当前位置:文档之家› 高中数学向量

高中数学向量

高中数学向量
高中数学向量

平面向量的数量积及平面向量的应用

1.定义及运算律.

两个向量的内积(即数量积),其结果是一个实数,而不是向量.其定义源于物理学中“力所做的功”.

设a 及b 是具有共同始点的两个非零向量,其夹角θ满足:0°≤θ≤180°,我们把|a |2|b |2cos θ叫做a 与b 的数量积,记作a 2b 若a =(x 1,y 1),b =(x 2,y 2),则a 2b =2121y y x x +.

其运算满足“交换律”“结合律”以及“分配律”,即:a 2b =b 2a ,(λ2a )2b =λ(a 2b ),(a ±b )2c =a 2c ±b 2c .

2.平面向量数量积的重要性质.

①|a |=a a ?=2||cos ||||a a a =θ?;cos θ=

||||)(b a b a ??;|a 2b |≤|a |2|b |,当且仅当a ,b 共线时取等号.

②设a =(x 1,y 1),b =(x 2,y 2),则:|a |=2121y x +;cos θ=222221212121)

(y x y x y y x x +?++;|x 1x 2+y 1y 2|≤

22

222121y x y x +?+

3.两向量垂直的充要条件

若a ,b 均为非零向量,则:a ⊥b ?a 2b =0.

若a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ?x 1x 2+y 1y 2=0.

4.向量的模及三角不等式

|a |2=a 2a 或|a |=a a ?;|a 2b |≤|a |2|b |;|a |2-|b |2=(a +b )2(a -b );|a ±b |=θ??±+cos ||||222b a b a (θ为a ,b 夹角);||a |-|b ||≤|a ±b |≤|a |+|b |.

5.三角不等式的推广形式

|a 1+a 2+…+a n |≤|a 1|+|a 2|+…+|a n |.

小练习一

【例1】计算下列各题:

(1)已知等边三角形ABC边长为1,且=a,=b,=c,求a2b+b2c+c2a;

(2)已知a、b、c是空间中两两垂直的向量,且|a|=1,|b|=2,|c|=3,求r=a+b+c的长度以及它和a,b,c的夹角;

(3)已知(a+3b)与(7a-5b)垂直,且(a-4b)与(7a-2b)垂直,求a、b的夹角;

2π,p=3a-b,q=λa+17b,问系数λ取向值时,p⊥q.

(4)已知|a|=2,|b|=5,a,b的夹角是

3

【例2】在△ABC中,AB=(2,3),AC=(1,k),且△ABC的一个内角为直角,求k的值.

【例3】已知平行四边形以a=(2,1),b=(1,-3)为两邻边.

(1)求它的边长和内角;

(2)求它的两对角线的长和夹角.

小练习二

一、基础夯实

1.已知|a|=1,|b|=2,且(a-b)与a垂直,则a与b的夹角是( )

A.60°

B.30°

C.135°

D.45°

,则向量m=a-4b的模为( )

2.已知|a|=2,|b|=1,a与b之间的夹角为

3

A.2

B.23

C.6

D.12

3.a ,b 是两个非零向量,(a +b )2=a 2+b 2是a ⊥b 的 ( )

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分又不必要条件

4.若a =(-4,3),b =(5,6),则3|a |2-4a 2b 等于 ( )

A.23

B.57

C.63

D.83

5.已知a =(λ,2),b =(-3,5)且a 与b 的夹角为钝角,则λ的取值范围是 ( )

A.λ>310

B.λ≥310

C.λ<310

D.λ≤3

10 6.已知a =(4,3),向量b 是垂直a 的单位向量,则b 等于 ( ) A.??? ??54,53或??? ??53,54 B ??? ??53,54或??

? ??--54,53 C ??? ??-54,53或??? ??-53,54 D ??? ??-54,53或??

? ??-54,53 7.已知a =(2,3),b =(-4,7),则a 在b 方向上的投影为 ( ) A.55 B.55- C.565 D.13

13 8.已知A (3,2),B (-1,-1),若点P (x ,-2

1)在线段AB 中垂线上,则x 为 ( ) A.-47 B.4

7 C.2 D.-2 9.已知a =(3,0),b =(k,5),且a 与b 的夹角为4

3π,则k 的值为 ( ) A.-4 B.4 C.5 D.-5

10.已知a =(3,-1),b =(1,2),求满足条件:x 2a =9与x 2b =-4的向量x 为 ( )

A.(2,3)

B.(2,-3)

C.(-2,3)

D.(-2,-3)

二、思维激活

11.已知向量a 、b 的夹角为3

π,|a |=2,|b |=1,则|a +b |2|a -b |= . 12.已知a ⊥b 、c 与a ,b 的夹角均为60°,且|a |=1,|b |=2,|c |=3,则(a +2b -c )2= .

13.已知a =(1,2),b =(1,1),c =b -k a ,若c ⊥a ,则c = .

14.已知点A (1,0),B (3,1),C (2,0),且a =,b =,则a 与b 的夹角为 .

三、能力提高

15.设A 、B 、C 、D 是平面内任意四点,求AB 2CD +BC 2AD +CA 2BD 值.

16.设=(3,1),=(-1,2),⊥,∥,O 是原点,求满足+=时的坐标.

17.已知两单位向量a 与b 的夹角为120°,若c =2a -b ,d =3b -a ,试求:c 与d 的夹角.

18.已知a =(3,-1),b =???

? ??23,21,且存在实数k 和t ,使得x =a +(t 2-3)2b , y =-k a +t 2b ,且x ⊥y ,试求t

t k 2+的最小值.

小练习三

一选择题

1.已知A 、B 、C 为三个不共线的点,P 为△ABC 所在平面内一点,若+++,

则点P 与△ABC 的位置关系是 ( )

A 、点P 在△ABC 内部

B 、点P 在△AB

C 外部

C 、点P 在直线AB 上

D 、点P 在AC 边上

2.已知三点A (1,2),B (4,1),C (0,-1)则△ABC 的形状为 ( )

A 、正三角形

B 、钝角三角形

C 、等腰直角三角形

D 、等腰锐角三角形

3.当两人提起重量为|G|的旅行包时,夹角为θ,两人用力都为|F|,若|F|=|G|,则θ的值为( )

A 、300

B 、600

C 、900

D 、1200

二、填空题

5.一艘船以5km/h 的速度向垂直于对岸方向行驶,船的实际航行方向与水流方向成300角,则水流速度为 km/h 。

6.两个粒子a ,b 从同一粒子源发射出来,在某一时刻,以粒子源为原点,它们的位移分别为S a =(3,-4),S b =(4,3),(1)此时粒子b 相对于粒子a 的位移 ;

(2)求S 在S a 方向上的投影 。

三、解答题

7.如图,点P 是线段AB 上的一点,且A P ︰PB=m ︰n ,点O 是直线AB 外一点,设OA = a ,

OB = b ,试用,,,m n a b 的运算式表示向量OP .

高三数学平面向量综合练习题

一、选择题

1、设平面向量=(-2,1),=(λ,-1),若与的夹角为钝角,则λ的取值范围是

A 、),2()2,21

(+∞?- B 、(2,+∞) C 、(21-,+∞) D 、(-∞,2

1-) 2、设=(x 1,y 1),=(x 2,y 2),则下列为与共线的充要条件的有

①存在一个实数λ,使=λ或=λ;②|2|=||2||; ③2

121y y x x =;④(+)//(-) A 、1个 B 、2个 C 、3个 D 、4个

3、若函数y=2sin(x+θ)的图象按向量(6π,2)平移后,它的一条对称轴是x=4

π,则θ的一个可能的值是

A 、125π

B 、3π

C 、6π

D 、12

π 4、ΔABC 中,若BC BA AC AB ?=?,则ΔABC 必约

A 、直角三角形

B 、钝角三角形

C 、锐角三角形

D 、等腰三角形

5、已知ΔABC 的三个顶点A 、B 、C 及所在平面内一点P 满足=++,则点P 与ΔABC 的关系是

A 、P 在ΔABC 内部

B 、P 在ΔAB

C 外部

C 、P 在直线AB 上

D 、P 在ΔABC 的AC 边的一个三等分点上 6、在边长为1的正三角形ABC 中,a BC =,AB c = ,CA b = ,则a c c b b a ?+?+?=

A 、1.5

B 、-1.5

C 、0.5

D 、-0.5

二、填空题

1、已知=(cos θ,sin θ),=(3,-1),则|2-|的最大值为____________

2、已知P(x ,y)是椭圆14

22

=+y x 上一点,F 1、F 2是椭圆的两焦点,若∠F 1PF 2为钝角,则x 的取值范围为________________

3、设m =(a,b),n =(c,d),规定两向量m, n 之间的一个运算“3”为m 3n =(ac -bd ,

ad+bc),若已知p =(1,2),p 3q =(-4,-3),则q =____________ 4、将圆x 2+y 2=2按a =(2,1)平移后,与直线x+y+λ=0相切,则实数λ的值为____________

三、解答题

1、已知平面内三向量、、的模为1,它们相互之间的夹角为1200。

(1)求证:c b a ⊥-)(;(2)1||>++c b a k ,求k 的取值范围。

2、设两个向量1e 、2e 满足|1e |=2,|2e |=1,1e 与2e 的夹角为600,若向量2172e e m +=λ与向量21e e n λ+=的夹角为钝角,求实数λ的取值范围。

3、△ABC 内接于以o 为圆心,l 为半径的圆,且=++543,求:?,?,?。

4、抛物线2

2

x y -=与过点M(1,0)的直线l 相交于A 、B 两点,O 为坐标原点,若?=0,求直线l 的方程。 5、设=(m ,n),=(p ,q),定义向量间运算“*”为:*=(mp -nq ,mq+np)。

(1)计算||、|| 及 |*|;(2)设=(1,0),计算cos<*,>及cos<,>;

(3)根据(1)、(2)的结果,你能得到什么结论? 6、已知=(cos α,sin α),=(cos β,sin β),0<α<β<π。

(1)求证:+与-垂直;

(2)若k +与-k 的长度相等,求β-α的值(k 为非零的常数)

7、已知A(3,0),B(0,3),C(cos α,sin α)。(1)若1-=?,求sin2α的值;

(2)若13||=+,且α∈(0,π),求与的夹角。

8、已知=(2,2),与的夹角为4

3π,且2=-2。 (1)求向量;(2)若=(1,0),且⊥,=(cosA ,2cos 2

2

C ),其中A 、C 是△ABC 的内角,若A 、B 、C 依次成等差数列,求|b +c |的取值范围。 9、已知向量a 、b 、c 、d 及实数x 、y ,且|a |=|b |=1,c =a +(x 2-3)b ,d =-y a +x b ,a ⊥b ,若c ⊥d ,且|c |≤10。

(1)求y 关于x 的函数关系y=f(x)及定义域;

(2)求函数f(x)的单调区间。 10、平面向量OA =(1,7),OB =(5,1),OP =(2,1),点M 为直线OP 上一动点。

(1)当MB MA ?取最小值时,求OM 的坐标;(2)当点M 满足(1)中的条件和结论时,求∠AMB 的余弦。

11、已知P(x ,y),A(-1,0),向量PA 与m =(1,1)共线。

(1)求y 是x 的函数;(2)是否在直线y=2x 和直线y=3x 上分别存在一点B 、C ,使得满足∠BPC 为锐角时x 取值集合为{x| x<-7或x>7}?若存在,求出这样的B 、C 的坐标;若不存在,说明理由。

12、已知21e e a -=,2134e e b +=,其中1e =(1,0),2e =(0,1)。

(1)计算2,|+|的值;

(2)如果存在n 个不全为零的实数k 1,k 2,…,k n ,使o a k a k a k n n =+???++2211成立,则称n 个向量1a ,2a ,…,n a “线性相关”,否则为“不线性相关”,依此定义,三个向量1a =(-1,1),2a =(2,1),3a =(3,2)是否为“线性相关”的,请说明你的判断根据;

(3)平面上任意三个互不共线的向量1a ,2a ,3a 一定是线性相关的吗?为什么?

高中数学平面向量知识点总结

高中数学必修4之平面向量 知识点归纳 一.向量的基本概念与基本运算 1向量的概念: ①向量:既有大小又有方向的量向量一般用c b a ,,……来表示,或用有向线段的起点与终 点的大写字母表示,如:AB u u u r 几何表示法 AB u u u r ,a ;坐标表示法),(y x yj xi a 向 量的大小即向量的模(长度),记作|AB u u u r |即向量的大小,记作|a | 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的, 0 与任意向量平行零向量a =0 |a |=0 由于0r 的方向是任意的,且规定0r 平行于任何向量,故在有关向量平行(共线) 的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量 向量0a 为单位向量 |0a |=1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直 线上方向相同或相反的向量,称为平行向量记作a ∥b 由于向量可以进行任意的平移(即自 由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的. ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a 大 小相等,方向相同 ),(),(2211y x y x 2 12 1y y x x 2向量加法 求两个向量和的运算叫做向量的加法 设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u u r u u u r =AC u u u r (1)a a a 00;(2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点 当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法

高二数学向量知识点总结

高二数学向量知识点总结 导读:我根据大家的需要整理了一份关于《高二数学向量知识点总结》的内容,具体内容:数学数学是高考的三大必考主科之一,数学成绩的好坏也将直接关系到你是否能够考入理想的大学,高二数学也是整个高中数学学习承上启下的一年,所以一定要下功夫学好数学。以下是我为您整理的关于的相... 数学数学是高考的三大必考主科之一,数学成绩的好坏也将直接关系到你是否能够考入理想的大学,高二数学也是整个高中数学学习承上启下的一年,所以一定要下功夫学好数学。以下是我为您整理的关于的相关资料,供您阅读。 (一) 考点一:向量的概念、向量的基本定理 【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。 注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。 考点二:向量的运算 【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐

标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。 【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。 考点三:定比分点 【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解。 【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般。由于向量应用的广泛性,经常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目。 考点四:向量与三角函数的综合问题 【内容解读】向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。 【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。 考点五:平面向量与函数问题的交汇 【内容解读】平面向量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要注意自变量的取值范围。 【命题规律】命题多以解答题为主,属中档题。 考点六:平面向量在平面几何中的应用 【内容解读】向量的坐标表示实际上就是向量的代数表示.在引入向量的坐

高中数学平面向量doc

专题讲座 高中数学“平面向量” 一、整体把握“平面向量”教学内容 (一)平面向量知识结构图 (二)重点难点分析

本专题内容包括:平面向量的概念、运算及应用. 课标要求: 平面向量(约12课时) (1)平面向量的实际背景及基本概念 通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示。(2)向量的线性运算 ①通过实例,掌握向量加、减法的运算,并理解其几何意义。 ②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义。 ③了解向量的线性运算性质及其几何意义。 (3)平面向量的基本定理及坐标表示 ①了解平面向量的基本定理及其意义。 ②掌握平面向量的正交分解及其坐标表示。 ③会用坐标表示平面向量的加、减与数乘运算。 ④理解用坐标表示的平面向量共线的条件。 (4)平面向量的数量积

①通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义。 ②体会平面向量的数量积与向量投影的关系。 ③掌握数量积的坐标表达式,会进行平面向量数量积的运算。 ④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。 (5)向量的应用 经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力。 依据课标要求,并结合前面的分析可知:新概念、新运算的定义,向量运算和向量运算的几何意义是本专题的重点,平面向量基本定理是坐标表示(几何代数化)的关键,也是本专题教学的难点。 二、“平面向量”教与学的策略 (一)在概念教学中,依据概念教学的方法,建构概念知识体系 本专题的教学中,向量、向量的运算等都是新定义的概念,如何让这些概念的出现自然轻松,还能让学生迅速把握住本质,达成理解?不妨遵循概念教学的方法。 比如说:“向量的概念”教学中,可从力、位移等实例引入,进行抽象概括,形成向量的概念。之后,提出“温度、功是不是向量?”这样的问题,通过比较,对向量的概念进行辨析,在此基础上,抓住向量的两个要点:大小、方向进行拓展,按如下表格整理,将向量概念精致化。 概念辨析:

高中数学-空间向量及向量的应用

高中数学 - 空间向量及向量的应用 空间直角坐标系的原则: 规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 设 , , 空间向量的直角坐标运算: 空间两点间距离: ; 1:利用空间向量证明空间位置关系(同平面向量) 2:利用空间向量求线线角、线面角 1 )异面直线所成角 设 分别为异面直线 的方向向量,则 则: 空间线段 的中点 M (x ,y ,z )的坐标:

2 )线面角 设 是直线 l 的方向向量, n 是平面的法向量,则 3 :利用空间向量求二面角 其计算公式为:设 分别为平面 的法向量,则 与 互补或相等, 操作方法: 1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 ①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法: 斜面面积和射影面积的关系公式: S S cos ( S 为原斜面面积 , S 为射影面积 , 为斜面与射影所成二面 角的平面角 )这个公式对于斜面为三角 形 , 任意多边形都成立 . 是求二面角的好方法 .当作二面角的平面角有困难时 如果能找得斜面面积的射影面积 ,可直接应用公式 ,求出二面角的大小。 2.空间的距离 点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3.空间向量的应用 (1)用法向量求异面直线间的距离 2)直线与平面所成的角的范围是 [0, ] 。射影转化法 2 方法 3)二面角的范围一般是指 (0, ],解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种 1)异面直线所成的角的范围 是 b F

(完整word)高中数学平面向量基础练习及答案

基础练习 1、若(3,5)AB =u u u r ,(1,7)AC =u u u r , 则BC =u u u r ( ) A .(-2,-2) B .(-2,2) C .(4, 2) D .(-4,-12) 2、已知平面向量→a =(1,1),→b =(1,-1),则向量12→a -32→b = ( ) A 、(-2,-1) B 、(-2,1) C 、(-1,0) D 、(-1,2) 3、已知平面向量a r =(1,-3),b r =(4,-2),a b λ+r r 与a r 垂直,则λ是( ) A. -1 B. 1 C. -2 D. 2 4、若平面向量b r 与向量a r =(1,-2)的夹角是180°,且|b r |=,则b r =( ) A .(-1,2) B .(-3,6) C .(3,-6) D .(-3,6)或(3,-6) 5、在ABC AB BC AB ABC ?=+??则中,若,02是( ) A .锐角三角形 B . 直角三角形 C .钝角三角形 D .等腰直角三角形 6、直角坐标平面内三点()()()1,23,29,7A B C -、、,若E F 、为线段BC 的三等分点,则·=( ) (A )20 (B )21 (C )22 (D )23 7.在四边形ABCD 中,AB =a +2b ,=-4a -b ,=-5a -3b ,其中a 、b 不共线,则四 边形ABCD 为( ) A.平行四边形 B.矩形 C.梯形 D.菱形 8.已知()() 3,4,223,a b a b a b ==++=r r r r r r g 那么a r 与b r 夹角为( ) A 、60? B 、90? C 、120? D 、150? 9.已知D 、E 、F 分别是△ABC 的边BC 、CA 、AB 的中点,且BC =a r ,=b r ,=c r , 则下列各式: ①=21c r -21b r ②=a r +2 1b r ③CF =-21a r +2 1b r ④++CF =0r 其中正确的等式的个数为( ) A.1 B.2 C.3 D.4 10.已知向量a =(3,-4),b =(2,x ), c =(2,y )且a ∥b ,a ⊥c .求|b -c |的值.

高中数学平面向量习题及答案

第二章 平面向量 一、选择题 1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则( ). A .AB 与AC 共线 B .DE 与CB 共线 C .与相等 D .与相等 2.下列命题正确的是( ). A .向量与是两平行向量 B .若a ,b 都是单位向量,则a =b C .若=,则A ,B ,C , D 四点构成平行四边形 D .两向量相等的充要条件是它们的始点、终点相同 3.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足=α OA +β OB ,其中 α,β∈R ,且α+β=1,则点C 的轨迹方程为( ). A .3x +2y -11=0 B .(x -1)2+(y -1)2=5 C .2x -y =0 D .x +2y -5=0 4.已知a 、b 是非零向量且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角是( ). A . 6 π B . 3 π C . 23 π D . 56 π 5.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则=( ). A .λ(+),λ∈(0,1) B .λ(+),λ∈(0,22 ) C .λ(-),λ∈(0,1) D .λ(-),λ∈(0, 2 2) 6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则=( ). A .+ B .- C .+ D .+ 7.若平面向量a 与b 的夹角为60°,|b |=4,(a +2b )·(a -3b )=-72,则向量a 的模为( ). (第1题)

高中数学的空间向量知识

高中数学的空间向量知识 基本内容 空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。 如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。 以下用向量法求解的简单常识: 1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB(其中PM等为向量,由于图不方便做就如此代替,下同) 2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC (其中x+y+z=1),则四点P、A、B、C共面. 3、利用向量证a‖b,就是分别在a,b上取向量(k∈R). 4、利用向量证在线a⊥b,就是分别在a,b上取向量. 5、利用向量求两直线a与b的夹角,就是分别在a,b上取,求:的问题. 6、利用向量求距离就是转化成求向量的模问题:. 7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标. 首先该图形能建坐标系 如果能建 则先要会求面的法向量 求面的法向量的方法是 1。尽量在空中找到与面垂直的向量 2。如果找不到,那么就设n=(x,y,z) 然后因为法向量垂直于面 所以n垂直于面内两相交直线

高中数学向量总结归纳

平面向量的数量积及平面向量的应用 1.定义及运算律. 两个向量的内积(即数量积),其结果是一个实数,而不是向量.其定义源于物理学中“力所做的功”. 设a 及b 是具有共同始点的两个非零向量,其夹角θ满足:0°≤θ≤180°,我们把|a |·|b |·cos θ叫做a 与b 的数量积,记作a ·b 若a =(x 1,y 1),b =(x 2,y 2),则a ·b =2121y y x x +. 其运算满足“交换律”“结合律”以及“分配律”,即:a ·b =b ·a ,(λ·a )·b =λ(a ·b ),(a ±b )·c =a ·c ±b ·c . 2.平面向量数量积的重要性质. ①|a |=a a ?=2||cos ||||a a a =θ?;cos θ=| |||) (b a b a ??;|a ·b |≤|a |·|b |,当且仅当a ,b 共线时取等号. ②设a =(x 1,y 1),b =(x 2,y 2),则:|a |= 21 21y x +;cos θ= 22 22 21 21 2121) (y x y x y y x x + ? + +;|x 1x 2+y 1y 2|≤ 2 2 222121y x y x +?+ 3.两向量垂直的充要条件 若a ,b 均为非零向量,则:a ⊥b ?a ·b =0. 若a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ?x 1x 2+y 1y 2=0. 4.向量的模及三角不等式 |a |2=a ·a 或|a |=a a ?;|a ·b |≤|a |·|b |;|a |2-|b |2=(a +b )·(a -b );|a ±b |=θ??±+cos ||||222b a b a (θ为a ,b 夹角);||a |-|b ||≤|a ±b |≤|a |+|b |. 5.三角不等式的推广形式 |a 1+a 2+…+a n |≤|a 1|+|a 2|+…+|a n |.

(完整版)高中数学空间向量训练题

高中数学空间向量训练题(含解析) 一.选择题 1.已知M、N分别是四面体OABC的棱OA,BC的中点,点P在线MN上,且MP=2PN,设向量=,=,=,则=() A.++B.++C.++D.++ 2.已知=(2,﹣1,2),=(﹣1,3,﹣3),=(13,6,λ),若向量,,共面,则λ=() A.2 B.3 C.4 D.6 3.空间中,与向量同向共线的单位向量为() A.B.或 C. D.或 4.已知向量,且,则x的值为() A.12 B.10 C.﹣14 D.14 5.若A,B,C不共线,对于空间任意一点O都有=++,则P,A,B,C四点() A.不共面B.共面C.共线D.不共线 6.已知平面α的法向量是(2,3,﹣1),平面β的法向量是(4,λ,﹣2),若α∥β,则λ的值是()

A.B.﹣6 C.6 D. 7.已知,则的最小值是()A.B.C.D. 8.有四个命题:①若=x+y,则与、共面;②若与、共面,则=x+y;③若=x+y,则P,M,A,B共面;④若P,M,A,B共面,则=x+y.其中真命题的个数是() A.1 B.2 C.3 D.4 9.已知向量=(2,﹣1,1),=(1,2,1),则以,为邻边的平行四边形的面积为()A.B.C.4 D.8 10.如图所示,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E是棱AB的中点,则点E到平面ACD1的距离为() A.B. C.D. 11.正方体ABCDA1B1C1D1中,直线DD1与平面A1BC1所成角的正弦值为() A. B. C.D. 二.填空题(共5小题) 12.已知向量=(k,12,1),=(4,5,1),=(﹣k,10,1),且A、B、C三点共线,则k= . 13.正方体ABCD﹣A1B1C1D1的棱长为1,MN是正方体内切球的直径,P为正方体表面上的动点,则?的最大值为. 14.已知点P是平行四边形ABCD所在的平面外一点,如果=(2,﹣1,﹣4),=(4,

高一数学平面向量知识点及典型例题解析

高一数学 第八章 平面向量 第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念 ①向量:既有大小又有方向的量。几何表示法AB u u u r ,a ;坐标表示法),(y x j y i x a 。 向量的模(长度),记作|AB u u u r |.即向量的大小,记作|a |。向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,规定0r 平行于任何向量。(与0的区别) ③单位向量| a |=1。④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b ⑤相等向量记为b a 。大小相等,方向相同 ),(),(2211y x y x 2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任 取一点A ,作AB u u u r a ,BC u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC u u u r u u u r u u u r 特殊情况: a b a b a+b b a a+b (1) 平行四边形法则三角形法则C B D C B A A 向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”。②向量减法: 同一个图中画出 a b a b r r r r 、 要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点.(3)实数与向量的积 3.两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a 。 二.【典例解 析】 题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确 (1)零向量没有方向 (2)b a 则, (3)单位向量都相等 (4) 向量就是有向线段

高中数学-空间向量及向量的应用

高中数学-空间向量及向量的应用 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 设血勺乃召),氓叫?乃w ), AB = OB-OA=(^y 2l 切—(吊丹 丑)=(乃—咛乃—丹 勺一匂) 空间向量的直角坐标运算: 设Q = 2],砌,色3 $ =1鹉毎妇则; ① 口+ b= P],曲,电 宀|俎,给禺 ?=I 角十知鬥 +為、屯 +鸟I ? ② a-b = \ a^a 2,a 21■ 诲.场岛i =(业一% 气-如 码一為 帀 ③ 加=兄I 曲卫2,? ' = I 現珂"久卷 '(/i e 7?); ④ 总■&= |气命4 片妇任 | = &占 + 逐血 +&並: ⑤ 口0Fe 鱼二 空三生=左或。『舌寻口[三碣‘ - 冊节 处二赵; 对? $ ⑥ 7丄匸q 口血十口曲十m 禺=0 ; 空间两点间距离:丄“ 「 1 :利用空间向量证明空间位置关系(同平面向量) 2:利用空间向量求线线角、线面角 (1)异面直线所成角Z ? gw 设Q”分别为异面直线讥的方向向量,则 则: 空间线段 的中点M (x ,y ,z )的坐标: 空间直角坐标系的原则: 规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应

(2) 线面角凰打殳《是直线l 的方向向量,n 是平面的法向量,则 3 :利用空间向量求二面角 其计算公式为:设 加“分别为平面G 8的法向量,则 与,剤7 互补或相等, - ? ? . m * n |( csfl i = | A>| = I 忘I * I 云I 操作方法: 1 ?空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 ①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法: 斜面面积和射影面积的关系公式: S S cos (S 为原斜面面积,S 为射影面积,为斜面与射影所成二面 角的平面角)这个公式对于斜面为三角形 ,任意多边形都成立.是求二面角的好方法.当作二面角的平面角有困难时 如果能找得斜面面积的射影面积 ,可直接应用公式,求岀二面角的大小。 2 ?空间的距离 点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3 ?空间向量的应用 (1 )用法向量求异面直线间的距离 CQS P rris-:欧 * b (1)异面直线所成的角的范围是 (2 )直线与平面所成的角的范围是 [0,—]。射影转 化法 2 方法 (3 )二面角的范围一般是指 (0,],解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种 b F

(完整版)高中数学平面向量讲义

专题六 平面向量 一. 基本知识 【1】 向量的基本概念与基本运算 (1)向量的基本概念: ①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行 ③单位向量:模为1个单位长度的向量 ④平行向量(共线向量):方向相同或相反的非零向量 ⑤相等向量:长度相等且方向相同的向量 (2)向量的加法:设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u u r u u u r =AC u u u r ①a a a 00;②向量加法满足交换律与结合律; AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”. (3)向量的减法: ① 相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量 ②向量减法:向量a 加上b 的相反向量叫做a 与b 的差, ③作图法:b a 可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点) (4)实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下: (Ⅰ)a a ; (Ⅱ)当0 时,λa 的方向与a 的方向相同;当0 时,λ a 的方向与a 的方向相反;当0 时,0 a ,方向是任意的 (5)两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a (6)平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21, 使:2211e e a ,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底 【2】平面向量的坐标表示

(完整版)高中数学向量结论【强烈推荐】

如何利用向量的几何表示三角形的各种心 向量的几何表示是高考的热点问题,特别是用三角形的各种心的向量表示经常是命题的素材,常见的结论如下: ①1()3PG PA PB PC =++u u u r u u u r u u u r u u u r ?G 为ABC ?的重心, 特别地0PA PB PC P ++=?u u u r u u u r u u u r r 为ABC ?的重心; (),[0,)AB AC λλ+∈+∞u u u r u u u r 是BC 边上的中线AD 上的任意向量,过重心; () 1,2AD AB AC =+u u u r u u u r u u u r 等于已知AD 是ABC ?中BC 边的中线. ②PA PB PB PC PC PA P ?=?=??u u u r u u u r u u u r u u u r u u u r u u u r 为ABC ?的垂心; ()||cos ||cos AB AC AB B AC C λ+u u u r u u u r u u u r u u u r [0,)λ∈+∞是△ABC 边BC 的高AD 上的任意向量,过垂心. ③ ||||||0AB PC BC PA CA PB P ++=?u u u r u u u r u u u r u u u r u u u r u u u r r ABC ?的内心; 向量()(0)|||| AC AB AB AC λλ+≠u u u r u u u r u u u r u u u r 所在直线过ABC ?的内心(是BAC ∠的角平分线所在直线). ④()()()0OA OB AB OB OC BC OC OA CA +?=+?=+?=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 222OA OB OC OA OB OC ?==?==?u u u u r u u u u r u u u u r u u u r u u u r u u u r O 为ABC ?的外心. 4.向量与平行四边形相关的结论 向量的加法的几何意义是通过平行四边形法则得到,其应用非常广泛.在平行四边形 ABCD 中,设,AB a AC b ==u u u r r u u u r r ,则有以下的结论: ①,AB AC a b AD +=+=u u u r u u u r r r u u u r 通过这个公式可以把共同起点的两个向量进行合并;若C AB D =u u u r u u u r ,可判断四边形为平行四边形; ②,,a b AD a b CB +=-=r r u u u r r r u u u r 若0a b a b a b +=-??=r r r r r r 对角线相等或邻边垂直,则平行四 边形为矩形;()()0a b a b a b +?-=?=u u r r r r r r 对角线垂直.则平行四边形为菱形; ③222222a b a b a b ++-=+r r r r r r 说明平行四边形的四边的平方和等于对角线的平方和; ④||||||||||||a b a b a b -≤±≤+r r r r r r ,特别地,当 a b r r 、 同向或有0r

20高考数学平面向量的解题技巧

第二讲平面向量的解题技巧 【命题趋向】 由2007年高考题分析可知: 1.这部分内容高考中所占分数一般在10分左右. 2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】 “平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为: 1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式. 5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等. 6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题.【例题解析】 1. 向量的概念,向量的基本运算 (1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.

(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式. 例1(2007年北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0u u u r u u u r u u u r ,那么( ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r 命题意图:本题考查能够结合图形进行向量计算的能力. 解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0,u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 故选A . 例2.(2006年安徽卷)在ABCD Y 中,,,3AB a AD b AN NC ===u u u r r u u u r r u u u r u u u r ,M 为BC 的中点,则MN =u u u u r ______.(用a b r r 、表示) 命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+u u u r u u u r u u u r u u u r r r 由得,12 AM a b =+u u u u r r r , 所以,3111()()4 2 4 4 MN a b a b a b =+-+=-+u u u u r r r r r r r . 例3.(2006年广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量 =CD ( ) (A )BA BC 2 1+- (B ) BA BC 2 1-- (C ) BA BC 2 1- (D )BA BC 2 1+ 命题意图: 本题主要考查向量的加法和减法运算能力. 解:BA BC BD CB CD 2 1+-=+=,故选A. 例4. ( 2006年重庆卷)与向量a r =71,,22b ? ?= ???r ?? ? ??27,21的夹解相等,且模为1的向量是 ( ) (A) ?? ?- ??53,5 4 (B) ?? ?- ??53,5 4或?? ? ??-53,54 (C )?? ?- ??31,3 22 (D )?? ?- ??31,3 22或?? ? ? ?- 31,3 22 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题. 解:设所求平面向量为,c r 由433,,, 1. 555c c ???? =-= ? ?????r 4或-时5 另一方面,当222274134312525,,cos ,. 55271432255a c c a c a c ?? ?+?- ?????? =-=== ????????????+++- ? ? ? ?????????r r r r r r r 时

高中数学(理)空间向量知识点归纳总结及综合练习

空间向量知识点归纳总结 知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, a 平行于 b ,记作b a //。 》 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使 p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组 ,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使 OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: ~ (1)空间直角坐标系中的坐标: (2)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=。 ②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 》

高中数学平面向量知识点总结82641

平面向量知识点总结 第一部分:向量的概念与加减运算,向量与实数的积的运算。 一.向量的概念: 1. 向量:向量是既有大小又有方向的量叫向量。 2. 向量的表示方法: (1)几何表示法:点—射线 有向线段——具有一定方向的线段 有向线段的三要素:起点、方向、长度 记作(注意起讫) (2)字母表示法:可表示为 3.模的概念:向量的大小——长度称为向量的模。 记作:|| 模是可以比较大小的 4.两个特殊的向量: 1?零向量——长度(模)为0的向量,记作。的方向是任意的。 注意与0的区别 2?单位向量——长度(模)为1个单位长度的向量叫做单位向量。 二.向量间的关系: 1.平行向量:方向相同或相反的非零向量叫做平行向量。 记作:∥∥ 规定:与任一向量平行 2. 相等向量:长度相等且方向相同的向量叫做相等向量。 记作:= 规定:= 任两相等的非零向量都可用一有向线段表示,与起点无关。 3. 共线向量:任一组平行向量都可移到同一条直线上 , 所以平行向量也叫共线向量。 三.向量的加法: 1.定义:求两个向量的和的运算,叫做向量的加法。 注意:;两个向量的和仍旧是向量(简称和向量) 2.三角形法则: 强调: a b c a + b A A A B B B C C a +b a + b a a b b b a a

1?“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点 2?可以推广到n 个向量连加 3?a a a =+=+00 4?不共线向量都可以采用这种法则——三角形法则 3.加法的交换律和平行四边形法则 1?向量加法的平行四边形法则(三角形法则): 2?向量加法的交换律:+=+ 3?向量加法的结合律:(+) +=+ (+) 4.向量加法作图:两个向量相加的和向量,箭头是由始向量始端指向终向量末端。 四.向量的减法: 1.用“相反向量”定义向量的减法 1?“相反向量”的定义:与a 长度相同、方向相反的向量。记作 -a 2?规定:零向量的相反向量仍是零向量。-(-a ) = a 任一向量与它的相反向量的和是零向量。a + (-a ) = 0 如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0 3?向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差。 即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法。 2.用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算: 若b + x = a ,则x 叫做a 与b 的差,记作a - b 3.向量减法做图:表示a - b 。强调:差向量“箭头”指向被减数 总结:1?向量的概念:定义、表示法、模、零向量、单位向量、平行向量、 相等向量、共线向量 2?向量的加法与减法:定义、三角形法则、平行四边形法则、运算定律 五:实数与向量的积(强调:“模”与“方向”两点) 1.实数与向量的积 实数λ与向量a ρ的积,记作:λa ρ 定义:实数λ与向量a ρ的积是一个向量,记作:λa ρ 1?|λa ρ|=|λ||a ρ | 2?λ>0时λa ρ与a ρ方向相同;λ<0时λa ρ与a ρ方向相反;λ=0时λa ρ = 2.运算定律:结合律:λ(μa ρ)=(λμ)a ρ ① 第一分配律:(λ+μ)a ρ=λa ρ+μa ρ ② 第二分配律:λ(a ρ+b ρ)=λa ρ +λb ρ ③ 3.向量共线充要条件:

高中数学 空间向量及其运算 教案

空间向量及其运算 【高考导航】 本节内容是高中教材新增加的内容,在近两年的高考考查中多作为解题的方法进行考查,主要是解题的方法上因引入向量得以扩展.例如2001上海5分,2002上海5分. 【学法点拨】 本节共有4个知识点:空间向量及其线性运算、共线向量与共面向量、空间向量的分解定理、两个向量的数量积.这一节是空间向量的重点,在学习本节内容时要与平面向量的知识结合起来,认识到研究的范围已由平面扩大到空间.一个向量是空间的一个平移,两个不平行向量确定的是一个平行平面集,在此基础上,把平行向量基本定理和平面向量基本定理推广到空间,得出空间直线与平面的表达式,有了这两个表达式,我们可以很方便地解决空间的共线和共面问题.空间向量基本定理是空间几何研究代数化的基础,有了这个定理,整个空间被3个不共面的基向量所确定,空间一个点或一个向量和实数组(x ,y ,z )建立起一一对应关系,空间向量的数量积一节中,由于空间任一向量都可以转化为共面向量,所以空间两个向量的夹角的定义、取值范围、两个向量垂直的定义和表示符号及向量的模的概念和表示符号等,都与平面向量相同. 【基础知识必备】 一、必记知识精选 1.空间向量的定义 (1)向量:在空间中具有大小和方向的量叫作向量,同向且等长的有向线段表示同一向量或相等向量. (2)向量的表示有三种形式:a ,AB ,有向线段. 2.空间向量的加法、减法及数乘运算. (1)空间向量的加法.满足三角形法则和平行四边形法则,可简记为:首尾相连,由首到尾.求空间若干个向量之和时,可通过平移将它们转化为首尾相接的向量.首尾相接的若干个向量若构成一个封闭图形,则它们的和为0,即21A A +32A A +…1A A n =0. (2)空间向量的减法.减法满足三角形法则,让减数向量与被减数向量的起点相同,差向量由减数向量的终点指向被减数向量的终点,可简记为“起点相同,指向一定”,另外要注意 -=的逆应用. (3)空间向量的数量积.注意其结果仍为一向量. 3.共线向量与共面向量的定义. (1)如果表示空间向量的有向线段在直线互相平行或重合,那么这些向量叫做共线向量或平行向量.对于空间任意两个向量a,b(b≠0),a∥b ?a=λb ,若A 、B 、P 三点共线,则对空间任意一点O ,存在实数t,使得OP =(1-t)OA +t OB ,当t=2 1 时,P 是线段AB 的中点,则中点公式为OP = 2 1 (OA +). (2)如果向量a 所在直线O A 平行于平面α或a 在α内,则记为a ∥α,平行于同一个平面的

高中数学向量基础知识

高中数学的平面向量知识向量的概念表c,.......(物理学中叫做矢量),向量可以用a,b,既有方向又有大小的量叫做向量(物示,也可以用表示向量的有向线段的起点和终点字母表示。只有大小没有方向的量叫做数量)。在自然界中,有许多量既有大小又有方向,如力、速度等。我们为了研究理学中叫做标量这些量的这个共性,在它们的基础上提取出了向量这个概念。这样,研究清楚了向量的性质,当然用它来研究其它量,就会方便许多。向量的几何表示是印刷体,AB。(AB有向线段,以A为起点,B为终点的有向线段记作具有方向的线段叫做也就是粗体字母,书写体是上面加个→) AB|。AB的长度叫做向量的模,记作| 有向线段个因素:起点、方向、长度。有向线段包含3 相等向量、平行向量、共线向量、零向量、单位向量: 相等向量。长度相等且方向相同的向量叫做共线向量,两个方向相同或相反的非零向量叫做平行向量或 ,,零向量与任意向量平行,即0//a、向量ab平行,记作a//b 在向量中共线向量就是平行向量,(这和直线不同,直线共线就是同一条直线了,而向量 共线就是指两条是平行向量)”是有区别。(注意粗体格式,实数“0”和向量“0零向量,记作 0长度等于0的向量叫做的)的方向是任意的;且零向量与任何向量都平行,垂直。零向量。1个单位长度的向量叫做单位向量模 等于 平面向量的坐标表示作为基底。任作ji、x 在直角坐标系内,我们分别取与轴、 y轴方向相同的两个单位向量 ,使得、y,由平面向量基本定理知,有且只有一对实数x一个向量a +yj a=xi 的(直角)坐标,记作)叫做向量,ya 我们把(x ),,y( a=x 向量的坐标表示。在y轴上的坐标,上式叫做叫做在其中 x叫做ax轴上的坐标,ya 在平面直角坐标系内,每一个平面向量都可以用一对实数唯一表示。注意:平面向量的坐标与点的坐标不一样,平面向量的坐标是相对的。而点的坐标是绝对 ),)那么该向量上的所有点都可以用(,的。若一向量的起点在原点,例如该向量为(12a2a1 / 5 表示。即,若一向量的起点在原点,那么该向量上的任意一点的横纵坐标比例关系与向量坐标。关系是的比例的一样

相关主题
文本预览
相关文档 最新文档