当前位置:文档之家› 聚合物锂电池生产流程

聚合物锂电池生产流程

聚合物锂电池生产流程
聚合物锂电池生产流程

锂电池的制作过程

一、材料:

A、正极用铝箔作载体,上面涂一层LiCoO2(高钴酸锂)的活性

化合物,再进行烘烤而成;

B、负极用铜箔作载体,上面涂一层特殊分子结构的碳(石墨),

再进行烘烤而成;

C、正负极隔离复合膜,主要成份为聚乙稀薄膜、PE膜,主要的

功能为隔绝正负极以防止电池自我放电及两极短路等问题;

D、电解液,主要是一些有机物液体,比如PC(碳酸丙烯酯),

EC(碳酸乙烯酯),DMC(碳酸二甲酯),DEC(碳酸二乙

酯),EMC(碳酸甲乙酯)等;

E、外包装袋使用的是凸版的新·铝箔层压材(SSSTP0006),

由CPP接着剤(30um),特殊防腐蚀层Al箔(40μm)和粘结

剂ONy(25μm)组成,总厚100um;

F、电池保护板,具有防过充,过放,输出短路,输入大电流等

作用;

二、制造过程:

A、正负极载体上涂层并烘烤;

B、裁剪和检查;

C、压平;

D、根据电池细裁剪;

E、上正负电极引脚片(点焊);

F、加隔膜绕制成电芯(将正负电极合在一起,中间用隔膜隔开);

G、气压(150Kg)和短路检测;

H、装外包装袋(将电芯装入外包装袋);

I、真空高温除湿;

J、灌注电解液;

K、让电解液快速渗透到电芯并再次除湿;

L、电池排气压制并封口(第一次封口,防止漏液);

M、40度高温放置,再次让电解液充分渗透;

N、电池充放电激活;

O、电池二次排气压制再封口;

P、电池切边(将第一次封口的多余边切掉);

Q、电池边缘整形;

R、剪短电池引脚,并检测电池电压;

S、电池保护板焊引线;

T、将加工好的电池保护板点焊到电池引脚上;

U、测试保护板的过流保护功能并将引线绝缘;

V、将电池保护板用高温胶纸包好;

W、给电池喷码并检查;

X、包装入库;

锂电池知识及生产流程

锂电池知识及生产流程锂电池知识及生产流程一、锂电池基本知识锂离子电池的特点?6?1 运用于汽车领域正成为一项核心技术?6?1 优点:重量轻、储能大、功率大、无污染、也无二次污染、寿命长、自放电系数小、温度适应范围宽泛,是电动自行车、电动摩托车、电动小轿车、电动大货车等较为理想的车用动力。?6?1 缺点是价格较贵、安全性较差。不过现在已有技术开发锰酸锂、磷酸铁锂、磷酸钒锂等新型材料,大大提高了锂离子电池的安全性,而且降低了成本。各类蓄电池对比(纵向对比横向)铅酸镍镉镍氢锂离子传统液态聚合物铅酸质量能量密度、体积能量密度、工作温度范围、自放电率、可靠性质量能量密度、体积能量密度、自放电率质量能量密度、体积能量密度、电压输出、自放电率质量能量密度、体积能量密度、结构特点、自放电率镍镉更好的可循环性、电压输出、价格质量能量密度、体积能量密度质量能量密度、体积能量密度、电压输出、自放电率质量能量密度、体积能量密度、结构特点、自放电率镍氢更好的可循环型、电压输出、价格工作温度范围、更好的可循环性、自放电率、可靠性质量能量密度、体积能量密度、工作温度范围、自放电率、电压输出质量能量密度、体积能量密度、结构特点、自放电率锂离子传统液态更好的可循环性、安全、价格工作温度范围、更好

的可循环性、价格、安全价格、安全、自放电率、重复循环质量能量密度、体积能量密度、结构特点、安全、价格聚合物更好的可循环性工作温度范围、更好的可循环性、价格体积能量密度、更好的可循环性、价格工作温度范围、更好的可循环性绝对优势更好的可循 环性、价格工作温度范围、价格体积能量密度质量能量密度、体积能量密度、自放电率、结构特点质量能量密度、体积能量密度、自放电率、电压输出、结构特点资料来源:陈清泉、孙立清,电动汽车的现状及发展趋势,科技导报,2005年4月,第23卷第4期锂离子电池分类锂离子电池聚合物锂离子电池(LIP) 电解质为聚合物与盐的 混合物,这种电池在常温下的离子电导率低,适于高温使用。在固体聚合物电解质中加入增塑剂等添加剂,从而提高离子电导率,使电池可在常温下使用。采用导电聚合物作为正极材料,其比能量是现有锂离子电池的3倍,是最新一代的锂离子电池。固体聚合物电解质凝胶聚合物电解质聚合物正极材料液态锂离子电池(LIB) 聚合物锂电vs.液态锂电聚合物——下一代锂离子电池?6?1 优势1:用固体电解质代替了液体电解质–具有可薄形化、任意面积化与任意形状化等优点;–不会产生漏液与燃烧爆炸等安全上的问题,由此用铝塑复合薄膜制造电池外壳,从而提高整个电池的比容量。?6?1 优势2:可采用高分子正

锂电池隔膜生产工艺【老师傅分享】

锂电池隔膜生产工艺详解 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 导读:锂离子电池是现代高性能电池的代表,由正极材料、负极材料、隔膜、电解液四个主要部分组成。其中,隔膜是一种具有微孔结构的薄膜,是锂离子电池产业链中具技术壁垒的关键内层组件,在锂电池中起到如下两个主要作用:1)隔开锂电池的正、负极,防止正、负极接触形成短路;2)薄膜中的微孔能够让锂离子通过,形成充放电回路。 锂电池隔膜生产工艺复杂、技术壁垒高

高性能锂电池需要隔膜具有厚度均匀性以及优良的力学性能(包括拉伸强度和抗穿刺强度)、透气性能、理化性能(包括润湿性、化学稳定性、热稳定性、安全性)。据涂布在线了解,隔膜的优异与否直接影响锂电池的容量、循环能力以及安全性能等特性,性能优异的隔膜对提高电池的综合性能具有重要的作用。 锂电池隔膜具有的诸多特性以及其性能指标的难以兼顾决定了其生产工艺技术壁垒高、研发难度大。隔膜生产工艺包括原材料配方和快速配方调整、微孔制备技术、成套设备自主设计等诸多工艺。其中,微孔制备技术是锂电池隔膜制备工艺的核心,根据微孔成孔机理的区别可以将隔膜工艺分为干法与湿法两种。 锂电池隔膜产品 干法隔膜按照拉伸取向分为单拉和双拉 干法隔膜工艺是隔膜制备过程中常采用的方法,该工艺是将高分子聚合物、添加剂等原料混合形成均匀熔体,挤出时在拉伸应力下形成片晶结构,热处理片晶结构获得硬弹性的聚合物薄膜,之后在一定的温度下拉伸形成狭缝状微孔,热定型后制得微孔膜。目前干法工艺主要包括干法单向拉伸和双向拉伸两种工艺。

锂电池生产工艺修订稿

锂电池生产工艺 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

锂离子电池工艺流程 正极混料 原料的掺和: (1)粘合剂的溶解(按标准浓度)及热处理。 (2)钴酸锂和导电剂球磨:使粉料初步混合,钴酸锂和导电剂粘合在一起,提高团聚作用和的导电性。配成浆料后不会单独分布于粘合剂中,球磨时间一般为2小时左右;为避免混入杂质,通常使用玛瑙球作为球磨介子。 干粉的分散、浸湿: (1)原理:固体粉末放置在空气中,随着时间的推移,将会吸附部分空气在固体的表面上,液体粘合剂加入后,液体与气体开始争夺固体表面; 如果固体与气体吸附力比与液体的吸附力强,液体不能浸湿固体;如果固体与液体吸附力比与气体的吸附力强,液体可以浸湿固体,将气体挤出。 当润湿角≤90度,固体浸湿。 当润湿角>90度,固体不浸湿。 正极材料中的所有组员都能被粘合剂溶液浸湿,所以正极粉料分散相对容易。 (2)分散方法对分散的影响: A、静置法(时间长,效果差,但不损伤材料的原有结构); B、搅拌法;自转或自转加公转(时间短,效果佳,但有可能损伤个别 材料的自身结构)。 1、搅拌桨对分散速度的影响。搅拌桨大致包括蛇形、蝶形、球形、桨形、 齿轮形等。一般蛇形、蝶形、桨型搅拌桨用来对付分散难度大的材料或配料的初始阶段;球形、齿轮形用于分散难度较低的状态,效果佳。 2、搅拌速度对分散速度的影响。一般说来搅拌速度越高,分散速度越快, 但对材料自身结构和对设备的损伤就越大。 3、浓度对分散速度的影响。通常情况下浆料浓度越小,分散速度越快,但 太稀将导致材料的浪费和浆料沉淀的加重。 4、浓度对粘结强度的影响。浓度越大,柔制强度越大,粘接强度 越大;浓度越低,粘接强度越小。 5、真空度对分散速度的影响。高真空度有利于材料缝隙和表面的气体排 出,降低液体吸附难度;材料在完全失重或重力减小的情况下分散均匀的难度将大大降低。 6、温度对分散速度的影响。适宜的温度下,浆料流动性好、易分散。太热 浆料容易结皮,太冷浆料的流动性将大打折扣。 稀释。将浆料调整为合适的浓度,便于涂布。 原料的预处理 (1)钴酸锂:脱水。一般用120 oC常压烘烤2小时左右。 (2)导电剂:脱水。一般用200 oC常压烘烤2小时左右。 (3)粘合剂:脱水。一般用120-140 oC常压烘烤2小时左右,烘烤温度视分子量的大小决定。 (4) NMP:脱水。使用干燥分子筛脱水或采用特殊取料设施,直接使用。 2.1.2物料球磨

《安全管理》之聚合物锂电池的生产流程安全问题

聚合物锂电池的生产流程安全问题 在聚合物锂离子电池的生产过程中,以下一些因素必须予以注意。生产出的聚合物锂离子电池经过包装后,进行化成。化成的条件比较关键,因为它涉及SEI膜的形成,以防止负极自发与电解液发生反应;同时,也可以使活性物质与电解质之间有良好的接触。一般而言,每一个生产厂家有自己的化成条件。 聚合物锂离子电池/原材料 1 对于负极而言,除了使用溶于有机溶剂的聚合物作为黏合剂外,也可以使用溶于水溶液的聚合物作为黏合剂。图5为一种可溶于水的黏合剂聚(丙烯酰胺-共-二烯丙基二甲基氯化铵)(AMAC)的结构示意图。它与聚偏氟乙烯相比,具有一定的优越性,有利于在负极表面形成导电性更高的SEI膜,有机电解液的渗透性更好。2 导电剂的分散尽管不是重要方面,但也不可忽视。前面已经讲述了导电剂的分散情况对于负极材料的影响,对于正极材料而言也起同样作用,影响正极容量的发挥和电池的倍率性能。例如对于LiMn2O4而言,采用新型的工艺比传统的工艺更能保证导电剂分散均匀,极化低,容量高,倍率性能好。不同工艺制备的LiMn2O4正极极片的容量与放电倍率的关系。3 正极和负极的比例对于不同的原材料而言也是不一样的。例如,对于天然石墨//LiFePO4而言,后者的容量应该等于天然石墨的容量与SEI膜形成所需要的电荷之和。另外,电极的厚度根据不同的材料,也有不同要求。4 目前商品用的聚合物锂离子电池基本上还是使用LiFP6的碳酸酯溶液作为增塑剂,在较高的温度(80~100℃)下,在微量水分或醇的引发下发生分解,并产生一些有毒的烷基氟化磷酸酯。该热分解在路易斯酸或锂和金属的复合氧化物的作用下受到抑制。5

锂离子电池工艺流程

锂离子电池工艺流程 正极混料 ●原料的掺和: (1)粘合剂的溶解(按标准浓度)及热处理。 (2)钴酸锂和导电剂球磨:使粉料初步混合,钴酸锂和导电剂粘合在一起,提高团聚作用和的导电性。配成浆料后不会单独分布于粘合剂中,球磨时间一般为2小时左右;为避免混入杂质,通常使用玛瑙球作为球磨介子。 ●干粉的分散、浸湿: (1)原理:固体粉末放置在空气中,随着时间的推移,将会吸附部分空气在固体的表面上,液体粘合剂加入后,液体与气体开始争夺固体表面;如果固体与气体吸附力比与液体的吸附力强,液体不能浸湿固体;如果固体与液体吸附力比与气体的吸附力强,液体可以浸湿固体,将气体挤出。 当润湿角≤90度,固体浸湿。 当润湿角>90度,固体不浸湿。 正极材料中的所有组员都能被粘合剂溶液浸湿,所以正极粉料分散相对容易。 (2)分散方法对分散的影响: A、静置法(时间长,效果差,但不损伤材料的原

有结构); B、搅拌法;自转或自转加公转(时间短,效果佳,但有可能损伤个别 材料的自身结构)。 1、搅拌桨对分散速度的影响。搅拌桨大致包括蛇形、蝶形、球形、桨形、齿轮形等。一般蛇形、蝶形、桨型搅拌桨用来对付分散难度大的材料或配料的初始阶段;球形、齿轮形用于分散难度较低的状态,效果佳。 2、搅拌速度对分散速度的影响。一般说来搅拌速度越高,分散速度越快,但对材料自身结构和对设备的损伤就越大。 3、浓度对分散速度的影响。通常情况下浆料浓度越小,分散速度越快,但太稀将导致材料的浪费和浆料沉淀的加重。 4、浓度对粘结强度的影响。浓度越大,柔制强度越大,粘接强度 越大;浓度越低,粘接强度越小。 5、真空度对分散速度的影响。高真空度有利于材料缝隙和表面的气体排出,降低液体吸附难度;材料在完全失重或重力减小的情况下分散均匀的难度将大大降低。

锂电池生产工艺分析

关于循环不合格的分析 一、正负极活性材料的物化结构性质的影响 正负极活性材料的物化结构性质对锂离子的嵌入和脱嵌有决定性的影响,因而影响电池的循环寿命。正负极活性材料的结构是主要的影响因素,使用容易脱嵌的活性材料充放电循环时,活性材料的结构变化较小,而且这种微小变化是可逆的,因而有利于延长充放电循环寿命。 1、材料在充放电过程中的结构稳定性 材料在充放电过程中的结构稳定性有利于提高其充放循环性能。如尖晶石材料LiXMn2O4,具有优越的循环性能,其主要原因之一便是在锂离子的嵌入和胶出过程中,单元晶胞膨胀、收缩率小于1%,即体积变化小;LiXMn2O4(X大于等于1)电极在充放过程中容量损失严重,主要是因为在充放电过程中,其颗粒表面发生Jahn-Teller畸变效应,单元晶胞膨胀严重,使结构完整性破坏。对材料进行适当的离子掺杂可有效提高材料的结构稳定性。如对尖晶石结构LiXMn2O4进行适量的钴(Co)掺杂,因钴使该材料的晶格参数变小,在循规蹈矩环过程中晶体结构趋于稳定,从而有效改善了其循环稳定性。 2、活性材料的料度分布及大小影响 活性材料的粒度对其循环性能影响很大。研究表明:活性材料的粒度在一定范围与材料的循环性能正相关;活性材料的粒度分布越宽,其循环性能就越差,因为当粒度分布较宽时,其孔隙度差,从而影响其对电解液的毛细管作用而使阻抗表现较大,当充电到极限电位时,大颗粒表面的锂离子会过度脱嵌而破坏其层状结构,而不利于循环性能。 3、层状结构的取向性及厚度的影响 具有高度取向性和高度层状有序结构且层状结构较厚的材料,因锂离子插入的方向性强,使用其大电流充电放循环时性能不佳,而对于一些具有无序性层状结构(混层结构)或层结构较薄的材料,由于其锂离子脱嵌速率快,且锂脱嵌引起的体积变化较小,因而其充放循环过程中容降率较小,且耐老化。 4、电极材料的表面结构和性质的影响 改善电极材料的表面结构和性质可有效抑制有机溶剂的共插入及其与电解液间的不良反应,如在石黑表面包覆一层有机聚合物热解碳,在一些正极活性材料如LiCOO2,LiC0XNi1-XO2等表层涂覆一层玻璃态复合氧化物如

聚合物锂离子电池电池基本生产工艺流程

聚合物锂离子电池基本生产工艺流程 目的:将粉状材料搅拌成糊状浆料 Polymer/DBP(增塑剂)/Carbon/LiCoO 2(Cathode) or Graphite(Anode)/Solvent 控制点:固含量/浆料颗粒直径的分布/粘度 目的:将糊状浆料涂制成薄膜 控制点:膜片一致性(重量&厚度)/机械强度/干燥度 Laminating:在一定温度下通过一定的压力将集流体、阴/阳极材料、隔离膜热 复合成电芯单体的基本结构。 Lam 1产品:Electrode 控制点:Temperature/Pressure /Thickness Anode/Cathode/Separator Separator 要求:Electronic insulator/Ionic conductor; Mechanical strength 控制点:Temperature/Pressure/Gap/Thickness 产品:Bi-cell 为Li 离子打通通道 Tab TAB Lead Sealant 0.1~0.15mm 控制点:Temperature/Pressure 控制点:Temperature/Time 85±5℃,4h (55A5130:20H) Composition: Salt; Organic solvent(有机溶剂) 要求:high ionic conductivity; chemical/electrochemical stable; good LT/HT performance 大电池:2 h; 中小电池:1h 干燥房

通过恒流/恒压充放电激活电池 CC ---Constant Current CV---Constant V oltage Pre-degassing 耐高温性能测试(85℃/4h) 55A5130 :75℃/24h 经封装,在真空状态下通过一定压力时间真空度将电芯内气体抽出,并保 证密封度 成型过程(外观要求)Trimming/Folding 将Ni片焊到Al Tab上,因Al Tab不易上锡、易断 电性能测试参数:Open Current V oltage、Impedance、Capacity QAI-002 聚合物锂离子电池的四个检测方法: 1.电性能 charge/discharge; capacity; voltage/impedance; cycle life 2.环境适应能力 LT/HT performance; vibrate; collide;自由跌落;恒定湿热 3.安全性能 过充过放保护;短路保护 4.存储性能 荷电保持能力;高温高湿存储性能 准备:Nelson 12/03/03 审核:Kevin 批准:Vicky

锂电池生产技术测试题及答案

四川鑫唐新能源科技有限公司 技术部培训后考核试题(满分120分) 姓名:工号:部门:分数: 一、填空题(每空1分,共40分) 1、混料浆料出料前检验项目:固含量、粘度、细度。 2、配料的工艺有干法、湿法、螺杆式三种;配料的体系有水系和油系两种。 3、配料工序潜在的问题有加料顺序错误、搅拌时间过长、搅拌时间过短、搅拌速度过慢、搅拌速度过快、真空度过低、搅拌设备漏油、浆料有气泡、颗粒、粉尘大(答对6项得分)等。 4、涂布工序控制点:环境温湿度、涂布面密度、箔材尺寸、涂布速度、烘箱温度、敷料宽度、极带上下涂层错位(答对4项得分)等。 5、涂布的方式有单面连续涂布、单面间隙涂布、双面连续涂布、双面间隙涂布。 6、涂布工序潜在的问题有料槽液面高度过低或过高、走速过慢、走速过快、烘箱温度过高、烘箱温度过低、激光测厚仪失效、导轨不干净、纠偏和张力失效、刀口损伤、挡板磨损(答对6 项得分)等。 7、压实密度的算法:极带涂布净面密度/(极带辊压后厚度-基材厚度),磷酸铁锂材料的压实密度一般不超过cm3,压实密度对电池容量、充放电效率、内阻、循环性(答对2项得分)等电性能有一定的影响,辊压有冷压、热压工艺,辊压方式有一次辊压成型和二次辊压成型。 8、锂电池制造过程中的天敌:水分、毛刺或金属颗粒、粉尘。 9、配料、涂布、辊压、制片、电芯烘烤、电池烘烤(答对4项得分)是本公司的关键工序。 10、叠片的作用是将正、负极片与隔膜良好的叠和,常见的有叠片和卷绕两种方式,本公司的叠片方式为Z字型叠片。 11、组装是将电芯与极柱、外壳组装成电池;方式有螺杆连接、热熔焊接、超声焊接、激光焊接。 12、组装潜在的问题有孔直径不符合要求、包胶不完整、连接松动、极片损伤、壳内有杂物、焊接强度不够、条码混乱、电池漏测(答对5项得分)等。 13、注液的作用是定量对电池注入电解液及检测电池密封性。 14、电池化成即为小电流激活电池,其电极材料与电解液产生化学反应,在电极材料表面形成一层钝化层,固体电解质界面膜,简称 SEI膜;这层

揭秘!锂电池制造工艺全解析

锂电池结构 锂离子电池构成主要由正极、负极、非水电解质和隔膜四部分组成。目前市场上采用较多的锂电池主要为磷酸铁锂电池和三元锂电池,二者正极原材料差异较大,生产工艺流程比较接近但工艺参数需变化巨大。若磷酸铁锂全面更换为三元材料,旧产线的整改效果不佳。对于电池厂家而言,需要对产线上的设备大面积进行更换。 锂电池制造工艺 锂电池的生产工艺比较复杂,主要生产工艺流程主要涵盖电极制作的搅拌涂布阶段(前段)、电芯合成的卷绕注液阶段(中段),以及化成封装的包装检测阶段(后段),价值量(采购金额)占比约为(35~40%):(30~35)%:(30~35)%。差异主要来自于设备供应商不同、进口/国产比例差异等,工艺流程基本一致,价值量占比有偏差但总体符合该比例。 锂电生产前段工序对应的锂电设备主要包括真空搅拌机、涂布机、辊压机等;中段工序主要包括模切机、卷绕机、叠片机、注液机等;后段工序则包括化成机、分容检测设备、过程仓储物流自动化等。除此之外,电池组的生产还需要Pack 自动化设备。 锂电前段生产工艺 锂电池前端工艺的结果是将锂电池正负极片制备完成,其第一道工序是搅拌,即将正、负极固态电池材料混合均匀后加入溶剂,通过真空搅拌机搅拌成浆状。配料的搅拌是锂电后续工艺的基础,高质量搅拌是后续涂布、辊压工艺高质量完成的基础。 涂布和辊压工艺之后是分切,即对涂布进行分切工艺处理。如若分切过程中产生毛刺则后续装配、注电解液等程序、甚至是电池使用过程中出现安全隐患。因此锂电生产过程中的前端

设备,如搅拌机、涂布机、辊压机、分条机等是电池制造的核心机器,关乎整条生产线的质量,因此前端设备的价值量(金额)占整条锂电自动化生产线的比例最高,约35%。 锂电中段工艺流程 锂电池制造过程中,中段工艺主要是完成电池的成型,主要工艺流程包括制片、极片卷绕、模切、电芯卷绕成型和叠片成型等,是当前国内设备厂商竞争比较激烈的一个领域,占锂电池生产线价值量约30%。 目前动力锂电池的电芯制造工艺主要有卷绕和叠片两种,对应的电池结构形式主要为圆柱与方形、软包三种,圆柱和方形电池主要采用卷绕工艺生产,软包电池则主要采用叠片工艺。圆柱主要以18650和26650为代表(Tesla单独开发了21700电池、正在全行业推广),方形与软包的区别在于外壳分别采用硬铝壳和铝塑膜两种,其中软包主要以叠片工艺为主,铝壳则以卷绕工艺为主。 软包结构形式主要面向中高端数码市场,单位产品的利润率较高,在同等产能条件下,相对利润高于铝壳电池。由于铝壳电池易形成规模效应,产品合格率及成本易于控制,目前二者在各自市场领域均有可观的利润,在可以预见的未来,二者都很难被彻底取代。 由于卷绕工艺可以通过转速实现电芯的高速生产,而叠片技术所能提高的速度有限,因此目前国内动力锂电池主要采用卷绕工艺为主,因此卷绕机的出货量目前大于叠片机。 卷绕和叠片生产对应的前道工序为极片的制片和模切。制片包括对分切后的极片/极耳焊接、极片除尘、贴保护胶纸、极耳包胶和收卷或定长裁断,其中收卷极片用于后续的全自动卷绕,定长裁断极片用于后续的半自动卷绕;冲切极片是将分切后的极片卷绕冲切成型,用于后续的叠片工艺。

锂电池知识及生产流程word版

锂电池知识及生产流程 第一编 一、锂电池基本知识 1、锂离子电池的特点 1.1运用于汽车领域正成为一项核心技术 1.2优点:重量轻、储能大、功率大、无污染、也无二次污染、寿命长、自放电系数小、温度适应围宽泛,是电动自行车、电动摩托车、电动小轿车、电动大货车等较为理想的车用动力。 1.3缺点是价格较贵、安全性较差。不过现在已有技术开发锰酸锂、磷酸铁锂、磷酸钒锂等新型材料,大大提高了锂离子电池的安全性,而且降低了成本。 二、各类蓄电池对比(纵向对比横向)

资料来源:清泉、立清,电动汽车的现状及发展趋势,科技导报,2005年4月,第23卷第4期 三、锂离子电池分类 四、聚合物锂电VS 液态锂电 4.1聚合物——下一代锂离子电池 优势1:用固体电解质代替了液体电解质 锂 离子 聚 合物 更好的可循 环性 工作温度围、更 好的可循环性、价 格 体积能量密度、 更好的可循环 性、价格 工作温度围、更好 的可循环性 绝 对 优 势 更好的可循 环性、价格 工作温度围、价 格 体积能量密度 质量能量密度、体积 能量密度、自放电率、 结构特点 质量能量密度、体积 能量密度、自放电率、 电压输出、结构特点

– 具有可薄形化、任意面积化与任意形状化等优点; – 不会产生漏液与燃烧爆炸等安全上的问题,由此用铝塑复合薄膜制造电池外壳, 从而提高整个电池的比容量。 优势2:可采用高分子正极材料 – 其质量比能量将会比目前的液态锂离子电池提高50%以上。 优势3:在工作电压、充放电循环寿命等方面都比锂离子电池有所提 高。 劣势:工作温度、循环性能上需要突破 五、锂离子电池产业链分析 5.1最上游:矿资源 5.1.1最上游是矿资源,包括钴、镍、锰、磷、铁、锂及各种化 合物。目前,钴和锂用量最大。 5.1.2国钴生产领头企业有金川、华友、嘉利柯和优美科四家 ,年产量都在 1500吨以上,国金属钴储量极少,目前约 80%的金属钴靠进口。 5.1.3锂资源在中国储量相对丰富,仅次于智利、阿根廷。国 资源目前主要被、矿业掌控,并同时生产工 业级碳酸锂。而电池级碳酸锂则由天齐锂业、尼科国润供 应,其中天齐锂业技术最成熟,是行业标准制定者,约占 国60%的市场份额,并且有部分出口。

锂离子电池原理及生产工艺流程

锂离子电池原理及工艺流程 一、原理 1.0 正极构造 LiCoO2(钴酸锂)+导电剂+粘合剂(PVDF)+集流体(铝箔)正极2.0 负极构造 石墨+导电剂+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔)负极3.0工作原理 3.1 充电过程:一个电源给电池充电,此时正极上的电子e从通过外部电路跑到负极上,正锂离子Li+从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与早就跑过来的电子结合在一起。 正极上发生的反应为 LiCoO2=充电=Li1-xCoO2+Xli++Xe(电子) 负极上发生的反应为 6C+XLi++Xe=====LixC6 3.2 电池放电过程 放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过。由此可知,只要负极上的电子不能从负极跑到正极,电池就不会放电。电子和Li+都是同时行动的,方向相同但路不同,放电时,电子从负极经过电子导体跑到正极,锂离子Li+从负极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达正极,与早就跑过来的电子结合在一起。 二工艺流程

1.正负极配方 1.1正极配方(LiCoO2(钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔) 正极) (10μm):93.5% LiCoO 2 其它:6.5% 如Super-P:4.0% PVDF761:2.5% NMP(增加粘结性):固体物质的重量比约为810:1496 a)正极黏度控制6000cps(温度25转子3); b)NMP重量须适当调节,达到黏度要求为宜; c)特别注意温度湿度对黏度的影响 ●钴酸锂:正极活性物质,锂离子源,为电池提高锂源。 钴酸锂:非极性物质,不规则形状,粒径D50一般为6-8 μm,含水量≤0.2%,通常为碱性,PH值为10-11左右。 锰酸锂:非极性物质,不规则形状,粒径D50一般为5-7 μm,含水量≤0.2%,通常为弱碱性,PH值为8左右。 ●导电剂:提高正极片的导电性,补偿正极活性物质的电子导电性。 提高正极片的电解液的吸液量,增加反应界面,减少极化。 非极性物质,葡萄链状物,含水量3-6%,吸油值~300,粒径一般为2-5 μm;主要有普通碳黑、超导碳黑、石墨乳等,在大批量应用时一般选择超导碳黑和石墨乳复配;通常为中性。 ●PVDF粘合剂:将钴酸锂、导电剂和铝箔或铝网粘合在一起。 非极性物质,链状物,分子量从300,000到3,000,000不等;吸水后分子量下降,粘性变差。 ●NMP:弱极性液体,用来溶解/溶胀PVDF,同时用来稀释浆料。 ●正极引线:由铝箔或铝带制成。 1.2负极配方(石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜 箔)负极) 负极材料:94.5% Super-P:1.0% SBR:2.25% CMC:2.25% 水:固体物质的重量比为1600:1417.5

锂电池生产工艺分析

锂电池生产工艺分析 关于循环不合格的分析 一、正负极活性材料的物化结构性质的影响 正负极活性材料的物化结构性质对锂离子的嵌入和脱嵌有决定性的影响,因而影响电池的循环寿命。正负极活性材料的结构是主要的影响因素,使用容易脱嵌的活性材料充放电循环时,活性材料的结构变化较小,而且这种微小变化是可逆的,因而有利于延长充放电循环寿命。 1、材料在充放电过程中的结构稳定性 材料在充放电过程中的结构稳定性有利于提高其充放循环性能。如尖晶石材料LiXMn2O4,具有优越的循环性能,其主要原因之一便是在锂离子的嵌入和胶出过程中,单元晶胞膨胀、收缩率小于1%,即体积变化小;LiXMn2O4(X大于等于1)电极 在充放过程中容量损失严重,主要是因为在充放电过程中,其颗粒表面发生Jahn-Teller畸变效应,单元晶胞膨胀严重,使结构完整性破坏。对材料进行适当的离 子掺杂可有效提高材料的结构稳定性。如对尖晶石结构LiXMn2O4进行适量的钴(Co)掺杂,因钴使该材料的晶格参数变小,在循规蹈矩环过程中晶体结构趋于稳定,从而有效改善了其循环稳定性。 2、活性材料的料度分布及大小影响 活性材料的粒度对其循环性能影响很大。研究表明:活性材料的粒度在一定范 围与材料的循环性能正相关;活性材料的粒度分布越宽,其循环性能就越差,因为当粒度分布较宽时,其孔隙度差,从而影响其对电解液的毛细管作用而使阻抗表现较大,当充电到极限电位时,大颗粒表面的锂离子会过度脱嵌而破坏其层状结构,而不利于循环性能。 3、层状结构的取向性及厚度的影响

具有高度取向性和高度层状有序结构且层状结构较厚的材料,因锂离子插入的方向性强,使用其大电流充电放循环时性能不佳,而对于一些具有无序性层状结构(混层结构)或层结构较薄的材料,由于其锂离子脱嵌速率快,且锂脱嵌引起的体积变化较小,因而其充放循环过程中容降率较小,且耐老化。 4、电极材料的表面结构和性质的影响 改善电极材料的表面结构和性质可有效抑制有机溶剂的共插入及其与电解液间的不良反应,如在石黑表面包覆一层有机聚合物热解碳,在一些正极活性材料如LiCOO2,LiC0XNi1-XO2等表层涂覆一层玻璃态复合氧化物如 LiO-Al2O3-SiO2,Li2O-2B2O3等可显著改善材料的充放电循环性能及电池的安全性。 二、电极涂层粘结强度的影响 正负极涂层的粘结强度足够高时,可防止充放循环过程中正负极优其是负极的粉化脱落或涂层因过度膨胀收缩而剥离基片,降低循环容降率 ;反之,如果粘结强度达不到要求,则随循环次数的增加,因涂层剥离程度加重而使电池内阻抗不断增大,循环容量下降加剧。具体说来,包括以下几方面的因素。 1、胶粘剂的材料选择 目前常用的粘合剂为水溶性有机氟粘合剂(PVDF,PTFE等),其粘结强度受物理化学性能参数如分子量、热稳定性、热收缩率、电阻率、熔融及软化温度以及在溶剂中的溶胀饱合度、化学稳定性等的影响;此外,正极和负极所用的粘结剂及溶剂均要非常纯,以免因杂质存在而使电极中的粘结剂氧化和老化,从而降低电池的循环性能。 2、胶粘剂的配制 选用合适的粘合剂与溶剂相互作用后形成胶粘剂,它对涂膜有较强的附着力,但要注意配制时的温度、各组分间的比例,即配即用,不宜久放,涂好的极片也不

揭秘!锂电池制造工艺设计全解析

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 揭秘!锂电池制造工艺设计全解析 WORD 格式-可编辑揭秘!锂电池制造工艺全解析锂电池结构锂离子电池构成主要由正极、负极、非水电解质和隔膜四部分组成。 目前市场上采用较多的锂电池主要为磷酸铁锂电池和三元锂电池,二者正极原材料差异较大,生产工艺流程比较接近但工艺参数需变化巨大。 若磷酸铁锂全面更换为三元材料,旧产线的整改效果不佳。 对于电池厂家而言,需要对产线上的设备大面积进行更换。 锂电池制造工艺锂电池的生产工艺比较复杂,主要生产工艺流程主要涵盖电极制作的搅拌涂布阶段(前段)、电芯合成的卷绕注液阶段(中段),以及化成封装的包装检测阶段(后段),价值量(采购金额)占比约为(35~40%):(30~35)%:(30~35)%。 差异主要来自于设备供应商不同、进口/国产比例差异等,工艺流程基本一致,价值量占比有偏差但总体符合该比例。 专业知识--整理分享 1/ 7

WORD 格式-可编辑锂电生产前段工序对应的锂电设备主要包括真空搅拌机、涂布机、辊压机等;中段工序主要包括模切机、卷绕机、叠片机、注液机等;后段工序则包括化成机、分容检测设备、过程仓储物流自动化等。 除此之外,电池组的生产还需要 Pack 自动化设备。 锂电前段生产工艺锂电池前端工艺的结果是将锂电池正负极片制备完成,其第一道工序是搅拌,即将正、负极固态电池材料混合均匀后加入溶剂,通过真空搅拌机搅拌成浆状。 配料的搅拌是锂电后续工艺的基础,高质量搅拌是后续涂布、辊压工艺高质量完成的基础。 涂布和辊压工艺之后是分切,即对涂布进行分切工艺处理。 如若分切过程中产生毛刺则后续装配、注电解液等程序、甚至是电池使用过程中出现安全隐患。 因此锂电生产过程中的前端设备,如搅拌机、涂布机、辊压机、分条机等是电池制造的核心机器,关乎整条生产线的质量,因此前端设备的价值量(金额)占整条锂电自动化生产线的比例最高,约35%。 锂电中段工艺流程锂电池制造过程中,中段工艺主要是完成电池的成型,主要工艺流程包括制片、极片卷绕、模切、电芯卷绕成型和叠片成型等,是当前国内设备厂商竞争比较激烈的一个领域,占锂电池生产线价值量约 30%。 目前动力锂电池的电芯制造工艺主要有卷绕和叠片两种,对应的

聚合物锂电池生产流程

锂电池的制作过程 一、材料: A、正极用铝箔作载体,上面涂一层LiCoO2(高钴酸锂)的活性 化合物,再进行烘烤而成; B、负极用铜箔作载体,上面涂一层特殊分子结构的碳(石墨), 再进行烘烤而成; C、正负极隔离复合膜,主要成份为聚乙稀薄膜、PE膜,主要的 功能为隔绝正负极以防止电池自我放电及两极短路等问题; D、电解液,主要是一些有机物液体,比如PC(碳酸丙烯酯), EC(碳酸乙烯酯),DMC(碳酸二甲酯),DEC(碳酸二乙 酯),EMC(碳酸甲乙酯)等; E、外包装袋使用的是凸版的新·铝箔层压材(SSSTP0006), 由CPP接着剤(30um),特殊防腐蚀层Al箔(40μm)和粘结 剂ONy(25μm)组成,总厚100um; F、电池保护板,具有防过充,过放,输出短路,输入大电流等 作用; 二、制造过程: A、正负极载体上涂层并烘烤; B、裁剪和检查; C、压平; D、根据电池细裁剪; E、上正负电极引脚片(点焊);

F、加隔膜绕制成电芯(将正负电极合在一起,中间用隔膜隔开); G、气压(150Kg)和短路检测; H、装外包装袋(将电芯装入外包装袋); I、真空高温除湿; J、灌注电解液; K、让电解液快速渗透到电芯并再次除湿; L、电池排气压制并封口(第一次封口,防止漏液); M、40度高温放置,再次让电解液充分渗透; N、电池充放电激活; O、电池二次排气压制再封口; P、电池切边(将第一次封口的多余边切掉); Q、电池边缘整形; R、剪短电池引脚,并检测电池电压; S、电池保护板焊引线; T、将加工好的电池保护板点焊到电池引脚上; U、测试保护板的过流保护功能并将引线绝缘; V、将电池保护板用高温胶纸包好; W、给电池喷码并检查; X、包装入库;

聚合物电池的生产流程和工艺

毕业设计 聚合物电池的生产流程和工艺 系别电子信息工程系 专业信息安全技术 班级 08-1班 学生姓名 xxx 指导老师 xxx 2011年4月8日

摘要 锂聚合物电池(Li-polymer,又称高分子锂电池):它也是锂离子电池的一种,但是与液锂电池(Li-ion)相比具有能量密度高、更小型化、超薄化、轻量化,以及高安全性和低成本等多种明显优势,是一种新型电池。在形状上,锂聚合物电池具有超薄化特征,可以配合各种产品的需要,制作成任何形状与容量的电池。该类电池可以达到的最小厚度可达0.5mm。它的标称电压与Li-ion一样也是3.6或3.7V,没有记忆效应。聚合物锂离子电池是电池行业中技术含量最高,最新的品种,以钴酸锂材料为正极,碳材料为负极,电解质采用固态或凝胶态有机导电膜组成,并采用铝塑膜做外包装的最新一代可充锂离子电池。它是液态离电池的更新换代产品,不仅具有液态锂离子电池的高电压、长循环寿命、放电电压平稳以及清洁无污染等特点;而且消除了液态锂离子电池存在的爆炸的安全隐患,具有更高的能量密度;同时外形更灵活、方便,重量轻巧;产品性能均达到或超过液态锂离子的技术指标,更具有安全性,所以受到国内外电子厂商及设计公司的青睐。

目录 摘要................................................................................................................................ I 1.聚合物电池的概述 (1) 2 极板工程的主要工艺和流程 (5) 2.1 极板切割的工艺区流程 (5) 2.2极板VD (5) 3 卷曲工程的工艺与流程 (6) 3.1卷曲机的生产过程 (6) 3.2 卷曲车间的press (6) 4 parking车间的工艺与流程 (7) 4.1 parking机 (7) 4.1.1 parking的描述 (7) 4.1.2parking的生产过程 (7) 4.1.3parking的外观检查 (8) 4.2 parking VD (8) 5化成车间的工艺流程 (9) 5.1化成概述 (9) 5.2 P/G工程 (9) 5.3 D/F工程 (10) 5.4化成车间的质量检测 (10) 6 结束语 (11) 致谢 (12) 参考文献 (13)

锂电池英文生产流程

Mixing(配料) Mix solvent and bound separately with positive and negative active materials. Make into positive and negative pasty materials after stirring at high speed till uniformity. Coating(涂布) Now, we are in coating line. We use back reverse coating. This is the slurry-mixing tank. The anode(Cathode)slurry is introduced to the coating header by pneumaticity from the mixing tank. The slurry is coated uniformly on the copper foil, then the solvent is evaporated in this oven. (下面的依据情况而定)There are four temperature zones, they are independently controlled. Zone one sets at 55 degree C, zone two sets at 65 degree C, zone three sets at 80 degree C, zone four sets at 60 degree C. The speed of coating is 4 meters per minute. You see the slurry is dried. The electrode is wound to be a big roll and put into the oven. The time is more than 2 hours and temperature is set at 60 degree C. Throughout the coating, we use micrometer to measure the electrode thickness per about 15 minutes. We do this in order to keep the best consistency of the electrode. Vocabulary: coating line 涂布车间back reverse coating 辊涂coating header 涂布机头 Al/copper foil 铝/铜箔degree C 摄氏度temperature zones 温区 wind to be a(big)roll 收卷evenly/uniformly 均匀oven 烘箱 evaporate 蒸发electrode 极片 Cutting Cut a roll of positive and negative sheet into smaller sheets according to battery specification and punching request. Pressing Press the above positive and negative sheets till they become flat. Punching Punching sheets into electrodes according to battery specification, Electrode After coating we compress the electrode with this cylindering machine at about 7meters per minute. Before compress we clean the electrode with vacuum and brush to eliminate any particles. Then the compressed electrode is wound to a big roll. We use micrometer to measure the compressed electrode thickness every 10 minutes. After compressing we cut the web into large pieces. We tape the cathode edge to prevent any possible internal short. The large electrode with edge taped is slit into smaller pieces. This is ultrasonic process that aluminum tabs are welded onto cathodes using ultrasonic weld machine. We tape the weld section to prevent any possible internal short. And finally, we clean the finished electrodes with vacuum and brush. Vocabulary: cylindering 柱形辊压vacuum 真空particle 颗粒 wound 旋紧卷绕micrometer 千分尺internal short 内部短路 slit 分切ultrasonic 超声波weld 焊接

揭秘锂电池制造工艺全解析

揭秘!锂电池制造工艺全解析 锂电池结构 锂离子电池构成主要由正极、负极、非水电解质和隔膜四部分组成。目前市场上采用较多的锂电池主要为磷酸铁锂电池和三元锂电池,二者正极原材料差异较大,生产工艺流程比较接近但工艺参数需变化巨大。若磷酸铁锂全面更换为三元材料,旧产线的整改效果不佳。对于电池厂家而言,需要对产线上的设备大面积进行更换。

锂电池制造工艺 锂电池的生产工艺比较复杂,主要生产工艺流程主要涵盖电极制作的搅拌涂布阶段(前段)、电芯合成的卷绕注液阶段(中段),以及化成封装的包装检测阶段(后段),价值量(采购金额)占比约为(35~40%):(30~35)%:(30~35)%。差异主要来自于设备供应商不同、进口/国产比例差异等,工艺流程基本一致,价值量占比有偏差但总体符合该比例。 锂电生产前段工序对应的锂电设备主要包括真空搅拌机、涂布机、辊压机等;中段工序主要包括模切机、卷绕机、叠片机、注液机等;后段工序则包括化成机、分容检测设备、过程仓储物流自动化等。除此之外,电池组的生产还需要Pack 自动化设备。 锂电前段生产工艺 锂电池前端工艺的结果是将锂电池正负极片制备完成,其第一道工序是搅拌,即将正、负极固态电池材料混合均匀后加入溶剂,通过真空搅拌机搅拌成浆状。配料的搅拌是锂电后续工艺的基础,高质量搅拌是后续涂布、辊压工艺高质量完成的基础。 涂布和辊压工艺之后是分切,即对涂布进行分切工艺处理。如若分切过程中产生毛刺则后续装配、注电解液等程序、甚至是电池使用过程中出现安全隐患。因此锂电生产过程中的前端设备,如搅拌机、涂布机、辊压机、分条机等是电池制造的核心机器,关乎整条生产线的质量,因此前端设备的价值量(金额)占整条锂电自动化生产线的比例最高,约35%。

相关主题
文本预览
相关文档 最新文档