当前位置:文档之家› 2.8 磁悬浮交通系统

2.8 磁悬浮交通系统

上海磁悬浮列车中英双版

上海磁悬浮列车 磁悬浮列车是一种利用磁极吸引力和排斥力的高科技交通工具。简单地说,排斥力使列车悬起来、吸引力让列车开动。磁悬浮列车上装有电磁体,铁路底部则安装线圈。通电后,地面线圈产生的磁场极性与列车上的电磁体极性总保持相同,两者“同性相斥”,排斥力使列车悬浮起来。铁轨两侧也装有线圈,交流电使线圈变为电磁体。它与列车上的电磁体相互作用,使列车前进。列车头的电磁体(N极)被轨道上靠前一点的电磁体(S极)所吸引,同时被轨道上稍后一点的电磁体(N极)所排斥——结果是一“推”一“拉”。磁悬浮列车运行时与轨道保持一定的间隙(一般为1—10cm),因此运行安全、平稳舒适、无噪声,可以实现全自动化运行。磁悬浮列车的使用寿命可达35年,而普通轮轨列车只有20—25年。磁悬浮列车路轨的寿命是80年,普通路轨只有60年。此外,磁悬浮列车启动后39秒内即达到最高速度,目前的最高时速是552公里。据德国科学家预测,到2014年,磁悬浮列车采用新技术后,时速将达1000公里。而一般轮轨列车的最高时速为350公里。 “常导型”磁悬浮列车 世界第一条磁悬浮列车示范运营线——上海磁悬浮列车,建成后,从浦东龙阳路站到浦东国际机场,三十多公里只需6~7分钟。上海磁悬浮列车是“常导磁吸型”(简称“常导型”)磁悬浮列车。是利用“异性相吸”原理设计,是一种吸力悬浮系统,利用安装在列车两侧转向架上的悬浮电磁铁,和铺设在轨道上的磁铁,在磁场作用下产生的吸力是车辆浮起来。 列车底部及两侧转向架的顶部安装电磁铁,在“工”字轨的上方和上臂部分的下方分别设反作用板和感应钢板,控制电磁铁的电流使电磁铁和轨道间保持1厘米的间隙,让转向架和列车间的吸引力与列车重力相互平衡,利用磁铁吸引力将列车浮起1厘米左右,使列车悬浮在轨道上运行。这必须精确控制电磁铁的电流。 悬浮列车的驱动和同步直线电动机原理一模一样。通俗说,在位于轨道两侧的线圈里流动的交流电,能将线圈变成电磁体,由于它于列车上的电磁体的相互作用,使列车开动。 列车头部的电磁体N极被安装在靠前一点的轨道上的电磁体S极所吸引,同时又被安装在轨道上稍后一点的电磁体N极所排斥。列车前进时,线圈里流动的电流方向就反过来,即原来的S极变成N 极,N极变成S极。循环交替,列车就向前奔驰。 稳定性由导向系统来控制。“常导型磁吸式”导向系统,是在列车侧面安装一组专门用于导向的电磁铁。列车发生左右偏移时,列车上的导向电磁铁与导向轨的侧面相互作用,产生排斥力,使车辆恢复正常位置。列车如运行在曲线或坡道上时,控制系统通过对导向磁铁中的电流进行控制,达到控制运行目的。 “常导型”磁悬浮列车的构想由德国工程师赫尔曼?肯佩尔于1922年提出。 “常导型”磁悬浮列车及轨道和电动机的工作原理完全相同。只是把电动机的“转子”布置在列车上,将电动机的“定子”铺设在轨道上。通过“转子”,“定子”间的相互作用,将电能转化为前进的动能。我们知道,电动机的“定子”通电时,通过电磁感应就可以推动“转子”转动。当向轨道这个“定子”输电时,通过电磁感应作用,列车就像电动机的“转子”一样被推动着做直线运动。 上海磁悬浮列车时速430公里,一个供电区内只能允许一辆列车运行,轨道两侧25米处有隔离网,上下两侧也有防护设备。转弯处半径达8000米,肉眼观察几乎是一条直线;最小的半径也达1300米。

磁悬浮系统的PID控制

磁悬浮系统的PID控制

本科毕业设计(论文)题目: 磁悬浮系统的PID控制 姓名: 学号: 专业: 指导教师: 职称: 日期: 华科学院

摘要 磁悬浮技术具有无摩擦、无磨损、无需润滑以及寿命较长等一系列优点,在能源、交通、航空航天、机械工业和生命科学等高科技领域有着广泛的应用背景。 本设计毕业设计在分析磁悬浮系统构成及工作原理的基础上,建立其数学模型,并以此为研究对象,设计了PID控制器,确定控制方案,运用MATLAB软件进行仿真研究,得出较好的控制参数。最后,本文对以后研究工作的重点进行了思考,提出了自己的见解。 关键词:磁悬浮系统控制器MATLAB软件PID控制

Abstract Magnetic suspension technology, which has a series of advantages such as contact-free, no friction, no wear, no need of lubrication and long life expectancy, is widely concerned and adopted in high-tech areas such as energy, transportation, aerospace, industrial machinery and life science.On the basis of analyzing of magnetic suspension system’s structure and working principle, its system mathematical model was established, this thesis describe PID controller designed and get control scheme. It get the better control parmeters by MATLAB software simulation studies.The key research works for further study are proposed at last. Key Word:Magnetic Levitation Ball System Digital Controller MATLAB PID Control

磁悬浮列车发展史

磁悬浮列车发展史 磁悬浮列车 2003-12-31 磁悬浮列车是自大约200年前斯蒂芬森的“火箭”号蒸气机车问世以来铁路技术最根本的突破。磁悬浮列车在今天看似乎还是一个新鲜事物,其实它的理论准备已有很长的历史。磁悬浮技术的研究源于德国,早在1922年德国工程师赫尔曼·肯佩尔就提出了电磁悬浮原理,并于1934年申请了磁悬浮列车的专利。进入70年代以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本、美国、加拿大、法国、英国等发达国家相继开始筹划进行磁悬浮运输系统的开发。而美国和前苏联则分别在七八十年代放弃了这项研究计划,目前只有德国和日本仍在继续进行磁悬浮系统的研究,并均取得了令世人瞩目的进展。下面把各主要国家对磁浮铁路的研究情况作一简要介绍。 日本于1962年开始研究常导磁浮铁路。此后由于超导技术的迅速发展,从70年代初开始转而研究超导磁浮铁路。1972年首次成功地进行了2.2吨重的超导磁浮列车实验,其速度达到每小时50公里。1977年12月在宫崎磁浮铁路试验线上,最高速度达到了每小时204公里,到1979年12月又进一步提高到517公里。1982年11月,磁浮列车的载人试验获得成功。1995年,载人磁浮列车试验时的最高时速达到411公里。为了进行东京至大阪间修建磁浮铁路的可行性研究,于1990年又着手建设山梨磁悬浮铁路试验线,首期18.4公里长的试验线已于1996年全部建设完成。 德国对磁浮铁路的研究始于1968年(当时的联邦德国)。研究初期,常导和超导并重,到1977年,先后分别研制出常导电磁铁吸引式和超导电磁铁相斥式试验车辆,试验时的最高时速达到400公里。后来经过分析比较认为,超导磁浮铁路所需的技术水平太高,短期内难以取得较大进展,遂决定以后只集中力量发展常导磁浮铁路。1978年,决定在埃姆斯兰德修建全长31.5公里的试验线,并于1980年开工兴建,1982年开始进行不载人试验。列车的最高试验速度在1983年底达到每小时300公里,1984年又进一步增至400公里。目前,德国在常导磁浮铁路研究方面的技术已趋成熟。 与日本和德国相比,英国对磁浮铁路的研究起步较晚,从1973年才开始。但是,英国则是最早将磁浮铁路投入商业运营的国家之一。1984年4月,伯明翰机场至英特纳雄纳尔车站之间一条600米长的磁浮铁路正式通车营业。旅客乘坐磁浮列车从伯明翰机场到英特纳雄纳尔火车站仅需90秒钟。令人遗憾的是,在1995年,这趟一度是世界上唯一从事商业运营的磁浮列车在运行了

浅谈磁悬浮技术及控制方法

浅谈磁悬浮技术及控制方法 11 浅谈磁悬浮技术 浅谈磁悬浮技术 及控制方法 及控制方法 演讲者孙振刚 时间com 电气工程教研室 电气工程教研室 2012-09-17 1 1 22

目录 目录 磁悬浮技术概述 磁悬浮技术概述 磁悬浮基本概念 磁悬浮基本概念 材料磁特性 材料磁特性 磁悬浮类别 磁悬浮类别 实例分析磁悬浮列车 实例分析磁悬浮列车

电磁悬浮系统的控制方法 电磁悬浮系统的控制方法 单点悬浮系统 单点悬浮系统 多点悬浮系统 多点悬浮系统 2012-09-17 2 2 33 一磁悬浮技术概述 一磁悬浮技术概述 1 基本概念 利用磁场力使物体沿着一个轴或几个轴保持一定

位置的技术措施 磁悬浮技术是集电磁学电子技术控制工程 信号处理机械学动力学为一体的典型的机电 一体化高新技术 2012-09-17 3 3 44 2 材料磁特性 顺磁性 抗磁性 磁畴未磁化磁畴 磁化 2012-09-17 4 4

55 抗磁性 抗磁性是一些物质的原子中电子磁矩互相抵消 合磁矩为零但是当受到外加磁场作用时电子 轨道运动会发生变化而且在与外加磁场的相反 方向产生很小的合磁矩这样表示物质磁性的磁 化率便成为很小的负数量抗磁性是物质抗拒 外磁场的趋向因此会被磁场排斥所有物质 都具有抗磁性可是对于具有顺磁性的物质 顺磁性通常比较显著遮掩了抗磁性只有纯抗 磁性物质才能明显地被观测到抗磁性当外磁场 存在时抗磁性才会表现出来 2012-09-17 5

5 66 抗磁性 具有抗磁性的反磁性物质是Faraday在Earnshaw 提出理论之后几年发现的 1872年时Lord Kelvin指出反磁性物质不需要遵守Earnshaw的 理论因此反磁性物质可以在静磁场里浮起来 然而由基本的解释得知所有的物质都有反磁 性只是其磁性很小因此一直到1939年 Braunbek才成功的利用了足够强的磁场将小块 的石墨及铋磁浮了起来 2012-09-17 6 6

中低速磁浮交通道岔系统工程质量验收规范编制说明-管理维护

中国城市轨道交通协会团体标准 T/CAMETXXXXXXX—XXXX 中低速磁浮交通道岔系统 工程质量验收规范 (征求意见稿) 编制说明 2017-3-28

中低速磁浮交通道岔系统工程质量验收规范 (征求意见稿) 编制说明 1.任务来源 本标准根据中国城市轨道交通协会“关于下达2016年第一批团体标准制修订计划的通知”(中城轨〔2016〕7号)编制。 2.工作组概况 本标准由同济大学(磁浮交通工程技术研究中心)组织中铁宝桥集团有限公司、北京控股磁悬浮技术发展有限公司、铁道第三勘察设计院集团有限公司、北京全路通信信号研究设计院有限公司编制。 本标准编制组工作组由在中低速交通道岔研发、设计、制造、工程安装、调试、验收方面具有较为丰富实践经验的曾国锋、吉敏廷、王红霞、牛均宽、张耀红、孙吉良、杨 森、严培良、刘 炜、田苗盛、赵东亮、杨其振、朱志伟、袁亦竑、刘道通、叶 丰、代继龙、吉 文、陈 浩、袁淑清、安 孝、朱宇宏等同志组成。 3.主要工作过程 3.1.立项审查 2016年6月23日中国城市轨道交通协会在铁科院机辆所804会议室,组织召开了《2016年第一批团体标准制修订项目立项审查会》(工程建设组),《中低速磁浮交通道岔系统质量验收标准》等5项标准通过了中国城市轨道交通协会组织的立项审查。 3.2.下达计划 2016年8月5日中国城市轨道交通协会下达了《中低速磁浮交通道岔系统工程质量验收规范》编制计划“关于下达2016年第一批团体标准制定计划”(中城轨﹝2016﹞7号)。 3.3.召开编制工作启动会 2016年9月13日,同济大学磁浮交通工程技术研究中心组织中铁宝桥集团有限公司、北京控股磁悬浮技术发展有限公司等有关单位在上海召开了中国城市轨道交通协会团体标准《中低速磁浮交通道岔系统工程质量验收规范》第一次编制工作会,会议讨论了编制大纲、编制计划。 3.4.起草标准草案 2016年9月~2016年11月,编制组在调查研究的基础上起草《中低速磁浮交通道岔系统工程质量验收规范》草案。 3.5.形成征求意见稿 2016年12月,在编制组人员对标准草案讨论、沟通基础上,形成《中低速磁浮交通道岔系统工程质量验收规范》征求意见稿。 2017年3月,补充完善了编制说明。 4.标准编制原则 4.1.本标准编制原则 a)应遵循现行国家强制性标准; b)应与现行国家标准、行业标准相协调; c)标准编制格式应符合“关于印发《工程建设标准编写规定》的通知”(建标﹝2008﹞

中低速磁浮交通设计规范

竭诚为您提供优质文档/双击可除中低速磁浮交通设计规范 篇一:单轨交通设计规范 单轨交通设计规范 (征求意见稿) 20xx年5月 目次 1总则12术语33运营组织63.1一般规定63.2系统运能设计63.3行车组织3.4行车速度3.5车站配线与车辆基地出入线3.6运营管理4车辆4.1一般规定4.2安全和应急设施4.3车辆与其它系统5限界5.1一般规定5.2限界的制定原则5.3制定限界的主要技术参数5.4限界图6线路6.1一般规定6.2线路平面6.3线路纵断面6.4辅助线、车辆基地线及道岔6.5线路标志及标线7轨道梁桥7.1一般规定7.2荷载67779910101212121415161616192122232325 7.4构造及系统设备预留、预埋要求288高架车站结构308.1一般规定308.2荷载308.3设计原则308.4构造要求319地下结构9.1一般规定9.2荷载9.3设计原则9.4构造要求10车站建筑10.1一般规定10.2车站平面10.3车站出

入口10.4人行楼梯、自动扶梯、垂直电梯10.5安全栏栅、安全门与屏蔽门10.6无障碍设施10.7车站环境设计10.8 最小高度、最小宽度、最大通过能力11工程防水与防腐蚀11.1一般规定11.2混凝土结构自防水11.3附加防水层11.4围护结构、细部构造防水11.5地下车站与区间隧道结构防排水11.6高架车站和轨道梁的结构防水与防腐蚀12通风、空调与采暖32323234353737373940404141434545454647484849 12.3地面及高架线路5312.4空调冷源及水系统5312.5相关地面建筑5412.6通风与空调系统控制和运营5413给水与排水5513.1一般规定13.2给水系统13.3排水系统13.4车辆基地给排水及消防系统13.5排水设备监控14供电14.1一般规定14.2变电所14.3接触网14.4电缆14.5动力与照明14.6电力监控系统15车站设备15.1电梯、自动扶梯与自动人行道15.2安全门与屏蔽门16道岔系统16.1一般规定16.2道岔类型16.3道岔设备16.4道岔设置原则16.5道岔安装原则17防灾55555657596060626567707175757677777881838485 17.3安全疏散8617.4消防给水8717.5灭火装置8917.6消防设备监控8017.7防烟、排烟与事故通风8017.8防灾用电与疏散标志17.9防灾通信17.10火灾报警系统17.11救援保障18通信18.1一般规定18.2传输系统18.3公务电话

磁悬浮原理及控制

magnetic suspension technique 本文介绍磁悬浮主轴系统的组成及工作原理,提出了一种在常规PID基础上的智能PID控制器的新型数字控制器设计。其核心部件是TI公司的TMS320LF2407A,设计了五自由度磁悬浮主轴系统的硬件总体框图。用C2000作为开发平台,设计在常规PID基础上的智能PID控制器。理论分析结果表明:这种智能PID控制器能实现更好控制效果,达到更高的控制精度要求。1 引言 主动磁悬浮轴承(AMB,以下简称磁轴承)是集众多门学科于一体的,最能体现机电一体化的产品。磁悬浮轴承与传统的轴承相比具有以下优点:无接触、无摩擦、高速度、高精度。传统轴承使用时间长后,磨损严重,必须更换,对油润滑的轴承使用寿命会延长、但时间久了不可避免会出现漏油情况,对环境造成影响,这一点对磁悬浮轴承就可以避免,它可以说是一种环保型的产品。而且磁轴承不仅具有研究意义,还具有很广阔的应用空间:航空航天、交通、医疗、机械加工等领域。国外已有不少应用实例。 磁悬浮轴承系统是由以下五部分组成:控制器、转子、电磁铁、传感器和功率放大器。其中最为关键的部件就是控制器。控制器的性能基本上决定了整个磁悬浮轴承系统的性能。控制器的控制规律决定了磁轴承系统的动态性能以及刚度、阻尼和稳定性。控制器又分为两种:模拟控制器和数字控制器。虽然国内目前广泛采用的模拟控制器虽然在一定程度上满足了系统的稳定性,但模拟控制器与数字控制器相比有以下不足:(一)调节不方便、(二)难以实现复杂的控制、(三)不能同时实现两个及两个以上自由度的控制、(四)互换性差,即不同的磁悬浮轴承必须有相对应的控制器、(五)功耗大、体积大等。磁轴承要得到广泛的应用,模拟控制器的在线调节性能差不能不说是其原因之一,因此,数字化方向是磁轴承的发展趋势。同时,要实现磁轴承系统的智能化,显然模拟控制器是难以满足这方面的要求。因此从提高磁轴承性能、可靠性、增强控制器的柔性和减小体积、功耗和今后往网络化、智能化方向发展等角度,必须实现控制器数字化。近三十年来控制理论得到飞速发展并取得了广泛应用。磁悬浮轴承控制器的控制规律研究在近些年也取得了显著的进展,目前国外涉及到的控制规律有:常规PID和PD控制、自适应控制、H∞控制等,国内涉及到的控制规律主要是常规PID及PD控制和H∞控制,但H∞控制成功应用于磁悬浮轴承系统中的相关信息还未见报道。 从当前国内外发展情况来看,国外的研究状况和产品化方面都领先国内很多年。国外已有专门的磁悬浮轴承公司和磁悬浮研究中心从事这方面的研发和应用方面工作,如SKF公司、NASA等。其中SKF公司的磁轴承的控制器所用控制规律为自适应控制,其产品适用的范围:承载力50~2500N、转速1,800~100,000r/min,工作温度低于220℃。NASA是美国航天局,他们开展磁悬浮研究已有几十年,主要用于航天上,研究领域包括火箭发动机和磁悬浮轨道推进系统(2002年9月已完成在磁悬浮轨道上加2g加速度下可使火箭的初始发射速度达到643~965km/h 。目前国内还没有一家磁悬浮轴承公司,要赶上国外磁悬浮轴承发展水平,必须加大人力、物力等方面的投入。国内对磁悬浮轴承控制器的控制规律研究起步较晚,当前使用较多的都是常规PID和PD控制,实际电路中也有使用PIDD的。控制精度相对来说不是很高,而且每个系统都必须对应相应的KP,KI,KD,调节起来很麻烦,使用者同样会觉得很不方便。为了使磁悬浮轴承产品化,必须解决上述问题,任何人都能很方便的使用,必须把它做成象“傻瓜型设备一样的产品”,这就得首先解决控制器的问题。解决此问题就是使控制器智能化。智能化的内容包括硬件的智能化和软件的智能化。本文仅讨论控制器在控制算法方面的智能化问题以及实现手段,可为最终解决磁悬浮轴承智能化奠定

国外智能交通系统发展现状

国外智能交通系统发展现状 高速公路是一个地区或国家现代化水平的重要标志之一,而高速公路的信息化建设则是实现高速公路现代化管理最重要的途径。互联网技术的进步,信息技术与交通理论和规划的融合,都加速了高速公路信息化的进程。高速公路监控及信息诱导技术的综合运用,成为利用信息技术改善交通秩序,提高高速公路利用率不可或缺的方法和手段。 澳大利亚: 先进的智能交通运输系统 交通控制系统 1.最优自动适应交通控制系统(SCATS) 澳大利亚是世界上较早从事智能交通控制技术研究的国家之一,著名的SCATS系统在澳大利亚几乎所有的城市都有使用,目前上海、深圳等城市也采用这一系统。 SCATS系统的优点是其自动适应交通条件变化的能力,通过大量设在路上的传感器以及视频摄像机随时获取道路车流信息。ANTTS是其重要子系统,该系统通过几千辆出租车装有的ANTTS电子标签与设在约200个交叉路口处的询问器通话,通过对出租车的识别,SCATS系统能够计算旅行时间并对交通网的运行情况进行判断。 澳大利亚的先进系统合作研究中心目前正在开发一种名叫TRIRAM的系统,其主要的目的是通过模拟道路网来预测交通行为以及新的交通流量。 2.远程信号控制系统(Vic Roads) 交通控制与通信中心(TCCC),不仅使用SCATS系统进行交通信号灯控制,而且还采用其它系统进行事故检测和信息的收集发布工作。其中较重要的是交通拨号系统,该系统通过普通的电话线,TCCC能够连接到50个偏远的受控交通灯,可以监测这些信号灯的状态改变它们的参数,为偏远路口的信号控制提供了便利。 3. 微机交通控制系统(BLISS) 该系统最主要的优点是运行于普通微机上,并可控制63个交通灯,目前在布里斯班已超过500个信号灯采用BLISS系统进行控制。 道路信号系统 道路信号系统是交通控制中心与机动车通信的基础。通过该系统可实现交通管理中心运行车辆间的信息交流,该系统使用900MHz的频率通过路旁询问器与车内电子标签进行通信,电子标签通常是简单的异频雷达收发机,当被询问时可返回一个可被识别的信号。该系统最普通的应用是车辆的不停车收费。 路旁信号系统的公共优化系统,通过与BLISS系统相互作用,可保证公共汽车到达路口时总保持绿灯,从而可减少公共汽车的运行时间。另外,该系统还可以包括公共汽车的运行安排表,当一辆车运行晚点的话,通过特殊的措施应能保证该车获得优先行驶权。 系统通过一种设在道路中间的特殊的称量质量的装置与中央控制中心通信,驾驶员不用减速或采取其它特殊操作,即能确定重型载货车的装载量是否符合要求。 车辆监控 视频数据获取系统运用视频摄像机监测、识别和计算交通量,已在澳大利亚广泛地应用。

磁悬浮列车主要由悬浮系统

磁悬浮列车主要由悬浮系统、推进系统和导向系统三大部分组成,见图3。尽管可以使用与磁力无关的推进系统,但在目前的绝大部分设计中,这三部分的功能均由磁力来完成。下面分别对这三部分所采用的技术进行介绍。 悬浮系统:目前悬浮系统的设计,可以分为两个方向,分别是德国所采用的常导型和日本所采用的超导型。从悬浮技术上讲就是电磁悬浮系统(EMS)和电力悬浮系统(EDS)。图4给出了两种系统的结构差别。 电磁悬浮系统(EMS)是一种吸力悬浮系统,是结合在机车上的电磁铁和导轨上的铁磁轨道相互吸引产生悬浮。常导磁悬浮列车工作时,首先调整车辆下部的悬浮和导向电磁铁的电磁吸力,与地面轨道两侧的绕组发生磁铁反作用将列车浮起。在车辆下部的导向电磁铁与轨道磁铁的反作用下,使车轮与轨道保持一定的侧向距离,实现轮轨在水平方向和垂直方向的无接触支撑和无接触导向。车辆与行车轨道之间的悬浮间隙为10毫米,是通过一套高精度电子调整系统得以保证的。此外由于悬浮和导向实际上与列车运行速度无关,所以即使在停车状态下列车仍然可以进入悬浮状态。 电力悬浮系统(EDS)将磁铁使用在运动的机车上以在导轨上产生电流。由于机车和导轨的缝隙减少时电磁斥力会增大,从而产生的电磁斥力提供了稳定的机车的支撑和导向。然而机车必须安装类似车轮一样的装置对机车在“起飞”和“着陆”时进行有效支撑,这是因为EDS在机车速度低于大约25英里/小时无法保证悬浮。EDS系统在低温超导技术下得到了更大的发展。 超导磁悬浮列车的最主要特征就是其超导元件在相当低的温度下所具有的完全导电性和完全抗磁性。超导磁铁是由超导材料制成的超导线圈构成,它不仅电流阻力为零,而且可以传导普通导线根本无法比拟的强大电流,这种特性使其能够制成体积小功率强大的电磁铁。

对发展智能交通产业政策支持思考

对发展智能交通产业政策支持思考 智能交通(ITS)产业是一个技术基础和管理对象都非-常复杂的高新技术集成产业。虽然目前国家和各级地方政府-都制订了促进高新技术产业发展的相关政策,但是,就智能交通产业来说,它与一般的高新技术产业有显著区别,因此,-需要更具有针对性的扶持政策。 1、智能交通产业与其它高新技术产业的区别 (1)涉及面广、带动性强 智能交通产业具有较强的交叉性,它的发展不仅涉及多个行业,而且将带动关联产业的发展,首先将带动机电产业的发展。由于智能交通需要大量的硬件设备来实现,如交通信息采集设备、通信设备、发布设备等。因此,必然会促进-机电产业加快发展步伐以满足智能交通的需要。其次是带动通信技术、信息产业的发展。在智能交通系统运行过程中,信息的生成、加工、传送等环节是基础。先进的交通信息服务系统是建立在完善的信息网络基础上的,尤其是因特网上,-并采用多媒体技术,这将使其服务功能大大加强。再次,促进微电子、计算机及软件产业的发展。智能交通的核心之一是数据和信息处理中心。这将带动计算机及软件产业不断的发展及改进以适应智能交通系统的需求。因此,智能交通产业的发展对地方经济的贡献和影响要远远大于其它高新技术产业。 (2)资金需求的持续性、长期性和规模性 智能交通产业的投资分为两个领域:基础设施和服务领域。而基础设施是智能交通发展的重要基础,它包括交通共用信息平台系、先进的交通管理系统(ATMS>、电子收费系-统(ETC)、公交管理系统(APIS)、应急管理系统(EMS)等,主要负责基础设施的运行和管理工作。智能交通基础设施建设投资主要表现为资金需求的持续性、长期性和规模性。如美国1991--2010年用于ITS发展规划的资金投入预计为400亿美元。日本1996m2015年间用于推进智能交通系统(ITS)总体构想的资金投入预计为7.8兆亿日元。和一般的交通建筑设施不-同,智能交通系统的周期长,具有一边使用、一边建设的特-点。这是因为智能交通作为高科技产业,必然紧跟技术潮流-的发展而发展。因此,需要持续性和长期性的资金供给,以支持智能交通不断进行技术更新,升级改造。 (3)技术的集成性和知识产权的复杂性

磁悬浮轨道交通关键技术及全速度域应用研究

磁悬浮轨道交通关键技术及全速度域应用研究 发表时间:2019-09-21T22:56:40.907Z 来源:《基层建设》2019年第19期作者:张聪 [导读] 摘要:随着社会经济的不断发展,磁浮技术有着其他轨道交通系统无可比拟的优势。 中车唐山机车车辆有限公司河北唐山 064000 摘要:随着社会经济的不断发展,磁浮技术有着其他轨道交通系统无可比拟的优势。其不仅能够造价成本更低、更为环保、节约土地,还有着更为舒适、安全的乘车体验,尤其适用于中低客流运量的城市与旅游景区,以及线路布置困难、建筑物拥挤、居民区稠密的大中型城市,因而有着广阔的发展应用前景。但同时,作为一种新型的交通运输系统,其在技术、安全、以及实际运营方面依然存在着较多问题。真正要实现大规模的普及和运营,依然需要漫长的实践。 关键词:速磁浮技术;城市轨道交通;应用 引言 降低能耗、突破速度瓶颈是轨道交通领域的技术难点。采用车体悬浮技术,可以实现列车和轨道之间的无物理接触,有效避免摩擦产生的损耗。在此基础上,采用直线电机驱动技术,可以实现列车沿轨道的悬浮滑行,大幅提升列车的运行速度。相比于光悬浮、声悬浮、静电悬浮和粒子束悬浮,磁悬浮是目前悬浮轨道交通中应用最为广泛的技术。但是,由于涡流、磁滞等因素影响,需要进行电磁悬浮控制,才能获得稳定的磁悬浮状态,极大增加了磁悬浮技术的应用难度。 1磁悬浮列车技术的工作原理 磁悬浮的基本原理是利用“同性相斥、异性相吸”的电磁原理,让磁铁对抗地心引力,让车辆悬浮起来,然后通过直线电机推动列车前行。具体来说为:一种是利用磁铁同性相斥原理而设计的电磁运行系统的磁悬浮列车,它利用车上超导体电磁铁形成的磁场与轨道上线圈形成的磁场之间所产生的相斥力,使车体悬浮运行的铁路;另一种则是利用磁铁异性相吸原理而设计的电动力运行系统的磁悬浮列车,它是在车体底部及两侧倒转向上的顶部安装磁铁,在T形导轨的上方和伸臂部分下方分别设反作用板和感应钢板,控制电磁铁的电流,使电磁铁和导轨间保持10-15mm的间隙,并使导轨钢板的吸引力与车辆的重力平衡,从而使车体悬浮于车道的导轨面上运行。 2磁悬浮列车的特点 2.1速度快 磁悬浮列车是大面积悬浮支撑,单位面积受力较小。其中,常导磁悬浮列车运行速度可达400km/h-500km/h,超导磁悬浮列车运行速度可达500-600km/h。传统地面交通工具速度一般在400km/h以下。因此,磁悬浮列车具有较大的速度优势。 2.2安全可靠性高 磁悬浮列车悬浮高度大约在10mm左右,一旦遇到悬浮系统失效,磁悬浮列车车体就会降落在轨道上,不易出轨,比普通列车安全。 2.3平稳舒适、噪音小。磁悬浮列车因为车身与轨道之间无接触,没有车轮与轨道的摩擦音,所以噪音小。同时,由于磁悬浮列车车体环抱轨道,不容易脱轨,且在磁场均匀分布的情况下,悬浮列车振动小,运行平稳。 2.4能耗较低 据日本研究与实际试验的结果,在时速同为500km/h下,磁悬浮列车每座位公里的能耗仅为飞机的1/3。据德国试验,当TR磁悬浮列车(EMS)时速达到400km/h时,其每座位公里能耗与时速300km/h的高速轮轨列车持平;而当磁悬浮列车时速也降到300km/h时,它的每座位公里能耗可比轮轨铁路低33%。 3磁浮技术在城市轨道交通中的应用 磁悬浮技术在城市轨道交通中的应用由来已久。继德国工程师赫尔曼?肯佩尔于1922年提出电磁悬浮原理之后,经济实力不断提升的美国、日本、德国、韩国等工业化国家就相继开始了磁悬浮运输系统的研发。其中日本于2005年开设了示范线,实现世界上第一条磁浮列车的通车与运营。中国作为世界上第三个拥有磁浮技术的国家,第一条磁悬浮交通线路位于上海,使用的是自德国购进的磁悬浮列车。2015年我国首条国产的磁悬浮线路于长沙试跑成功,2016年我国首条拥有完全自主知识产权的磁浮线路长沙线开通并进行试运营。值得一提的是,长沙磁浮线路是世界上最长的磁浮运营线。然而不难发现,磁悬浮列车虽然具有诸多的优势,但其实际的发展与运营进程却极其缓慢,世界上真正运行并投入商业运营的磁悬浮线路寥寥无几,想要实现与普通轮轨式铁路同样的发展更是遥遥无期。究其原因,主要有技术与经济两方面的考量。首先技术方面,磁悬浮交通系统的运行需要电磁力来完成,一旦电缆断电,列车的安全性就受到了威胁。电缆在受电过程中将产生20KV的高压,因此线路沿线周边的施工安全要尤为注意,以避免意外事故发生。在建站轨道的过程中,由于磁悬浮列车悬浮的高度极小,因此对路线的要求很高。同时,由电磁力产生的强磁场对于环境与人体的影响也尚未得到证实。此外,目前由于磁悬浮列车尚未普及,且运用范围较小,因此乘坐的人也较少,以上海正在运营的磁悬浮线路为例,其每年亏损达到几十亿. 4电磁悬浮列车关键技术 采用电磁悬浮原理的列车已在域和高速域实现了商业应用,例如上海的TRO8高速磁悬浮列车,日本、韩国和中国的磁悬浮列车。在中速域的应用研究也备受关注,如西南交通大学的新一代磁悬浮列车,国防科技大学的中速磁悬浮列车,以及美国的M3磁悬浮列车。其中国防科技大学中速磁浮列车和美国M3列车,在电磁悬浮中加入了永磁体,被视为混合电磁悬浮。原理上电磁悬浮也适用于超高速列车,但还未见有相关报导。电磁悬浮(EMS)利用通电导体产生磁场,磁场吸力吸附轨道铁磁体将车辆吸起,并通过主动控制保持额定的小间隙,该间隙约为8-10mm。电磁悬浮方式的关键技术有2个方面:一是如何抑制车线耦合振动,二是如何实现悬浮冗余。在车线耦合振动方面,应用实践表明车辆悬浮对自身结构、高架线路、以及控制系统非常敏感,尤其是在静悬或低速运行于轻型道岔梁时,车岔耦合振动问题非常突出,极易导致悬浮失效。例如日本的HSST-01、HSST-02、HSST-04车、韩国的UTM-01车均遇到过此类问题。上海高速磁浮线路采用TR09车型后,尽管结构变化很小,仍需要重新优化悬浮控制系统适应已经具有很大刚度的轨道。在悬浮冗余方面,上海TR高速磁悬浮列车通过电磁铁搭接的结构方式实现了机械冗余,个别悬浮点失效时,车辆仍能保持悬浮。磁悬浮则尚未很好地解决这一问题。抑制车轨耦合振动的主要措施,目前还是控制轨道梁挠跨比,高速磁悬浮线路还要求尽量提高梁的一阶垂弯频率。在高速磁悬浮线路设计中,通过频率比vc非常重要,定义“vc=(车速/跨距)/梁的一阶垂弯频率”,它与梁的变形关系见。上海高速磁悬浮轨道梁要求vc<0.9,相当于梁的一阶垂弯频率必须大于101×(车速/跨距),这一要求显著增加了线路建设成本。优化悬浮控制也有可能改善耦合振动,但在特定线路结构和车辆约束条件下,仅靠优化悬浮控制来有效抑制耦合振动的效果并不乐观。如同传统铁道车辆转向架结构与悬挂显著影响车辆的动力

中低速磁悬浮与轻轨、地铁的比较

中低速磁悬浮在城市轨道交通中的运用 磁悬浮技术的研究源于德国,1922年德国工程师赫尔曼?肯佩尔提出了电磁悬浮原理,1934年他申请了磁悬浮列车的专利,1953年完成科学报告《电子悬浮导向的电力驱动铁路机车车辆》。20世纪70年代以后,世界工业化国家经济实力不断加强,为提高交通运输能力以适应经济发展的需要,德国、日本、美国、加拿大、法国、英国等发达国家相继开始对磁悬浮运输系统进行开发,并取得令人瞩目的进展。 磁悬浮列车与传统轮轨列车不同,它用电磁力将列车浮起,导向和驱动。在运行时不与轨道发生摩擦,中低速磁悬浮列车(时速小于200km)在运行时发出的噪声非常低。此外,磁悬浮列车还具有速度高,制动快,爬坡能力强,转弯半径小,振动小,舒适性好等优点。在修建城市轨道交通线路的造价攀升的情况下,中低速磁悬浮线的性能价格比好的优势得以显示出来。 1磁悬浮技术的种类 目前,载人试验获得成功的磁浮列车系统有3种,它们的磁悬原 理和系统技术完全不同,不能兼容。 (1)用常导磁吸式(EMS进行悬浮导向,同步长定子直线电机驱动的高速磁浮列车系统。以德国的TR( Trans rapid )磁浮列车系统为代表。TR 采用常规电导吸引的方式进行悬浮和导向,悬浮的气隙较小,一般为10mm左右;由地面一次控制的直线同步电机驱动。我国上海 机场磁悬浮线就是引进的德国TR系统 (2)采用超导磁斥式(EDS进行悬浮和导向,同步长定子直线电机驱动的高速磁浮列车系统。 高速超导磁悬浮列车以日本的ML系统为代表。车上的超导线圈在低温下进入超导状态,通电后产生很强的磁场,列车运动时,超导磁体使线路上的导体产生感应电流,该电流也将产生磁场,并与车上的超导磁体形成斥力,使车辆悬浮(悬浮高度较大,一般为100mn左右)。列车由地面一次控制的线性同步电机进行驱动,同步电机定子三相绕组铺设在地面线路两侧,无需通过弓网受电方式供电。

2020年公务员考试常识积累:磁悬浮列车

2020年公务员考试常识积累:磁悬浮列车 磁悬浮列车是由无接触的电磁悬浮、导向和驱动系统组成的新型交通工具,磁悬浮列车分为超导型和常导型两大类。简单地说,从内部技术而言,两者在系统上存在着是利用磁斥力、还是利用磁吸力的区别。从外部表象而言,两者存在着速度上的区别:超导型磁悬浮列车最高时速可达500公里以上(高速轮轨列车的最高时速一般为300—350公里),在1000至1500公里的距离内堪与航空竞争;而常导型磁悬浮列车时速为400~500公里,它的中低速则比较适合于城市间的长距离快速运输。 磁悬浮列车原理 磁悬浮列车利用电磁体“同性相斥”的原理,让磁铁具有抗拒地心引力的能力,使车体完全脱离轨道,悬浮在距离轨道约1厘米处,腾空行驶,创造了近乎“零高度”空间飞行的奇迹。 磁悬浮列车由于磁铁有同性相斥和异性相吸两种形式,故磁悬浮列车也有两种相应的形式:一种是利用磁铁同性相斥原理而设计的电磁运行系统的磁悬浮列车,它利用车上超导体电磁铁形成的磁场与轨道上线圈形成的磁场之间所产生的相斥力,使车体悬浮运行的铁路。 另一种则是利用磁铁异性相吸原理而设计的电动力运行系统的磁悬浮列车,它是在车体底部及两侧倒转向上的顶部安装磁铁,在T形导轨的上方和伸臂部分下方分别设反作用板和感应钢板,控制电磁铁的电流,使电磁铁和导轨间保持10—15毫米的间隙,并使导轨钢板的排斥力与车辆的重力平衡,从而使车体悬浮于车道的导轨面上运行。 磁悬浮列车利用“同性相斥,异性相吸”的原理,让磁铁具有抗拒地心引力的能力,使车体完全脱离轨道,悬浮在距离轨道约1厘米处,腾空行驶,创造了近乎“零高度”空间飞行的奇迹。 相关介绍 磁悬浮列车是一种靠磁悬浮力(即磁的吸力和排斥力)来推动的列车。由于其轨道的磁力使之悬浮在空中,行走时不需接触地面,因此只有空气的阻力。磁悬浮技术的研究源于德国,早在1922年德国工程师赫尔曼·肯佩尔就提出了电磁悬浮原理,并于1934年申请了磁悬浮列车的专利。1970年以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本、美国、加拿大、法国、英国等发达国家相继开始筹划进行磁悬浮运输系统的开发。2009年6月15日,国内首列具有完全自主知识产权

磁悬浮球控制系统的仿真研究

磁悬浮球控制系统的仿真研究 王玲玲,王宏,梁勇 (海军航空工程学院,山东烟台 264000) 作者简介:王玲玲(1984—),女,硕士,讲师,主要从事控制技术研究。 本文引用格式:王玲玲,王宏,梁勇.磁悬浮球控制系统的仿真研究[J].兵器装备工程学报,2017(4):122-126. Citation:format:WANG Ling-ling, WANG Hong, LIANG Yong.Simulation and Research of Magnetic Levitation Ball Control System[J].Journal of Ordnance Equipment Engineering,2017(4):122-126. 摘要:针对磁悬浮球系统的本质不稳定性,设计PID控制算法实现系统的稳定控制。建立磁悬浮球系统的动力学模型,并对其中的非线性部分进行平衡点处的线性化,采用根轨迹校正设计超前滞后控制器。最后采用PID控制设计,并使用根轨迹校正中零极点对系统性能影响的思想去调整PID参数,使系统的稳定性、动态性能和稳态性能满足要求。 关键词:磁悬浮球系统;PID;根轨迹法;校正 磁悬浮可以用于实现各种机械结构的高速、无摩擦运转,如高速磁悬浮列车、高速磁悬浮电机、磁悬浮轴承等。尽管磁悬浮的应用领域繁多,系统形式和结构各不相同,但究其本质都具有本质非线性、不确定性、开环不确定性等特征。这些特征增加了对其控制的难度,也正是由于磁悬浮的这些特性,使其更加具有研究价值和意义。本文针对磁悬浮球系统,研究其稳定控制,并使其性能指标满足要求。 1 磁悬浮球控制系统的基本原理 磁悬浮球控制系统主要由铁芯、线圈、光电源、位置传感器、放大及补偿装置、数字控制器和控制对象钢球等部件组成[1],如图1所示。 当电磁铁上的线圈绕组通电时,位于磁场中的刚体受到电磁力的吸引作用。当产生的电磁力与球体的重力相等时,球体悬浮于空中,处于不稳定的平衡状态,当它受到外界扰动时,易失去平衡。因此,为了使系统稳定,就必须加上反馈环节,实现闭环控制,并设计控制算法,使稳定后的性能满足要求。

智能交通的发展和应用

智能交通的发展与应用——引领时代前行之匙 学院:交通科学与工程学院 班级:1132201 姓名:董文瀚 学号:1113220103 时间:2011年12月10日

摘要 统。它的突出特点是以信息的收集、处理、发布、交换、分析、利用为主线,为交通参与者提供多样性的服务。交通安全、交通堵塞及环境污染是困扰当今国际交通领域的三大难题,尤其以交通安全问题最为严重。据专家研究,采用智能交通技术提高道路管理水平后,每年仅交通事故死亡人数就可减少30%以上,并能提高交通工具的使用效率50%以上。为此,世界各发达国家竞相投入大量资金和人力,进行大规模的智能交通技术研究试验。 GNSS appears as one of the most flexible and cost efficient technologies for the implementation of large ETC systems both for urban and roads networks. 智能交通技术(ITS),是指将先进的信息技术、数据通讯传输技术、电子控制技术、计算机处理技术等应用于交通运输行业从而形成的一种信息化、智能化、社会化的新型运输系统,它使交通基础设施能发挥最大效能。 SAFESPOT is an Integrated Project co-funded by the European Commission, under the strategic objective "eSafety Cooperative Systems for Road Transport". Today's visions of future cooperative traffic systems are based on communication between vehicles as well as vehicle to infrastructure communication using multi-channel "Communication and Networking

海尔磁悬浮中央空调轨道交通行业节能案例分析

海尔磁悬浮中央空调轨道交通行业节能案例分析 而对于耗能较大的中央空调系统而言,未来如何为轨道交通行业更好地节能减排,将是甲方客户考量选择中央空调设备系统的重要因素之一,同时也是中央空调企业未来面临的市场机遇和挑战,目前海尔中央空调针对性地推出了相应的轨道交通专用产品。 (地铁北京大葆台站) (1)项目简介 北京地铁房山线与2010年建成通车,全场24.79公里,与地铁9号线衔接,全线设11座车站。大葆台站位于世界公园南门,结构两层,为半地下车站,即站台层在底下,站厅层在地上。车站长200米,宽23.6米,4个出入口均在地面。大葆台站是海尔与北京市轨道交通建设管理公司共建国内第一个节能示范站。 (2)使用需求 地铁人流密度变化大,空调负荷变化大,需要空调做到一键开庭,无人值守。 (3)设备解决方案 该项目共采用了磁悬浮水冷冷水机组LSBL ×250/R4(BP)×2台单机制冷

量250USRt。两台机组并联使用,空调水泵、冷却水泵、冷却塔风机设备变频器;空调水系统、冷却水系统干管以及空调水供回水之间的旁通管设置有电动节蝶阀机组、水泵、冷却塔风机由海尔自行开发的集控系统进行监控。机房控制室还设置有另外一套集控系统,该系统对整个地铁站所有动力设备进行监控,该集控系统由海尔提供。 (4)方案评价分析 磁悬浮机组制冷能力调节范围大,本项目所有磁悬浮机组为5%~100%,与地铁站负荷波动大相适应;磁悬浮机组能力调节速度快,与地铁空调负荷变化速度快充分相适应;空调负荷预测,在保证舒适的同时实现系统的节能;水泵和冷却塔风机变频,降低了辅助设备能耗;实现系统节能45%。 (北京地铁9号线) (1)项目介绍 北京地铁9号线郭公庄站位于地铁9号线南端,设置于规划万寿路南延和

相关主题
文本预览
相关文档 最新文档