工业领域,比如复合材料、涂料、化妆品以及药物控缓释等,它可以提供流体在平衡态下、在有剪切力存在下以及其它受限制条件下的结构与动力学性质。MS Mesocite的突出特点是使用完全区别于传统介观模拟技术,转而采用力场(Forcefield)方法—比如MS Martini力场—来描述粗粒度之间的相互作用,从而得到体系的结构、和动力学特性,分析函数主要有角度分布,密度分布,径向分布函数,二面角分布,均方根位移等。同时,您还可以使用力场编辑工具对MS Mesocite的力场进行编辑,以获得满足特殊要求的力场,从而拓展了MS Mesocite的应用范围。

应用Mesocite进行动力学模拟时,最主要的是得到精确的力场。Martini力场,是由Marrink提出的,可以应用于生物分子体系。Martin力场中包括四种主要的力场类型:极性(polar-P)、非极性(apolar-C)、无极性(nonpolar-N)、带电(charged-Q)。每种力场类型又分为若干子类型,极性和非极性根据极性高低下分有五种类型(用下坐标1-5表示),无极性和带电的更具氢键结合能力分为四种类型(d-氢键供体,a氢键受体,da-两个都有,o-都没有),这样使得Martini力场能够更加精确的描述体系性质,应用于更多不同的有机分子体系。

二、实验目的

1、了解介观模拟方法及应用领域

2、了解Martini力场的

3、掌握Mesocite模块的基本操作

三、实验内容

以下以介观动力学模拟脂质双分子层为例,熟悉Mesocite的基本操作。1、打开MS,选择created new project,键入CG-bilayer作为工程的名称,点击OK。本实例是在软件所有参数在默认的情况下进行的,选择Tools-Settings Organizer,选中CG-bilayer,点击Reset。

2、建脂质分子,建模过程要用到Mesostructure toolbar,如在工具栏中没有此建模工具,点击菜单栏中的view-toolbar-mesostructure,调出此建模工具。

(1)点击Bead Types按钮,打开Bead Types 对话框。

点击Properties…按钮,打开Bead Type Properties 对话框,点击Defaults…按钮,设置Mass为72,Radius为2.35,关闭Bead Type Defaults和Bead Type Properties对话框。

在Bead Types对话框中,定义一下珠子类型:C、GL、PO和NC,关闭对话框。

(2)点击Mesomolecule按钮,打开Build Mesomolecule对话框。

定义粗粒化分子,依次选择4个C、1个GL、1个PO、1个GL和4个C,确定不选Randomize order within repeat unit,点击Build按钮。

在Mesomolecule.xsd文件中左击PO珠子,删除Build Mesomolecule对话框中所有的珠子。

选中Add to branch points,点击more…按钮,打开Mesomolecule Branches 对话框。设置Number of branches to attach为1,关闭对话框。

在Build Mesomolecule对话框中选择1个NC。点击Build按钮。

(在显示面板中右击,选择Label,打开label对话框,在properties一栏中选择BeadTypeName,点击Apply,可以检测建立的粗粒化分子是不是正确,可以对比下图。

(3)关闭Build Mesomolecule对话框。在Project Explorer,把Mesomolecule.xsd文件名改为DPPC.xsd。我们得到以下粗粒化分子结构:

3、更改Martini力场,分配力场,优化脂质分子。

(1)选择Modules -Mesocite - Forcefield Manager或点击Mesocite tools,选择Forcefield Manage,选择MS Martini,点击>>,打开力场文件。在Project Explorer中,把文件名改为MSMartiniCIS.off。

(2)打开MSMartiniCIS.off文件,点击Interactions。在Show interaction下拉选项中选择Angle Bend。在空白框中,设置Fi 和Fk 到Na 以及Fj 到Qa。改变Functional Form 为Cosine Harmonic设置TO为120,KO为10.8。关闭力场文件并保存。

(3)选择Modules | Mesocite | Calculation或点击Mesocite tools选择Calculation;

打开Mesocite Calculation对话框,点击Energy,在Forcefield的下拉选项中选择Browse...,在Choose Forcefield对话框中选择MSMartiniCIS.off。

(4)打开DPPC.xsd文件。按下ALT键,双击任意C类型珠子,选中所有的C 类型珠子。在Mesocite Calculation对话框中,点击More...打开Mesocite Proparation options对话框,选择C1,点击Assign按钮。

重复此步,为GL、PO、NC分配力场,分配类型如下表所示:

BeadTypeName MS Martini Forcefield Type Charge

C C1 0

PO Qa -1.0

NC Q0 1.0

选择PO珠子,在Properties Explorer中,设置Charge为-1,同样把NC设置为1。

(5)在Mesocite Calculation对话框中,点击Setup,改变Task为Geometry Optimization。点击Run按钮。得到以下结构:

(6)在工具栏中,选择Measure/Change按钮,下拉选项中点击Angel,依次点击左边的C-GL-PO,同样选择右边的PO-GL-C。此时会显示出两个接近156.50的角度,选在两个角度,在Properties Explorer中,设置Angels 为230。按下ALT键,双击角度,按下Delete。得到以下分子结构:

(7)参照第二步,定义珠子W,用Build Mesomolecule建模工具,建立一个仅包含W的粗粒化分子。更改文件名为solvent.xsd。

4、建立双分子层结构。

(1)选择Build | Build Mesostructure | Mesostructure Template或点击

Mesostructure toolbar中的Mesostructure Template,打开Build Mesostructure Template对话框。

改变X、YExtents为64,Z Extent为100。在Filler中,键入solvent。点击Build按钮。

在Build Mesostructure Template对话框中,改变Former type为Slab。改变Depth为44.15,Orientation为Along Z。

选中Enable surface packing;

在Filler中键入lipid。点击Add,关闭对话框。

(2)选择Build | Build Mesostructure | Mesostructure或点击Mesostructure

toolbar中的Mesostructure ,打开Build Mesostructure对话框。

solvent filler 中的Mesoscale Molecule,选择solvent.xsd。

lipid filler选择优化的DPPC.xsd。

点击Packing,设置Length scale (L)为1,Density为0.00836;

不选Randomize conformations。

在Packing中,点击More...按钮,打开Bead Packing Options对话框;

双击打开已经优化过的DPPC.xsd。选择NC,点击Create bead Head set from selection按钮。

按下CTRL + D取消选定,之后按下CTRL键,选择尾部的两个C珠子。

在Bead Packing Options对话框中,改变Bead tag为Tail,点击Create bead Tail set from selection。

关闭对话框。标记后的DPPC结构如下:

(3)双击mesostructure template.msd。在Build Mesostructure对话框中,点击Build按钮。得到下图所示结构:

(4)在菜单栏中选择File | Export...,打开Export对话框,在保存类型下拉选项中选择Materials Studio 3D Atomistic Files (*.xsd),点击Options...按钮,打开MSD/MTD Export Options对话框,设置Length scale为1,点击OK。

改变文件名为bilayer.xsd,保存在(I):选择当前工程的根目录下的CG-bilayer Files/Documents。点击保存(S)。此时在project explorer会出现一个名

为bialyer.xsd的文件。

(5)在菜单栏中选择File | Save Project,选择Window | Close All。

5、体系优化及动力学过程。

在Project Explorer中,双击bilayer.xsd,打开文件。

(1)分配力场:如第三步中的第四小步,为每种粗粒子珠子分配力场,分配电荷。分配类型如下表所示:

BeadTypeName MS Martini Forcefield Type Charge

PO Qa -1.0

NC Q0 1.0

(2)第一次构型优化

打开Mesocite Calculation对话框;

点击Energy按钮,在summation method中的Electrostatic的下拉选项中选择Bead based。

确保Mesocite Calculation/Setup中的Task为Geometry Optimization;

选中Mesocite Calculation/Jop Control中的Run inparallel on[ ]of i processors,把可用的CPU调到最大值(此后在几何优化过程,还是动力学过程,为了充分利用服务器,CPU都调到最大值)。

点击Run。

(3)第二次构型优化

双击打开优化过的bilayer.xsd

在Mesocite Calculation对话框中选择Setup按钮;

点击More...打开Mesocite Geometry Optimization对话框,选中Optimize cell;

关闭Mesocite Geometry Optimization对话框。

点击Run。

(4)动力学优化

双击打开第二次优化过的文件bilayer.xsd

在Setup中,选择Task为Dynamics,点击More...按钮,打开Mesocite Dynamics对话框。

设置Time step为20fs,Dynamic time 50ps,改变Ensemble为NPT。

选择Thermostat按钮,设置Thermostat为Velocity Scale。

点击Barostat按钮,设置Barostat为Andersen。

在Mesocite Calculation对话框中点击Run。

(5)第二次动力学优化

双击打开bilayer Mesocite Dynamics文件夹下的bilayer.xtd文件;

在Mesocite Dynamics对话框中选择Thermostat按钮,设置Thermostat为Nose。

设置Q ratio为1600。

设置Time step为40fs,Dynamic time 200ps,点击Dynamics按钮,设置Frame output every为100steps。

在Mesocite Calculation对话框中,选中Restart;

点击Run。

弹出警告对话框,点击Yes。

(6)选择File | Save Project,选择Window | Close All。

6、结果分析,以角度分布和沿Z轴浓度分布为例。

(1)角度分布:

①双击打开bilayer Mesocite Restart文件夹下的bilayer.xtd文件;

双击打开DPPC Mesocite GeomOpt文件夹下的DPPC.xsd文件。

在DPPC.xsd下,用Measure/change工具,选择下图所示两个角度。选择GL-PO-GL键角。

②在菜单栏中选择Edit | Find Patterns,打开Find Patterns对话框。

定义优化过的DPPC.xsd文件作为Pattern document,并且确定键角GL-PO-GL仍然被选中。

改变Match property为BeadTypeName。

打开轨迹文件bilayer.xtd,点击Find。

点击New Sets...按钮,打开Define New Set对话框,键入GL-PO-GL Angles,点击OK按钮。

在bilayer.xtd文件中取消选定。

同样定义sets为 C-PO-C Angles。

③选择Modules | Mesocite | Analysis,或点击mesocite tools,选择Analysis;

打开Mesocite Analysis对话框,在Analysis选项中选择Angle distribution;

在Sets下选项中选择GL-PO-GL Angles,点击Analyze。同理,分析键角C-PO-C Angles。把数据拷贝到excel中,作图可得:

(2)Z方向浓度分布

①双击打开bilayer Mesocite Restart文件夹下的bilayer.xtd文件;

选择Edit |Edit sets,打开Edit sets对话框,按下ALT键,双击任意W珠子,选中了所有的W珠子。

在Edit sets对话框中,点击New…,打开Define New Set对话框对话框,键入W,点击OK。

同理,定义Sets NC、PO、GL、C。

②选择Modules | Mesocite | Analysis,或点击mesocite tools,选择

Analysis;

打开Mesocite Analysis对话框,在Analysis选项中选择Concentration profile;

Sets选择W,选中Specified direction (hkl),改为0 0 1;

点击Analyze;

同理分析NC、PO、GL、C。把数据拷贝到excel中,作图可得:

本实例为软件帮助中的实例教程,参数设置原因可参考Help帮助文件。

参考文献:S.J. Marrink, H.J. Risselada, S. Yefimov, D.P. Tieleman, A.H. de Vries., "The MARTINI forcefield: coarse grained model for biomolecular simulations.", J. Phys. Chem. B, 111:7812-7824, 2007.

实验步骤及注意的问题

1、构建5种珠子C、GL、PO、NC、W,设置Mass为72,Radium为2.35

2、构建DPPC脂质分子

3、构建力场

4、给DPPC分子分配力场,优化分子结构,调整角度,获得DPPC分子的最

终构型

5、构建水分子构型

6、构建盒子

7、填充盒子

8、导出.xsd构型文件

9、给盒子分配力场

10、初步优化盒子

11、选中optimized cell 进一步优化盒子(注意能量变化曲线,如太高,需进

一步优化,一般需要优化2-3次)

12、对优化后的构型进行初步分子动力学模拟(time step 20fs,Dynamic time

50ps)

13、改变参数设置,再次进行分子动力学模拟(time step 40fs,Dynamic time

200ps)

14、在DPPC分子中选中GL-PO-GL以及C-PO-C两个角度,选定find pattern,

在.xtd轨迹文件中find所有的角度

15、对角度分布进行分析

16、在.xtd轨迹文件edit sets,选定5种原子,对其浓度分布进行分析。

17、将两个角度分布导入EXCEL,将5中原子浓度分布导入EXCEL,分别作

图。

四、作业

1、模拟油水混合溶液的分层构型,油选择癸烷作为油相代表

(1)构建癸烷分子并对其进行优化获得如下结构

(2)选择粗粒化珠子

点击粗粒度转化分子工具,弹出Coarse grain对话框,在对话框中选中Motion groups,点击more,选中分子中前面个碳原子作为一个粗粒化珠子,点击Motion groups对话框中的create,产生第一个类型的粗粒化珠子;同理,定义中间的两个碳原子作为第二个类型的粗粒化珠子。关闭Motion groups对话框。

(2)分配珠子,获得粗粒化珠子结构

点击Coarse grain对话框中的bead typing中的create,获得Bead Typing.std 的珠子类型文件。选择patterns,从下拉框中选中该珠子类型文件;点击Coarse grain对话框下面的built文件。获得粗粒化之后的珠子结构。

(3)对珠子分配力场(MS Martini,该力场为软件自带力场,不需要修改参数),两种珠子均属于C1类型,电荷为零,优化珠子构型,获得稳定结构。(4)构建水珠子,Mass 72,Radius 2.35

(5)构建32*32*32的盒子,在Filtter中键

入一个名字,如solvent,点击built,获得一

个空的立方体盒子。

(6)在对话框中点击Filtters,点击Add,键

入另外一个名字,如Water。关闭对话框。

(7)点击,填充盒子,选中优化后的粗

粒化硅烷分子和水珠子,比例(Relative

amount)为1:1;点击Packing,将Length scale设为1,Density设为0.00836,点击built构建填充后的盒子。

(8)将构建后的后缀为.msd的盒子导出为xsd构建文件(如上面所属)。

(9)分配力场(MS Martini),水分子属于P4力场,优化分子构型

(10)进行分子动力学优化(10fs,500ps,500step)获得构型后,对其显示方式(display style)进行设置,扩展构型,观察油水分离现象。

(10)分别显示水珠子和两种类型碳珠子的密度分布。

W

C2

C1

实验四介观动力学模拟

精品文档 《计算材料学》实验讲义 实验八:介观动力学模拟 一、前言 1、介观模拟简介 长期以来,化学家致力于从分子水平研究物质及其变化,而化学工程工作者主要研究物质在宏观体系的行为,介观层次的化学正是联系微观及宏观的桥梁,是从分子到材料的必由之路,同生命过程也有密切的关联。 由于介观模拟能够模拟的空间尺度(纳米到微米)、时间尺度(纳秒到微秒)更大,应用介观模拟方法可以模拟更加复杂的体系,例如:高分子熔体,高分子稀溶液自组装,表面活性剂溶液自组装,磷脂膜等胶体化学,高分子,生物大分子相关的内容。 目前介观模拟的方法很多,例如耗散颗粒动力学模拟方法(dissipative particle dynamics,DPD),它是根据Hoogerbrugge和Koelman提出的一种针对柔性(soft)球模型流体动力学的模拟,并通过引入粒子间的谐振动势,来模拟聚合物的性质;元胞动力学方法(CDS),基于重整化群理论,对时间相关的Ginzburg-Landau 方程直接用数值计算的方法在离散空间上进行描述。其中单个元胞的演化通常用双曲正切函数表示;动态密度泛函方法(DDFT或MesoDyn),应用于高分子体系,建立在粗粒化高斯链模型的基础上,实际上是一个动态的自洽场方法,使用了朗之万方程(Langevin's equation)来描述体系演化的动力学。 (1)MS-Mesocite简介 MS Mesocite是一个基于粗粒度模拟方法的、可以对广泛体系进行模拟研究的分子力学工具集,模拟的对象大小尺寸在纳米到微米尺度范围,相应地,模拟变化的时间范围落在纳秒至微秒区间。MS Mesocite的模拟对象遍及多种工业领域,比如复合材料、涂料、化妆品以及药物控缓释等,它可以提供流体在平衡态下、在有剪切力存在下以及其它受限制条件下的结构与动力学性质。MS Mesocite的突出特点是使用完全区别于传统介观模拟技术,转而采用力场(Forcefield)方法—比如MS Martini力场—来描述粗粒度之间的相互作用,从而得到体系的结构、. 精品文档 和动力学特性,分析函数主要有角度分布,密度分布,径向分布函数,二面角分布,均方根位移等。同时,您还可以使用力场编辑工具对MS Mesocite的力场进行编辑,以获得满足特殊要求的力场,从而拓展了MS Mesocite的应用范围。 应用Mesocite进行动力学模拟时,最主要的是得到精确的力场。Martini力场,是由Marrink提出的,可以应用于生物分子体系。Martin力场中包括四种主要的力场类型:极性(polar-P)、非极性(apolar-C)、无极性(nonpolar-N)、带电

动力学主要仿真软件

车辆动力学主要仿真软件 I960年,美国通用汽车公司研制了动力学软件DYNA主要解决多自由度 无约束的机械系统的动力学问题,进行车辆的“质量一弹簧一阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的谨生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N.Orlandeo和,研制的ADAM 软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR刚性积分算法,采用稀疏矩阵技术提高计算效率° 1977年,美国Iowa大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLF早在20世纪70年代,Willi Kort tm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA1984),以及最终享誉业界的SIMPAC( 1990).随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MED YN软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACI软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPAC嗽件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACI算法技术的优势,成功地将控制系统和多体计算技术结合起来,发

分子动力学的模拟过程

分子动力学的模拟过程 分子动力学模拟作为一种应用广泛的模拟计算方法有其自身特定的模拟步骤,程序流程也相对固定。本节主要就分子动力学的模拟步骤和计算程序流程做一些简单介绍。 1. 分子动力学模拟步驟 分子动力学模拟是一种在微观尺度上进行的数值模拟方法。这种方法既可以得到一些使用传统方法,热力学分析法等无法获得的微观信息,又能够将实际实验研究中遇到的不利影响因素回避掉,从而达到实验研宄难以实现的控制条件。 分子动力学模拟的步骤为: (1)选取所要研究的系统并建立适当的模拟模型。 (2)设定模拟区域的边界条件,选取粒子间作用势模型。 (3)设定系统所有粒子的初始位置和初始速度。 (4)计算粒子间的相互作用力和势能,以及各个粒子的位置和速度。 (5)待体系达到平衡,统计获得体系的宏观特性。 分子动力学模拟的主要对象就是将实际物理模型抽象后的物理系统模型。因此,物理建模也是分子动力学模拟的一个重要的环节。而对于分子动力学模拟,主要还是势函数的选取,势函数是分子动力学模拟计算的核心。这是因为分子动力学模拟主要是计算分子间作用力,计算粒子的势能、位置及速度都离不开势函数的作用。系统中粒子初始位置的设定最好与实际模拟模型相符,这样可以使系统尽快达到平衡。另外,粒子的初始速度也最好与实际系统中分子的速度相当,这样可以减少计算机的模拟时间。 要想求解粒子的运动状态就必须把运动方程离散化,离散化的方法有经典Verlet算法、蛙跳算法(Leap-frog)、速度Veriet算法、Gear预估-校正法等。这些算法有其各自的优势,选取时可按照计算要求选择最合适的算法。 统计系统各物理量时,便又涉及到系统是选取了什么系综。只有知道了模拟系统采用的系综才能釆用相对应的统计方法更加准确,有效地进行统计计算,减少信息损失。 2. 分子动力学模拟程序流程 具体到分子动力学模拟程序的具体流程,主要包括: (1)设定和模拟相关的参数。 (2)模拟体系初始化。 (3)计算粒子间的作用力。 (4)求解运动方程。 (5)循环计算,待稳定后输出结果。 分子动力学模拟程序流程图如2.3所示。

地下水动力学实验报告

地下水动力学实验 实验报告 学院:水利电力学院 专业:水文与水资源工程 指导老师: 学号:2013 姓名: 实验成绩:100 MODFLOW -概念模型 建立MODFLOW 模型有两种方法:网格方法或概念模型方法。网格方法是直接利用3D 网格,应用surces/sinks 和其它模型参数,基于单元的形式建立模型。概念模型方法利用Map 模块的GIS 工具来建立概念模型。在概念模型里,sources/sinks,含水层参数,模型边界等都可以在概念模型里设定。当模型建立完成后,将生成网格并把概念模型转化为网格模型,所有的单元属性都自动设定。

一、实验任务: 1. 导入背景图片 2. 创建和定义图层 3. 将图层转化为三维网格 4. 导入离散点并将坐标差值 5. 将概念模型转入MODFLOW 6. 检查并运行MODFLOW 7. 查看结果 二、实验问题描述: 模拟垃圾堆放区的溶质运移问题。我 们将模拟山前河谷堆积中地下水情况。其 中,模型北部为山区露头,南部有两条河 流汇聚。南北向剖面图见图2-lb模型的底 部为北部山区的灰岩露头。主要有两层含 水层,上部为潜水下部为承压含水层。边 界条件设置如下,北部为隔水边界,南部 为定水头边界根据河流的水位赋值。仅靠 降雨补给。区域内有几条小溪,有时溪水 干涸,有时会受地下水的补给形成溪流。 我们将用drains 来处理这些溪水。此外, 区域内还有两口生产井。 三、实验步骤: 1、开始 启动GMS如果己经启动,选择File/New 命令。 2、导入背景图片 (1).选择打开键

(2). 选择安装目录下的途径tutfiles\MODFLOW\modfmap (3). 打开start.gpr 3、保存 (1). 选择File/Save (2). 将文件另存为eastex 4、定义单位 (1).选择Edit/Units (2).选择m作为长度单位;选择d作为时间单位(3).点击OK

《机械系统动力学仿真分析软件》

| 论坛社区 《机械系统动力学仿真分析软件》(MSC.ADAMS.2005.R2)R2 资源分类: 软件/行业软件 发布者: Coolload 发布时间: 2005-12-18 20:22 最新更新时间: 2005-12-19 07:04 浏览次数: 14548 实用链接: 收藏此页 eMule资源 下面是用户共享的文件列表,安装eMule后,您可以点击这些文件名进行下载 [机械系统动力学仿真分析软件].[$u]MSC.ADAMS.2005.R2.rar201.2MB [机械系统动力学仿真分析软 295.4MB 件].MSC_ADAMS_V2005_ISO-LND-CD1.iso [机械系统动力学仿真分析软185.0MB

件].MSC_ADAMS_V2005_ISO-LND-CD2.bin [机械系统动力学仿真分析软 6.5KB 件].Msc.Adams.v2005.Iso-Lnd-Cd1-Crack.rar 全选480.4MB eMule主页下载eMule使用指南如何发布 中文名称:机械系统动力学仿真分析 软件 英文名称:MSC.ADAMS.2005.R2 版本:R2 发行时间:2005年12月15日 制作发行:美国MSC公司 地区:美国 语言:英语 简介: [通过安全测试] 杀毒软件:Symantec AntiVirus 版本: 9.0.0.338 病毒库:2005-12-16 共享时间:10:00 AM - 24:00 PM(除 非线路故障或者机器故障) 共享服务器:Razorback 2.0 [通过安装测试]Windows2000 SP4 软件版权归原作者及原软件公司所 有,如果你喜欢,请购买正版软件

地下水动力学实验讲义

地下水动力学》 实验指导书- -前言 地下水动力学是水文与水资源工程专业和环境工程专业以及勘查技术专业等涉及地下水补给、径流、排泄和污染物运移研究的一门基础理论课。本实验指导书主要涉及河间地块中地下水的天然稳定渗流和非稳定渗流流场模拟、降水或蒸发时包气带中地下水的渗流流场模拟以及非饱和土的导水率和地下水污染物水动力弥散系数测定等内容。通过实验可使学生能够直观地了解和掌握各类地下水运动的基本规律。 本实验指导书主要适用于水文与水资源工程专业和环境工程专业,其它相关专业可根据教学要求做适当的增减。为便于学生掌握,各次实验配有相应的多媒体影视教学光盘,以powerpoint和vcd格式可在校内多媒体教室或网上播放观看。 该实验指导书是在工程学院领导李铎教授参加与指导、水文与水资源教研室主任刘金锋和刘振英、邵爱军、许广明教授等人以及本教研室同仁们支持和帮助下,由曹继星执笔编写完成,最后由贾贵庭教授审核。其中可能还存在不少问题, 望读者多提宝贵意见,以便更加完善。 实验规则 一、实验课前,必须按实验指导书进行认真预习,明确实验目的、原理、步骤、要求及注意事项等方可实验。 二、每次实验前按各班分好小组(每组为10—15人), 并报实验人员,实习时不要随意更换。 三、必须按规定时间进行实验,无故不上实验课者,以旷课论处、因故不能上实验课,应提前向指导教师请假办理手序,但必须在期末课程考试前按规定时间补齐所有实验内容。 四、服从实验教师的指导,实验操作,要严格按操作规程进行,完成每个实验步骤。实验时要仔细观察,及时做好记录;实验数据要遵重客观实际,实事求是,严禁杪袭和胡捏臆造。独立完成实验报告编写,报告中所绘图件力求清晰美观,文字整洁。 五、遵守实验课纪律, 不迟到,不早退,严禁喧哗, 保持室内安静。

最新实验四:介观动力学模拟_27396

《计算材料学》实验讲义 实验八:介观动力学模拟 一、前言 1、介观模拟简介 长期以来,化学家致力于从分子水平研究物质及其变化,而化学工程工作者主要研究物质在宏观体系的行为,介观层次的化学正是联系微观及宏观的桥梁,是从分子到材料的必由之路,同生命过程也有密切的关联。 由于介观模拟能够模拟的空间尺度(纳米到微米)、时间尺度(纳秒到微秒)更大,应用介观模拟方法可以模拟更加复杂的体系,例如:高分子熔体,高分子稀溶液自组装,表面活性剂溶液自组装,磷脂膜等胶体化学,高分子,生物大分子相关的内容。 目前介观模拟的方法很多,例如耗散颗粒动力学模拟方法(dissipative particle dynamics,DPD),它是根据Hoogerbrugge和Koelman提出的一种针对柔性(soft)球模型流体动力学的模拟,并通过引入粒子间的谐振动势,来模拟聚合物的性质;元胞动力学方法(CDS),基于重整化群理论,对时间相关的Ginzburg-Landau方程直接用数值计算的方法在离散空间上进行描述。其中单个元胞的演化通常用双曲正切函数表示;动态密度泛函方法(DDFT或MesoDyn),应用于高分子体系,建立在粗粒化高斯链模型的基础上,实际上是一个动态的自洽场方法,使用了朗之万方程(Langevin’s equation)来描述体系演化的动力学。 (1)MS-Mesocite简介 MS Mesocite是一个基于粗粒度模拟方法的、可以对广泛体系进行模拟研究的分子力学工具集,模拟的对象大小尺寸在纳米到微米尺度范围,相应地,模拟变化的时间范围落在纳秒至微秒区间。MS Mesocite的模拟对象遍及多种工业领域,比如复合材料、涂料、化妆品以及药物控缓释等,它可以提供流体在平衡态下、在有剪切力存在下以及其它受限制条件下的结构与动力学性质。MS Mesocite 的突出特点是使用完全区别于传统介观模拟技术,转而采用力场(Forcefield)方法—比如MS Martini力场—来描述粗粒度之间的相互作用,从而得到体系的结构、

地下水动力学

地下水动力学复习资料 名词解释 1、地下水动力学就是研究地下水在孔隙岩石、裂隙岩石、与喀斯特岩石中运动规律的科学。它就是模拟地下水流基本状态与地下水中溶质运移过程,对地下水从数量与质量上进行定量评价与合理开发利用,以及兴利除害的理论基础。。 2、流量:单位时间通过过水断面的水量称为通过该断面的渗流量。 3、渗流速度:假设水流通过整个岩层断面(骨架+空隙)时所具有的虚拟平均流速,定义为通过单位过水断面面积的流量。 4、渗流场:发生渗流的区域称为渗流场。就是由固体骨架与岩石空隙中的水两部分组成。 5、层流:水质点作有秩序、互不混杂的流动。 6、紊流:水质点作无秩序、互相混杂的流动。 7、稳定流与非稳定流:若流场中所有空间点上一切运动要素都不随时间改变时,称为稳定流,否则称为非稳定流。 8、雷诺数:表征运动流体质点所受惯性力与粘性力的比值。 9、雷诺数的物理意义:水流的惯性力与黏滞力之比。 10、渗透系数:在各项同性介质(均质)中,用单位水力梯度下单位面积上的流量表示流体通过孔隙骨架的难易程度,称之为渗透系数。 11、流网:在渗流场中,由流线与等水头线组成的网络称为流网。 12、折射现象:地下水在非均质岩层中运动,当水流通过渗透系数突变的分界面时,出现流线改变方向的现象。 13、裘布依假设:绝大多数地下水具有缓变流的特点。 14、完整井:贯穿整个含水层,在全部含水层厚度上都安装有过滤器并能全断面进水的井。 15、非完整井:未揭穿整个含水层、只有井底与含水层的部分厚度上能进水或进水部分仅揭穿部分含水层的井。 16、水位降深:抽水井及其周围某时刻的水头比初始水头的降低值。 17、水位降落漏斗:抽水井周围由抽水(排水)而形成的漏斗状水头(水位)下降区,称为降落漏斗。 18、影响半径:就是从抽水井到实际观测不到水位降深处的径向距离。 19、有效井半径:由井轴到井管外壁某一点的水平距离。在该点,按稳定流计算的理论降深正好等于过滤器外壁的实际降深。 20、井损水流经过滤器的水头损失与在井内向上运动至水泵吸水口时的水头损失,统称为井损。 21、水跃:在实验室砂槽中进行井流模拟实验时发现,只有当井中水位降低非常小时,抽水井中的水位与井壁外的水位才基本一致,当井中水位降低较大时,抽水井中的水位与井壁外的水位之间存在差值的现象。

车辆系统动力学仿真大作业(带程序)

Assignment Vehicle system dynamics simulation 学院:机电学院 专业:机械工程及自动化 姓名: 指导教师:

The model we are going to analys: The FBD of the suspension system is shown as follow:

According to the New's second Law, we can get the equation: 2 )()(221211mg z z c z z k z m --+-=???? 221212)()(z k mg z z c z z k z m w +-----=? ??? 0)()()()(222111222111=-++--+-++--+? ? ? ? ? ? ? ?w w w w z L z k z L z k z L z c z L z c z m χχχχ 0)()()()(2222111122221111=-++----++---? ? ? ? ? ? ? ?w w w w z L z L k z L z L k z L z L c z L z L c J χχχχχ d w w w w Q z L z k z L z c z m ,111111111)()(-=------? ? ? ? ?χχ d w w w w Q z L z k z L z c z m ,222222222)()(-=-+--+-? ????χχ When there is no excitation we can get the equation: 2)()(221211mg z z c z z k z m --+-=???? 2 21212)()(z k mg z z c z z k z m w +-----=? ??? Then we substitude the data into the equation, we write a procedure to simulate the system: Date: ???? ?? ??? ??==?==?===MN/m 0.10k m 25.1s/m kN 0.20MN/m 0.1m kg 3020kg 2100kg 3250w 2l c k I m m by w b

最新地下水动力学实验讲义

地下水动力学实验讲 义

地下水动力学》 实验指导书- -前言 地下水动力学是水文与水资源工程专业和环境工程专业以及勘查技术专业等涉及地下水补给、径流、排泄和污染物运移研究的一门基础理论课。本实验指导书主要涉及河间地块中地下水的天然稳定渗流和非稳定渗流流场模拟、降水或蒸发时包气带中地下水的渗流流场模拟以及非饱和土的导水率和地下水污染物水动力弥散系数测定等内容。通过实验可使学生能够直观地了解和掌握各类地下水运动的基本规律。 本实验指导书主要适用于水文与水资源工程专业和环境工程专业,其它相关专业可根据教学要求做适当的增减。为便于学生掌握,各次实验配有相应的多媒体影视教学光盘,以powerpoint和vcd格式可在校内多媒体教室或网上播放观看。 该实验指导书是在工程学院领导李铎教授参加与指导、水文与水资源教研室主任刘金锋和刘振英、邵爱军、许广明教授等人以及本教研室同仁们支持和帮助下,由曹继星执笔编写完成,最后由贾贵庭教授审核。其中可能还存在不少问题, 望读者多提宝贵意见,以便更加完善。

实验规则 一、实验课前,必须按实验指导书进行认真预习,明确实验目的、原理、步骤、要求及注意事项等方可实验。 二、每次实验前按各班分好小组(每组为10—15人), 并报实验人员,实习时不要随意更换。 三、必须按规定时间进行实验,无故不上实验课者,以旷课论处、因故不能上实验课,应提前向指导教师请假办理手序,但必须在期末课程考试前按规定时间补齐所有实验内容。 四、服从实验教师的指导,实验操作,要严格按操作规程进行,完成每个实验步骤。实验时要仔细观察,及时做好记录;实验数据要遵重客观实际,实事求是,严禁杪袭和胡捏臆造。独立完成实验报告编写,报告中所绘图件力求清晰美观,文字整洁。 五、遵守实验课纪律, 不迟到,不早退,严禁喧哗, 保持室内安静。 六、遵守实验室规章制度。爱护实验室内的所有仪器设备。每次实验前所领用器具,应仔细检查,看有无损坏,若有损坏要立即报告。实验结束后交还所领器具,并经任实验课老师验收本人签字后方可离开。 七、严禁在实验室内吸烟,保持实验室内清洁卫生,不要乱扔纸屑、随地吐痰,每次实验完后要主动协助任实验课老师打扫干净地上污水和泥沙。

实验四:介观动力学模拟

《计算材料学》实验讲义粗粒度模拟 实验名称:介观动力学模拟 一、前言 1、介观模拟简介 长期以来,化学家致力于从分子水平研究物质及其变化,而化学工程工作者主要研究物质在宏观体系的行为,介观层次的化学正是联系微观及宏观的桥梁,是从分子到材料的必由之路,同生命过程也有密切的关联。 由于介观模拟能够模拟的空间尺度(纳米到微米)、时间尺度(纳秒到微妙)更大,应用介观模拟方法可以模拟更加复杂的体系,例如:高分子熔体,高分子稀溶液自组装,表面活性剂溶液自组装,磷脂膜等胶体化学,高分子,生物大分子相关的内容。 目前介观模拟的方法很多,例如耗散颗粒动力学模拟方法(dissipative particle dynamics,DPD),它是根据Hoogerbrugge和Koelman提出的一种针对柔性(soft)球模型流体动力学的模拟,并通过引入粒子间的谐振动势,来模拟聚合物的性质;元胞动力学方法(CDS),基于重整化群理论,对时间相关的Ginzburg-Landau方程直接用数值计算的方法在离散空间上进行描述。其中单个元胞的演化通常用双曲正切函数表示;动态密度泛函方法(DDFT或MesoDyn),应用于高分子体系,建立在粗粒化高斯链模型的基础上,实际上是一个动态的自洽场方法,使用了朗之万方程(Langevin’s equation)来描述体系演化的动力学。 (1)MS-Mesocite简介 MS Mesocite是一个基于粗粒度模拟方法的、可以对广泛体系进行模拟研究的分子力学工具集,模拟的对象大小尺寸在纳米到微米尺度范围,相应地,模拟变化的时间范围落在纳秒至微秒区间。MS Mesocite的模拟对象遍及多种工业领域,比如复合材料、涂料、化妆品以及药物控缓释等,它可以提供流体在平衡态下、在有剪切力存在下以及其它受限制条件下的结构与动力学性质。MS Mesocite 的突出特点是使用完全区别于传统介观模拟技术,转而采用力场(Forcefield)方法—比如MS Martini力场—来描述粗粒度之间的相互作用,从而得到体系的结构、和动力学特性,分析函数主要有角度分布,密度分布,径向分布函数,二面角分布,均方根位移等。同时,您还可以使用力场编辑工具对MS Mesocite的力场进

地下水动力学(全)

1. 地下水动力学是研究地下水在孔隙岩石、裂隙岩石、和喀斯特岩石中运动规律的科学。它是模拟地下水流基本状态和地下水中溶质运移过程,对地下水从数量和质量上进行定量评价和合理开发利用,以及兴利除害的理论基础。。 2.流量:单位时间通过过水断面的水量称为通过该断面的渗流量。 3.渗流速度(比流量):假设水流通过整个岩层断面(骨架+空隙)时所具有的虚拟平均流速,定义为通过单位过水断面面积的流量。 4. 实际速度:孔介质中地下水通过空隙面积的平均速度;地下水流通过含水层过水断面的平均流速,其值等于流量除以过水断面上的空隙面积,量纲为L/T。 4.渗流场:发生渗流的区域称为渗流场。由固体骨架和岩石空隙中的水两者组成 5. 层流:水质点作有秩序、互不混杂的流动。 6.紊流:水质点作无秩序、互相混杂的流动。 7.稳定流与非稳定流:若流场中所有空间点上一切运动要素都不随时间改变时,称为稳定流,否则称为非稳定流。 8.雷诺数:表征运动流体质点所受惯性力和粘性力的比值。 9.雷诺数的物理意义:水流的惯性力与黏滞力之比。 10.渗透系数:在各项同性介质(均质)中,用单位水力梯度下单位面积上的流量表示流体通过孔隙骨架的难易程度,称之为渗透系数。 11. 流网:在渗流场中,由流线和等水头线组成的网络称为流网。 12.折射现象:地下水在非均质岩层中运动,当水流通过渗透系数突变的分界面时,出现流线改变方向的现象。 13.裘布依假设:绝大多数地下水具有缓变流的特点。 14. 缓变流:各流线接近于平行直线的运动 14.完整井:贯穿整个含水层,在全部含水层厚度上都安装有过滤器并能全断面进水的井。 15.非完整井:未揭穿整个含水层、只有井底和含水层的部分厚度上能进水或进水部分仅揭穿部分含水层的井。 16.水位降深:抽水井及其周围某时刻的水头比初始水头的降低值。 17.水位降落漏斗:抽水井周围由抽水(排水)而形成的漏斗状水头(水位)下降区,称为降落漏斗。 18.影响半径:是从抽水井到实际观测不到水位降深处的径向距离。 19.有效井半径:由井轴到井管外壁某一点的水平距离。在该点,按稳定流计算的理论降深正好等于过滤器外壁的实际降深。 20.井损水流经过滤器的水头损失和在井内向上运动至水泵吸水口时的水头损失,统称为井损。 21.水跃:在实验室砂槽中进行井流模拟实验时发现,只有当井中水位降低非常小

介观化学体系中的动力学尺度效应

介观化学体系中的动力学尺度效应 侯中怀 辛厚文1 中国科学技术大学化学物理系 安徽合肥 230026 摘要:以生命和表面催化体系为对象,研究了介观化学体系中,内涨落对体系非线性动力学行为的调控作用。发现内涨落可以诱导随机振荡,其强度在体系处于最佳尺度时会出现一个甚至多个极大值,并且在耦合体系中会得到进一步增强,表现为尺度共振效应,尺度选择效应和双重尺度效应,揭示了介观化学体系中尺度效应的新机制。 一 引言 近年来,随着化学研究的对象向生命和纳米体系的深入,介观化学体系动力学规律的研究,已成为受到广泛关注的前沿课题。按照传统的宏观反应动力学理论,体系的状态()i X t 随着时间的演化规律,可以用如下的确定性方程来描述[1,2]: 1()(,...,), (1,...,)i i N dX t f X X i N dt == (1.1) ,其中()i X t 表示第i 种物质在t 时刻的分子数目。但是当体系的尺度V 小到介观尺度时,体系的内涨落显著增长,此时1()((),...,())N t X t X t ≡X 已成为离散的随机变量,宏观确定性方程(1.1)不再有效,体系状态的演化需要用随机动力学方程来描述[3,4]。 化学体系在远离平衡的条件下,由体系中非线性过程的作用,可以形成化学振荡,化学波,化学混沌等多种非线性动力学行为。在生命体系和表面催化等复杂化学体系中,实验上已经发现了大量的非线性动力学行为的例子,如CO 在单晶催化剂表面的反应速率振荡[5],合成基因网络中的蛋白质浓度振荡[6],细胞内及细胞间钙离子浓度的振荡[7],纳米粒子催化剂表面的反应速率振荡等[8]。这些非线性化学现象,对于表面催化和生命体系的实际功能,如基因表达、钙信号的传递、催化活性和选择性等,有着重要的调控作用。传统上,对这些化学振荡行为都是用形如(1.1)的宏观确定性方程来描述。但是如前所述,对于亚细胞水平以及纳米粒子表面进行的化学反应,宏观确定性方程不再适用,而应当代之以介观层次的随机动力学方法。 1 通讯联系人 Email:hxin@https://www.doczj.com/doc/8b18717475.html,

泊洛沙姆188 与胆酸聚集形态的介观模拟

中国科学: 化学 2011年第41卷第3期: 500 ~ 508 SCIENTIA SINICA Chimica https://www.doczj.com/doc/8b18717475.html, https://www.doczj.com/doc/8b18717475.html, 《中国科学》杂志社SCIENCE CHINA PRESS 论文 增溶性辅料泊洛沙姆188与胆酸聚集形态的介观模拟 刘南岑①, 史新元②, 乔延江②* ① 首都医科大学中医药学院, 北京 100069 ② 北京中医药大学中药信息工程研究中心, 北京 100102 *通迅作者, E-mail: yjqiao@https://www.doczj.com/doc/8b18717475.html, 收稿日期: 2010-03-05; 接受日期: 2010-04-11; 网络版发布日期: 2010-09-14 doi: 10.1360/032010-160 摘要为了建立符合中药特点的增溶性药用辅料的筛选与评价方法, 本研究以清开灵注射液为研究载体, 采用介观动力学方法(MesoDyn)研究其难溶活性成分胆酸与增溶性辅料泊洛沙姆188之间的相互作用, 探讨了胆酸对泊洛沙姆188临界胶束浓度的影响及泊洛沙姆188浓度、模拟时间、温度对两者聚集体构型的影响, 并采用实验方法验证了部分模拟结果, 为中药注射剂增溶性辅料的科学应用提供一定基础. 结果表明: 在清开灵注射液中活性成分胆酸的存在下, 泊洛沙姆188的临界胶束浓度范围为0.6%~0.7%, 降低了泊洛沙姆188自身的临界胶束浓度, 为使清开灵注射液中的胆酸(3%)全部增溶, 泊洛沙姆188浓度应为1.7%. 关键词 泊洛沙姆188 胆酸 增溶 介观模拟 聚集体 1 引言 在新药研发过程中, 很多体外药理活性很高的药物为难溶性药物[1], 由于其溶解性能较差, 严重限制了其临床应用. 因此, 改善药物溶解性, 提高其生物利用度成为药学领域亟待解决的重点问题之一[2]. 常用的增溶方法是调节pH值、加入潜溶剂或助溶剂、胶束或混合胶束、包合以及乳化等[3]. 其中, 加入嵌段共聚物增溶的方法范围广、结构稳定、粒度分布窄、具有较低的CMC, 基本上克服了低分子表面活性剂增溶效果不理想或毒性较大的缺点, 是一种用于难溶性药物增溶的新型和重要方法[2]. 增溶性辅料的选择对增溶效果、药物的有效性乃至安全性都有较大的影响, 从而影响药物的研发进程及临床应用. 因此, 需对辅料和药物的相互作用机制进行深入探讨. 采用经典的实验方法, 深入研究增溶体系微观结构及其对制剂性能的影响, 难度较大[4]. 近年来, 越来越多的科研小组采用介观模拟方法进行聚集形态的研究, 如聚合物与表面活性剂之间的相互作用[5~9]、嵌段共聚物的相分离过程[10~12]等, 但是针对中药注射液中难溶性活性成分与增溶性辅料的系统研究还未见报道. 介观模拟在处理时间上大大短于热力学驰豫时间, 特别是介观动力学模拟(MesoDyn)[13]和耗散粒子动力学模拟(DPD)[14], 更接近实际情况, 可模拟非理想行为下胶束的介观形貌[15]. 嵌段聚合物的应用性质很大程度上取决于其系统的介观形貌, 而决定介观形貌的因素很多, 如温度、浓度、组成等. 本文采用介观动力学方法, 探讨增溶性辅料泊洛沙姆188和清开灵注射液中活性成分胆酸之间的相互作用, 初步考察了不同浓度、温度及模拟时间, 嵌段共聚物胶束体系形态的变化, 为增溶性药用辅料筛选方法的建立提供介观层次上的信息, 也为后续研究提供一定的基础.

地下水动力学

2014考研《地下水动力学》考试大纲 一、考试形式和试题类型 1. 试卷满分及考试时间 试卷满分为100分,考试时间为120分钟. 2、考试方式: 闭卷、笔试。 3、考试范围及试题类型: 考试内容主要有:(1)渗流理论基础;(2)地下水向河渠的稳定运动;(3)地下水向完整井的稳定运动;(4)地下水向完整井的非稳定运动;(5)地下水向边界附近井的稳定和非稳定运动。其它内容如地下水向非完整井的运动、非饱和带的地下水运动、地下水非线性运动、裂隙水运动、水动力弥散理论和地下水运动的实验模拟方法等,不作为考试的重点。重点考核地下水运动的基本概念、基本原理和方法。 题目类型有名词解释、简答题、绘制流网、分析论述和计算题等,其中计算题占试题总分数的60%。 4、教材及参考书 (1)薛禹群主编,《地下水动力学》(第二版),地质出版社,1997; (2)吴吉春,薛禹群主编,《地下水动力学》,中国水利水电出版社,2008 (3)其它《地下水动力学》教材亦可。

二、地下水动力学主要考核内容 一、渗流理论基础 1、考试内容 渗流的基本概念、渗流基本定律、岩层透水特征分类、渗透系数张量、等效渗透系数、流网、渗流连续性方程、承压水运动的基本微分方程、越流含水层(半承压含水层)中地下水非稳定运动基本微分方程、潜水运动的基本微分方程、定解条件、描述地下水运动数学模型及解法。 2、考试要求 (1)掌握渗流的基本概念,包括多孔介质、渗流、渗流速度、渗透系数、渗透率、导水系数、给水度、弹性给水度(储水系数或释水系数)、储水率、渗透系数张量、越流系数、水流折射、等效渗透系数、流网等; (2)掌握渗流的基本定律(达西定律),并能用其进行相关计算; (3)掌握流网的性质及其应用,能够徒手绘制地下水稳定运动的流网,能够用流网定性和定量分析水文地质条件; (4)掌握渗流连续性方程、地下水非稳定运动基本微分方程和定解条件,能够依据给定的水文地质物理模型,建立描述地下水运动的数学模型及定解条件; (5)了解求解地下水数学模型的有限差分方法。 二、河渠间地下水的稳定运动 1、考试内容: 有入渗时潜水的稳定运动、无入渗时潜水的稳定运动、承压水的稳定

分子动力学模拟基础知识

分子动力学模拟基础知识 ? Molecular Dynamics Simulation o MD: Theoretical Background Newtonian Mechanics and Numerical Integration The Liouville Operator Formalism to Generating MD Integration Schemes o Case Study 1: An MD Code for the Lennard-Jones Fluid Introduction The Code, mdlj.c o Case Study 2: Static Properties of the Lennard-Jones Fluid (Case Study 4 in F&S) o Case Study 3: Dynamical Properties: The Self-Diffusion Coefficient ? Ensembles o Molecular Dynamics at Constant Temperature Velocity Scaling: Isokinetics and the Berendsen Thermostat Stochastic NVT Thermostats: Andersen, Langevin, and Dissipative Particle Dynamics The Nosé-Hoover Chain Molecular Dynamics at Constant Pressure: The Berendsen Barostat Molecular Dynamics Simulation We saw that the Metropolis Monte Carlo simulation technique generates a sequence of states with appropriate probabilities for computing ensemble averages (Eq. 1). Generating states probabilitistically is not the only way to explore phase space. The idea behind the Molecular Dynamics (MD) technique is that we can observe our dynamical system explore phase space by solving all particle equations of motion . We treat the particles as classical objects that, at least at this stage of the course, obey Newtonian mechanics. Not only does this in principle provide us with a properly weighted sequence of states over which we can compute ensemble averages, it additionally gives us time-resolved information, something that Metropolis Monte Carlo cannot provide. The ``ensemble averages'' computed in traditional MD simulations are in practice time averages : (99) The ergodic hypothesis partially requires that the measurement time, , i , in the system. The price we pay for this extra information is that we must at least access if not store particle velocities in addition to positions, and we must compute interparticle forces in addition to potential energy. We will introduce and explore MD in this section.

弹簧阻尼系统动力学模型adams仿真设计

震源车系统动力学模型分析报告 一、项目要求 1)独立完成1个应用Adams 软件进行机械系统静力、运动、动力学分析问题,并完成一份分析报告。分析报告中要对所计算的问题和建模过程做简要分析,以图表形式分析计算结果。 2)上交分析报告和Adams 的命令文件,命令文件要求清楚、简洁。 1K 1 C 2K 2C 3 C 3 K 3 M 1 M 2M 二、建立模型 1)启动admas ,新建模型,设置工作环境。 对于这个模型,网格间距需要设置成更高的精度以满足要求。在ADAMS/View 菜单栏中,选择设置(Setting )下拉菜单中的工作网格(Working Grid )命令。系统弹出设置工作网格对话框,将网格的尺寸(Size)中的X 和Y 分别设置成750mm 和500mm ,间距(Spacing )中的X 和Y 都设置成50mm 。然后点击“OK ”确定。如图2-1所表示。 图 2-1 设置工作网格对话框

2)在ADAMS/View零件库中选择矩形图标,参数选择为“on Ground”,长度(Length)选择40cm高度Height为1.0cm,宽度Depth为30.0cm,建立系统的平台,如图2-2所示。以同样的方法,选择参数“New Part”建立part-2、part-3、part-4,得到图形如2-3所示, 图 2-2 图 2-3创建模型平台 3)施加弹簧拉力阻尼器,选择图标,根据需要输入弹簧的刚度系数K和粘滞阻尼系数C,选择弹簧作用的两个构件即可,施加后的结果如图2-4 图 2-4 创建弹簧阻尼器 4)添加约束,选择棱柱副图标,根据需要选择要添加约束的构件,添加约束后的模型如2-5所示。

地下水动力学

◆考试大纲模版: 中国地质大学研究生院 硕士研究生入学考试《地下水动力学》考试大纲 一、试卷结构 (一)内容比例 地下水动力学 100% (二)题型比例 填空题和判断对错题约40% 分析作图题约20% 计算题约40% 二、其他

地下水动力学 一、地下水运动的基本概念与基本定律 考试内容 1、地下水运动的基本概念:渗流与典型体元;渗流的运动要素;孔(空)隙平均流速(地下 水实际流速)与渗透流速(达西流速);压强水头和水力坡度。 2、渗流基本定律:线性渗流定律及渗透系数;线性渗流定律;各向异性岩层中地下水的 运动规律;地下水通过非均质岩层突变界面的折射现象。 3、流网:各向同性岩层地下水的流网特征;各向异性岩层地下水的流网特征。 重难提示 典型体元的概念和地下水运动基本定律;流网的应用。 考试要求 掌握渗流基本概念、流网的特征及其在实际中的应用,详细叙述研究地下水运动规律所遵循的基本定律-达西定律。掌握典型体元、非均质各向异性、非均质各向同性、均质各向异性、均质各向同性的概念,正确区分地下水质点实际流速、空隙平均流速和渗透流速。 二、地下水运动的基本微分方程及定解条件 考试内容 渗流连续性方程;水和多孔介质的压缩性;渗流基本微分方程基本形式和各种条件下(非均质各向异性、非均质各向同性、均质各向异性、均质各向同性、非稳定流、稳定流)的基本微分方程;潜水流动的布西涅斯克微分方程:裘布依假定,布西涅斯克微分方程;定解条件及数学模型。 重难提示

重点掌握地下水弹性储存的含义,理解弹性给水度的定义;了解地下水三维流动基本微分方程的基本形式以及几种简单条件下的流动微分方程。掌握裘布依假定的内涵。 考试要求 重点理解地下水弹性储存的含义,掌握弹性释水系数和重力给水度的概念;掌握渗流的连续性方程,潜水、承压水和越流含水层中地下水非稳定运动的基本微分方程的推导过程;熟悉定解条件,并能够正确建立数学模型。要求在此理解地下水非稳定运动基本微分方程形式的基础上,掌握如何在水文地质实体概化为水文地质模型后,建立与水文地质模型相对应的数学模型方法。 三、地下水向河渠的运动 考试内容 主要有均质和非均质含水层中地下水向河渠的稳定运动。 1、均质含水层中地下水向河渠的运动:承压含水层中地下水向河渠一维稳定流动;无入渗 潜水含水层中地下水向河渠二维稳定运动;隔水底板水平的潜水运动;隔水底板倾斜的潜水运动;均匀稳定入渗的潜水向河渠二维稳定运动。 2、非均质含水层中地下水向河渠的运动:分段法;等效厚度法;吉林斯基势函数法。 重点和难点 重点掌握无入渗潜水含水层中隔水底板水平时地下水向河渠二维稳定运动;均匀稳定入渗的潜水向河渠二维稳定运动;灵活运用分段法和等效厚度法求解非均质问题。 考试要求 总结各种简单条件下地下水向河渠运动的流量方程(承压、无压、底板水平或倾斜、无入渗或有入渗)。对于均质问题,要求理解各种条件下流量方程和水头线方程的推导过程,掌握无入渗承压和无压含水层中隔水底板水平时地下水向河渠二维稳定运动条件下的流量方程和水头线特征;掌握存在均匀稳定入渗的潜水向河渠二维稳定运动时的流量方程,学会运用简单解析公式求解河间地段实际问题。对于非均质问题,掌握分段法和等效厚度法的

相关主题
文本预览
相关文档 最新文档