当前位置:文档之家› 第五章 光的偏振和晶体光学基础

第五章 光的偏振和晶体光学基础

第五章光的偏振和晶体光学基础

光的偏振(Polarization of light)现象的发现

偏振现象的意义(说明了光的横波性)菲涅尔(Fresnel)和阿喇果(Arago)实验

杨氏假设

菲涅尔的理论

偏振现象与晶体(Crystal)

1

§5-1 偏振光概述

一、偏振光与自然光(Polarized light and Natural light)

1、自然光:具有一切可能的振动方向的许多光波之和。特点:振动方向的无规则性。

表示:可用两个振动方向垂直的、强度相等的、

位相关系不确定的光矢量表示。

自然光

Natural light

2

光是电磁振荡的一种传播。其中电场和磁场的振动方向垂直,为方便计,以下只考虑电振动。

自然光(natural light)

由于普通光源发光的间歇性和随机性

振动方向不一定相同

波列长度也不一定相同

初相也不一定相同

大量原子发光的统计效果构成了自然光。

其振动方向包含了整个振动平面。

3

4

没有优势方向自然光的分解

非相干

根据统计平均,自然光没有优势振动方向,各个振动方向的强度相等。

y

x E E =x

y x I I I I 2=+=自然光的表示法:

一束自然光可分解为两束振动方向相互垂直的、等幅的、不相干的线偏振光。

·

··

2、偏振光(Polarized light):

光矢量的方向和大小有规则变化的光

线偏振光(Linearly polarized light):光矢量

方向不变,其大小随位相变化。

圆偏振光(Circularly polarized light):光矢

量大小不变,其方向绕传播方向均

匀转动,且矢量末端轨迹为圆。

椭圆偏振光(Elliptically polarized light):光

矢量大小和方向都在有规律地变化

,且矢量末端轨迹为椭圆。

5

6

偏振光方程:

)]

(exp[~

]exp[~

~~~2100δ+==+kz i a E ikz a E y E x E E y x y x =

7

1)线偏振光(Linearly polarized light)振动平面:光矢量与传播方向组成的平面称为线偏振光的振动平面。

1)exp(~~x ikz a E E x =Z

8

2) 圆偏振光(Circularly polarized light)0

20

121)](exp[ )exp(~y kz i a x ikz a E a a

δ++==右旋

2

π

δ-

=z

9

3) 椭圆偏振光(Elliptically polarized light)

π

<δ<ππ<δ<δ++≠20)](exp[ )exp(~0

20121y kz i a x ikz a E a a

=左旋

右旋

z

10

自然光

部分偏振光

3、部分偏振光( Partially polarized light)

自然光在传播过程中,由于外界的作用造成振动方

向上强度不等,使某一方向上的振动比其它方向上的振动占优势。

Partial polarized light

Natural light

11

完全偏振光和自然光是两种极端情形,介于二者之间的一般情形是部分偏振光。

最常讨论的部分偏振光可看成是自然光和线偏振光的混合,天空的散射光和水面的反射光就是这种部分偏振,它可以分解如下:表示法:

分解

非相干

·······

·

12

min

max min

max I I I I I I P P +-=

=总表示:部分偏振光=完全偏振光+自然光

完全偏振光I p =I max -I min 偏振度:

完全偏振光(线、圆、椭圆)P =1自然光(非偏振光)P =0部

0

二、偏振光的产生(Production of polarized light)

主要方法:反射和折射、二向色性、散射、双折射

1. Polarization by reflection

2. Polarization by transmission

3. Polarization by selective absorption

4. Polarization by scattering

5. Polarization by double refraction

13

14

1、由反射和折射产生偏振光

1)菲涅尔公式:反射波、折射波与入射波振

幅比值的关系

2

n 1

q 1n 2

q 1

q ’x

z

o

E 1p

E 1s

E’1s

E’1p

E 2s

E 2p 入射面xoz 分界面xoy

15

由麦克斯韦方程组和电磁场边界条件推出:

???

????+==+--==)式()式(2)sin(cos sin 21)sin()sin('211212212111 q q q q q q q q s s s s s s A A t A A r ???

????

-+==+-==)式()式(4 3 )cos()sin(cos sin 2)()('21211212212111q q q q q q q q q q p p p p p p A A t tg tg A A r

16

)

(1

2

1

n n tg P -=q 反射光为线偏振光。振动方向垂直于入射面。透射光为部分线偏振光。

2)布儒斯特定律( Brewster’s Law )

自然光投射到两种不同介质的分界面上时,若入射角满足关系式,则反射光中没有振动平行于入

射面的分量。2

2

q q =

+?

?

?

?

??

?

?

?

?

2

n 1n 1

q 2q 1

q ,

入射角为布儒斯特角,即

17

3)实例(Examples ):

用玻璃片堆获得偏振光

P

q

偏振分光镜

ZnS(n2)

冰晶石

(n1)

45

n3

?制作

?原理

?n3

?膜层厚度

?层数

18

19

(C )

用偏光镜消除了反射偏振光,使玻璃门内的人物清晰可见(A )玻璃门表

面的反光很强

(B )

用偏光镜减弱了反射偏振光

20

2、由二向色性产生偏振光

(Polarization by selective absorption)

二向色性:各向异性的晶体对光的吸收本领随波长改

变外,还随光矢量相对晶体的方位而改变。

人造偏振片:

H 偏振片和K 偏振片

x(拉伸方向)

y(透光轴方向)

z

第十四章 的偏振和晶体光学

第十四章 光的偏振和晶体光学 1. 一束自然光以30度角入射到玻璃-空气界面,玻璃的折射率 1.54n =,试计算(1)反射 光的偏振度;(2)玻璃-空气界面的布儒斯特角;(3)以布儒斯特角入射时透射光的偏振度。 解:光由玻璃到空气,354.50sin 1sin ,30,1,54.11212121=??? ? ??-====θθθn n n n o ①()()()() 06305.0tan 1tan ,3528.0sin 1sin 212212-=+-==+-- =θθθθθθθθp s r r 002 22 2 min max min max 8.93=+-=+-=p s p s r r r r I I I I P ②o B n n 3354.11tan tan 1121 =?? ? ??==--θ ③()() 4067.0sin 1sin ,0,57902120 21=+-- ===-==θθθθθθθθs p B B r r 时, 02 98364 .018364.011 ,8364.01=+-===-=P T r T p s s 注:若2 21 122,,cos cos p p s s t T t T n n ηηθθη=== )(cos ,212 2 22 2 0min 0max θθ-=+-= ==p s s p s p s p T T t t t t P I T I I T I 或故 2. 自然光以布儒斯特角入射到由10片玻璃片叠成的玻片堆上,试计算透射光的偏振度。 解:每片玻璃两次反射,故10片玻璃透射率( ) 20 22010.83640.028s s T r =-== 而1p T =,令m m I I in ax τ=,则m m m m I I 110.02689 0.94761I I 10.02689ax in ax in p ττ---= ===+++

第五章 光的偏振

第五章光的偏振 ●学习目标 理解自然光和线偏振光,理解马吕斯定律及布儒斯特定律。了解线偏振光的获得方法和检验方法。 ●教学内容 5.1 光的偏振状态 5.2 线偏振光的获得与检验 5.3 反射和折射时光的偏振 5.4 双折射现象 ●本章重点 线偏振光的获得、反射折射光的偏振 ●本章难点 反射与折射光的偏振 5.1 光的偏振状态 光是横波,对横波的讨论包含对振动方向的讨论。在一个垂直于光传播方向的平面内考察,光振动的方向不一定是各向同性的,可能在某一个方向振动强,在另一个方向弱(甚至为零),这称为光的偏振现象。偏振是横波区别于纵波的一个最明显的特点,光的偏振现象是表明光是横波的直接证明。 一、自然光与线偏振光的定义 如果一束光的光矢量E只沿一个固定的方向振动,我们把这样的光称为线偏振光(或面偏振光),光矢量与光传播方向所组成的平面称为振动面。由原子(或分子)跃迁发出的每一个光波列,都有其自身的振动方向,故都是线偏振光。不过我们通常所说的线偏振光(简称偏振光),不是指某个波列,而是指一束光是偏振光,意即光束中所有的波列都有相同的振动方向。实际光源都由大量的分子、原子组成,由于自发辐射的随机性,普通光源发出的光,是大量的不同振动方向的光波列的集合。在一个与光传播方向垂直的平面内考察,光矢量沿各方向

的平均值相等,没有哪一个方向的光振动较其它方向占优势,这种光叫做自然光,自然光是非偏振的。较为定量的描述是:自然光中的每一波列的光矢量,都可以在任意给定的两个互相垂直的方向上进行分解,其结果是将自然光分成两束光强相等、振动方向互相垂直的,没有确定相位差的偏振光,如下图所示。 自然光可以分解成两个独立的振动方向互相垂直的偏振光部分偏振光是介于偏振光与自然光之间的一种光,例如把一束偏振光与一束自然光混合,得到的光就属于部分偏振光。在垂直于光传播方向的平面内,光矢量的振动方向沿各个方向分布,但沿某一方向的振动最强,沿它的垂向振动最弱。相对于部分偏振光,线偏振光又叫完全偏振光。 二、自然光和偏振光的表示方法 常用一些简单的图形来表示自然光、偏振光和部分偏振光,见右图所示。用短线(或)|表示平行于纸面的光振动,圆点·表示垂直于纸面的光振动。在右图中,(a)为自然光,它的两个互相垂直的光振动的强度相等;(b)、(c)为偏振光,它们 的光矢量都只沿一个方向振动;(d)、(e)为部分偏振光;(d)中较多,表示平行纸面的光振动较强;(e)中·较多,表示垂直纸面的光振动较强。 自然光、偏振光和部分偏振光的图示 5.2 线偏振光的获得与检验

晶体光学必备知识点

晶体光学-必备知识点 以上是吉林大学鸽子楼老师多年课件总结经典内容。 第一章晶体光学基础 晶体光学涉及某些重要的物理光学原理和结晶矿物学基础知识,本章要求学生重点掌握光的偏振现象、折射及折射率、光在晶体中的传播特性、晶体中的双折射现象、光率体和光性方位。其中重点是晶体中的双折射现象和光率体的构成;难点是光性方位。 一、光的基本性质及有关术语 ·光具有“波粒”两相性。晶体光学主要利用的是光的波动理论。 ·光波是一种横波。光的传播方向与振动方向互相垂直。晶体中许多光学现象与此有关。·可见光:电磁波谱中波长范围390—770nm的一个区段,由波长不同的七色光组成。 ·自然光:在垂直光波传播方向的断面内,光波作任意方向的振动,且振幅相等。 ·偏振光:在垂直光波传播方向的断面内,光波只在某一固定方向上振动。自然光转化为偏振光的过程称偏振化。 ·折射定律:Sin i(入射角)/ Sin a(折射角)= V i(入射速度)/ V a(折射速度)=N i-a N i-a为介质a对介质i的相对折射律。当介质i为真空时,N i-a称介质的(绝对)折射律,以N表示。N是介质微观特征的宏观反映,是物质的固有属性之一,因此它是鉴定矿物的重要光学常数之一。 ·全反射临界角和全反射:当光波从光密介质入射到光疏介质时,入射角i总是小于折射角a ,当a = 90 °时,i =φ,此时入射角φ称为全反射临界角。当入射角i> φ时,折射光波不再进入折射介质而全部返回到入射介质,这种能量的突变称为全反射。 二、光在晶体中的传播 根据光在物质中的传播特点,可以把自然界的物质分为光性均质体和光性非均质体。性均质体:指光学性质各方向相同的晶体。包括等轴晶系的矿物和非晶质物质。 ·光波在均质体中的传播特点:光的传播速度不因光的振动方向不同而发生改变(各向同性),联系折射定律可知,均质体的折射率只有一个。 ·光性非均质体:光性非均质体的光学性质因方向不同而改变(各向异性)。包括中级晶族(一轴晶)和低级晶族(二轴晶)的矿物。 ·光波在非均质体中的传播特点:光的传播速度因光波在晶体中的振动方向不同而发生改变。因而非均质体的折射率也因光波在晶体中的振动方向不同而改变。 ·有关术语介绍:双折射、双折射率、光轴、一轴晶矿物、二轴晶矿物。 (1)双折射:光波射入非均质体,除特殊方向外,将分解成振动方向互相垂直,传播速度不同,折射率不等的两种偏光,这种现象称为双折射。(2)双折射率:两种偏光的折射率值之差称为双折射率。许多晶体光学现象与此有关。 (3)光轴:光波沿非均质体的特殊方向入射时,不发生双折射,这种特殊的方向称为光轴。 中级晶族具有一个这样的特殊方向,称为一轴晶矿物;低级晶族具有两个这样的特殊方向,称为二轴晶矿物。 三、光率体

光的偏振

第五章光的偏振 (Polarization of light) ●学习目的 通过本章的学习使得学生了解光通过各向异性介质时所产生的偏振现象,初步掌握自然光、线偏振光、椭圆偏振光的检测方法。 ●内容提要 1、阐明惠更斯作图法,说明光在晶体中的传播规律; 2、介绍布儒斯特定律和马吕斯定律; 3、阐明自然光、线偏振光、椭圆偏振光的概念和检测方法; 4、介绍1/4波片的功用; 5、讨论光在各向异性介质中的传播情况。 ●重点 1、偏振光的检测方法; 2、光在晶体中的传播行为。 ●难点 1、偏振光的检测方法; 2、各向异性介质光的传播行为。 ●计划学时 计划授课时间10学时 ●教学方式及教学手段 课堂集中式授课,采用多媒体教学。 ●参考书目 1、《光学》第二版章志鸣等编著,高等教育出版社,第七章 2、《光学。近代物理》陈熙谋编著,北京大学出版社,第四章

第一节 自然光与偏振光 一、光的偏振性 1、纵波:波的振动方向和波的传播方向相同的波称为纵波。 2、横波:波的振动方向和波的传播方向相互垂直的波称为纵波。 3、偏振:波的振动方向相对于传播方向的不对称性称为偏振。只有横波才有偏振现象。 4、振动面:电矢量和光的传播方向所构成的平面称为偏振光的振动面。 二、自然光和偏振光(natural light ) 1、偏振光的种类 ● 平面偏振光:光在传播过程中电矢量的振动只限于某一平面内,则这种光称为平面偏振光。 ● 线偏振光:(linearly polarized light )光在传播过程中电矢量在传播方向垂直的平面上的投影为一条直线,则这种光称为线偏振光。 线偏振光的表示法: ● 部分偏振光(partially polarized light )彼此无固定相位关系、振动方向任 意、不同方向上振幅不同的大量光振动的组合称部分偏振光。 部分偏振光可分解为两束振动方向相互垂直、不等幅、不相干的线偏振光。 ▲部分偏振光的表示: 迎着光的传播方向看 · · · · · 光振动垂直板面 光振动平行板面

第五章 光的偏振

第五章 光的偏振 1 试确定下面两列光波的偏振态。 )]2/cos()cos([01πωω--+-=kz t e kz t e A E y x )]2/sin()sin([02πωω--+-=kz t e kz t e A E y x 解:(1)两分振动的振幅:A x =A y =A 0 ,相位差:φy -φx = -π/2 所以该光为左旋圆偏振光。 (2)振动方程可写为: )]2/2/cos()2/cos([01ππωπω+--++-=kz t e kz t e A E y x 两分振动的振幅:A x =A y =A 0 ,相位差:φy -φx = -π/2 该光仍然为左旋圆偏振光。 2 为了比较两个被自然光照射的表面的亮度,对其中一个表面直接进行观察,另一个表面通过两块偏振片来观察。两偏振片的透振方向的夹角为600,若观察到两表面的亮度相同,则两表面的实际亮度比是多少?已知光通过每一块偏振片后损失入射光能量的10%。 解:设直接进行观察的表面的强度为I 0,用偏振片进行观察的表面的强度为I ;已知两偏振片透振方向的夹角θ=600。 表面反射的光经过第一个偏振片后的光强度:I I I 20 9%)101(21=-= ' 经过第二个偏振片后的光强度:I I I 80081%)101(cos 2=-'=''θ 因观察到两表面的亮度相等,则有:0I I ='' 解得两表面的实际亮度之比:10:1800:81:0≈=I I 3 两个尼科耳N 1和N 2的夹角为600,在它们之间放置另一个尼科耳N 3,

让平行的自然光通过这个系统。假设各尼科耳对非常光均无吸收,试问N 3和N 1的透振方向的夹角为何值时,通过系统的光强最大?设入射光强度为I 0,求此时所能通过的最大光强。 解:设第三个尼科尔N 3与第一个N 1的夹角为θ,则与第二个N 2的夹角有两种情况: (1)β= 600 -θ (2)β= 600 +θ 在β= 600 -θ的情况下: 设平行自然光的强度为I 0, 通过N 1的光强度为: 012 1I I = 通过N 3的光强度为: θθ20213cos 2 1cos I I I == 图(1) 图(2) 最后通过N 2的光强度为: )60(cos cos 2 1)60(cos 02200232θθθ-=-=I I I 应用三角变换公式:)]cos()[cos(21cos cos y x y x y x ++-= 化简得到:2002]2 1)602[cos(81+-=βI I 使I 2取极大值的条件:1)602cos(0=-β 即:030=β,或:030=θ, N 3与N 1的夹角:030=θ 最后通过系统的光强度:0232 9I I = 用同样的方法可解出图(2)中,N 3与N 1的夹角:030=θ 4 在两个正交的理想偏振片之间,有一个偏振片以匀角速度ω绕光的传播方向旋转(见图),若入射的自然光强度为I 0,试证明透射光强度为: )4c o s 1(16 0t I I ω-=

4.物理光学-偏振

物理光学——偏振 一.填空题 1.1 偏振度最大的光是(完全偏振光 )。 1.2 同一束入射光( 折射 )时分成( 两束 )的现象称为双折射。 1.3 在双折射晶体内不遵循( 折射定律 )的光称为e 光;O 光的波面为( 球面 ),e 光的 波面为( 椭球面 )。 1.4 在光学各向异性晶体内部有一确定的方向,沿这一方向寻常光和非常光的( 速度 )相 等,这一方向称为晶体的光轴,只具有一个光轴方向的晶体称为( 单轴 )晶体。 1.5 当光线沿光轴方向入射到双折射晶体上时,不发生( 双折射 )现象,沿光轴方向寻常 光和非寻常光的折射率( 相同 );传播速度( 相同 )。 1.6 当自然光以布儒斯特角入射到非晶体界面时,反射光为( 平面偏振光 ),透射光为( 部 分偏振光 )。 1.7 马吕斯定律的数学表达式为α=20cos I I 。式中,I 为通过检偏器的透射光的强度,I 0 为入射( 线偏振光 )的强度;α为入射光矢量的(振动方向)和检偏器( 偏振化 ) 方向之间的夹角。 1.8 两个偏振片堆叠在一起且偏振化方向相互垂直,若一束强度为I 0的线偏振光入射,其 光矢量振动方向与第一偏振片偏振化方向夹角为/4π,则穿过第一偏振片后的光强为 ( 02 1I ),穿过两个偏振片后的光强为( 0 )。 1.9 一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片,若以入射光束为轴旋转 偏振片,测得透射光强度的最大值是最小值的5倍,那么入射光束中自然光和线偏振光 的光强比值为( 1:2 )。 1.10 一束自然光垂直穿过两个偏振片,两个偏振片方向成450角,已知通过这两个偏振片后 的光强为I ,则入射至第二个偏振片的线偏振光强度为( 2I )。 1.11 一束自然光以布儒斯特角入射到平面玻璃上,就偏振状态来说:反射光为(线偏振光 ); 反射光矢量的振动方向( 垂直于入射面或为S 振动 );透射光为(部分偏振光)。 1.12 当一束自然光在两种介质分界面处发生反射和折射时,若反射光为完全偏振光,则折 射光为(部分偏振光 ),且反射光线和折射光线之间的夹角为( 2/π )。反射光的光 矢量振动方向( 垂直于入射面或为S 振动 )。 1.13 一束自然光从折射率为n 1的介质入射到折射率为n 2的介质界面,实验发现反射光是完 全偏振光,则折射角的值为( )a r c t a n (21 2n n -π )。 1.14 一束平行自然光以60o 角入射到平板玻璃表面上,若反射光是完全偏振的,则透射光束

大学物理实验- 光的偏振

实验27 光的偏振 一、实验目的 1、观察光的偏振现象,加深对光的偏振的理解。 2、了解偏振光的产生及其检验方法。 3、观测布儒斯特角,测定玻璃折射率。 4、观测椭圆偏振光与圆偏振光。 5、了解1/2波片和1/4波片的用途。 二、实验原理 1、光的偏振状态 光是电磁波,它是横波。通常用电矢量E表示光波的振动矢量。 (1)自然光其电矢量在垂直于传播方向的平面内任意取向,各个方向的取向概率相等,所以在相当长的时间里(10-5秒已足够了),各取向上电矢量的时间平均值是相等的,这样的光称为自然光,如图27-l所示。 (2)平面偏振光电矢量只限于某一确定方向的光,因其电矢量和光线构成一个平面而称其为平面偏振光。如果迎着光线看,电矢量末端的轨迹为一直线,所以平面偏振光也称为线偏振光,如图27-2所示。 (3)部分偏振光电矢量在某一确定方向上较强,而在和它正交的方向上较弱,这种光称为部分偏振光,如图27-3所示。部分偏振光可以看成是线偏振光和自然光的混合。 (4)椭圆偏振光迎着光线看,如果电矢量末端的轨迹为一椭圆,这样的光称为椭圆偏振光。椭圆偏振光可以由两个电矢量互相垂直的、有恒定相位差的线偏振光合成得到。 (5)圆偏振光迎着光线看,如果电矢量末端的轨迹为一个圆,则这样的光称为圆偏振光。圆偏振光可视为长、短轴相等的椭圆偏振光。 图27-4 椭圆偏振光

2、布儒斯特定律 反射光的偏振与布儒斯特定律 如图27-5所示,光在两介质(如空气和玻璃片等)界面上,反射光和折射光(透射光)都是部分偏振光。当反射光线与折射光线的夹角恰为90°时,反射光为线偏振光,其电矢量振动方向垂直于入射光线与界面法线所决定的平面(入射面)。此时的透射光中包含平行于入射面的偏振光的全部以及垂直于入射面的偏振光的其余部分,所以透射光仍为部分偏振光。由折射定律很容易导出此时的入射角 α 满足关系 1 2 tan n n = α (27-1) (27-1)式称为布儒斯特定律,入射角 α 称为布儒斯特角,或称为起偏角。若光从空气入射到玻璃(n 2约为1.5),起偏角约56°。 3、偏振片、起偏和检偏、马吕斯定律 (1)由二向色性晶体的选择吸收所产生的偏振 自然光 偏振光 偏振片 P 1P 2 I 0 起偏器 检偏器 自然光 I ' 图a 偏振片起偏 图b 起偏和检偏 图27-6 偏振片 有些晶体(如电气石)、长链分子晶体(如高碘硫酸奎宁),对两个相互垂直振动的电矢量具有不同的吸收本领,这种选择吸收性称为二向色性。在两平板玻璃间,夹一层二向色性很强的物质就制成了偏振片。自然光通过偏振片时,一个方向的电矢量几乎完全通过(该方向称为偏振片的偏振化方向),而与偏振化方向垂直的电矢量则几乎被完全吸收,因此透射光就成为线偏振光。根据这一特性,偏振片既可用来产生偏振光(起偏),也可用于检验光的偏振状态(检偏)。 (2)马吕斯定律 用强度为I 0的线偏振光入射,透过偏振片的光强为I ,则有如下关系 θ 20cos I I = (27-2) (27-2)式称为马吕斯定律。 θ是入射光的E 矢量振动方向和检偏器偏振化方向之间的夹角。以入射光线为轴转动偏振片,如果透射光强I 有变化,且转动到某位置时 I =0,则表明入射 光为线偏振光,此时θ =90°。 4、波片 (1)两个互相垂直的、同频率的简谐振动的合成 设有两各互相垂直且同频率的简谐振动,它们的运动方程分别为 )cos() cos(2211?ω?ω+=+=t A y t A x (27-3) 合运动是这两个分运动之和,消去参数t ,得到合运动矢量末端运动轨迹方程为 )(sin )cos(2122 12212 22212????-=--+A A xy A y A x (27-4) 上式表明,一般情况下,合振动矢量末端运动轨迹是椭圆,该椭圆在2122A A ?的矩形范围内。如果(27-3)式表示的是两线偏振光,则叠加后一般成为椭圆偏振光。下面讨论相位 差 12???-=?为几种特殊值的情况。 ①当π?k 2=?( k =0, ±1, ±2, …)时,(27-4)式变为

《晶体光学及光性矿物学》复习提纲

《晶体光学及光性矿物学》复习提纲 第一章晶体光学基础 1.光具有波粒二象性。 2.光是一种横波,光的传播方向与振动方向互相垂直。 3.可见光:电磁波谱中波长范围390—770nm的一个区段。 4.折射定律: Sin i(入射角)/ Sin a(折射角)= Vi(入射速度)/ Va(折射速度)= N i-a 5.全反射临界角和全反射: 当光波从光密介质入射到光疏介质时,入射角i 总是小于折射角a ,当a = 90 °时,i = f,此时入射角f 称为全反射临界角。 当入射角i> f时,折射光波不再进入折射介质而全部返回到入射介质,这种能量的突变称为全反射。 6.自然光:在垂直光波传播方向的断面内,光波作任意方向的振动,且振幅相等。 7.偏振光:在垂直光波传播方向的断面内,光波只在某一固定方向上振动。 自然光转化为偏振光的过程称偏振化。 8.光性均质体:指光学性质各方向相同的晶体。包括等轴晶系的矿物和非晶质物质。光波在均质体中的传播特点:光的传播速度不因光的振动方向不同而发生改变(各向同性),由折射定律可知,均质体的折射率只有一个。9.光性非均质体:光性非均质体的光学性质因方向不同而改变(各向异性)。 包括中级晶族(一轴晶)和低级晶族(二轴晶)的矿物光波在非均质体中的传播

特点:光的传播速度因光波在晶体中的振动方向不同而发生改变。因而非均质体的折射率也因光波在晶体中的振动方向不同而改变。 10.双折射:光波射入非均质体,除特殊方向外,将分解成振动方向互相垂直,传播速度不同,折射率不等的两种偏光,这种现象称为双折射。 11.双折射率:两种偏光的折射率值之差称为双折射率。许多晶体光学现象与此有关。 12.光轴:光波沿非均质体的特殊方向入射时,不发生双折射,这种特殊的方向称为光轴。 13.中级晶族具有一个这样的特殊方向,称为一轴晶矿物;低级晶族具有两个这样的特殊方向,称为二轴晶矿物。 14.光率体:是表示光波在晶体中传播时,折射率值随光波振动方向变化的一种立体几何图形或一种光性指示体。其作法是设想自晶体中心起,沿光波振动方向按比例截取相应的折射率值,再把各个线段的端点连接起来便构成了光率体。 15.均质体光率体:其传播速度不因振动方向不同而发生改变,即折射率值各方向相等。 均质体光率体是一个球体,球体的半径代表该晶体的折射率。 16.一轴晶光率体(中级晶族晶体的光率体):一轴晶光率体是一个以C轴为旋转轴的旋转椭球体。 17.一轴晶光率体形状(以C轴为旋转轴的旋转椭球体):主折射率(Ne、No),主折射率(Ne、No) 18.一轴晶光率体的光性正负:

5光的偏振参考答案

5光的偏振参考答案 《大学物理(下)》作业 No.5 光的偏振 一选择题 1.一束光强为I 0的自然光,相继通过三个偏振片P 1、P 2、P 3后,出射光的光强为I= I 0/8,已知P 1和P 3的偏振化方向相互垂直,若以入射光线为轴,旋转P 2,要使出射光的光强为零,P 2最少要转过的角度是 (A )30° (B )45° (C )60° (D )90° [ B ] [参考解] 设P 1与 P 2的偏振化方向的夹角为α ,则8 2s i n 8s i n c o s 202 0220I I I I === ααα ,所以4/πα=,若I=0 ,则需0=α或2 π α= 。可得。 2.一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片,若以此入射光束为轴旋转偏振 片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光强比值为 (A )1/2 (B )1/5 (C )1/3 (D )2/3 [ A ] [参考解] 设自然光与线偏振光的光强分别为I 1与 I 2 ,则 1212 1 521I I I ?=+ ,可得。 3.某种透明媒质对于空气的全反射临界角等于45°,光从空气射向此媒质的布儒斯特角是 (A )35.3° (B )40.9° (C )45° (D )54.7° [ D ] [参考解] 由n 145sin = ,得介质折射率2=n ;由布儒斯特定律,21 t a n 0==n i ,可得。 4.自然光以60°的入射角照射到某两介质交界面时,反射光为完全偏振光,则知折射光为

(A )完全偏振光且折射角是30° (B )部分偏振光且只是在该光由真空入射到折射率为3的介质时,折射角是30° (C )部分偏振光,但须知两种介质的折射率才能确定折射角 (D )部分偏振光且折射角是30° [ D ] [参考解] 由布儒斯特定律可知。 二填空题 1.一束自然光从空气投射到玻璃表面上(空气折射率为1),当折射角为30°时,反射光是完全偏振光,则此玻璃的折射率等于 3 。 [参考解] 由布儒斯特定律,t a n 60 1 n n == ,可得。 2.如图所示,一束自然光入射到折射率分别为n 1和n 2的两种介质的交界面上,发生反射和折射,已知反射光是完全偏振光,那么折射角r 的值为 2 1 arctan n n 。 [参考解] 由由布儒斯特定律,1 2tan n n = ?且折射光和反射光垂直,故21arctan 22n r n ππ ?=-=-。 3.在双折射晶体内部,有某种特定的方向称为晶体的光轴,光在晶体内部沿光轴传播时, o 光 和 e 光的传播速度相等。 三计算题 1. 三个偏振片P 1、P 2、P 3按此顺序叠在一起,P 1、P 3的偏振化方向保持相互垂直,P 1与 P 2的偏振化方向的夹角为α ,P 2可以入射光线为轴转动。今以强度为I 0的单色自然光垂直入射在偏振片上,不考虑偏振片对可透射分量的反射和吸收。 (1)求穿过三个偏振片后的透射光强度I 与α角的函数关系;

姚启钧物理学光学第五章光的偏振

第五章 光的偏振 1. 试确定下面两列光波 E 1=A 0[e x cos (wt-kz )+e y cos (wt-kz-π/2)] E 2=A 0[e x sin (wt-kz )+e y sin (wt-kz-π/2)] 的偏振态。 解 :E 1 =A 0[e x cos(wt-kz)+e y cos(wt-kz-π/2)] =A 0[e x cos(wt-kz)+e y sin(wt-kz)] 为左旋圆偏振光 E 2 =A 0[e x sin(wt-kz)+e y sin(wt-kz-π/2)] =A 0[e x sin(wt-kz)+e y cos(wt-kz)] 为右旋圆偏振光 2. 为了比较两个被自然光照射的表面的亮度,对其中一个表面直接进行观察,另一个表面 通过两块偏振片来观察。两偏振片透振方向的夹角为60°。若观察到两表面的亮度相同,则两表面的亮度比是多少?已知光通过每一块偏振片后损失入射光能量的10%。 解∶∵亮度比 = 光强比(直接观察为I 0,通过偏振片观察为I ), ∴ I / I 0 = (1-10%)cos 2600?(1-10%) = 10%. 3. 两个尼科耳N 1和N 2的夹角为60°,在他们之间放置另一个尼科耳N 3,让平行的自然光通过这个系统。假设各尼科耳对非常光均无吸收,试问N 3和N 1 的偏振方向的夹角为何值时,通过系统的光强最大?设入射光强为I 0,求此时所能通过的最大光强。 解:设:P 3与P 1夹角为α,P 2与P 1的夹角为 θ = 600 I 1 = 21 I 0 I 3 = I 1cos 2α = 02I cos 2α I 2 = I 3cos 2(θ-α) = 0 2I cos 2αcos 2(θ-α) 要求通过系统光强最大,即求I 2的极大值 I 2 = I 2cos 2αcos 2(θ-α) = 0 2I cos 2α[1-sin 2(θ-α)] = 08 I [cosθ+ cos (2α-θ)] 2 由 cos (2α-θ)= 1推出2α-θ = 0即α = θ/2 = 30° ∴I 2max = 21 I 0 cos 2αcos 2(θ-α) = 21 I 0 cos 230° cos 230° = 932 I 0 N 1 题5.3图 N

第五章 光的偏振和晶体光学基础

第五章光的偏振和晶体光学基础 光的偏振(Polarization of light)现象的发现 偏振现象的意义(说明了光的横波性)菲涅尔(Fresnel)和阿喇果(Arago)实验 杨氏假设 菲涅尔的理论 偏振现象与晶体(Crystal) 1

§5-1 偏振光概述 一、偏振光与自然光(Polarized light and Natural light) 1、自然光:具有一切可能的振动方向的许多光波之和。特点:振动方向的无规则性。 表示:可用两个振动方向垂直的、强度相等的、 位相关系不确定的光矢量表示。 自然光 Natural light 2

光是电磁振荡的一种传播。其中电场和磁场的振动方向垂直,为方便计,以下只考虑电振动。 自然光(natural light) 由于普通光源发光的间歇性和随机性 振动方向不一定相同 乱 波列长度也不一定相同 初相也不一定相同 大量原子发光的统计效果构成了自然光。 其振动方向包含了整个振动平面。 3

4 没有优势方向自然光的分解 非相干 根据统计平均,自然光没有优势振动方向,各个振动方向的强度相等。 y x E E =x y x I I I I 2=+=自然光的表示法: 一束自然光可分解为两束振动方向相互垂直的、等幅的、不相干的线偏振光。 · ··

2、偏振光(Polarized light): 光矢量的方向和大小有规则变化的光 线偏振光(Linearly polarized light):光矢量 方向不变,其大小随位相变化。 圆偏振光(Circularly polarized light):光矢 量大小不变,其方向绕传播方向均 匀转动,且矢量末端轨迹为圆。 椭圆偏振光(Elliptically polarized light):光 矢量大小和方向都在有规律地变化 ,且矢量末端轨迹为椭圆。 5

第五章 光的偏振 习题

5-3. 解: 20 1 I I = 在两个正交偏振片之间插入第三个偏振片,求:(1)透射光强变为入射光强的1/8时,第三偏振片的方位角;(2)如何放置才能使最后的透射光强为零?(3)是否可以使透射光强变为入射的自然光强的1/2? 解:设插入片与第一片见夹角为θ,则有θθπθ2sin 8 1 )2/(cos cos 2120220I I I =-= (1)4 π θ= (2)2 , 0π θ= (3)不可能。Why ? 线偏振光入射到一块表面和光轴平行的晶片,线偏振光的振动方向与晶片光轴成?30角,试求o 光和e 光的相对强度。 解:如图,设光轴方向为y 方向,入射面为yoz 平面,则o 光的振动方向为x 方向,e 光的振动方向为y 方向。垂直入射的线偏振光与光轴成30°角,设该线偏振光的幅度为A , ()() ()()有最大值 时,亦可得令注:此时透过的最大光强为 ,须使欲使I I d d d dI I I I I I I I I I I I I 2 0cos cos 232 9434323060cos 30cos 230 2 60 2cos cos 2 cos cos 2 cos 2 2 2 2 max 2 2 2 3 2 2 1 3 θ ααθαααθααθααθα α==?? ? ???-==??=-=====∴-=-===

则在x 、y 方向的分量为:?=30sin A A x ?=30cos A A y 即o 光和e 光的振幅分别为: ?=30sin A A o ?=30cos A A e ∴o 光和e 光的相对强度33.030cos 30sin 2222 0=? ? ==e o e A A I I 5.4假定在两个固定的正交理想偏振片之间插入第三个理想偏振片,其透振方向以角速度ω旋转,试证明投射的光强满足如下关系式)4cos 1(8 1 0t I I ω-=。 解: 从P 2透射的光强)4cos 1(8 1 2sin 41)2/(cos cos 02022 0t I t I t t I I ωωωπω-== -= 5-7. 解: (1)投射出来的寻常光和非常光的振幅分别为: 313030cos 30sin 30 cos 30 sin 22 2 2000 ==??? ??==∴ == tg A A A A I I A A A A e e e (2) ()2220π λπδλπ?= -==?d n n e

晶体光学必备知识点

晶体光学-必备知识点 以上是大学鸽子楼老师多年课件总结经典容。 第一章晶体光学基础 晶体光学涉及某些重要的物理光学原理和结晶矿物学基础知识,本章要求学生重点掌握光的偏振现象、折射及折射率、光在晶体中的传播特性、晶体中的双折射现象、光率体和光性位。其中重点是晶体中的双折射现象和光率体的构成;难点是光性位。 一、光的基本性质及有关术语 ·光具有“波粒”两相性。晶体光学主要利用的是光的波动理论。 ·光波是一种横波。光的传播向与振动向互相垂直。晶体中多光学现象与此有关。 ·可见光:电磁波谱中波长围390—770nm的一个区段,由波长不同的七色光组成。 ·自然光:在垂直光波传播向的断面,光波作任意向的振动,且振幅相等。 ·偏振光:在垂直光波传播向的断面,光波只在某一固定向上振动。自然光转化为偏振光的过程称偏振化。 ·折射定律:Sin i(入射角)/ Sin a(折射角)= V i(入射速度)/ V a(折射速度)=N i-a N i-a为介质a对介质i的相对折射律。当介质i为真空时,N i-a称介质的(绝对)折射 律,以N表示。N是介质微观特征的宏观反映,是物质的固有属性之一,因此它是鉴定矿物的重要光学常数之一。 ·全反射临界角和全反射:当光波从光密介质入射到光疏介质时,入射角i总是小于折射角 a ,当a = 90 °时,i =φ,此时入射角φ称为全反射临界角。当入射角i>φ时, 折射光波不再进入折射介质而全部返回到入射介质,这种能量的突变称为全反射。 二、光在晶体中的传播 根据光在物质中的传播特点,可以把自然界的物质分为光性均质体和光性非均质体。性均质体:指光学性质各向相同的晶体。包括等轴晶系的矿物和非晶质物质。 ·光波在均质体中的传播特点:光的传播速度不因光的振动向不同而发生改变(各向同性),联系折射定律可知,均质体的折射率只有一个。 ·光性非均质体:光性非均质体的光学性质因向不同而改变(各向异性)。包括中级晶族(一轴晶)和低级晶族(二轴晶)的矿物。 ·光波在非均质体中的传播特点:光的传播速度因光波在晶体中的振动向不同而发生改变。因而非均质体的折射率也因光波在晶体中的振动向不同而改变。 ·有关术语介绍:双折射、双折射率、光轴、一轴晶矿物、二轴晶矿物。 (1)双折射:光波射入非均质体,除特殊向外,将分解成振动向互相垂直,传播速度不同,折射率不等的两种偏光,这种现象称为双折射。(2)双折射率:两种偏光的折射率值之差称为双折射率。多晶体光学现象与此有关。 (3)光轴:光波沿非均质体的特殊向入射时,不发生双折射,这种特殊的向称为光轴。 中级晶族具有一个这样的特殊向,称为一轴晶矿物;低级晶族具有两个这样的特殊向,

光的偏振

光的偏振 教学目标: 一.知识目标: 1.知道振动中的偏振现象,知道只有横波才有偏振现象 2.知道偏振光和自然光的区别,知道光的偏振说明光是横波 二.能力目标: 1.学习科学研究的思维方法,体会科学发展的严密性。 2.培养学生为问题设计实验、通过实验现象总结结论的能力。 三.情感目标: 1.培养良好的物理实验习惯,学会用理论指导实践,用实验来验证理论. 2.知道在学习物理的过程中,做好实验的重要性. 教学重难点 重点: 1.使学生了解偏振现象及运用光的偏振知识来解释一些常见的光学现象 2.知道只有横波才有偏振现象,知道光有偏振现象所以光是一种横波 难点: 通过两个演示实验让学生接受光有偏振现象,因为偏振是学生接触的一个新概念,所以做好两个演示实验并通过设疑如何引导学生思考,讨论,类比,推理,判断得到结论是本节教学的关键和突破口 教学方法: 教学是教师教学生学的双边活动,教师在课前必须对学生有一定了解。高二学生已经具有一定的抽象思维能力,但光的偏振现象对他们来说是完全陌生而又抽象的,而机械波的偏振现象相对形象些。故要本着由浅入深,新旧联系,全面系统的原则去讲课,先做好机械波模拟实验,使学生认识机械波的偏振,进而认识偏振是横波特有的现象作为知识铺垫后然后再做光的偏振实验,在分析光的偏振实验时,要引导学生理解实验的设计思路且与机械波实验相类比。由于光的偏振现象的抽象性及学生的抽象思维能力有限,所以在教学中主要采用教师设疑,学生探讨的教学模式,让学生观察、思考、讨论,充分发表意见,这样既有利于突出重点,化解难点,又充分发挥了学生的主体性。 教具:激光源、偏振片、powerpoint课件、flash课件 教学过程: 一.新课引入: 师:通过前面几节课的学习,我们对于光的本性的认识逐步加深,我们知道了光能够产生干涉和衍射现象,而这正好说明了光应该是一种波。而波有横波和纵波之分,由此,我们必然会想到光究竟是横波还是纵波?我们又该如何去判断和验证? 一条竹竿横着进教室进不了,给学生设下悬念(学生演示) 二、新课教学: 首先我们来回忆一下横波和纵波。 问题一:请同学回答一下横波和纵波有什么区别? 生:质点的振动方向和传播方向如果平行则为纵波;振动方向和传播方向垂直的则是横波。

光的偏振与双折射

三、光的偏振与双折射 偏振实验最大的难点是找偏振片,方法如下 (1)找有偏振墨镜的同学借墨镜(2)找有摄影爱好的同学借偏光片(3)用玻璃的反射光(4)找老师借 1. 彩色的魔术溶液 本实验需要稠玉米浆或葡萄糖溶液,600-1000ml带有密封盖子的玻璃或透明塑料广口瓶,偏振片,幻灯机,不透明和透明的幻灯片,光屏。 将偏振片剪好,使之可以刚好覆盖广口瓶内壁的一半(半圆柱型)。将偏振片紧贴广口瓶内壁。用稠玉米浆充满广口瓶,然后将广口瓶封好。再剪好另一个偏振片在幻灯机中使用。在幻灯机中放置三个幻灯片,放的顺序为:透明幻灯片,不透明的幻灯片,偏振片(如果没有幻灯机,用手电也可以)。偏振片的轴向应该与广口瓶中偏振片的轴向成九十度。调整幻灯机使光可以通过广口瓶并且可以聚焦到光屏上。 当透明幻灯片在幻灯机中时,令幻灯机的光透过广口瓶,广口瓶有偏振片的方向对着观察者。沿垂直于与前表面的轴向旋转广口瓶,什么现象都没有发生。将不透明的偏振片插入,然后迅速插入偏振片,像原来一样旋转。学生可以看到旋转过程中出现很多不同的颜色。 2.偏振太阳镜 在偏振光实验中,把一个用偏振片制作的便宜太阳镜作为光源,从太阳镜表面反射的阳光将变成偏振光。因此,当从反射表面产生的眩光的偏振角度和一幅偏振太阳镜的偏振方向成90度时,眩光就会被消除。糖溶液也可以使光产生偏振,所以可以用通过测量溶液的偏振光的旋转角度来测量溶液的浓度。 3.偏光效应 在压力下,某些材料可以产生应力双折射,使透射偏振光的偏振方向发生改变。找两个偏振片。将有机塑料瓶三角板插入到偏振片之间。用手紧握三角板。

旋转其中的一个偏振片,使两偏振片通光方向的夹角发生改变。看看不同压力,不同偏振片夹角下的透射图像有什么变化。 4.验证马律斯定律 在摄影技术经常用到的两个起偏镜,被安装在有角度刻度的支架上。让起偏镜的偏振方向一致以得到最大的光能输出,然后从0度每隔5度的调节其中一个偏振片到180度,然后我们将输出光强和角度作表,通过实验数据和拟和的结果就可以验证马律斯定律。 5. 由于散射产生的偏振 用光通过偏振片后照射到水杯上如图示,容器内装有纯净水,浓弄茶水,滴一两点牛奶的水,工业酒精之类的液体。用一个光圈将光束S制在直径小于圆筒直径的范围内,这样光束将不会打到边上。散射光将被完全水平偏转。假如偏振片P被放到圆筒的前方时,旋转后,我们会发现散射光是偏振的。用一个偏振器放在光圈的上方,散射光在垂直方向将非常明亮,而在平行方向将减弱甚至消失。假如偏振器是旋转的,这些最大最小的光强的出现的方向也将随之旋转。 图47 散射产生偏振

晶体光学必备知识点

晶体光学- 必备知识点 以上是吉林大学鸽子楼老师多年课件总结经典内容。 第一章晶体光学基础 晶体光学涉及某些重要的物理光学原理和结晶矿物学基础知识,本章要求学生重点掌握光的偏振现象、折射及折射率、光在晶体中的传播特性、晶体中的双折射现象、光率体和光性方位。其中重点是晶体中的双折射现象和光率体的构成;难点是光性方位。 一、光的基本性质及有关术语 光具有“波粒”两相性。晶体光学主要利用的是光的波动理论。 光波是一种横波。光的传播方向与振动方向互相垂直。晶体中许多光学现象与此有关。 可见光:电磁波谱中波长范围390—770nm 的一个区段,由波长不同的七色光组成。 自然光:在垂直光波传播方向的断面内,光波作任意方向的振动,且振幅相等。 偏振光:在垂直光波传播方向的断面内,光波只在某一固定方向上振动。自然光转化为偏振光的过程称偏振化。 折射定律:Sin i(入射角)/ Sin a(折射角)= V i(入射速度)/ V a(折射速度)= N i a N i a为介质a对介质i的相对折射律。当介质i为真空时,N i a称介质的(绝对)折射律,以N 表示。N 是介质微观特征的宏观反映,是物质的固有属性之一,因此它是鉴定矿物的重要光学常数之一。 全反射临界角和全反射:当光波从光密介质入射到光疏介质时,入射角i 总是小于折射角 a ,当a = 90 °时,i = ,此时入射角称为全反射临界角。当入射角i > 时,折射 光波不再进入折射介质而全部返回到入射介质,这种能量的突变称为全反射。 、光在晶体中的传播 根据光在物质中的传播特点,可以把自然界的物质分为光性均质体和光性非均质体。性均质体:指光学性质各方向相同的晶体。包括等轴晶系的矿物和非晶质物质。 ·光波在均质体中的传播特点:光的传播速度不因光的振动方向不同而发生改变(各向同性),联系折射定律可知,均质体的折射率只有一个。 ·光性非均质体:光性非均质体的光学性质因方向不同而改变(各向异性)。包括中级晶族(一轴晶)和低级晶族(二轴晶)的矿物。 ·光波在非均质体中的传播特点:光的传播速度因光波在晶体中的振动方向不同而发生改变。因而非均质体的折射率也因光波在晶体中的振动方向不同而改变。 ·有关术语介绍:双折射、双折射率、光轴、一轴晶矿物、二轴晶矿物。 (1)双折射:光波射入非均质体,除特殊方向外,将分解成振动方向互相垂直,传播速度不同,折射率不等的两种偏光,这种现象称为双折射。(2)双折射率:两种偏光的折射率值之差称为双折射率。许多晶体光学现象与此有关。 (3)光轴:光波沿非均质体的特殊方向入射时,不发生双折射,这种特殊的方向称为光轴。 中级晶族具有一个这样的特殊方向,称为一轴晶矿物;低级晶族具有两个这样的特殊方向,称为二轴晶矿物。 三、光率体 光率体是表示光波在晶体中传播时,折射率值随光波振动方向变化的一种立体几何图形或

高中物理 第五章光的偏振

§5.1 自然光与偏振光 1.两个理想、正交的偏振片A 、B 之间加入一理想的偏振片C ,且C 以角速度ω旋转,强度为I 0的单色自然光垂直入射到偏振片A 上,试求偏振片B 后的出射光强. 解 强度为 的自然光,经过理想偏振片A后,变为强度为 的线偏振光,题中给出偏振片C透振方向与A透振方的夹角为ωt ,与B透振方向的夹角为(2 —ωt ).由马吕斯定律,B后线偏振光的强度为 出射光强与偏振片C透振方向的方位有关.当 时,出射光强为零; 当 时,出射光强最大,为 . §5.2 平面偏振光与部分偏振光 1.将两块理想的偏振片P 1和P 2共轴放置如例5-1图.然后用强度为I 1的自然光和强度为I 2的平面偏振光同时垂直入射到偏振片P 1上,从P 1透射后又入射到偏振片P 2上,试问: (1)P 1放置不动,将P 2以光线方向为轴转动一周,从系统透射出来的光强如何变化? (2)欲使从系统透射出来的光强最大,应如何设置P 1和P 2? 解: (1)已知入射的自然光强度为I 1,平面偏振光的强度为I 2,设入射时平面偏振光的振动面与P 1的透振方向的夹角为 ,P 1和P 2的透振方向之间夹角为 ,则从系统透射出来的光 强为

要使P2以光线方向为轴转动—周,将连续地改变,光强就按上式从极大变到极小,又从极小变到极大作周期性的变化.当时,光强为极大 当时,光强为零. (2)由(1)得到的可知,只有当或,同时,通过系统的光强最大。因此,在实验步骤上应先固定P1、转动P2使透射光强达到一最大值.表明已调到或;再让P1和P2同步旋转,使透射光强再度达最大值时,表明已调到,此时因同时满足了(或)和,所以通过系统的光强最大. 2.通过偏振片观察—束部分偏振光.当偏振片由对应光强最大的位置转过时,其光强减为一半.试求这束部分偏振光中的自然光和平面偏振光的强度之比以及光束的偏振度。 解:部分偏振光相当于一自然光和一平面偏振光强度的叠加.设自然光的强度为,平面偏振光的强度为,部分偏振光的强度为.当偏振片对应于最大强度位置时, 通过偏振片的平面偏振光的强度仍为,而自然光的强度为,即透过的总光强为 再转过后,透射光的强度变为 根据题意,,即 整理后,得

相关主题
文本预览
相关文档 最新文档