当前位置:文档之家› 多层板部分规则

多层板部分规则

多层板部分规则
多层板部分规则

我们承接种类印刷电路板的PCB Layout 业务!

PCB LAYOUT注意事项

1 电源、地线的处理

既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。

对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因, 现只对降低式抑制噪音作以表述:

众所周知的是在电源、地线之间加上去耦电容。

尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5mm 对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用)

用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。

2、数字电路与模拟电路的共地处理

现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。

数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)。数字地与模拟地有一点短接,请注意,只有一个连接点。也有在PCB上不共地的,这由系统设计来决定。

3、信号线布在电(地)层上

在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会给生产增加一定的工作量,成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。首先应考虑用电源层,其次才是地层。因为最好是保留地层的完整性。

4、大面积导体中连接腿的处理

在大面积的接地(电)中,常用元器件的腿与其连接,对连接腿的处理需要进行综合的考虑,就电气性能而言,元件腿的焊盘与铜面满接为好,但对元件的焊接装配就存在一些不良隐患如:①焊接需要大功率加热器。②容易造成虚焊点。所以兼顾电气性能与工艺需要,做成十字花焊盘,称之为热隔离(heatshield)俗称热焊盘(Thermal),这样,可使在焊接时因截面过分散热而产生虚焊点的可能性大大减少。多层板的接电(地)层腿的处理相同。

5、布线中网络系统的作用

在许多CAD系统中,布线是依据网络系统决定的。网格过密,通路虽然有所增加,但步进太小,图场的数据量过大,这必然对设备的存贮空间有更高的要求,同时也对象计算机类电子产品的运算速度有极大的影响。而有些通路是无效的,如被元件腿的焊盘占用的或被安装孔、定们孔所占用的等。网格过疏,通路太少对布通率的影响极大。所以要有一个疏密合理的网格系统来支持布线的进行。

标准元器件两腿之间的距离为0.1英寸(2.54mm),所以网格系统的基础一般就定为0.1英寸(2.54mm)或小于0.1英寸的整倍数,如:0.05英寸、0.025英寸、0.02英寸等。

6、设计规则检查(DRC)

布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的需求,一般检查有如下几个方面:

线与线,线与元件焊盘,线与贯通孔,元件焊盘与贯通孔,贯通孔与贯通孔之间的距离是否合理,是否满足生产要求。

电源线和地线的宽度是否合适,电源与地线之间是否紧耦合(低的波阻抗)?在PCB中是否还有能让地线加宽的地方。

对于关键的信号线是否采取了最佳措施,如长度最短,加保护线,输入线及输出线被明显地分开。

模拟电路和数字电路部分,是否有各自独立的地线。

后加在PCB中的图形(如图标、注标)是否会造成信号短路。

对一些不理想的线形进行修改。

在PCB上是否加有工艺线?阻焊是否符合生产工艺的要求,阻焊尺寸是否合适,字符标志是否压在器件焊盘上,以免影响电装质量。

多层板中的电源地层的外框边缘是否缩小,如电源地层的铜箔露出板外容易造成短路。

A. 创建网络表

1. 网络表是原理图与PCB的接口文件,PCB设计人员应根据所用的原理图和PCB设计工具的特性,选用正确的网络表格式,创建符合要求的网络表。

2. 创建网络表的过程中,应根据原理图设计工具的特性,积极协助原理图设计者排除错误。保证网络表的正确性和完整性。

3. 确定器件的封装(PCB FOOTPRINT).

4. 创建PCB板

根据单板结构图或对应的标准板框, 创建PCB设计文件;

注意正确选定单板坐标原点的位置,原点的设置原则:

A. 单板左边和下边的延长线交汇点。

B. 单板左下角的第一个焊盘。

板框四周倒圆角,倒角半径3.5mm。特殊情况参考结构设计要求。

B. 布局

1. 根据结构图设置板框尺寸,按结构要素布置安装孔、接插件等需要定位的器件,并给这些器件赋予不可移动属性(锁定)。按工艺设计规范的要求进行尺寸标注。

2. 根据结构图和生产加工时所须的夹持边设置印制板的禁止布线区、禁止布局区域。根据某些元件的特殊要求,设置禁止布线区。

3. 综合考虑PCB性能和加工的效率选择加工流程。

加工工艺的优选顺序为:元件面单面贴装——元件面贴、插混装(元件面插装焊接面贴装一次波峰成型)——双面贴装——元件面贴插混装、焊接面贴装。

4. 布局操作的基本原则

A. 遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局.

B. 布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件.

C. 布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分.

D. 相同结构电路部分,尽可能采用“对称式”标准布局;

E. 按照均匀分布、重心平衡、版面美观的标准优化布局;

F. 器件布局栅格的设置,一般IC器件布局时,栅格应为5--20 mil,小型表面安装器件,如表

面贴装元件布局时,栅格设置应不少于5mil。

G. 如有特殊布局要求,应双方沟通后确定。

5. 同类型插装元器件在X或Y方向上应朝一个方向放置。同一种类型的有极性分立元件也要力争在X或Y方向上保持一致,便于生产和检验。

6. 发热元件要一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件。

7. 元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器件周围要有足够的空间。

8. 需用波峰焊工艺生产的单板,其紧固件安装孔和定位孔都应为非金属化孔。当安装孔需要接地时, 应采用分布接地小孔的方式与地平面连接。

9. BGA与相邻元件的距离>5mm。其它贴片元件相互间的距离>0.7mm;贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;有压接件的PCB,压接的接插件周围5mm内不能有插装元、器件,在焊接面其周围5mm内也不能有贴装元、器件。

11. IC去偶电容的布局要尽量靠近IC的电源管脚,并使之与电源和地之间形成的回路

最短。

12. 元件布局时,应适当考虑使用同一种电源的器件尽量放在一起, 以便于将来的电

源分隔。

13. 用于阻抗匹配目的阻容器件的布局,要根据其属性合理布置。

串联匹配电阻的布局要靠近该信号的驱动端,距离一般不超过500mil。

匹配电阻、电容的布局一定要分清信号的源端与终端,对于多负载的终端匹配一定要在信号的最远端匹配。

14. 布局完成后打印出装配图供原理图设计者检查器件封装的正确性,并且确认单

板、背板和接插件的信号对应关系,经确认无误后方可开始布线。

C. 设置布线约束条件

1. 报告设计参数

布局基本确定后,应用PCB设计工具的统计功能,报告网络数量,网络密度,平均管脚密度等基本参数,以便确定所需要的信号布线层数。

信号层数的确定可参考以下经验数据

Pin密度信号层数板层数

1.0以上2 2

0.6-1.0 2 4

0.4-0.6 4 6

0.3-0.4 6 8

0.2-0.3 8 12

<0.2 10 >14

注:PIN密度的定义为:板面积(平方英寸)/(板上管脚总数/14)

布线层数的具体确定还要考虑单板的可靠性要求,信号的工作速度,制造成本和交货期等因素。

1. 布线层设置

在高速数字电路设计中,电源与地层应尽量靠在一起,中间不安排布线。所有布线层都尽量靠近一平面层,优选地平面为走线隔离层。

为了减少层间信号的电磁干扰,相邻布线层的信号线走向应取垂直方向。

可以根据需要设计1--2个阻抗控制层,如果需要更多的阻抗控制层需要与PCB产家协商。

阻抗控制层要按要求标注清楚。将单板上有阻抗控制要求的网络布线分布在阻抗控制层上。

2. 线宽和线间距的设置

线宽和线间距的设置要考虑的因素

A. 单板的密度。板的密度越高,倾向于使用更细的线宽和更窄的间隙。

B. 信号的电流强度。当信号的平均电流较大时,应考虑布线宽度所能承载的的电流,线宽可参考以下数据:

PCB设计时铜箔厚度,走线宽度和电流的关系

不同厚度,不同宽度的铜箔的载流量见下表:

铜皮厚度35um 铜皮厚度50um 铜皮厚度70um

铜皮Δt=10℃铜皮Δt=10℃铜皮Δt=10℃

宽度mm 电流宽度mm 电流宽度mm 电流

0.15 0.20 0.15 0.50 0.15 0.70

0.20 0.55 0.20 0.70 0.20 0.90

0.30 0.80 0.30 1.10 0.30 1.30

0.40 1.10 0.40 1.35 0.40 1.70

0.50 1.35 0.50 1.70 0.50 2.00

0.60 1.60 0.60 1.90 0.60 2.30

0.80 2.00 0.80 2.40 0.80 2.80

1.00

2.30 1.00 2.60 1.00

3.20

1.20

2.70 1.20

3.00 1.20 3.60

1.50 3.20 1.50 3.50 1.50 4.20

2.00 4.00 2.00 4.30 2.00 5.10

2.50 4.50 2.50 5.10 2.50 6.00

注:

i. 用铜皮作导线通过大电流时,铜箔宽度的载流量应参考表中的数值降额50%去选择考虑。ii. 在PCB设计加工中,常用OZ(盎司)作为铜皮厚度的单位,1 OZ铜厚的定义为1 平方英尺面积内铜箔的重量为一盎,对应的物理厚度为35um;2OZ铜厚为70um。

C. 电路工作电压:线间距的设置应考虑其介电强度。

D. 可靠性要求。可靠性要求高时,倾向于使用较宽的布线和较大的间距。

E. PCB加工技术限制

国内国际先进水平(仅供参考)

推荐使用最小线宽/间距6mil/6mil 4mil/4mil

极限最小线宽/间距3mil/3mil 2mil/2mil

1. 孔的设置

过线孔

制成板的最小孔径定义取决于板厚度,板厚孔径比应小于5--8。

孔径优选系列如下(仅供参考):

孔径:24mil 20mil 16mil 12mil 8mil

焊盘直径:40mil 35mil 28mil 25mil 20mil

内层热焊盘尺寸:50mil 45mil 40mil 35mil 30mil

板厚度与最小孔径的关系(仅供参考):

板厚:3.0mm 2.5mm 2.0mm 1.6mm 1.0mm

最小孔径:24mil 20mil 16mil 12mil 8mil

盲孔和埋孔

盲孔是连接表层和内层而不贯通整板的导通孔,埋孔是连接内层之间而在成

品板表层不可见的导通孔,这两类过孔尺寸设置可参考过线孔。

应用盲孔和埋孔设计时应对PCB加工流程有充分的认识,避免给PCB加工带

来不必要的问题,必要时要与PCB供应商协商。

测试孔

测试孔是指用于ICT测试目的的过孔,可以兼做导通孔,原则上孔径不限,焊盘直径应不小于25mil,测试孔之间中心距不小于50mil。

不推荐用元件焊接孔作为测试孔。

2. 特殊布线区间的设定

特殊布线区间是指单板上某些特殊区域需要用到不同于一般设置的布线参数,如某些高密度器件需要用到较细的线宽、较小的间距和较小的过孔等,或某些网络的布线参数的调整等,需要在布线前加以确认和设置。

3. 定义和分割平面层

A. 平面层一般用于电路的电源和地层(参考层),由于电路中可能用到不同的电源和地层,需要对电源层和地层进行分隔,其分隔宽度要考虑不同电源之间的电位差,电位差大于12V 时,分隔宽度为50mil,反之,可选10--25mil 。

B. 平面分隔要考虑高速信号回流路径的完整性。

C. 当由于高速信号的回流路径遭到破坏时,应当在其他布线层给予补尝。例如可用接地的铜箔将该信号网络包围,以提供信号的地回路。

B. 布线前仿真(布局评估,待扩充)

C. 布线

1. 布线优先次序

关键信号线优先:电源、模拟小信号、高速信号、时钟信号和同步信号等关键信号优先布线密度优先原则:从单板上连接关系最复杂的器件着手布线。从单板上连线最密集的区域开始布线。

2. 自动布线

在布线质量满足设计要求的情况下,可使用自动布线器以提高工作效率,在自动布线前应完成以下准备工作:

自动布线控制文件(do file)

为了更好地控制布线质量,一般在运行前要详细定义布线规则,这些规则可以在软件的图形界面内进行定义,但软件提供了更好的控制方法,即针对设计情况,写出自动布线控制文件(do file),软件在该文件控制下运行。

3. 尽量为时钟信号、高频信号、敏感信号等关键信号提供专门的布线层,并保证其最小的回路面积。必要时应采取手工优先布线、屏蔽和加大安全间距等方法。保证信号质量。

4. 电源层和地层之间的EMC环境较差,应避免布置对干扰敏感的信号。

5. 有阻抗控制要求的网络应布置在阻抗控制层上。

6. 进行PCB设计时应该遵循的规则

1)地线回路规则:

环路最小规则,即信号线与其回路构成的环面积要尽可能小,环面积越小,对外的辐射越少,接收外界的干扰也越小。针对这一规则,在地平面分割时,要考虑到地平面与重要信号走线的分布,防止由于地平面开槽等带来的问题;在双层板设计中,在为电源留下足够空间的情

况下,应该将留下的部分用参考地填充,且增加一些必要的孔,将双面地信号有效连接起来,对一些关键信号尽量采用地线隔离,对一些频率较高的设计,需特别考虑其地平面信号回路问题,建议采用多层板为宜。

2)串扰控制

串扰(CrossTalk)是指PCB上不同网络之间因较长的平行布线引起的相互干扰,主要是由于平行线间的分布电容和分布电感的作用。克服串扰的主要措施是:

加大平行布线的间距,遵循3W规则。

在平行线间插入接地的隔离线。

减小布线层与地平面的距离。

3)屏蔽保护

对应地线回路规则,实际上也是为了尽量减小信号的回路面积,多见于一些比较重要的信号,如时钟信号,同步信号;对一些特别重要,频率特别高的信号,应该考虑采用铜轴电缆屏蔽结构设计,即将所布的线上下左右用地线隔离,而且还要考虑好如何有效的让屏蔽地与实际地平面有效结合。

4)走线的方向控制规则:

即相邻层的走线方向成正交结构。避免将不同的信号线在相邻层走成同一方向,以减少不必要的层间窜扰;当由于板结构限制(如某些背板)难以避免出现该情况,特别是信号速率较高时,应考虑用地平面隔离各布线层,用地信号线隔离各信号线。

5)走线的开环检查规则:

一般不允许出现一端浮空的布线(Dangling Line),

主要是为了避免产生"天线效应",减少不必要的干扰辐射和接受,否则可能带来不可预知的结果。

6)阻抗匹配检查规则:

同一网络的布线宽度应保持一致,线宽的变化会造成线路特性阻抗的不均匀,当传输的速度较高时会产生反射,在设计中应该尽量避免这种情况。在某些条件下,如接插件引出线,BGA封装的引出线类似的结构时,可能无法避免线宽的变化,应该尽量减少中间不一致部分的有效长度。

7)走线终结网络规则:

在高速数字电路中,当PCB布线的延迟时间大于信号上升时间(或下降时间)的1/4时,该布线即可以看成传输线,为了保证信号的输入和输出阻抗与传输线的阻抗正确匹配,可以采用多种形式的匹配方法,所选择的匹配方法与网络的连接方式和布线的拓朴结构有关。A. 对于点对点(一个输出对应一个输入)连接,可以选择始端串联匹配或终端并联匹配。前者结构简单,成本低,但延迟较大。后者匹配效果好,但结构复杂,成本较高。

B. 对于点对多点(一个输出对应多个输出)连接,当网络的拓朴结构为菊花

链时,应选择终端并联匹配。当网络为星型结构时,可以参考点对点结构。

星形和菊花链为两种基本的拓扑结构, 其他结构可看成基本结构的变形, 可采取一些灵活措施进行匹配。在实际操作中要兼顾成本、功耗和性能等因素,一般不追求完全匹配,只要将失配引起的反射等干扰限制在可接受的范围即可。

8)走线闭环检查规则:

防止信号线在不同层间形成自环。在多层板设计中容易发生此类问题,自环将引起辐射干扰。9)走线的分枝长度控制规则:

尽量控制分枝的长度,一般的要求是Tdelay<=Trise/20。

10)走线的谐振规则:

主要针对高频信号设计而言,即布线长度不得与其波长成整数倍关系,以免产生谐振现象。

11)走线长度控制规则:

即短线规则,在设计时应该尽量让布线长度尽量短,以减少由于走线过长带来的干扰问题,特别是一些重要信号线,如时钟线,务必将其振荡器放在离器件很近的地方。对驱动多个器件的情况,应根据具体情况决定采用何种网络拓扑结构。

12)倒角规则:

PCB设计中应避免产生锐角和直角,

产生不必要的辐射,同时工艺性能也不好。

13)器件去藕规则:

A. 在印制版上增加必要的去藕电容,滤除电源上的干扰信号,使电源信号稳定。在多层板中,对去藕电容的位置一般要求不太高,但对双层板,去藕电容的布局及电源的布线方式将直接影响到整个系统的稳定性,有时甚至关系到设计的成败。

B. 在双层板设计中,一般应该使电流先经过滤波电容滤波再供器件使用,同时还要充分考虑到由于器件产生的电源噪声对下游的器件的影响,一般来说,采用总线结构设计比较好,在设计时,还要考虑到由于传输距离过长而带来的电压跌落给器件造成的影响,必要时增加一些电源滤波环路,避免产生电位差。

C. 在高速电路设计中,能否正确地使用去藕电容,关系到整个板的稳定性。

14)器件布局分区/分层规则:

A. 主要是为了防止不同工作频率的模块之间的互相干扰,同时尽量缩短高频部分的布线长度。通常将高频的部分布设在接口部分以减少布线长度,当然,这样的布局仍然要考虑到低频信号可能受到的干扰。同时还要考虑到高/低频部分地平面的分割问题,通常采用将二者的地分割,再在接口处单点相接。

B. 对混合电路,也有将模拟与数字电路分别布置在印制板的两面,分别使用不同的层布线,中间用地层隔离的方式。

15)孤立铜区控制规则:

孤立铜区的出现,将带来一些不可预知的问题,因此将孤立铜区与别的信号相接,有助于改善信号质量,

通常是将孤立铜区接地或删除。在实际的制作中,PCB厂家将一些板的空置部分增加了一些铜箔,这主要是为了方便印制板加工,同时对防止印制板翘曲也有一定的作用。

16)电源与地线层的完整性规则:

对于导通孔密集的区域,要注意避免孔在电源和地层的挖空区域相互连接,形成对平面层的分割,从而破坏平面层的完整性,并进而导致信号线在地层的回路面积增大。

17)重叠电源与地线层规则:

不同电源层在空间上要避免重叠。主要是为了减少不同电源之间的干扰,特别是一些电压相差很大的电源之间,电源平面的重叠问题一定要设法避免,难以避免时可考虑中间隔地层。18)3W规则:

为了减少线间串扰,应保证线间距足够大,当线中心间距不少于3倍线宽时,则可保持70%的电场不互相干扰,称为3W规则。如要达到98%的电场不互相干扰,可使用10W的间距。19)20H规则:

由于电源层与地层之间的电场是变化的,在板的边缘会向外辐射电磁干扰。称为边沿效应。解决的办法是将电源层内缩,使得电场只在接地层的范围内传导。以一个H(电源和地之间的介质厚度)为单位,若内缩20H则可以将70%的电场限制在接地层边沿内;内缩100H则可以将98%的电场限制在内。

20)五---五规则:

印制板层数选择规则,即时钟频率到5MHz或脉冲上升时间小于5ns,则PCB板须采用多

层板,这是一般的规则,有的时候出于成本等因素的考虑,采用双层板结构时,这种情况下,最好将印制板的一面做为一个完整的地平面层。

D. 后仿真及设计优化(待补充)

E. 工艺设计要求

1. 一般工艺设计要求参考《印制电路CAD工艺设计规范》Q/DKBA-Y001-1999

2. 功能板的ICT可测试要求

A. 对于大批量生产的单板,一般在生产中要做ICT(In Circuit Test), 为了满足ICT测试设备的要求,PCB设计中应做相应的处理,一般要求每个网络都要至少有一个可供测试探针接触的测试点,称为ICT测试点。

B. PCB上的ICT测试点的数目应符合ICT测试规范的要求,且应在PCB板的焊接面, 检测点可以是器件的焊点,也可以是过孔。

C. 检测点的焊盘尺寸最小为24mils(0.6mm),两个单独测试点的最小间距为60mils(1.5mm)。

D. 需要进行ICT测试的单板,PCB的对角上要设计两个125MILS的非金属化的孔, 为ICT 测试定位用。

3. PCB标注规范。

钻孔层中应标明印制板的精确的外形尺寸,且不能形成封闭尺寸标注;所有孔的尺寸和数量并注明孔是否金属化。

多层板和双层板设计差不多

甚至布线更Easy,但估计你买不到这类书籍(比较偏,没多少人看)。

你有双层板的设计经验,多层就不难。

首先,你要划分层迭结构,为了方便设计,最好以基板为中心,向两侧对称分布,相临信号层之间用电地层隔离。

层迭结构(4层、6层、8层、16层):

对于传输线,顶底层采用微带线模型分析,内部信号层用带状线模型。6层/10层/14层/18层基板两侧的信号层最好用软件仿真,比较麻烦。

6层/10层/14层/18层等基板两侧是信号层,没有电地隔离,需要注意相临层垂直走线和避免交流环路。

如果还有其他电源,优先在信号层走粗线,尽量不要分割电地层。

===== 玻璃纤维基板

----- FR4绝缘介质材料

S(*) 信号层(层号)

TOP 顶层信号层

BOTTOM 底层信号层

TOP TOP TOP TOP

------- ------- ------- -------

GND2 +5V +5V +3.3V

======= ------- ------- -------

+5V S3 S3 S3

------- ======= ------- -------

BOTTOM S4 GND4 GND4

------- ======= -------

GND5 GND5 S5

------- ------- -------

BOTTOM S6 +1.5V

------- -------

+3.3V S7

------- -------

BOTTOM GND8

=======

GND9

-------

S10

-------

+1.0V

-------

S12

-------

GND13

-------

S14

-------

+1.8V

-------

BOTTOM

其次,向厂家询问参数(介电常数、线宽、铜厚、板厚),以便进行阻抗匹配。这些参数不必自己计算(算了也没用,厂家不一定能做到),应由厂家提供。有了这些参数,就可以计算线宽、线间距(3W)、线长,这时就可以开始画板子了。

多层板有盲孔、埋孔、过孔三种,可以方便布线,但价格贵。有时需要减小板厚,以便插入PCI槽,而绝缘介质材料不满足要求(除非走私进口),此时可以变通地采用非均匀板,例如:中间14层,边缘2层来解决,哎,那个贵呀。

高速线最好走内层,顶底层容易受到外界温度、湿度、空气的影响,不易稳定。如果需要测试,可以打测试过孔引出。不要再存有飞线、割线的幻想,多层板已经不需要“动手能力”了,因为线在内部而且高频,不能飞,线很密也不能钻孔。养成纸上作业的习惯,确保制板一次成功,否则,就地销毁吧,眼不见心不烦。

电地层的四个角采用圆弧布线,板子可能的话也作成椭圆型。地层比电源层面积大些(20H)。

剩下的内容和双层板一样,不外乎电磁兼容、始端终端阻抗匹配、时钟同步等等,这些书嘛,就到处都是了。

PCB多层板的设计性能大多数与单层板或双层板类似,要注意电路的合理布局,考虑内层容量、绝缘电阻、焊接电阻,以及产品安全性等因素。以下内容主要从设计的电气因素和机械因素方面叙述了多层板设计中应考虑的重要因素。

一、电气设计因素

多基板是高性能、高速度的系统。对于较高的频率,信号的上升时间减少,因而信号反射和线长的控制变得至关重要。多基板系统中,对于电子元器件可控阻抗性能的要求很严格,设计要满足以上要求。决定阻抗的因素是基板和预浸材料的介电常数、同一层面上的导线间距、层间介质厚度和铜导体厚度。在高速应用中,多基板中导体的层压顺序和信号网的连接顺序也是至关重要的。介电常数:基板材料的介电常数是确定阻抗、传播延迟和电容的重要因素。使用环氧玻璃的基板和预浸材料的介电常数可通过改变树脂含量的百分比进行控制。

介电常数相对较低的预浸材料适合应用于射频和微波电路中。在射频和微波频率中,较低的介电常数造成的信号延迟较低。在基板中,低损耗因素可使电损失达到最小。

环氧树脂的介电常数为3.45,玻璃的介电常数为6.2。通过控制这些材料的百分率,环氧玻璃的介电常数可能达到4.2-5.3。基板的厚度对于确定和控制介电常数就是一个很好的说明。

二、机械设计因素

机械设计包括选择合适的板厚度、板的尺寸、板的层叠、内层铜筒、纵横比等。

1、板尺寸

板尺寸应根据应用需求、系统箱尺寸、电路板制造者的局限性和制造能力进行最优化选择。大电路板有许多优点,例如较少的基板、许多元器件之间较短的电路路径,这样就可以有更高的操作速度,井且每块板子可以具有更多的输入输出连接,所以在许多应用中应首选大电路板,例如在个人计算机中,看到的都是较大的母板。然而,设计大板子上的信号线布局是比较困难的,需要更多的信号层或内部连线或空间,热处理的难度也较大。因此,设计者一定要考虑各种因素,例如标准板尺寸、制作设备的尺寸和制作过程的局限性。在1PC-D-322 中给出了关于选择标准的印制电路/板尺寸的一些指导原则。

2、板厚度

多基板的厚度是由多种因素决定的,例如信号层的数目、电源板的数量和厚度、优质打孔和电镀所需的孔径和厚度的纵横比、自动插入需要的元器件引脚长度和使用的连接类型。整个电路板的厚度由板子两面的导电层、铜层、基板厚度和预浸材料厚度组成。在合成的多基板上获得严格的公差是困难的,大约10% 的公差标准被认为是合理的。

3、板的层叠

为了将板子扭曲的几率减到最小,得到平坦的完成板,多基板的分层应保持对称。即具有偶数铜层,并确保铜的厚度和板层的铜箔图形密度对称。通常层压桓使用的构造材料的径向(例如,玻璃纤维布)应该与层压板的边平行。因为粘接后层压板沿径向收缩,这会使电路板的布局发生扭曲,表现出易变的和低的空间稳定性。

然而,通过改善设计可以使多基板的翘曲和扭曲达到最小。通过整个层面上铜箔的平均分布和确保多基板的结构对称,也就是保证预浸材料相同的分布和厚度,可达到减小翘曲和扭曲的目的。铜和碾压层应该从多基板的中心层开始制作,直到最外面的两层。规定在两个铜层之间的最小的距离(电介质厚度)是0.080mm。

由经验可知,两个铜层之间的最小距离,也就是粘接之后预浸材料的最小厚度必须至少是被嵌入的铜层厚度的两倍。换一句话说,两个邻近的铜层,如果每一层厚度是30μm ,则预浸材料的厚度至少是2 (2 x 30μm) =120μm ,这可通过使用两层预浸材料实现(玻璃纤维。

4、内层铜箔

最常使用的铜箔是1oz (每平方英尺表面区域的铜箔为1oz) 。然而,对于密集的板子,其厚度是极其重要的,需要严格的阻抗控制,这种板子需要使用

0.50z 的铜箔。对于电源层和接地层,最好选用2oz 或更重一点的铜箔。然而,蚀刻较重的铜箔会导致可控性降低,不容易实现所期望的线宽和间距公差的图样。因而,需要特殊的处理技术。

5、孔

根据元器件引脚直径或对角线的尺寸,镀通孔的直径通常保持在0.028 0.010in之间,这样可以确保足够的体积,以便进行更好的焊接。

6、纵横比

“纵横比”是板的厚度与钻孔直径的比值。一般认为3: 1是标准的纵横比,虽然像5: 1的高纵横比也是常用的。纵横比可通过钻孔、除胶渣或回蚀和电镀等因素确定。当在可生产的范围内保持纵横比时,过孔要尽可能的小。

PCB设计原理及规范处理

PCB 设计规范二O 一O 年八月

目录 一.PCB 设计的布局规范- - - - - - - - - - - - - - - - - - - - - - - - -- - 3 ■布局设计原则- - - - - - - - - - - - - - - - - - - - - - - - - - - ------ - - 3 ■对布局设计的工艺要求- - - - - - - - - - - - - - - - - - - - - ------- - - 4 二.PCB 设计的布线规范- - - - - - - - - - - - - - - - - - - - - - - - - - 15 ■布线设计原则- - - - - - - - - - - - - - - - - - - - - - - - - - - ----- - - 15 ■对布线设计的工艺要求- - - - - - - - - - - - - - - - - - - - - - - ------ 16 三.PCB 设计的后处理规范- - - - - - - - - - - - - - - - - - - -- - - - - 25 ■测试点的添加- - - - - - - - - - - - - - - - - - - - - - - - - - ----- - - - 25 ■PCB 板的标注- - - - - - - - - - - - - - - - - - - - - - - - ----- - - - - 27 ■加工数据文件的生成- - - - - - - - - - - - - - - - - - - - - - ----- - - - 31 四.名词解释- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - 33 ■金属孔、非金属孔、导通孔、异形孔、装配孔- - - - - - - - - ---- - 33 ■定位孔和光学定位点- - - - - - - - - - - - - - - - - - - - - - - ------ - 33 ■负片(Negative)和正片(Positive)- - - - - - - - - - - --- - - - - 33 ■回流焊(Reflow Soldering)和波峰焊(Wave Solder)- - --- - - 34 ■PCB 和PBA - - - - - - - - - - - - - - - - - - - - - - - - - - ---- --- - - 34

工程量计算规则公式汇总

土建工程工程量计算规则公式汇总 平整场地: 建筑物场地厚度在±30cm以内的挖、填、运、找平. 1、平整场地计算规则 (1)清单规则:按设计图示尺寸以建筑物首层面积计算。 (2)定额规则:按设计图示尺寸以建筑物首层面积计算。 2、平整场地计算方法 (1)清单规则的平整场地面积:清单规则的平整场地面积=首层建筑面积(2)定额规则的平整场地面积:定额规则的平整场地面积=首层建筑面积 3、注意事项 (1)、有的地区定额规则的平整场地面积:按外墙外皮线外放2米计算。计算时按外墙外边线外放2米的图形分块计算,然后与底层建筑面积合并计算;或者按“外放2米的中心线×2=外放2米面积” 与底层建筑面积合并计算。这样的话计算时会出现如下难点: ①、划分块比较麻烦,弧线部分不好处理,容易出现误差。 ②、2米的中心线计算起来较麻烦,不好计算。 ③、外放2米后可能出现重叠部分,到底应该扣除多少不好计算。

(2)、清单环境下投标人报价时候可能需要根据现场的实际情况计算平整场地的工程量,每边外放的长度不一样。 大开挖土方 1、开挖土方计算规则 (1)、清单规则:挖基础土方按设计图示尺寸以基础垫层底面积乘挖土深度计算。 (2)、定额规则:人工或机械挖土方的体积应按槽底面积乘以挖土深度计算。槽底面积应以槽底的长乘以槽底的宽,槽底长和宽是指混凝土垫层外边线加工作面,如有排水沟者应算至排水沟外边线。排水沟的体积应纳入总土方量内。当需要放坡时,应将放坡的土方量合并于总土方量中。 2、开挖土方计算方法 (1)、清单规则: ①、计算挖土方底面积: 方法一、利用底层的建筑面积+外墙外皮到垫层外皮的面积。外墙外边线到垫层外边线的面积计算(按外墙外边线外放图形分块计算或者按“外放图形的中心线×外放长度”计算。) 方法二、分块计算垫层外边线的面积(同分块计算建筑面积)。 ②、计算挖土方的体积:土方体积=挖土方的底面积*挖土深度。

梁板柱墙钢筋计算规则

梁、板、柱、墙钢筋计算原理 钢筋重量=钢筋长度*根数*理论重量 钢筋长度=净长+节点锚固+搭接+弯钩(一级抗震) 柱 1、基础层: ⑴筏板基础﹤=2000mm时, 基础插筋长度=基础层层高-保护层+基础弯折a+基础纵筋外露长度hn/3+与上层纵筋搭接长度Lle(如焊接时,搭接长度为0) ⑵筏板基础〉2000mm时, 2、基础插筋长度=基础层层高/2-保护层+基础弯折a+基础纵筋外露长度hn/3+与上层纵筋搭接的长度Lle 柱纵筋长度=地下室层高-本层净高hn/3+首层楼层净高hn/3+与首层纵筋搭接Lle(如焊接时,搭接长度为0) 3、首层: 柱纵筋长度=首层层高-首层净高hn/3+max(二层净高hn/6,500, 柱截面边长尺寸(圆柱直径))+与二层纵筋搭接的长度Lle(如焊接时,搭接长度为0) 4、中间层: 柱纵筋长度=二层层高-max(二层层高hn/6,500, 柱截面尺寸(圆柱直径))+max(三层层高hn/6,500,柱截面尺寸(圆柱直径))+与三层搭接Lle(如焊接时,搭接长度为0) 5、顶层: 角柱:外侧钢筋长度=顶层层高-max(本层楼层净高hn/6,500, 柱截面长边尺寸(圆柱直径))-梁高+1.5Lae 内侧钢筋长度=顶层层高-max(本层楼层净高hn/6,500,柱截面长边尺寸(圆柱直径))-梁高+Lae 注:其中锚固长度取值: ⑴、当柱纵筋伸入梁内的直径长〈Lae时,则使用弯锚,柱纵筋伸至柱顶后

弯折12d, 锚固长度=梁高-保护层+12d; ⑵、当柱纵筋伸入梁内的直径长〉=Lae时,则使用直锚:柱纵筋伸至柱顶后截断, 锚固长度=梁高-保护层, ⑶、当框架柱为矩形截面时, 外侧钢筋根数为:3根角筋,b边钢筋总数的1/2,h边总数的1/2。 内侧钢筋根数为:1根角筋,b边钢筋总数的1/2,h边总数的1/2。 6、边柱: ⑴、外侧钢筋长度=顶层层高-max(本层楼层净高hn/6,500,柱截面长边尺寸(圆柱直径))-梁高+1.5Lae ⑵、内侧钢筋长度=顶层层高-max(本层楼层净高hn/6,500,柱截面长边尺寸(圆柱直径))-梁高+Lae ⑶、当框架柱为矩形截面时, 外侧钢筋根数为:2根角筋,b边一侧钢筋总数 内侧钢筋根数为:2根角筋,b边一侧钢筋总数,h边两侧钢筋总数。 7、中柱: 纵筋长度=顶层层高-max(本层楼层净高hn/6,500,柱截面长边尺寸(圆柱直径))-梁高+锚固 注:其中锚固长度取值: ⑴、当柱纵筋伸入梁内的直径长﹤Lae时,则使用弯锚,柱纵筋伸至柱顶后弯折12d, 锚固长度=梁高-保护层+12d; ⑵、当柱纵筋伸入梁内的直径长>=Lae时,则使用直锚:柱纵筋伸至柱顶后截断, 锚固长度=梁高-保护层,

电路板设计规则.

本文由dongxuehui123贡献 doc文档可能在WAP端浏览体验不佳。建议您优 先选择TXT,或下载源文件到本机查看。 Protel 99 设置一、 Routing 1. Clearance Constant: 1 Object Kind:Vias,Thru-hole Pads →Object Kind: Vias,Tracks/Arcs,Fills,Smd Pads, Thru-hole:13 mil different nets only 2 Object Kind:Tracks/Arcs,Fill s,Smd Pads →Object Kind:Vias,Tracks/Arcs,Fills,Smd Pads, Thru-hole:19 mi different nets only 19 mil 2. Routing Conners 90 Degrees 100 100mil 3. 4. 5. 6. 7. 8. Routing layers:随已定(Any) Routing Priority: Board 0 Routing Topplogy: Board shortest Routing Via Style: 20 50 透孔 SMD: Width Constraint :看情况定,Net 分组,如 12V 电源、3V 电源等。二、 Manufacting 1. Acute Angle Constraint: 45o 2. Confinement Constraint(最大尺寸 Board (*,* (*,* Keep Inside 3. 4. 5. 6. 7. Minimum Annular Ring : Board 10 Paste Mask Expansion: Board 10 Polygon Connect Style :Board Direct….. Power Plane Clearance: Board 20 Power Plane Connect Style Aboard ,Relief Connect, 10,4,20,20 8. Solder mask Expansion: Board 4mil 三、 Placement 1. 2. 3. 4. Component Clearance Constraint:(器件靠近 Board Board 100mil Component Orientations Rule: Board 0 Nets to Ignore: Board Permitted Layers Rule: Board Top Bottom 四、 1. 2. Other Short-Curent Constraint:Board Board Not Allowed Un-Routed Net Constrant : Board 五、快捷键 1. 1 原理图F1:帮助 1 Protel 99 设置 2 3 4 5 6 Process : Client:CascadeAllOpenDocuments Parameters: FileName=\Help\Protel.hlp|Topic=contents F3:查找下一个文本Process : Sch:FindNextText Parameters: F7:点亮网络标号 Process : Sch:SelectNet Parameters: F8:取消选中(点亮) Process : Sch:DeSelectAllObjects Parameters: F9:显示全部电路 Process : Sch:ZoomAll Parameters: F10:跳转到下一个错误标记 Process : Sch:JumpToNextErrorMarker Parameters: 2. 电路板图 1 Ctrl-F2:显示网络所有连接的飞线 Process : PCB:ShowConnections Parameters: SHOW=All 2 F2:显示网络连接的飞线 Process : PCB:ShowConnections Parameters: SHOW=Net 3 F3:显示元件连接的飞线 Process :PCB:ShowConnections Parameters: SHOW=ComponentNets 4 F4:隐藏飞线Process : PCB:HideConnections Parameters: Hide=All 5 F5:移动元件 Process :

工程量计算公式及规则

土石方工程量计算公式 土石方工程 一、人工平整场地: S=S底+2*L外+16 二、挖沟槽: 1. 垫层底部放坡: V=L*(a+2c+kH)*H 2. 垫层表面放坡 V=L*{(a+2c+KH1)H1+(a+2c)H2} 三、挖基坑(放坡) 方形: V=( a+2c+KH)* ( b+2c+KH)*H+1/3*K2H3 圆形: V=∏/3*h*(R2+Rr+r2) 放坡系数 类别放坡起点人工挖土机械挖土 坑内作业坑上作业 一、二类别 1.20 1:0.5 1:0.33 1:0.75 三类土 1.50 1:0.33 1:0.25 1:0.67 四类土 2.00 1:0.25 1:0.10 1:0.33 土石方工程 1.0.1 计算土石方工程量前,应确定下列各项资料; 1 土石方工土壤及岩石类别的划分,依照工程勘测资料与《计价规范》表A1.4-1《土壤及岩石(普氏)分类表》对照后确定; 2 地下水位标高及排(降)水方法; 3 土方、沟槽、基坑挖(填)起止标高、施工方法及运距; 4 岩石开凿、爆破方法、石碴清运方法及运距; 5 其他有关资料。 1.0.2 土方工程 1 平整场地: 1)平整场地工程量,按设计图示尺寸以建筑物首层面积计算。

2)平整场地是指建筑场地挖、填土方厚度在±30cm以内及找平。挖、填土方厚度超过±30cm以外时,按场地土方平衡竖向布置图另行计算。 2 挖土方按设计图示尺寸以体积计算。 3 挖基础土方按设计图示尺寸以基础垫层底面积乘以挖土深度计算。 4 沟槽、基坑划分: 凡图示沟槽底宽在3m以内,且沟槽长大于槽宽三倍以上的为沟槽; 凡图示基坑底面积在20m2以内的为基坑; 凡图示沟槽底3m以外,坑底面积20m2以外,平整场地挖土方厚度在±30cm以外,均按挖土方计算。 5 挖沟槽、基坑需支挡土板时。挡土板面积,按槽、坑垂直支撑面积计算,支挡土板后,不得计算放坡。 6 挖沟槽长度,外墙按图示中心线长度计算;内墙按图示基础底面之间净长线长度(即基础垫层底之间净长度)计算;内外突出部分(垛、附墙烟囱等)体积并入沟槽土方工程量内计算。 7 地下室土方大开挖后再挖地槽、地坑,其深度以大开挖后土面至槽、坑底标高计算,加垂直运输和水平运输;如室外地面发生水平运输,则另计一次水平运输。 8 人工挖土方深度超过1.5m时,按表一增加工日。 表一 人工挖土方超深增加工日表 ┏━━━━━┯━━━━┯━━━━┯━━━━┓ ┃深度(以内)│2m │4m │6m ┃ ┠─────┼────┼────┼────┨ ┃工日/100m3│ 4.72│ 14.96│ 22.24┃ ┗━━━━━┷━━━━┷━━━━┷━━━━┛

板马凳筋

一、马凳钢筋一般图纸上不注,只有个别设计者设计马凳,大都由项目工程师在施工组织设计中详细标明其规格、长度和间距,通常马凳的规格比板受力筋小一个级别,如板筋直径ф12可用直径为ф10的钢筋做马凳,当然也可与板筋相同。纵向和横向的间距一般为1米。不过具体问题还得具体对待,如果是双层双向的板筋为ф8,钢筋刚度较低,需要缩小马凳之间的距离,如间距为@800*800,如果是双层双向的板筋为ф6马凳间距则为@500*500。有的板钢筋规格较大,如采用直径ф14,那么马凳间距可适当放大。总之马凳设置的原则是固定牢上层钢筋网,能承受各种施工活动荷载,确保上层钢筋的保护层在规范规定的范围内。板厚很小时可不配置马凳,如小于100MM的板马凳的高度小于50mm,无法加工,可以用短钢筋头或其它材料代替。总而言之,马凳的设置要符合够用适度的原则,既能满足要求又要节约资源。 二、定额对马凳的规定 有些地方定额对马凳筋的计算有明确规定,那么按定额规则计算,但这个计算结果只能用于预算和结算不能用于施工下料,因为它仅仅是个重量,而不是从它本身的功能和受力特征来计算,如浙江定额规定:设计无规定时,马凳的材料应比底板钢筋降低一个规格,长度按底板厚2倍加0.2米计算,每平方米1个,计算钢筋总量。山西省的定额规定按照1根/m2计算,直径按照Φ12计算,很显然它不适用于施工。 1、马凳筋的根数如何计算? 可按面积计算根数,马凳筋个数=板面积/马凳筋横向间距*纵向间距,如果板筋设计成底筋加支座负筋的形式,且没有温度筋时那么马凳个数必须扣除中空部分。梁可以起到马凳筋作用,所以马凳个数须扣梁。电梯井、楼梯间和板洞部位无需马凳不应计算,楼梯马凳另行计算。 2、马凳筋的长度如何计算? 马凳高度=板厚-2*保护层-∑(上部板筋与板最下排钢筋直径之和)。 上平直段为板筋间距+50 mm(也可以是80mm,马凳上放一根上部钢筋),下左平直段为板筋间距+50 mm,下右平直段为100,这样马凳的上部能放置二根钢筋,下部三点平稳地支承在板的下部钢筋上。马凳筋不能接触模板,防止马凳筋返锈。 3、马凳筋的规格: 当板厚≤140mm,板受力筋和分布筋≤10,时马凳筋直径可采用ф8;当140mm

2008清单计算规则.

2008清单计算规则 一、平整场地:建筑物场地厚度在±30cm以内的挖、填、运、找平。 1、平整场地计算规则 (1)清单规则:按设计图示尺寸以建筑物首层面积计算。 (2)定额规则:按设计图示尺寸以建筑物外墙外边线每边各加2米以平方米面积计算。 2、平整场地计算公式 S=(A+4)×(B+4)=S底+2L外+16 式中:S———平整场地工程量;A———建筑物长度方向外墙外边线长度;B———建筑物宽度方向外墙外边线长度;S底———建筑物底层建筑面积;L外———建筑物外墙外边线周长。 该公式适用于任何由矩形组成的建筑物或构筑物的场地平整工程量计算。 二、基础土方开挖计算 开挖土方计算规则 (1)、清单规则:挖基础土方按设计图示尺寸以基础垫层底面积乘挖土深度计算。 (2)、定额规则:人工或机械挖土方的体积应按槽底面积乘以挖土深度计算。槽底面积应以槽底的长乘以槽底的宽,槽底长和宽是指基础底宽外加工作面,当需要放坡时,应将放坡的土方量合并于总土方量中。 2、开挖土方计算公式: (1)、清单计算挖土方的体积:土方体积=挖土方的底面积×挖土深度。(2)、定额规则:基槽开挖:V=(A+2C+K×H)H×L。式中:V———基槽土方量;A———槽底宽度;C———工作面宽度;H———基槽深度;L———基槽长度。. 其中外墙基槽长度以外墙中心线计算,内墙基槽长度以内墙净长计算,交接重合出不予扣除。 基坑开挖:V=1/6H[A×B+a×b+(A+a)×(B+b)+a×b]。式中:V———基坑体积;A—基坑上口长度;B———基坑上口宽度;a———基坑底面长度;b———基坑底面宽度。 三、回填土工程量计算规则及公式 1、基槽、基坑回填土体积=基槽(坑)挖土体积-设计室外地坪以下建(构)筑物被埋置部分的体积。 式中室外地坪以下建(构)筑物被埋置部分的体积一般包括垫层、墙基础、柱基础、以及地下建筑物、构筑物等所占体积 2、室内回填土体积=主墙间净面积×回填土厚度-各种沟道所占体积 主墙间净面积=S底-(L中×墙厚+L内×墙厚) 式中:底———底层建筑面积;L中———外墙中心线长度;L内———内墙净长线长度。 回填土厚度指室内外高差减去地面垫层、找平层、面层的总厚度,如右图:四、运土方计算规则及公式: 运土是指把开挖后的多余土运至指定地点,或是在回填土不足时从指定地点取土

硬件电路板设计规范标准

0目录 0目录 (2) 1概述 (4) 1.1适用范围 (4) 1.2参考标准或资料 (4) 1.3目的 (5) 2PCB设计任务的受理和计划 (5) 2.1PCB设计任务的受理 (5) 2.2理解设计要求并制定设计计划 (6) 3规范内容 (6) 3.1基本术语定义 (6) 3.2PCB板材要求: (7) 3.3元件库制作要求 (8) 3.3.1原理图元件库管理规范: (8) 3.3.2PCB封装库管理规范 (9) 3.4原理图绘制规范 (11) 3.5PCB设计前的准备 (12) 3.5.1创建网络表 (12) 3.5.2创建PCB板 (13) 3.6布局规范 (13) 3.6.1布局操作的基本原则 (13) 3.6.2热设计要求 (14) 3.6.3基本布局具体要求 (16) 3.7布线要求 (24) 3.7.1布线基本要求 (27) 3.7.2安规要求 (30)

3.8丝印要求 (32) 3.9可测试性要求 (33) 3.10PCB成板要求 (34) 3.10.1成板尺寸、外形要求 (34) 3.10.2固定孔、安装孔、过孔要求 (36) 4PCB存档文件 (37)

1概述 1.1 适用范围 本《规范》适用于设计的所有印制电路板(简称PCB); 规范之前的相关标准、规范的内容如与本规范的规定相抵触的,以本规范为准。 1.2 参考标准或资料 下列标准包含的条文,通过在本标准中引用而构成本标准的条文。在标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨,使用下列标准最新版本的可能性: GB/4588.3—88 《印制电路板设计和使用》 Q/DKBA-Y001-1999《印制电路板CAD工艺设计规范》 《PCB工艺设计规范》 IEC60194 <<印制板设计、制造与组装术语与定义>> (Printed Circuit Board design manufacture and assembly-terms and definitions) IPC—A—600F <<印制板的验收条件>> (Acceptably of printed board) IEC60950 安规标准 GB/T 4677.16-1988 印制板一般检验方法

工程量计算规则大全

工程量计算规则大全 1)内墙面抹灰工程量计算。 内墙面抹灰工程量,等于内墙面长度乘以内墙面的抹灰高度以平方米计算。扣除门窗洞口和空圈所占的面积,不扣除踢脚板、挂镜线、0.3m2以内的孔洞和墙与构件交接处的面积,洞口侧壁和顶面亦不增加。墙垛和附墙烟囱侧壁面积与内墙抹灰工程量合并计算。 内墙面抹灰的长度,以主墙间的图示净长尺寸计算。内墙面抹灰高度:无墙裙的,按室内地面或楼面至天棚底面之间距离计算;有墙裙的,按墙裙顶至天棚底面之间的距离计算。板条天棚的内墙抹灰,其高度按室内地面或楼面至天棚底面另加lOOmm计算。 (2)外墙面抹灰工程量计算。 ①外墙面抹灰工程量按外墙面的垂直投影面积以平方米计算。应扣除门窗洞口、外墙裙和大于0.3m2孔洞所占面积,洞口侧壁面积不另增加。附墙垛、梁、柱侧面抹灰面积并入外墙面抹灰工程量内计算。 外墙面高度均由室外地坪算起,向上算至:平屋顶有挑檐(天沟)的,算至挑檐(天沟)底面;平屋顶无挑檐天沟、带女儿墙的,算至女儿墙压顶底而;坡屋顶带檐口天棚的,算至檐口天棚底面;坡屋顶带挑檐无檐口天棚的,算至屋面板底。跨出檐者,算至挑檐上表面。 ②外墙裙抹灰面积按其长度乘高度计算,扣除门窗洞口和大于0.3m2孔洞所占的面积,门窗洞口及孔洞的侧壁不增加。 ③窗台线、门窗套、挑檐、腰线、遮阳板等展开宽度在300mm以内者,按装饰线以延长米计算,如展开宽度超过300mm以上时,按图示尺寸以展开面积计算,套零星抹灰定额项目。 ④栏板、栏杆抹灰按立面垂直投影面积乘以系数2.2计算。 ⑤阳台底面抹灰按水平投影面积以平方米计算,并入相应天棚抹灰面积内。阳台如带悬臂梁者,其工程餐应再乘系数1.30. ⑥雨篷底面或顶面抹灰分别按水平投影面积以平方米计算,并入相应天棚抹灰面积内。雨篷顶面带反滑或反梁者,其工程量乘系数l.20,底面带悬臂梁者,其工程量乘以系数1.20.雨篷外边线按相应装饰或零星项目执行。 ⑦墙面勾缝按垂直投影面积计算,应扣除墙裙和墙面抹灰的面积,小扣除门窗洞口、门窗套、腰线等零星抹灰所占的面积,附墙柱和门窗洞口侧面的勾缝面积亦不增加。独立柱、房上烟囱勾缝,按图示尺寸以平方米计算。 (3)外墙装饰抹灰工程量计算。 ①外墙各种装饰抹灰均按图示尺寸以实抹面积计算。应扣除门窗洞口空圈的面积,其侧壁面积不另增加。 ②挑檐、天沟、腰线、栏杆、栏板、门窗套、窗台线、压顶等均按图示尺寸展开面积以平方米计算,并入相应的外墙面积内。 (4)块料面层工程量计算。助你成功 ①墙面贴块料面层均按图示尺寸以实贴面积计算。 ②墙裙以高度在1500mm以内为准,超过1500mm时按墙面计算,高度低于300mm时,按踢脚板计算。 (5)墙面其他装饰工程量计算。 ①木隔墙、墙裙、护壁板,均按图示尺寸长度乘以高度按实铺面积以平方米计算。 ②玻璃隔墙按上横档顶面至下横档底面之间高度乘以宽度(两边立挺外边线之间)以平方米计算。

梁、柱、墙、板筋的一般计算规则

梁、柱、墙、板筋的一般计算规则 一、梁 (1)框架梁一、首跨钢筋的计算 1、上部贯通筋上部贯通筋(上通长筋1)长度=通跨净跨长+首尾端支座锚固值 2、端支座负筋端支座负筋长度:第一排为Ln/3+端支座锚固值;第二排为Ln/4+端支座锚固值 3、下部钢筋下部钢筋长度=净跨长+左右支座锚固值以上三类钢筋中均涉及到支座锚固问题,那么总结一下以上三类钢筋的支座锚固判断问题:支座宽≥Lae且≥0.5Hc+5d,为直锚,取Max{Lae,0.5Hc+5d}。钢筋的端支座锚固值=支座宽≤Lae或≤0.5Hc+5d,为弯锚,取Max{Lae,支座宽度-保护层+15d }。钢筋的中间支座锚固值=Max{Lae,0.5Hc +5d} 4、腰筋构造钢筋:构造钢筋长度=净跨长+2×15d;抗扭钢筋:算法同贯通钢筋 5、拉筋拉筋长度=(梁宽-2×保护层)+2×11.9d(抗震弯钩值)+2d;拉筋根数:如果我们没有在平法输入中给定拉筋的布筋间距,那么拉筋的根数=(箍筋根数/2)×(构造筋根数/2);如果给定了拉筋的布筋间距,那么拉筋的根数=布筋长度/布筋间距。 6、箍筋箍筋长度=(梁宽-2×保护层+梁高-2×保护层)×2+2×11.9d+8d 箍筋根数=(加密区长度/加密区间距+1)×2+(非加密区长度/非加密区间距-1)+1 注意:因为构件扣减保护层时,都是扣至纵筋的外皮,那么,我们可以发现,拉筋和箍筋在每个保护层处均被多扣掉了直径值;并且我们在预算中计算钢筋长度时,都是按照外皮计算的,所以软件自动会将多扣掉的长度在补充回来,由此,拉筋计算时增加了2d,箍筋计算时增加了8d。 7、吊筋吊筋长度=2×锚固(20d)+2×斜段长度+次梁宽度+2×50,其中框梁高度>800mm 夹角=60°≤800mm夹角=45° 二、中间跨钢筋的计算 1、中间支座负筋中间支座负筋:第一排为:Ln/3+中间支座值+Ln/3;第二排为:Ln/4+中间支座值+Ln/4 注意:当中间跨两端的支座负筋延伸长度之和≥该跨的净跨长时,其钢筋长度:第一排为:该跨净跨长+(Ln/3+前中间支座值)+(Ln/3+后中间支座值);第二排为:该跨净跨长+(Ln/4+前中间支座值)+(Ln/4+后中间支座值)。其他钢筋计算同首跨钢筋计算。LN为支座两边跨较大值。 2、其他梁一、非框架梁在03G101-1中,对于非框架梁的配筋简单的解释,与框架梁钢筋处理的不同之处在于:1、普通梁箍筋设置时不再区分加密区与非加密区的问题;2、下部纵筋锚入支座只需12d; 3、上部纵筋锚入支座,不再考虑0.5Hc+5d的判断值。 未尽解释请参考03G101-1说明。 二、框支梁 1、框支梁的支座负筋的延伸长度为Ln/3; 2、下部纵筋端支座锚固值处理同框架梁; 3、上部纵筋中第一排主筋端支座锚固长度=支座宽度-保护层+梁高-保护层+Lae,第二排主筋锚固长度≥Lae; 4、梁中部筋伸至梁端部水平直锚,再横向弯折15d; 5、箍筋的加密范围为≥0.2Ln1≥1.5hb; 7、侧面构造钢筋与抗扭钢筋处理与框架梁一致。 二、剪力墙在钢筋工程量计算中剪力墙是最难计算的构件,具体体现在: 1、剪力墙包括墙身、墙梁、墙柱、洞口,必须要整考虑它们的关系; 2、剪力墙在平面上有直角、丁字角、十字角、斜交角等各种转角形式;

板计算规则

一、普通板底筋计算 (一)、底筋长度 底筋长度=净跨+伸进长度×2+弯钩×2 1、当板的端支座为框架梁时 底筋长度=净跨+左右伸进支座长度max(框梁支座宽/2,5d)+弯钩×2 2、当板的端支座为剪力墙时 底筋长度=净跨+左右伸进支座长度max(墙支座宽/2,5d)+弯钩×2 3、当板的端支座为圈梁时 底筋长度=净跨+左右伸进支座长度max(圈梁支座宽/2,5d)+弯钩×2 4、当板的端支座为砌体墙时 底筋长度=净跨+左右伸进支座长度max(120,板厚)+弯钩×2 (二)、底筋根数 情况一:底筋根数=(净跨-50mm×2)/板筋间距+1情况二:底筋根数=(净跨-保护层×2)/板筋间距+1 情况三:底筋根数=(净跨+保护层×2+左梁角筋1/2直径+右梁角筋1/2直径-板筋间距)/板筋间距+1 二、面筋计算

(一)、端支座负筋 1、端支座负筋长度 端支座负筋长度=锚入长度+弯钩+板内净尺寸+弯折长度 情况一:锚入支座长度=锚固长度LaE (1)、当弯折长度=板厚-保护层×2时, 端支座负筋长度=(锚固长度LaE+弯钩)+(板内净长)+(板厚-保护层×2) (2)、当弯折长度=板厚-保护层时, 端支座负筋长度=(锚固长度LaE+弯钩)+(板内净长)+(板厚-保护层) 情况二:锚入支座长度=0.4La+15d (1)、当弯折长度=板厚-保护层×2时, 端支座负筋长度=(0.4La+15d+弯钩)+(板内净长)+(板厚-保护层×2) (2)、当弯折长度=板厚-保护层时, 端支座负筋长度=(0.4La+15d+弯钩)+(板内净长)+(板厚-保护层) 2、板端负筋根数 情况一:负筋根数=(净跨-50mm×2)/板筋间距+1情况二:负筋根数=(净跨-保护层×2)/板筋间距+1

PCB板基本设计规则

一、PCB板基础知识 PCB概念 PCB是英文(Printed Circuie Board)印制线路板的简称。通常把在绝缘材上,按预定设计,制成印制线路、印制元件或两者组合而成的导电图形称为印制电路。而在绝缘基材上提供元器件之间电气连接的导电图形,称为印制线路。这样就把印制电路或印制线路的成品板称为印制线路板,亦称为印制板或印制电路板。 PCB几乎我们能见到的电子设备都离不开它,小到电子手表、计算器、通用电脑,大到计算机、通迅电子设备、军用武器系统,只要有集成电路等电子无器件,它们之间电气互连都要用到PCB。它提供集成电路等各种电子元器件固定装配的机械支撑、实现集成电路等各种电子元器件之间的布线和电气连接或电绝缘、提供所要求的电气特性,如特性阻抗等。同时为自动锡焊提供阻焊图形;为元器件插装、检查、维修提供识别字符和图形。 PCB是如何制造出来的呢?我们打开通用电脑的健盘就能看到一张软性薄膜(挠性的绝缘基材),印上有银白色(银浆)的导电图形与健位图形。因为通用丝网漏印方法得到这种图形,所以我们称这种印制线路板为挠性银浆印制线路板。而我们去电脑城看到的各种电脑主机板、显卡、网卡、调制解调器、声卡及家用电器上的印制电路板就不同了。它所用的基材是由纸基(常用于单面)或玻璃布基(常用于双面及多层),预浸酚醛或环氧树脂,表层一面或两面粘上覆铜簿再层压固化而成。这种线路板覆铜簿板材,我们就称它为刚性板。再制成印制线路板,我们就称它为刚性印制线路板。单面有印制线路图形我们称单面印制线路板,双面有印制线路图形,再通过孔的金属化进行双面互连形成的印制线路板,我们就称其为双面板。如果用一块双面作内层、二块单面作外层或二块双面作内层、二块单面作外层的印制线路板,通过定位系统及绝缘粘结材料交替在一起且导电图形按设计要求进行互连的印制线路板就成为四层、六层印制电路板了,也称为多层印制线路板。 现在已有超过100层的实用印制线路板了。 PCB板的元素 1.工作层面 对于印制电路板来说,工作层面可以分为6大类, 信号层(signal layer) 内部电源/接地层(internal plane layer) 机械层(mechanical layer)主要用来放置物理边界和放置尺寸标注等信息,起到相应的提示作用。 EDA软件可以提供16层的机械层。 防护层(mask layer)包括锡膏层和阻焊层两大类。锡膏层主要用于将表面贴元器件粘贴在 PCB上,阻焊层用于防止焊锡镀在不应该焊接的地方。 丝印层(silkscreen layer)在PCB板的TOP和BOTTOM层表面绘制元器件的外观轮廓和放置 字符串等。例如元器件的标识、标称值等以及放置厂家标志,生产日 期等。同时也是印制电路板上用来焊接元器件位置的依据,作用是使 PCB板具有可读性,便于电路的安装和维修。 其他工作层(other layer)禁止布线层Keep Out Layer 钻孔导引层drill guide layer 钻孔图层drill drawing layer

计算规则

1、裸导线:是指没有绝缘、没有护层的导电线材,主要包括裸单线、裸绞线和型线型材三个系列产品,是电线电缆产品中最基本的一大类产品。一般为架空线路的主体,输送电能。 ①裸单线:TY——铜质圆单线LY——铝质圆单线 ②裸绞线:TJ——铜绞线LJ——铝绞线LGJ——钢芯铝绞线 2、绝缘电线: BV——聚氯乙烯绝缘外皮铜芯 BX——橡胶绝缘外皮铜芯线V——聚氯乙烯 BLV——聚氯乙烯绝缘外皮铝芯线 BVV——聚氯乙烯绝缘外皮聚氯乙烯护套铜芯线Y——聚乙烯 BLVV——聚氯乙烯绝缘外皮聚氯乙烯护套铝芯线 3、电力电缆:用来输送和分配大功率电能 a、聚氯乙烯绝缘聚氯乙烯护套电力电缆VV VLV 例:VV22 - 4×120+1×50表示4根截面为120mm2和1根截面为50mm2的铜芯聚氯乙烯绝缘,钢带铠装聚氯乙烯护套五芯电力电缆。 b、交联聚乙烯绝缘聚氯乙烯护套电力电缆YJV YJLV 例:YJV22 - 4×120表示4根截面为120mm2的铜芯交联聚乙烯绝缘,钢带铠装聚氯乙烯护套四芯电力电缆。 4、控制电缆: 适用于工矿企业、能源交通部门、供交流额定电压450/750伏以下控制、保护线路等场合使用的聚氯乙烯绝缘,聚氯乙烯护套控制电缆。 KVV KVLV KVV 阻铜芯聚氯乙烯绝缘聚氯乙烯护套控制电缆 KVV22 铜芯聚氯乙烯绝缘聚氯乙烯护套钢带铠装控制电缆 KVVP 阻燃铜芯聚氯乙烯绝缘聚氯乙烯护套控制电缆 KVVR 铜芯聚氯乙烯绝缘聚氯乙烯护套控制软电缆 ZRKVV 阻燃铜芯聚氯乙烯绝缘聚氯乙烯护套控制电缆 5、通信电缆——传输电话、电报、传真文件、电视和广播节目、数据和其他电信号的电缆。由一对以上相互绝缘的导线绞合而成。 ①电话电缆:HYY HYV ②同轴射频电缆:STV-75-4/6 6、电缆附件 电缆终端头:电缆与配电箱的连接处。一根电缆两个电缆头 电缆中间头:用于电缆的延长,隔250m设一个 7、线路敷设方式(电缆或电线保护管)代号 TC:用电线管敷设CT:用桥架敷设 PC:用硬塑料管敷设PEC:用半硬塑料管敷设 SC:用焊接钢管敷设SR:用金属线槽敷设 8、线路敷设部位代号: WE:沿墙明敷WC:沿墙暗敷 CE:沿顶棚明敷CC:沿顶棚暗敷 BE:沿屋架明敷BC:沿梁暗敷 CLE:沿柱明敷CLC:沿柱暗敷 FC:沿地板暗敷SCC:在吊顶内敷设 9、线路在平面图上的表示 a-b (c ×d) e - f a :线路编号b:导线型号

楼板钢筋马凳筋规定

xx筋的概念 马凳筋作为板的措施钢筋是必不可少的,从技术和经济角度来说有时也是举足轻重的,它既是设计的范畴也是施工范畴更是预算的范畴。一些缺乏实际经验和感性认识的人往往对其忽略和漏算。马凳不是个简单概念,但时至今日没有具体的理论依据和数据,没有通用的计算标准和规范,往往是凭经验和直觉。不过道理弄明白了,也了解实际施工,那么计算马凳筋就不是件难事。任何把简单的事情复杂化和把复杂的问题简单化都是有害的。 马凳,它的形状象凳子故俗称马凳,也称撑筋。用于上下两层板钢筋中间,起固定上层板钢筋的作用。当基础厚度较大时(大于800mm)不宜用马凳,而是用支架更稳定和牢固。马凳钢筋一般图纸上不注,只有个别设计者设计马凳,大都由项目工程师在施工组织设计中详细标明其规格、长度和间距,通常马凳的规格比板受力筋小一个级别,如板筋直径扣2可用直径为扣弟钢 筋做马凳,当然也可与板筋相同。纵向和横向的间距一般为1米。不过具体问 题还得具体对待,如果是双层双向的板筋为由8,钢筋刚度较低,需要缩小马凳 之间的距离,如间距为@800*800,如果是双层双向的板筋为由6马凳间距则为@500*500。有的板钢筋规格较大,如采用直径4)14那么马凳间距可适当放大。总之马凳设置的原则是固定牢上层钢筋网,能承受各种施工活动荷载,确保上层钢筋的保护层在规范规定的范围内。板厚很小时可不配置马凳,如小于100MM的板马凳的高度小于50mm,无法加工,可以用短钢筋头或其它材料代替。总而言之,马凳的设置要符合够用适度的原则,既能满足要求又要节约资源。 定额对马凳筋规定 有些地方定额对马凳筋的计算有明确规定,那么按定额规则计算,但这个计算结果只能用于预算和结算不能用于施工下料,因为它仅仅是个重量,而不是从它本身的功能和受力特征来计算,如浙江定额规定: 设计无规定时,马凳的材料应比底板钢筋降低一个规格,长度按底板厚2倍加 0.2米计算,每平方米1个,计算钢筋总量。山西省的定额规定按照1根/m2 计算,直径按照①12计算,很显然它不适用于施工。马凳筋的根数如何计算?

PCB电路板设计的一般规范步骤

PCB设计步骤 一、电路版设计的先期工作 1、利用原理图设计工具绘制原理图,并且生成对应的网络表。当然,有些特殊情况下,如电路版比较简单,已经有了网络表等情况下也可以不进行原理图的设计,直接进入PCB设计系统,在PCB设计系统中,可以直接取用零件封装,人工生成网络表。 2、手工更改网络表将一些元件的固定用脚等原理图上没有的焊盘定义到与它相通的网络上,没任何物理连接的可定义到地或保护地等。将一些原理图和PCB封装库中引脚名称不一致的器件引脚名称改成和PCB封装库中的一致,特别是二、三极管等。 二、画出自己定义的非标准器件的封装库 建议将自己所画的器件都放入一个自己建立的PCB库专用设计文件。 三、设置PCB设计环境和绘制印刷电路的版框含中间的镂空等 1、进入PCB系统后的第一步就是设置PCB设计环境,包括设置格点大小和类型,光标类型,版层参数,布线参数等等。大多数参数都可以用系统默认值,而且这些参数经过设置之后,符合个人的习惯,以后无须再去修改。 2、规划电路版,主要是确定电路版的边框,包括电路版的尺寸大小等等。在需要放置固定孔的地方放上适当大小的焊盘。对于3mm的螺丝可用6.5~8mm的外径和3.2~3.5mm内径的焊盘对于标准板可从其它板或PCB izard中调入。 注意:在绘制电路版地边框前,一定要将当前层设置成Keep Out层,即禁止布线层。 四、打开所有要用到的PCB库文件后,调入网络表文件和修改零件封装 这一步是非常重要的一个环节,网络表是PCB自动布线的灵魂,也是原理图设计与印象电路版设计的接口,只有将网络表装入后,才能进行电路版的布线。 在原理图设计的过程中,ERC检查不会涉及到零件的封装问题。因此,原理图设计时,零件的封装可能被遗忘,在引进网络表时可以根据设计情况来修改或补充零件的封装。 当然,可以直接在PCB内人工生成网络表,并且指定零件封装。 五、布置零件封装的位置,也称零件布局 Protel99可以进行自动布局,也可以进行手动布局。如果进行自动布局,运行"Tools"下面的"Auto Place",用这个命令,你需要有足够的耐心。布线的关键是布局,多数设计者采用手动布局的形式。用鼠标选中一个元件,按住鼠标左键不放,拖住这个元件到达目的地,放开左键,将该元件固定。Protel99在布局方面新增加了一些技巧。新的交互式布局选项包含自动

云南省计算规则

2013年造价员土建工程量手算计算步骤 一、基数“三线一面” L中:外墙中心线,可计算外墙基挖地槽,外墙基础垫层、外墙基础砌筑、外墙墙基防潮层、外墙圈梁、外墙墙身砌筑等分项工程。 L外:外墙外边线(L外=L中+墙后*4)。可计算平整场地、腰线、外墙抹灰、散水等分项工程。 L内:内墙净长线,可计算内墙基挖地槽、内墙基础垫层、内墙基础砌筑、内墙基础防潮层、内墙圈梁、内墙墙身的砌筑、内墙基础防潮层、内墙抹灰等分项工程。 S:砌筑面积,(分层)与面有关的计算项目有:平整场地、天棚抹灰、楼地面及屋面等分项工程。 二、人工平整场地:S=S底+2*L外+16 三、基础工程部分 1、人工挖地槽(立方米)增加柱外体积,不放坡和不支挡土板:V=(B+2C)*H*L(图我没法画了你看书理解) 2、C10基础垫层(立方米)V=L*B*H基础垫层模板(平方米)S=L*h*2个侧面 3、C25无梁式带形基础(立方米)、模板(平方米) 4、C25地圈梁:V=(L中+L内—嵌入基础内柱长度)*断面圈梁模板(平方米)S=L*h1*2个侧面 5、M7、5水泥砂浆蒸压灰砖砌条形砖基础(立方米)V=(L中+L内—嵌入基础内柱长度)*(基础高度+折加高度)*墙厚—嵌入基础内砼砼构件体积(地圈梁或在基础高度中扣除) 6、基础槽内回填土(立方米)V=基础挖土体积—室外地标高以下埋设物之和体积。如砼垫层、砼基础、砖基础、柱等。 7、室内(房心)回填土(立方米) 按主墙间净面积乘以回填厚度计算,公式:室内回填土的体积=底层主墙间净面积*(室内外高差—地坪厚度);底层主墙间净面积=底层记住面积—(L中*外墙厚+L内*内墙厚) 四、脚手架 1、综合脚:S建筑面积之和 2、垂直运输:(按卷扬机)S建筑面积之和 五、门窗洞口面积工程 详见P235表6—49以表格形式计算,要区分材料、型号、类型、带亮与否、内外墙主要在计算砌筑体中扣除,木制门的油漆等。 六、混凝土及钢筋混凝土和模板 (一)、现浇砼要区分砼强度等级 1、柱:(1)、现浇C25矩形柱:Z1,Z2,Z3(立方米)四边模板(立方米)。(2)C25现浇构造柱GZ(要增加马牙槎的量),模板注意在与墙体咬接边部计算。 2、梁工程 (1)梁(扣柱所占长度) L1(1)250*500,L2(1)240*300,L3(2)300*600,L4(3)240*350,L5(1)240*350,L6(1)240*300,L7(1)240* 450,L8(1)240*450. (2)现浇C20过梁 长度如图中有长度按图中长度,没有每边增加0、25米 模板:底模洞口宽*0、24+(侧模+每边0、25)*2*数量 (3)圈梁QL【(L中+L内)—柱所占长度—墙上凡高度超过圈梁高度的梁。如L4(3)】*断面—圈梁代过梁砼量=立方米。

马凳筋设置规则及详细计算

马凳的概念 马凳筋作为板的措施钢筋是必不可少的,从技术和经济角度来说有时也是举足轻重的,它既是设计的范畴也是施工范畴更是预算的范畴。一些缺乏实际经验和感性认识的人往往对其忽略和漏算。马凳不是个简单概念,但时至今日没有具体的理论依据和数据,没有通用的计算标准和规范,往往是凭经验和直觉。不过道理弄明白了,也了解实际施工,那么计算马凳筋就不是件难事。任何把简单的事情复杂化和把复杂的问题简单化都是有害的。 马凳,它的形状象凳子故俗称马凳,也称撑筋。用于上下两层板钢筋中间,起固定上层板钢筋的作用。当基础厚度较大时(大于800mm)不宜用马凳,而是用支架更稳定和牢固。马凳钢筋一般图纸上不注,只有个别设计者设计马凳,大都由项目工程师在施工组织设计中详细标明其规格、长度和间距,通常马凳的规格比板受力筋小一个级别,如板筋直径ф12可用直径为ф10的钢筋做马凳,当然也可与板筋相同。纵向和横向的间距一般为1米。不过具体问题还得具体对待,如果是双层双向的板筋为ф8,钢筋刚度较低,需要缩小马凳之间的距离,如间距为@800*800,如果是双层双向的板筋为ф6马凳间距则为@500*500。有的板钢筋规格较大,如采用直径ф14,那么马凳间距可适当放大。总之马凳设置的原则是固定牢上层钢筋网,能承受各种施工活动荷载,确保上层钢筋的保护层在规范规定的范围内。板厚很小时可不配置马凳,如小于100MM的板马凳的高度小于50mm,无法加工,可以用短钢筋头或其它材料代替。总而言之,马凳的设置要符合够用适度的原则,既能满足要求又要节约资源。 定额对马凳的规定 有些地方定额对马凳筋的计算有明确规定,那么按定额规则计算,但这个计算结果只能用于预算和结算不能用于施工下料,因为它仅仅是个重量,而不是从它本身的功能和受力特征来计算,如浙江定额规定:设计无规定时,马凳的材料应比底板钢筋降低一个规格,长度按底板厚2倍加0.2米计算,每平方米1个,计算钢筋总量。山西省的定额规定按照1根/m2计算,直径按照Φ12计算,很显然它不适用于施工。 马凳筋的根数如何计算? 可按面积计算根数,马凳筋个数=板面积/马凳筋横向间距*纵向间距,如果板筋设计成底筋加支座负筋的形式,且没有温度筋时那么马凳个数必须扣除中空部分。梁可以起到马凳筋作用,所以马凳个数须扣梁。电梯井、楼梯间和板洞部位无需马凳不应计算,楼梯马凳另行计算。 马凳筋的长度如何计算? 马凳高度=板厚-2*保护层-Σ(上部板筋与板最下排钢筋直径之和)。 上平直段为板筋间距+50 mm(也可以是80mm,马凳上放一根上部钢筋),下左平直段为板筋间距+50 mm,下右平直段为100,这样马凳的上部能放置二根钢筋,下部三点平稳地支承在板的下部钢筋上。马凳筋不能接触模板,防止马凳筋返锈。 马凳筋的规格: 当板厚≤140mm,板受力筋和分布筋≤10,时马凳筋直径可采用ф8;当140mm

相关主题
文本预览
相关文档 最新文档