当前位置:文档之家› 高一数学弧度制学案

高一数学弧度制学案

高一数学弧度制学案
高一数学弧度制学案

课题:4.2弧度制(一)

教学目的:

1.理解1弧度的角、弧度制的定义.

2.掌握角度与弧度的换算公式并能熟练地进行角度与弧度的换算.

3.熟记特殊角的弧度数

教学重点:使学生理解弧度的意义,正确地进行角度与弧度的换算.

教学难点:弧度的概念及其与角度的关系

.

授课类型:新授课

课时安排:1课时

教具:多媒体、实物投影仪

内容分析:

讲清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点之目的.

度量单位的可靠性、可行性.通过周角的两种单位制的度量,得到角度与弧度的换算公式.

但是互相联系的、辩证统一的.进一步加强对辩证统一思想的理解.

教学过程:

一、复习引入:

1.角的概念的推广

⑴“旋转”形成角

一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到另一位置OB,就形成角α.旋转开始时的射线OA叫做角α的始边,旋转终止的射线OB 叫做角α的终边,射线的端点O叫做角α的顶点.

⑵.“正角”与“负角”“0角”

我们把按逆时针方向旋转所形成的角叫做正角,把按顺时针方向旋转所形成的角叫做负角,如图,以OA为始边的角α=210°,β=-150°,γ=660°,

定义的?

规定周角的360

1

作为1°的角,我们把用度做单位来度量角的制度叫做角度制,有了它,可以计算弧长,公式为180

r

n l π=

3.探究

30°、60°的圆心角,半径r 为1,2,3,4,分别计算对应的弧长l ,再计算弧长与半径的比

结论:圆心角不变,则比值不变,

因此比值的大小只与角的大小有关,我们可以利用这个比值来度量角,这就是另一种度量角的制度——弧度制

2.度量角的大小第一种单位制—角度制的定义

初中几何中研究过角的度量,当时是用度做单位来度量角,1°的角是如何定义的?

规定周角的360

1

作为1°的角,我们把用度做单位来度量角的制度叫做角度制,有了它,可以计算弧长,公式为180

r

n l π=

3.探究

30°、60°的圆心角,半径r 为1,2,3,4,分别计算对应的弧长l ,再计算弧长与半径的比

结论:圆心角不变,则比值不变,

因此比值的大小只与角的大小有关,我们可以利用这个比值来度量角,这就是另一种度量角的制度——弧度制

一样有不同的方法,千米、米、厘米与丈、尺、寸,反映了事物本身不变,改变的是不同的观察、处理方法,因此结果就有所不同

⑸用角度制和弧度制来度量零角,单位不同,但数量相同(都是0) 用角度制和弧度制来度量任一非零角,单位不同,量数也不同2. 角度制与弧度制的换算:

∵ 360?=2π rad ∴180?=π rad

∴ 1?=

rad rad 01745.0180

≈π

'185730.571801

=≈??

? ??=πrad

三、讲解范例:

例1 把'3067

化成弧度

解:

??

?

??=2167'3067

∴ rad rad ππ

8

3

2167

180

'3067=?=

例2 把rad π5

3化成度 解:

1081805

3

53=?=rad π 注意几点:1.度数与弧度数的换算也可借助“计算器”进行;

2.今后在具体运算时,“弧度”二字和单位符号“rad ”可以省略 如:

3表示3rad , sin π表示πrad 角的正弦;

3.一些特殊角的度数与弧度数的对应值应该记住:

4.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制

都能在角的集合与实数的集合之间建立一种一一对应的关系

任意角的集合 实数集R

例3用弧度制表示:

1 终边在x 轴上的角的集合

2 终边在y 轴上的角的集合

3 终边在坐标轴上的角的集合

解:1 终边在x 轴上的角的集合 {}Z k k S ∈==,|1πββ 2 终边在y 轴上的角的集合 ?

???

??∈+

==Z k k S ,2|2π

πββ 3 终边在坐标轴上的角的集合 ?

???

??∈==Z k k S ,2|3πββ 四、课堂练习:

1.下列各对角中终边相同的角是( )

A.

ππ

π

k 222+-

和(k∈Z) B.-

3

π和322

π

C.-97π和911π

D. 9

122320ππ和

2.若α=-3,则角α的终边在( )

A.第一象限

B.第二象限

C.第三象限

D.第四象限

3.若α是第四象限角,则π-α一定在( )

A.第一象限

B.第二象限

C.第三象限

D.第四象限

4.(用弧度制表示)第一象限角的集合为 ,第一或第三象限角的集合为 .

5.7弧度的角在第 象限,与7弧度角终边相同的最小正角为 .

6.圆弧长度等于截其圆的内接正三角形边长,则其圆心角的弧度数为 .

7.求值:2

cos 4tan

6

cos

6

tan

3

tan

3

sin

π

π

π

π

π

π

-+. 8.已知集合A={α|2kπ≤α≤π+2kπ,k∈Z},B ={α|-4≤

α≤4},求A ∩B .

9.现在时针和分针都指向12点,试用弧度制表示15分钟后,时针和分针的夹角.

参考答案: 1.C 2.C 3.C

4.{α|2k π<α<2

π

+2k π,k ∈Z } {α|k π<α<

2

π

+k π,k ∈Z } 5.一 7-2π 6.3 7.2

8.A ∩B ={α|-4≤α≤-π或0≤α≤π} 9.

24

11π

五、小结 1.弧度制定义 2.与弧度制的互化 2.特殊角的弧度数 六、课后作业:

已知α是第二象限角,试求:

(1)

2α角所在的象限;(2)3

α

角所在的象限;(3)2α角所在范围. 解:(1)∵α是第二象限角,∴2π+2k π<α<π+2k π,k ∈Z ,即4

π

+k π

<2α<2

π

+k π,k ∈Z . 故当k =2m (m ∈Z )时,4π+2m π<2α<2π+2m π,因此,2α

角是第一象限角;

当k =2m +1(m ∈Z )时,45π+2m π<2α<23π+2m π,因此,2α

角是第三象限角.

综上可知,2

α

角是第一或第三象限角.

(2)同理可求得:6π+32k π<3α<3

π

+32k π,k ∈Z .当k =3m (m ∈Z )时,

ππ

αππ

m m 23326+<

<

+,此时,

3

α

是第一象限角;

当k =3m +1(m ∈Z )时,πππαπππ3

2

2333226++<<++m m ,即

3265αππ<+m <π+2m π,此时,3

α

角是第二象限角; 当k =3m +2(m ∈Z )时,ππαππm m 2353223+<<+,此时,3

α

角是第四象

限角.

综上可知,

3

α

角是第一、第二或第四象限角. (3)同理可求得2α角所在范围为:π+4k π<2α<2π+4k π,k ∈Z .

评注:(1)注意某一区间内的角与象限角的区别.象限角是由无数个区间角组成的,例如0°<α<90°这个区间角,只是k =0时第一象限角的一种特殊情况.

(2)要会正确运用不等式进行角的表达,同时会以k 取不同值,讨论形如θ=α+

3

2

k π(k ∈Z )所表示的角所在象限. (3)对于本例(3),不能说2α只是第一、二象限的角,因为2α也可为终边在y 轴负半轴上的角2

3

π+4k π(k ∈Z ),而此角不属于任何象限. 七、板书设计(略) 八、课后记:课 题:4.2

弧度制(一)

教学目的:

1.理解1弧度的角、弧度制的定义.

2.掌握角度与弧度的换算公式并能熟练地进行角度与弧度的换算.

3.熟记特殊角的弧度数

教学重点:使学生理解弧度的意义,正确地进行角度与弧度的换算.

教学难点:弧度的概念及其与角度的关系. 授课类型:新授课 课时安排:1课时

教 具:多媒体、实物投影仪 内容分析:

讲清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点之目的.

度量单位的可靠性、可行性.通过周角的两种单位制的度量,得到角度与弧度的换算公式.

但是互相联系的、辩证统一的.进一步加强对辩证统一思想的理解. 教学过程:

一、复习引入: 1.角的概念的推广

⑴“旋转”形成角

一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到另一位置OB ,就形成角α.旋转开始时的射线OA 叫做角α的始边,旋转终止的射线OB 叫做角α的终边,射线的端点O 叫做角α的顶点.

⑵.“正角”与“负角”“0角”

定义的?

规定周角的360

1

作为1°的角,我们把用度做单位来度量角的制度叫做角度制,有了它,可以计算弧长,公式为180

r

n l π=

3.探究

30°、60°的圆心角,半径r 为1,2,3,4,分别计算对应的弧长l ,再计算弧长与半径的比

结论:圆心角不变,则比值不变,

因此比值的大小只与角的大小有关,我们可以利用这个比值来度量角,这就是另一种度量角的制度——弧度制

二、讲解新课:

1. 定义:长度等于半径长的弧所对的圆心角称为1弧度的角它的单位是rad

读作弧度,这种用“弧度”做单位来度量角的制度叫做弧度制.

如下图,依次是1rad , 2rad , 3rad ,αrad

探究:

⑴平角、周角的弧度数,(平角=π rad 、周角=2π rad )

⑵正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0 ⑶角α的弧度数的绝对值

r

l

=α(l 为弧长,r 为半径)

⑷角度制、弧度制度量角的两种不同的方法,单位、进制不同,就像度量长度一样有不同的方法,千米、米、厘米与丈、尺、寸,反映了事物本身不变,改变的是不同的观察、处理方法,因此结果就有所不同

⑸用角度制和弧度制来度量零角,单位不同,但数量相同(都是0) 用角度制和弧度制来度量任一非零角,单位不同,量数也不同2. 角度制与弧度制的换算:

∵ 360?=2π rad ∴180?=π rad

∴ 1?=

rad rad 01745.0180

≈π

'185730.571801

=≈??

? ??=πrad

三、讲解范例:

例1 把'3067

化成弧度

解:

??

?

??=2167'3067

∴ rad rad ππ

8

3

2167

180

'3067=?=

例2 把rad π5

3化成度 解: 1081805

3

53=?=

rad π

注意几点:1.度数与弧度数的换算也可借助“计算器”进行;

2.今后在具体运算时,“弧度”二字和单位符号“rad ”可以省略 如:

3表示3rad , sin π表示πrad 角的正弦;

3.一些特殊角的度数与弧度数的对应值应该记住:

4.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制

都能在角的集合与实数的集合之间建立一种一一对应的关系

任意角的集合 实数集R

例3用弧度制表示:

1 终边在x 轴上的角的集合

2 终边在y 轴上的角的集合

3 终边在坐标轴上的角的集合

解:1 终边在x 轴上的角的集合 {}Z k k S ∈==,|1πββ 2 终边在y 轴上的角的集合 ?

???

??∈+

==Z k k S ,2|2π

πββ 3 终边在坐标轴上的角的集合 ?

???

??∈==Z k k S ,2|3πββ 四、课堂练习:

1.下列各对角中终边相同的角是( )

A.

ππ

π

k 222+-

和(k∈Z) B.-

3

π和322π

C.-97π和911π

D. 9

122320ππ和

2.若α=-3,则角α的终边在( )

A.第一象限

B.第二象限

C.第三象限

D.第四象限

3.若α是第四象限角,则π-α一定在( )

A.第一象限

B.第二象限

C.第三象限

D.第四象限

4.(用弧度制表示)第一象限角的集合为 ,第一或第三象限角的集合为 .

5.7弧度的角在第 象限,与7弧度角终边相同的最小正角为 .

6.圆弧长度等于截其圆的内接正三角形边长,则其圆心角的弧度数为 .

7.求值:2

cos 4tan

6

cos

6

tan

3

tan

3

sin

π

π

π

π

π

π

-+. 8.已知集合A={α|2kπ≤α≤π+2kπ,k∈Z},B ={α|-4≤

α≤4},求A ∩B .

9.现在时针和分针都指向12点,试用弧度制表示15分钟后,时针和分针的夹角.

参考答案: 1.C 2.C 3.C

4.{α|2k π<α<2

π

+2k π,k ∈Z } {α|k π<α<

2

π

+k π,k ∈Z } 5.一 7-2π 6.3 7.2

8.A ∩B ={α|-4≤α≤-π或0≤α≤π} 9.

24

11π

五、小结 1.弧度制定义 2.与弧度制的互化 2.特殊角的弧度数 六、课后作业:

已知α是第二象限角,试求:

(1)

2α角所在的象限;(2)3

α

角所在的象限;(3)2α角所在范围.

解:(1)∵α是第二象限角,∴2π+2k π<α<π+2k π,k ∈Z ,即4

π

+k π<

2α<2

π

+k π,k ∈Z . 故当k =2m (m ∈Z )时,

4π+2m π<2α<2π+2m π,因此,2α

角是第一象限角;当k =2m +1(m ∈Z )时,45π+2m π<2α<23π+2m π,因此,2α

角是第三象限角.

综上可知,2

α

角是第一或第三象限角.

(2)同理可求得:6π+32k π<3α<3

π

+32k π,k ∈Z .当k =3m (m ∈Z )时,

ππ

αππ

m m 23326

+<

<

+,此时,

3

α

是第一象限角;

当k =3m +1(m ∈Z )时,πππαπππ3

2

2333226++<<++m m ,即

326

5

αππ<+m <π+2m π,此时,3

α

角是第二象限角;

当k =3m +2(m ∈Z )时,ππαππm m 2353223+<<+,此时,3

α

角是第四象

限角.

综上可知,

3

α

角是第一、第二或第四象限角. (3)同理可求得2α角所在范围为:π+4k π<2α<2π+4k π,k ∈Z .

评注:(1)注意某一区间内的角与象限角的区别.象限角是由无数个区间角组成的,例如0°<α<90°这个区间角,只是k =0时第一象限角的一种特殊情况.

(2)要会正确运用不等式进行角的表达,同时会以k 取不同值,讨论形如θ=α+

3

2

k π(k ∈Z )所表示的角所在象限. (3)对于本例(3),不能说2α只是第一、二象限的角,因为2α也可为终边在y 轴负半轴上的角2

3

π+4k π(k ∈Z ),而此角不属于任何象限. 七、板书设计(略) 八、课后记:

任意角与弧度制导学案.doc

第一章三角函数 【学习目标】 1.了解任意角的概念;正确理解正角、零角、负角的概念 2.正确理解终边相同的角的概念,并能判断其为第几象限角,熟悉掌握终边相同的角的集合表示 【学习重点、难点】 用集合与符号语言正确表示终边相同的角 【日主学习】 一、复习引入 问题1:回忆初中我们是如何定义一个角的? 所学的角的范围是什么?问题2:在体操、跳水中,有“转体720°”这样的动作名词,这里的 “ 720°”,怎么刻画? 二、建构数学 1.角的概念 角同?以看成平面内一条绕着它的从一个位置到另一个位置所形成的图形。 射线的端点称为角的,射线旋转的开始位置和终止位置称为角的和O 2.角的分类 按方向旋转形成的角叫做正角, 按顺时针方向旋转形成的角叫做O 如果一条射线没有作任何旋转,我们称它形成了一个,它的和重合。这 样,我们就把角的概念推广到了,包括________________________ 、 ________ 和 ________ 。 3.终边相同的角 所有与角a终边相同的角,连同角a在内,可构成一个,即任一与角a终边相同的角,都可以表示成? 4.象限角、轴线角的概念 我们常在直鱼坐度内讨论角。为了讨论问题的方便,使角的与重合,角的 与重合。那么,角的(除端点外)落在第几象限,我 们就说这个角是o 如果角的终边落在坐标轴上,则称这个角为.

象限角的集合 (1)第一象限角的集合: ____________________________________________ (2)第二象限角的集合: ____________________________________________ (3)第三象限角的集合: ____________________________________________ (4)第四象限角的集合: ____________________________________________ 轴线角的集合 (1)终边在x轴正半轴的角的集合:_____________________________________________ (2)终边在x轴负半轴的角的集合:_____________________________________________ (3)终边在y轴正半轴的角的集合:____________________________________________ (4)终边在y轴负半轴的佑的集合:____________________________________________ (5)终边在X轴上的角的集合:____________________________________________ (6)终边在y轴上的角的集合:____________________________________________ (7)终边在坐标轴上的角的集合: ____________________________________________ 三、课前练习 在百.角坐标系中画出下列各角,并说出这个角是第几象限角。 30° ,150°,-60°, 390°, -390° ,-120° 【典型例题】 例1 (1)钟表经过10分钟,时针和分针分别转了多少度? (2)若将钟表拨慢了10分钟,则时针和分针分别转了多少度?

数学高一上册必修一全套学案

集合学案 §集合(1) 、知识归纳: 1、集合:某些 ________ 的对象集在一起就形成一个集合,简称集。 元素:集合中的每个 ________ 叫做这个集合的元素。 有限集: 3、集合的分类无限集: 空集: 二、例题选讲: 例1、观察下列实例: ① 小于11的全体非负偶数; ②整数12的正因数; ③抛物线y x 2 1图象上所有的点; ④所有的直角三角形; ⑤高一(1 )班的全体同学; ⑥班上的高个子同学; 回答下列问题: ⑴哪些对象能组成一个集合?⑵用适当的方法表示它?⑶指出以上集合哪些集合是有限集 例2、用适当的方法表示以下集合: ⑴平方后与原数相等的数的集合;⑵设 a,b 为非零实数,冋冋可能表示的数的取值集合; a b ⑶不等式2x 6的解集; ⑷坐标轴上的点组成的集合; x y 5 ⑸第二象限内的点组成的集合; ⑹方程组 的解集。 x y 1 三、针对训练: 1 .课本P5第1题:2.课本P6第1、2题 2 3 .已知集合A x|ax 2x 1 0 ⑴若A 中只有一个元素,求 a 及A ;⑵若A ,求a 的取值范围。 §集合(2) 一、 知识归纳: 4、 集合的符号表示: ⑴集合用 _______________________________ 表示,元素用 _______________________________ 表示。 ⑵如果a 是集合A 的元素,就说a 属于集合A ,记作: 如果a 不是集合A 的元素,就说a 不属于集合 A ,记作: ⑶常用数集符号: 非负整数集(或自然数集): 正整数集: 整数集: 有理数集: 实数集: 5、 元素的性质:(1) (2) ( 3) 二、 例题选讲: 例3 用符 口 号 与 填 空 : ⑴0 N * ; Z ; 0 0 * N - ( 1) N \ <3 2 4 一Q ; 3- Q 。 ⑵3 2,3 ;3 2,3 ; 2,3 2,3 : 3,2 _ 2,3 例4 (1) 已知 A x 2 x 5 , 判断a 、b 是否属于 A a 曲, b sin 42 tan31 (2) 已知 A a, a 2 B 1,b -A B,求 a,b 三、针对训练: 2、集合的表示方法 列举法: 描述法:

人教版高中数学必修四 1.1.2弧度制教案

1.1.2弧度制 【学习目标】 1. 理解并掌握弧度制定义. 熟练进行角度制与弧度制地互化换算. 2.掌握弧度制下的弧长公式、扇形面积公式及其应用. 【新知自学】 知识回顾: 1.角的概念 一条射线OA由原来的位置,绕着它的________按一定方向旋转到另一位置OB,就形成了角α。 按__________方向旋转所形成的角叫正角; 按_______方向旋转所形成的角叫负角; 如果一条射线_______________,我们称它形成了一个零角. 2.象限角 角的顶点与原点重合,角的始边与x轴的________________重合,那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角. 3.终边相同的角 所有与角α终边相同的角,连同角α在内,可构成一个集合________________________, 新知梳理: 1. 角度制规定 将一个圆周分成360份,每一份叫做_____度,故周角等于_____度,平角等于______度, 直角等于90度. 2. 弧度制的定义 长度等于__________的圆弧所对的圆心角叫做1弧度角,记作1rad,或1弧度,或1(单位可以省略不写). 思考:在大小不同的圆中,等长的弧所对的圆心角相等吗? 3.弧度数的求法 一个半径为r的圆的圆心角α所对的弧长是l,那么角α的弧度数的绝对值是:α________.α的正负由__决定. =

正角的弧度数是一个 ,负角的弧度数是一个 ,零角的弧度数是 . 4.角度与弧度的换算 (1)3600=________rad ; (2)________=πrad ; 度数0 180π?=弧度数; 弧度数π 0180?=度数. 【感悟】在弧度制下,角的集合与实数集R 之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应. 对点练习1: 填写下表 12 5. 扇形的公式: (1)l R α=; (2)212 S R α=; (3)12 S lR = . 对点练习2: 若扇形OAB 的面积是1 cm 2,它的周长是4 c m ,求扇形圆心角的弧度数.

A6-高一数学-角度制与弧度制

课程名称 学生姓名___________学科_________ 年级_____________ 教师姓名___________平台_________上课时间_____________ 1.通过角度制和弧度制的对比,加强直观教学,理解弧度制的(概念、公式、定理、原理、规律) 2.通过对学生的动觉刺激,促进学生对弧度制的有效记忆 3.通过动觉对比法,引导学生建构学科知识体系,提高学生观察对比、求异创新的能力,为深入分析问题、 解决问题做基础铺垫 25分钟) 1.对数函数

学生在老师的引导下标注出关键词,包括:数字字母、公式等,可以用彩色、特殊符号等。 2.知识对比 15分钟) 至少有一道涉及知识间对比的题目

例1:(1)把67°30′化成弧度; (2)把-7π 12 化成角度. (3)把下列各角化成2k π+α (0≤α<2π,k ∈Z )的形式,并指出是第几象限角: (1)-1 500°; (2)23π 6; (3)-4. 考点:(学生写出本题涉及到对比的知识点) ____________________________________ 例2:已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少? 考点:(学生写出本题涉及 到对比的知识点) ____________________ ________________ 至少2个例题 15分钟)练习题与例题知识点内容、难度、题型匹配 1. 将下列角按要求转化: (1)-22°30′=________rad ; (2)8π 5 =________度. 札记: 2.一个扇形的面积为1,周长为4,求圆心角的弧度数. 札记: 至少2个习题 5分钟)

弧度制教学设计

弧度制 江苏省淮州中学张建一、教材及内容分析 本节课是普通高中实验教科书苏教版必修4第一章第一单元第二节内容。本节课起着承上启下的作用——学生在初中已经学过角的度量单位“度”并且上节课学了任意角的概念,学生已掌握了一些基本单位转换方法,并能体会不同的单位制能给解决问题带来方便;本节课作为三角函数的第二课时,该课的知识还为后继学习任意角的三角函数等知识作铺垫,因此本节课还起着启下的作用。通过本节弧度制的学习,我们很容易找出与角对应的实数而且在弧度制下的弧长公式与扇形面积公式有了更为简单形式。另外弧度制为今后学习三角函数带来很大方便。同时通过本节课学习学生可以认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但是是互相联系的、辩证统一的,从而进一步加强学生对辩证统一思想的理解。本节内容一课时完成。 二、重难点分析 根据新课程标准及对教材的分析,确定本节课重难点如下: 重点:1、理解并掌握弧度制的定义。 2、熟练地进行角度与弧度的相互转换。 3、弧长公式、扇形面积公式的应用。 难点:弧度的概念的理解。 三、目标分析 1、知识技能目标 (1)理解1弧度的角及弧度的定义。 (2)掌握角度与弧度的换算公式。 (3)理解角的集合与实数集R之间的一一对应关系。 (4)理解并掌握弧度制下的弧长公式、扇形面积公式,并能灵活运用这两个公式解题。2、过程与方法 通过单位圆中的圆心角引入弧度的概念;比较两种度量角的方法探究角度制与弧度制之间的互化;应用在特殊角的角度制与弧度制的互化,帮助学生理解掌握;以针对性的例题和习题使学生掌握弧长公式和扇形的面积公式;通过自主学习和合作学习,树立学生正确的学习态度。

任意角与弧度制导学案

第一章 三角函数 1.1.1 任意角 【学习目标】 1. 了解任意角的概念;正确理解正角、零角、负角的概念 2. 正确理解终边相同的角的概念,并能判断其为第几象限角,熟悉掌握终边相同的角的集合表示 【学习重点、难点】 用集合与符号语言正确表示终边相同的角 【自主学习】 一、复习引入 问题1:回忆初中我们是如何定义一个角的? ______________________________________________________ 所学的角的围是什么? ______________________________________________________ 问题2:在体操、跳水中,有“转体0720”这样的动作名词,这里的“0 720”,怎么刻画? ______________________________________________________ 二、建构数学 1.角的概念 角可以看成平面一条______绕着它的_____从一个位置_____到另一个位置所形成的图形。 射线的端点称为角的________,射线旋转的开始位置和终止位置称为角的______和______。 2.角的分类 按__________方向旋转形成的角叫做正角, 按顺时针方向旋转形成的角叫做_________。 如果一条射线没有作任何旋转,我们称它形成了一个_________,它的______和_________重合。这样,我们就把角的概念推广到了___________,包括_______、________和________。 3. 终边相同的角 所有与角α终边相同的角,连同角α在,可构成一个_________,即任一与角α终边相同的角,都可以表示成 ______. 4.象限角、轴线角的概念 我们常在直角坐标系讨论角。为了讨论问题的方便,使角的________与__________重合,角的___________与_______________________重合。那么,角的_________(除端点外)落在第几象限,我们就说这个角是__________________。 如果角的终边落在坐标轴上,则称这个角为____________________. 象限角的集合

高中数学 第四章 弧度制(2)教案

4.2弧度制(二) 教学目的: 1.巩固弧度制的理解,熟练掌握角度弧度的换算;掌握用弧度制表示的弧长公式、扇形面积公式. 2.培养运用弧度制解决具体的问题的意识和能力 3.通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辩证统一的,而不是孤立、割裂的关系. 教学重点:运用弧度制解决具体的问题. 教学难点:运用弧度制解决具体的问题. 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1. 定义:长度等于半径长的弧所对的圆心角称为1弧度的角它的单位是rad 读作弧度,这种用“弧度”做单位来度量角的制度叫做弧度制. 如下图,依次是1rad , 2rad , 3rad ,αrad 探究: ⑴平角、周角的弧度数,(平角=π rad 、周角=2π rad ) ⑵正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0 ⑶角α的弧度数的绝对值 r l = α(l 为弧长,r 为半径) ⑷角度制、弧度制度量角的两种不同的方法,单位、进制不同,就像度量长度一样有不同的方法,千米、米、厘米与丈、尺、寸,反映了事物本身不变,改变的是不同的观察、处理方法,因此结果就有所不同 ⑸用角度制和弧度制来度量零角,单位不同,但数量相同(都是0) 用角度制和弧度制来度量任一非零角,单位不同,量数也不同 2. 角度制与弧度制的换算: ∵ 360?=2π rad ∴180?=π rad

∴ 1?= rad rad 01745.0180 ≈π '185730.571801ο οο =≈?? ? ??=πrad 在具体运算时,“弧度”二字和单位符号“rad ”可以省略 3.一些特殊角的度数与弧度数的对应值应该记住: 4.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系 任意角的集合 实数集R 5.初中学过的弧长公式、扇形面积公式:180 r n l π=;3602R n S π=扇 二、讲解新课: 1.弧长公式:α?=r l 由公式:?= r l α α?=r l 比公式180 r n l π= 简单 弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积 2.扇形面积公式 lR S 21 = 其中l 是扇形弧长,R 是圆的半径 证:如图:圆心角为1rad 的扇形面积为:221 R ππ o R S l

高一数学教案:4.2弧度制(一)

课 题:4.2弧度制(一) 教学目的: 1.理解1弧度的角、弧度制的定义. 2.掌握角度与弧度的换算公式并能熟练地进行角度与弧度的换算. 3.熟记特殊角的弧度数教学重点:使学生理解弧度的意义,正确地进行角度与弧度的换算. 教学难点:弧度的概念及其与角度的关系. 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 内容分析: 讲清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点之目的.通过电教手段的直观性,使学生进一步理解弧度作为角的度量单位的可靠性、可行性.通过周角的两种单位制的度量,得到角度与弧度的换算公式.使学生认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但是互相联系的、辩证统一的.进一步加强对辩证统一思想的理解. 教学过程: 一、复习引入: 1.角的概念的推广 ⑴“旋转”形成角 一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到另一位置OB ,就形成角α.旋转开始时的射线OA 叫做角α的始边,旋转终止的射线OB 叫做角α的终边,射线的端点O 叫做角α的顶点. ⑵.“正角”与“负角”“0角” 2.度量角的大小第一种单位制—角度制的定义 规定周角的3601 作为1°的角,我们把用度做单位来度量角的制度叫做角度制,有了它,可 A B α O 2100 -1500 6600

以计算弧长,公式为 180r n l π= 3.探究 30°、60°的圆心角,半径r 为1,2,3,4,分别计算对应的弧长l ,再计算弧长与半径的比 结论:圆心角不变,则比值不变, 因此比值的大小只与角的大小有关,我们可以利用这个比值来度量角,这就是另一种度量角的制度——弧度制 二、讲解新课: 1. 定义:长度等于半径长的弧所对的圆心角称为1弧度的角它的单位是rad 读作弧度,这种用“弧度”做单位来度量角的制度叫做弧度制. 如下图,依次是1rad , 2rad , 3rad ,αrad 探究: ⑴平角、周角的弧度数,(平角=π rad 、周角=2π rad ) ⑵正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0 ⑶角α的弧度数的绝对值 r l = α(l 为弧长,r 为半径) ⑷角度制、弧度制度量角的两种不同的方法,单位、进制不同,就像度量长度一样有不同的方法,千米、米、厘米与丈、尺、寸,反映了事物本身不变,改变的是不同的观察、处理方法,因此结果就有所不同 ⑸用角度制和弧度制来度量零角,单位不同,但数量相同(都是0) 用角度制和弧度制来度量任一非零角,单位不同,量数也不同 2. 角度制与弧度制的换算: ∵ 360?=2π rad ∴180?=π rad ∴ 1?=rad rad 01745.0180 ≈π ' 185730.571801 =≈??? ??=πrad 三、讲解范例: 例1 把'3067 化成弧度 解: ? ?? ??=2167'3067

高中数学人教B版必修4 1.1.2弧度制(1) 学案 Word版缺答案

第1页 共2页 1.1.2 弧度制(1) 学习要点:弧度制以及角度制与之换算关系。 学习过程: (一)复习: 度量角的大小第一种单位制—角度制的定义。 (二)新课学习: 1.1弧度角的定义:长度等于 的弧所对的圆心角称为 的角。 如图:∠AOB=1rad ∠AOC=2rad 周角=2πrad 1. 正角的弧度数是 ,负角的弧度数是 ,零角的弧度数是 2. 角α的弧度数的绝对值 α= (为弧长,r 为半径) 3. 用角度制和弧度制来度量零角,单位不同,但数量相同(都是0) 用角度制和弧度制来度量任一非零角,单位不同,量数也不同。 三、角度制与弧度制的换算 360?= ∴180?= ∴ 1?=rad rad 01745.0180≈π '185730.571801 =≈?? ? ??=πrad 例1 把'3067 化成弧度 例2 把rad π5 3化成度 注意几点:1.度数与弧度数的换算也可借助“计算器”进行; 1.今后在具体运算时,“弧度”二字和单位符号“rad ”可以省略 如:3表 示3rad sin π表示πrad 角的正弦 2.一些特殊角的度数与弧度数的对应值应该记住 3.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能 在角的集合与实数的集合之间建立一种一一对应的关系。 o r C 2rad 1rad r 2r o A A B 正角 零角 负角 正实数 零 负实数

任意角的集合实数集R 例3用弧度制表示: 1?终边在x轴上的角的集合 2?终边在y轴上的角的集合 3?终边在坐标轴上的角的集合 四、课堂练习(P12 练习) 五、小结:1.弧度制定义2.与弧度制的互化 六、作业:见作业(61) 第2页共2页

第1课时 任意角的概念与弧度制导学案教程文件

第1课时任意角的概念与弧度制导学 案

第1课时 任意角的概念与弧度制导学案1、学习目标 (1)了解任意角的概念。并会写象限角和终边相同的角的集合。 (2)熟练掌握角度与弧度的互化。 (3)熟记弧长和扇形面积的公式。 2、新知导读 1.与角α终边相同的角的集合为 .2.与角α终边互为反向延长线的角的集合为 . 3.轴线角(终边在坐标轴上的角) 终边在x 轴上的角的集合为 , 终边在y 轴上的角的集合为 , 终边在坐标轴上的角的集合为 . 4.象限角是指: .如何确定四个象限角? 5.弧度制的意义:圆周上弧长等于半径长的弧所对的圆心角的大小为1弧度的角,它 将任意角的集合与实数集合之间建立了一一对应关系. 6.弧度与角度互化:180o= 弧度,1o= 弧度,1弧度= ≈ o. 特殊角的角度与弧度的互化。30o= 弧度45o= 弧度60o= 弧度90o= 弧度 7.弧长公式:l = ; 扇形面积公式:S = . 8、阅读练习册P60的名师支招 3、范例点睛 例1.(象限角问题) 若α是第二象限的角,试分别确定2α,2α ,3 α的终边所在位置.

例2. (弧长与扇形面积) 已知一扇形中心角为α,所在圆半径为R . (1) 若α3 π=,R =2cm ,求扇形的弧长及该弧所在弓形面积; (2) 若扇形周长为一定值C(C>0),当α为何值时,该扇形面积最大,并求此最大值. 4、达标检测 1、已知,αβ的终边关于y=x 对称,则αβ+= 。 2 、一个半径为r 的扇形,如果它的周长等于弧所在半圆的弧长,那么该扇形的圆心角度数是________弧度或_____角度,该扇形的面积是____________________ 3、练习册P62对应演练。

高一数学人教B版必修1:1.1.1 集合的概念 学案

第一章 集 合 §1.1 集合与集合的表示方法 1.1.1 集合的概念 自主学习 学习目标 1.体验由实例分析探究集合中元素的特性的过程,了解集合的含义以及集合中元素的特性,培养自己的抽象、概括能力. 2.掌握“属于”关系的意义,知道常用数集及其记法,初步体会集合语言和符号语言表示数学内容的简洁性和准确性. 自学导引 1.元素与集合的概念 (1)集合:一般地,把一些能够________________对象看成一个整体,就说这个整体是由这些对象的________构成的集合(或集).通常用____________________表示. (2)元素:构成集合的______________叫做这个集合的元素(或成员),通常用________________表示. 2.集合中元素的特性:__________、__________. 3.元素与集合的关系 (1)如果a 是集合A 的元素,就说________________,记作________. (2)如果a 不是集合A 的元素,就说__________________,记作________. 4.实数集、有理数集、整数集、非负整数集、正整数集分别用字母______、________、________、________、________或________来表示. 5.集合的分类 集合??? 空集:不含任何元素,记作 . 非空集合: 按含有元素的个数分为????? :含有有限个元素 :含有无限个元素 对点讲练 知识点一 集合的概念 例1 考查下列每组对象能否构成一个集合: (1)著名的数学家; (2)某校2010年在校的所有高个子同学; (3)不超过20的非负数; (4)方程x 2-9=0在实数范围内的解; (5)直角坐标平面内第一象限的一些点; (6)3的近似值的全体. 规律方法 判断指定的对象能不能形成集合,关键在于能否找到一个明确标准,对于任何一个对象,都能确定它是不是给定集合的元素,同时还要注意集合中元素的互异性、无序性. 变式迁移1 下列给出的对象中,能构成集合的是( )

人教版高中数学高一A版必修4 弧度制

课后训练 1.若圆的半径变为原来的2倍,而弧长也增加到原来的2倍,则( ) A .扇形面积不变 B .扇形的圆心角不变 C .扇形的面积增大到原来的2倍 D .扇形的圆心角增大到原来的2倍 2.下列转化结果错误的是( ) A .67°30′化成弧度是3π 8 B .10π 3-化成度是-600° C .-150°化成弧度是7π 6- D .π 12化成度是15° 3.把11π4-表示成θ+2k π(k ∈Z )的形式,使|θ|最小的θ的值是( ) A .3π 4- B .π 4- C .π 4 D .3π 4 4.集合P ={α|2k π≤α≤(2k +1)π,k ∈Z },Q ={α|-4≤α≤4},则P ∩Q =( ) A . B .{α|-4≤α≤-π或0≤α≤π} C .{α|-4≤α≤4} D .{α|0≤α≤π} 5.用集合表示终边在阴影部分的角α的集合为( ) A .ππ43αα?? ≤≤???? B .π5π43αα?? ≤≤???? C .π π2π2π,43k k k αα?? +≤≤+∈????Z

D. π5π 2π2π, 43 k k k αα ??+≤≤+∈ ???? Z 6.将钟表的分针拨快10分钟,则分针转过的弧度数是__________. 7.若角θ的终边与8π 5 的终边相同,则在[0,2π]内终边与角 4 θ 的终边相同的角是 __________. 8.扇形的周长是16,圆心角是2 rad,则扇形的面积是__________. 9.设两个集合M= ππ , 24 k x x k ?? =+∈ ?? ?? Z,N= π π, 4 x x k k ?? =-∈ ?? ?? Z,试判断M与 N之间的关系. 10.如图所示的圆中,已知圆心角∠AOB=2π 3 ,半径OC与弦AB垂直,垂足为点D.若 CD的长为a,求ACB的长及其与弦AB所围成的弓形ACB的面积.

人教a版必修4学案:1.1.2弧度制(含答案)

1.1.2 弧度制 自主学习 知识梳理 1.角的单位制 (1)角度制:规定周角的________为1度的角,用度作为单位来度量角的单位制叫做角度制. (2)弧度制:把长度等于__________的弧所对的圆心角叫做1弧度的角,记作________. (3)角的弧度数求法:如果半径为r 的圆的圆心角α所对的弧长为l ,那么l ,α,r 之间存在的关系是:__________;这里α的正负由角α的____________________决定.正角的弧度数是一个________,负角的弧度数是一个________,零角的弧度数是______. 2 3. 我们已经学习过角度制下的弧长公式和扇形面积公式,请根据“一周角(即360°)的弧度数为2π”这一事实化简上述公式.(设半径为r ,圆心角弧度数为α). 对点讲练 知识点一 角度制与弧度制的换算 例1 (1)把112°30′化成弧度;(2)把-7π 12 化成角度. 回顾归纳 将角度转化为弧度时,要把带有分、秒的部分化为度之后,牢记π rad =180° 即可解.把弧度转化为角度时,直接用弧度数乘以180° π 即可. 变式训练1 将下列角按要求转化: (1)300°=________rad ;(2)-22°30′=________rad ; (3)8π 5=________度. 知识点二 利用弧度制表示终边相同的角 例2 把下列各角化成2k π+α (0≤α<2π,k ∈Z )的形式,并指出是第几象限角:

(1)-1 500°; (2)23π 6 ; (3)-4. 回顾归纳 在同一问题中,单位制度要统一.角度制与弧度制不能混用. 变式训练2 将-1 485°化为2k π+α (0≤α<2π,k ∈Z )的形式是________. 知识点三 弧长、扇形面积的有关问题 例3 已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少? 回顾归纳 灵活运用扇形弧长公式、面积公式列方程组求解是解决此类问题的关键,有时运用函数思想、转化思想解决扇形中的有关最值问题,将扇形面积表示为半径的函数,转化为r 的二次函数的最值问题. 变式训练3 一个扇形的面积为1,周长为4,求圆心角的弧度数. 1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应. 2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad ”这一关系式. 易知:度数×π 180 rad =弧度数,弧度数×????180π°=度数. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,具体应用时,要注意角的单位取弧度. 课时作业 一、选择题 1.与30°角终边相同的角的集合是( ) A.???? ?? α|α=k ·360°+π6,k ∈Z B .{α|α=2k π+30°,k ∈Z } C .{α|α=2k ·360°+30°,k ∈Z } D.???? ?? α|α=2k π+π6,k ∈Z 2.集合A =???? ??α|α=k π+π2,k ∈Z 与集合B ={α|α=2k π±π 2,k ∈Z }的关系是( ) A .A = B B .A ?B C .B ?A D .以上都不对 3.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长是( )

高中数学1.1任意角和弧度制教案新人教a版必修

《任意角和弧度制》教案 【教学目标】 1.理解任意角的概念. 2.学会建立直角坐标系讨论任意角,判断象限角,掌握终边相同角的集合的书写. 3.了解弧度制,能进行弧度与角度的换算. 4.认识弧长公式,能进行简单应用.对弧长公式只要求了解,会进行简单应用,不必在应用方面加深. 5.了解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、解决问题.【导入新课】 复习初中学习过的知识:角的度量、圆心角的度数与弧的度数及弧长的关系提出问题: 1.初中所学角的概念. 2.实际生活中出现一系列关于角的问题. 3.初中的角是如何度量的?度量单位是什么? °的角是如何定义的?弧长公式是什么? 5.角的范围是什么?如何分类的? 新授课阶段 一、角的定义与范围的扩大 1.角的定义:一条射线绕着它的端点O,从起始位置OA旋转到终止位置OB,形成 OA OB分别是角α的终边、始边. 一个角α,点O是角的顶点,射线, ∠”可以简记为α.说明:在不引起混淆的前提下,“角α”或“α 2.角的分类: 正角:按逆时针方向旋转形成的角叫做正角; 负角:按顺时针方向旋转形成的角叫做负角; 零角:如果一条射线没有做任何旋转,我们称它为零角. 说明:零角的始边和终边重合. 3.象限角:

在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x 轴的非负轴重合,则 (1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例如:30,390,330-o o o 都是第一象限角;300,60-o o 是第四象限角. (2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限.例如:90,180,270o o o 等等. 说明:角的始边“与x 轴的非负半轴重合”不能说成是“与x 轴的正半轴重合”.因为 x 轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的 射线. 4.终边相同的角的集合:由特殊角30o 看出:所有与30o 角终边相同的角,连同30o 角自身在内,都可以写成30360 k +?o o () k Z ∈的形式;反之,所有形如 30360k +?o o ()k Z ∈的角都与30o 角的终边相同.从而得出一般规律: 所有与角α终边相同的角,连同角α在内,可构成一个集合 {}|360,S k k Z ββα==+?∈o , 即:任一与角α终边相同的角,都可以表示成角α与整数个周角的和. 说明:终边相同的角不一定相等,相等的角终边一定相同. 例1 在0o 与360o 范围内,找出与下列各角终边相同的角,并判断它们是第几象限角? (1)120-o ;(2)640o ;(3)95012'-o . 解:(1)120240360-=-o o o , 所以,与120-o 角终边相同的角是240o ,它是第三象限角; (2)640280360=+o o o , 所以,与640o 角终边相同的角是280o 角,它是第四象限角; (3)95012129483360''-=-?o o o ,

高一数学必修四第1章导学案

邳州市铁富高级中学高一年级 数学预学案 2010—2011学年 第一学期 模块:必修 4 章节:第一章三角函数 班级: 姓名: 10级高一数学备课组编印

目录 第一章三角函数 §1.1.1 任意角 1课时§1.1.2 弧度制 1课时§1.2.1 任意角的三角函数 2课时§1.2.2 同角三角函数关系 1课时§1.2.3 三角函数的诱导公式 2课时§1.3.1 三角函数的周期性 1课时§1.3.2 三角函数的图像与性质 3课时§1.3.3 函数y=A sin(ωx+ )的图像2课时§1.3.4 三角函数的应用 2课时

§1.1.1任意角(预学案) 课时:第一课时 预习时间: 年 月 日 学习目标 1、理解任意角的概念,学会在平面内建立适当的坐标系来讨论任意角。 2、能在0 3600到的范围内,找出一个与已知角终边相同的角,并判定为第几象限角。 3、能写出与任一已知角终边相同的角的集合。 高考要求:B 级 课前准备 (预习教材P5 ~ P7,完成以下内容并找出疑惑之处) 一、知识梳理、双基再现 1、角可以看成平面内一条 绕着 从一个位置旋转到另一个位置所形成的图形 。 2、按逆时针方向旋转形成的角叫做 ,按顺时针方向旋转形成的角叫做 。 如果一条射线没有作任何旋转,我们称它形成了一个 ,它的 和 重合。这样,我们就把角的概念推广到了 ,包括 、 、 和 。 3、我们常在 内讨论角。为了讨论问题的方便,使角的 与 重合,角的 与 重合。那么,角的 落在第几象限,我们就说这个角是 。如果角的终边落在坐标轴上,就认为这个角 。 4、所有与角α终边相同的角,连同角α在内,可构成一个 。 二、小试身手、轻松过关 1、下列角中终边与330°相同的角是( ) A .30° B .-30° C .630° D .-630° 2、-1120°角所在象限是 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3、在0 与360 范围内,找出与下列各角终边相同的角,并判断它们是第几象限角? (1)o 58-(2)o 398 3、若角α与β的终边在一条直线上,则α与β的关系是 _____________ .

高中数学必修4112弧度制和弧度制与角度制的换算

人大附中分校高一数学导学学案 一.学生自学课本第7、8页.通过自学回答老师提出的以下问题: ① 角的弧度制是如何引入的? ② 为什么要引入弧度制?好处是什么? ③ 1弧度是如何定义的? ④ 角度制与弧度制的区别与联系。 1.弧度角的定义:长度等于半径长的弧所对的圆心角称为1弧度的角,它的单位是rad 读作弧度,这种用“弧度”做单位来度量角的制度叫做弧度制. 2.平角、周角的弧度数:平角= rad 、周角=2 rad 3.正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0. 4.角的弧度数的绝对值 r l =α(l 为弧长,r 为半径) 二.角度制与弧度制的换算: 1.∵ 360 =2 rad ∴180= rad ; ∴ 1= rad rad 01745.0180 ≈π '185730.571801 =≈?? ? ??=πrad 2.用弧度制表示弧长及扇形面积,公式: ① 弧长公式:α?=r l ,由公式:?= r l α α?=r l 比公式180 r n l π=简单 弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积。 ②扇形面积公式 lR S 2 1 =,其中l 是扇形弧长,R 是圆的半径。 o R S l

1.1.2 弧度制与角度值的换算参考答案 例题 例1:(1)把11230'化成弧度(精确到0.001);(2)把11230'化成弧度(用π表示) 解:(1)α=1.969 rad (2)58 π; 例2: 把3 rad 5 π化成度 解:33 rad 18010855 π= ?= 例4:直径为20cm 的圆中,求下列各圆心所对的弧长 ⑴3 ⑵ 165 解: cm r 10= ⑴ )(3 401034cm r l ππα=?=?=; ⑵ rad rad 12 11)(165180 165π π = ?= 例5: 已知扇形周长为10cm ,面积为6cm 2 ,求扇形中心角的弧度数. 解:设扇形中心角的弧度数为α(0<α<2π),弧长为l ,半径为r , 由题意:?????=?=+62 1102r l r l ?0652 =+-r r ∴ ???==62l r 或?? ?==4 3l r ∴ r l =α=3 或34 随堂练习 1.下列命题中,真命题是( ) A .1弧度是一度的圆心角所对的弧 B .1弧度是长度为半径的弧 C .1弧度是一度的弧与一度的角之和 D .1弧度是长度等于半径长的弧所对的圆心角的大小 解析:选D.根据1弧度的定义,对照各选项,可知D 为真命题. 2.把-8π 3 化成角度是( ) A .-960° B .-480° C .-120° D .-60° 解析:选B.-8π3=-8 3 ×180°=-480°. 3.把-300°化为弧度是( ) A .-4π3 B .-5π3 C .-7π4 D .-7π6 解析:选B.-300°=-300×π180=-5 3π. 4.圆的半径是6 cm ,则圆心角为π 12 的扇形面积是________ cm 2. 解析:S =12|α|r 2=12×π12×62=32π. 答案:3 2π

高一数学教案[苏教版]弧度制教案

弧度制 教学目标: 1.理解弧度制的意义; 2.能正确的应用弧度与角度之间的换算; 3.记住公式||l r α=(l 为以角α作为圆心角时所对圆弧的长,r 为圆半径)。 4.扇形面积公式及其应用,求扇形面积的最值。 教学重、难点:1.弧度与角度之间的换算。 2.弧长公式、扇形面积公式的应用。 教学过程: 一.复习:初中时所学的角度制,是怎么规定1角的? 二.新课讲解: 1.弧度角的定义: 规定: 练习:圆的半径为r ,圆弧长为2r 、3r 、2 r 的弧所对的圆心角分别为多少? 说明:一个角的弧度由该角的大小来确定,与求比值时所取的圆的半径大小无关。 思考:什么π弧度角?一个周角的弧度是多少?一个平角、直角的弧度分别又是多少? 2.弧度的推广及角的弧度数的计算: 规定: 说明:我们用弧度制表示角的时候,“弧度”或rad 经常省略,即只写一实数表示角的 度量。 3.角度与弧度的换算 3602π=rad 180π=rad 1801π =?rad 0.01745≈rad 1rad =?)180 (π5718'≈ 例题分析: 例1 把'3067?化成弧度. 例2 把35 πrad 化成度。

例3 用弧度制分别表示轴线角、象限角的集合。 (1)终边落在x 轴的非正、非负半轴,y 轴的非正、非负半轴的角的集合。 (2)第一、二、三、四象限角的弧度表示。 例4 将下列各角化为2(02,)k k Z πααπ+≤<∈的形式,并判断其所在象限。 (1 )193 π; (2)315-; (3)1485-. 5.一些特殊角的度数与弧度数的对应表: 0° 30° 45° 60° 90° 120° 135° 150° 180° 270° 360° (练习)写出阴影部分的角的集合: 4.在角度制下,弧长公式及扇形面积公式如何表示? 圆的半径为r ,圆心角为n 所对弧长为: 扇形面积为 : 5.弧长公式: 在弧度制下,弧长公式和扇形面积公式又如何表示? 6.扇形面积公式:扇形面积公式为: 说明:①弧度制下的公式要显得简洁的多了;

1.3弧度制导学案

弧度制 使用说明: 1.阅读探究课本P9-11页的基础知识,自主高效预习,提升自己的阅读理解能力; 2.完成教材助读设置的问题,然后结合课本的基础知识和例题,完成本学案内容。 【学习目标】 1.通过探究使学生认识到角度值和弧度制都是度量角的制度,通过总结引入弧度制的好处,学会归纳整理并认识到任何新知识的学习,都会为解决实际问题带来方便,从而激发学生的学习兴趣。 2.培养学生学好数学的信心,学会运用联系的观点认识事物。 【重点难点】 重点:理解弧度制的意义,并能进行角度和弧度的换算。 难点:弧度的概念及其与角度的关系。 一、知识链接 1.在初中几何里,我们学习过角的度量,1度的角是怎样定义的呢? 2. 除了用角度度量外,还有没有其它度量角的办法呢? 二.教材助读 1.什么是1弧度的角?其单位是什么? 2.角度与弧度的转化: 360= rad 180= rad 90= rad 60= rad 1= rad ≈rad 1rad= ≈= 3.什么叫弧度制? 4.弧长公式: l= = 5.扇形的面积公式:S= = 注意:对于4和5中的公式,一定要搞清楚各个量所表示的含义。 预习自测 1.把下列各角从度化成弧度. (1)135;(2)90;(3)60;(4)45; 2.把下列各角从弧度化成度. (1)2π;(2);(3);(4)。 3.时间经过4h,时针、分针各转了多少度?各等于多少弧度? 4.扇形弧长为18cm,半径为12cm,求扇形面积。

探究案 基础知识探究 1.用弧度制表示终边在x 轴上的角的集合 2.用弧度制表示终边在y 轴非负半轴上的角的集合 3.分别用角度制、弧度制下的弧长公式,计算半径为1m 的圆中,60的圆心角所 对的弧的长度。 综合应用探究 把下列各角化为0-2π间的角加上2k π( k 是整数)的形式,并指出它们是哪个象限的角。 (1)6 23π (2)-15000 (3)6720 (4)-7 18π 我的收获

相关主题
文本预览
相关文档 最新文档