【答案】高三总复习《匀速圆周运动、万有引力定律》测试题
- 格式:doc
- 大小:96.00 KB
- 文档页数:3
第七章 万有引力与宇宙航行2 万有引力定律基础过关练题组一 对太阳与行星间引力的理解1.(多选)根据开普勒行星运动定律和圆周运动知识知:太阳对行星的引力F ∝mr 2,行星对太阳的引力F'∝Mr2,其中M 、m 、r 分别为太阳、行星的质量和太阳与行星间的距离。
下列说法正确的是( ) A.由F ∝mr2和F'∝Mr2知F ∶F'=m ∶MB.F 和F'大小相等,是一对作用力与反作用力C.F 和F'大小相等,是同一个力D.太阳对行星的引力提供行星绕太阳做圆周运动的向心力2.(多选)关于太阳与行星间的引力,下列说法中正确的是( )A.由于地球比木星离太阳近,所以太阳对地球的引力一定比对木星的引力大B.行星绕太阳沿椭圆轨道运动时,在从近日点向远日点运动时所受引力变小C.由F=GM 太m r 2可知G=Fr 2M 太m,由此可见G 与F 和r 2的乘积成正比,与M 太和m 的乘积成反比D.行星绕太阳运动的椭圆轨道可近似看成圆轨道,行星做圆周运动的向心力来源于太阳对行星的引力题组二 对万有引力定律的理解3.(2020河北唐山十一中高二上期中)(多选)关于物体间的万有引力的表达式F=Gm 1m 2r 2,下列说法正确的是( )A.公式中的G 是引力常量,它是由实验得出的,而不是人为规定的B.当两物体间的距离r 趋于零时,万有引力趋于无穷大C.两个物体间的万有引力总是大小相等的,而与m 1和m 2是否相等无关D.两个物体间的万有引力总是大小相等、方向相反的,是一对平衡力4.(2019北京东城高一上期末)两个质点之间万有引力的大小为F,如果将这两个质点之间的距离变为原来的2倍,那么它们之间万有引力的大小变为( ) A.2FB.4FC.F2D.F45.(2019广东佛山高一下期中)如图所示,O1、O2两球间的距离为r,两球的质量分布均匀,大小分别为m1、m2,半径分别为r1、r2,则两球间的万有引力大小为( )A.G m1m2r2B.G m1m2r12C.G m1m2(r1+r2)2D.G m1m2(r1+r2+r)26.(2019福建泉州高一下期末)(多选)要使两物体间的万有引力减小到原来的14,下列办法可采用的是( )A.使两物体的质量各减小一半,距离不变B.使其中一个物体的质量减小到原来的14,距离不变C.使两物体间的距离增为原来的2倍,质量不变D.使两物体间的距离和它们的质量都减为原来的14题组三万有引力和重力的关系7.关于万有引力F=G m1m2r2和重力,下列说法正确的是( )A.公式中的G是一个比例常数,没有单位B.到地心距离等于地球半径2倍处的重力加速度为地面重力加速度的14C.相互作用的两物体受到的万有引力是一对平衡力D.若两物体的质量不变,它们间的距离减小到原来的一半,它们间的万有引力也变为原来的一半8.(2020浙江杭州余杭第二高级中学高一下月考)设地球表面的重力加速度为g0,物体在距离地球表面3R(R是地球的半径)处,由于地球的作用而产生的加速度为g,则gg0为( )A.1B.19C.14D.1169.(2020四川石室中学高三期中)研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时。
高考物理万有引力定律的应用试题( 有答案和分析 )一、高中物理精讲专题测试万有引力定律的应用1.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018 ”.比如,我国将进行北斗组网卫星的高密度发射,整年发射 18 颗北斗三号卫星,为“一带一路”沿线及周边国家供给服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星构成.图为此中一颗静止轨道卫星绕地球飞翔的表示图.已知该卫星做匀速圆周运动的周期为 T,地球质量为 M、半径为 R,引力常量为 G.(1)求静止轨道卫星的角速度ω;(2)求静止轨道卫星距离地面的高度h1;(3)北斗系统中的倾斜同步卫星,其运行轨道面与地球赤道面有必定夹角,它的周期也是T,距离地面的高度为h2.视地球为质量散布平均的正球体,请比较h1和 h2的大小,并说出你的原因.【答案】( 1)=2π3GMT 212;( 2)h1=4 2R( 3) h = h T【分析】【剖析】(1)依据角速度与周期的关系能够求出静止轨道的角速度;(2)依据万有引力供给向心力能够求出静止轨道到地面的高度;(3)依据万有引力供给向心力能够求出倾斜轨道到地面的高度;【详解】(1)依据角速度和周期之间的关系可知:静止轨道卫星的角速度= 2πTMm2π2(2)静止轨道卫星做圆周运动,由牛顿运动定律有:G2= m( R h1 )( )(R h1 )T 解得:h =3GMT 2R124π( 3)以下图,同步卫星的运行轨道面与地球赤道共面,倾斜同步轨道卫星的运行轨道面与地球赤道面有夹角,可是都绕地球做圆周运动,轨道的圆心均为地心.因为它的周期也是 T ,依据牛顿运动定律,GMm2=m(R h 2 )(2) 2( R h 2 )T解得: h 2 = 3 GMT 2R42所以 h 1= h 2.1) =2π GMT2R (3) h 1= h 2故此题答案是:(;( 2) h 1 =3T4 2【点睛】关于环绕中心天体做圆周运动的卫星来说,都借助于万有引力供给向心力即可求出要求的物理量.2. 一宇航员站在某质量散布平均的星球表面上沿竖直方向以初速度 v 0 抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为,引力常量为 ,求:R G(1)该星球表面的重力加快度; (2)该星球的密度;(3)该星球的 “第一宇宙速度 ”.【答案】 (1) g2v 0 (2) 3v 0 (3) v2v 0 Rt2πRGtt【分析】(1) 依据竖直上抛运动规律可知,小球上抛运动时间2v 0tg可得星球表面重力加快度: g2v 0 .t(2)星球表面的小球所受重力等于星球对小球的吸引力,则有:GMm mgR 2gR 2 2v 0 R 2得: MGtG4 R 3因为 V3则有:M3vV2πRGt2(3)重力供给向心力,故mg m v R该星球的第一宇宙速度v gR2v0Rt【点睛】此题主要抓住在星球表面重力与万有引力相等和万有引力供给圆周运动向心力,掌握竖直上抛运动规律是正确解题的重点.3.a、 b 两颗卫星均在赤道正上方绕地球做匀速圆周运动, a 为近地卫星, b 卫星离地面高度为 3R,己知地球半径为 R,表面的重力加快度为g,试求:(1) a、 b 两颗卫星周期分别是多少?(2) a、 b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时经过赤道同 --点的正上方,则起码经过多长时间两卫星相距最远?【答案】(1)2R,16R( 2)速度之比为 2 ;8R g g7g【分析】【剖析】依据近地卫星重力等于万有引力争得地球质量,而后依据万有引力做向心力争得运动周期;卫星做匀速圆周运动,依据万有引力做向心力争得两颗卫星速度之比;由依据相距最远时相差半个圆周求解;解:( 1)卫星做匀速圆周运动,F引F向,Mm对地面上的物体由黄金代换式G mgGMm 4 2Ra 卫星2m2R T a解得 T a2R gb 卫星GMmm 4 2·4R (4R)2T b2解得 T b16R g(2)卫星做匀速圆周运动,F引F 向,GMm mv a2 a 卫星R2RGM解得v aRMmv 2b卫星 b卫星G(4 R)2m 4R解得 v bGM4R所以 V a 2V b22( 3)最远的条件 T a T b解得 t8R 7g4. 如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程能够筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽视不计),经过轨道上 P 点时点火加快,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地址为圆轨道Ⅰ上的P 点,远地址为同步圆轨道Ⅲ上的Q点.抵达远地址Q时再次点火加快,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为 R ,飞船质量为 m ,同步轨道距地面高度为h .当卫星距离地心的距离为 r 时,地球与卫星构成的系统的引力势能为E pGMm(取无量远处的引力势能为r零),忽视地球自转和喷气后飞船质量的変化,问:( 1)在近地轨道Ⅰ上运行时,飞船的动能是多少?( 2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能互相转变.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为 v 1 ,则经过 Q 点时的速率 v 2 多大?( 3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能离开地球引力范围(即探测器能够抵达离地心无量远处),则探测器走开飞船时的速度v 3 (相关于地心)起码是多少?(探测器走开地球的过程中只有引力做功,动能转变成引力势能)【答案】( 1) GMm( 2) v 12 2GM2GM ( 3) 2GM2RR hR R【分析】【剖析】( 1)万有引力供给向心力,求出速度,而后依据动能公式进行求解;( 2)依据能量守恒进行求解即可;(3)将小探测器射出,并使它能离开地球引力范围,动能所有用来战胜引力做功转变成势能;【详解】(1)在近地轨道(离地高度忽视不计)Ⅰ 上运行时,在万有引力作用下做匀速圆周运动mM v2即:G mR2R则飞船的动能为E k 1 mv2GMm ;22R(2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能互相转变.由能量守恒可知动能的减少许等于势能的増加量:1mv121mv22GMm( GMm ) 22R h R若飞船在椭圆轨道上运行,经过P 点时速率为v1,则经过Q点时速率为:v2v122GM2GM ;R h R(3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能离开地球引力范围(即探测器离地心的距离无量远),动能所有用来战胜引力做功转变成势能即: G Mm1mv32 R2则探测器走开飞船时的速度(相关于地心)起码是:v32GM.R【点睛】此题考察了万有引力定律的应用,知道万有引力供给向心力,同时注意应用能量守恒定律进行求解.5.以下图是一种丈量重力加快度g 的装置。
万有引力定律测试题班级姓名学号一、选择题(每小题中至少有一个选项是正确的,每小题5分,共40分)1.绕地球作匀速圆周运动的人造地球卫星内,其内物体处于完全失重状态,则物体()A.不受地球引力作用 B.所受引力全部用来产生向心加速度C.加速度为零 D.物体可在飞行器悬浮2.人造地球卫星绕地球做匀速圆周运动,其轨道半径为R,线速度为v,周期为T,若要使卫星的周期变为2T,可能的办法是()A.R不变,使线速度变为v/2B.v不变,使轨道半径变为2RD.无法实现3.由于地球的自转,地球表面上各点均做匀速圆周运动,所以()A.地球表面各处具有相同大小的线速度B.地球表面各处具有相同大小的角速度C.地球表面各处具有相同大小的向心加速度D.地球表面各处的向心加速度方向都指向地球球心4.地球上有两位相距非常远的观察者,都发现自己的正上方有一颗人造地球卫星,相对自己静止不动,则这两位观察者的位置及两人造卫星到地球中心的距离可能是()A.一人在南极,一人在北极,两卫星到地球中心的距离一定相等B.一人在南极,一人在北极,两卫星到地球中心的距离可以不等,但应成整数倍C.两人都在赤道上,两卫星到地球中心的距离一定相等D.两人都在赤道上,两卫星到地球中心的距离可以不等,但应成整数倍5.设地面附近重力加速度为g0,地球半径为R0,人造地球卫星圆形运行轨道半径为R,那么以下说法正确的是( )6.一宇宙飞船在一个星球表面附近做匀速圆周运动,宇航员要估测星球的密度,只需要测定飞船的()A:环绕半径B:环绕速度C:环绕周期D:环绕角速度7.假设火星和地球都是球体,火星的质量M火和地球的质量M地之比M火/M地=p,火星的半径R火和地球的半径R地之比R火/R地=q,那么火星表面处的重力加速度g火和地球表面处的重力的加速度g地之比等于[]A.p/q2B.pq2C.p/qD.pqm8.已知万有引力恒量G ,则还已知下面哪一选项的数据,可以计算地球的质量( ) A :已知地球绕太阳运行的周期及地球中心到太阳中心的距离.B :已知月球绕地球运行的周期及月球中心到地球中心的距离.C :已知人造地球卫星在地面附近绕行的速度和运行周期.D :已知地球同步卫星离地面的高度.附加题(每题5分)1.假如一作圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍作圆周运动,则 ( )A.根据公式v=ωr ,可知卫星的线速度将增大到原来的2倍2.两个靠近的天体称为双星,它们以两者连线上某点O 为圆心做匀速圆周运动,其质量分别为m 1、m 2,如右图所示,以下说法正确的是( )A :它们的角速度相同.B :线速度与质量成反比.C :向心力与质量的乘积成正比.D :轨道半径与质量成反比.二、填空题(每空6分,共36分) 1.天文学家根据天文观测宣布了下列研究成果:银河系中可能存在一个大“黑洞”,接近“黑洞”的所有物质,即使速度等于光速也被“黑洞”吸入,任何物体都无法离开“黑洞”。
2022年高考物理二轮复习——万有引力定律一、单选题1.已知万有引力常量G,在下列给出的情景中,能根据测量数据求出月球密度的是( )A. 在月球表面使一个小球做自由落体运动,测出落下的高度H和时间tB. 发射一颗贴近月球表面绕月球做匀速圆周运动的飞船,测出飞船运行的周期TC. 观察月球绕地球的圆周运动,测出月球的直径D和月球绕地球运行的周期TD. 发射一颗绕月球做匀速圆周运动的卫星,测出卫星离月球表面高度H和卫星的周期T2.将地球看成质量均匀的球体,假如地球自转速度增大,下列说法中正确的是( )A. 放在赤道地面上的物体所受的万有引力增大B. 放在两极地面上的物体所受的重力增大C. 放在赤道地面上的物体随地球自转所需的向心力增大D. 放在赤道地面上的物体所受的重力增大3.我国的“神舟”系列航天飞船的成功发射和顺利返回,显示了我国航天事业取得的巨大成就.已知地球的质量为M,引力常量为G,飞船的质量为m,设飞船绕地球做匀速圆周运动的轨道半径为r,则()A. 飞船在此轨道上的运行速率为B. 飞船在此圆轨道上运行的向心加速度为C. 飞船在此圆轨道上运行的周期为2πD. 飞船在此圆轨道上运行所受的向心力为4.宇宙中两个星球可以组成双星,它们只在相互间的万有引力作用下,绕球心连线的某点做周期相同的匀速圆周运动.根据宇宙大爆炸理论,双星间的距离在不断缓慢增加,设双星仍做匀速圆周运动,则下列说法错误的是()A. 双星相互间的万有引力减小B. 双星做圆周运动的角速度增大C. 双星做圆周运动的周期增大D. 双星做圆周运动的半径增大5.理论上可以证明,质量均匀分布的球壳对壳内物体的引力为零。
假定地球的密度均匀,半径为R。
若矿底部和地面处的重力加速度大小之比为,则矿井的深度为( )A. (1-K)RB. KRC.D.6.2021年6月11日,国家航天局在北京举行“天问一号”探测器着陆火星首批科学影像图揭幕仪式,公布了由祝融号火星车拍摄的影像图,标志着我国首次火星探测任务取得圆满成功。
高考物理万有引力定律的应用题20套(带答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r,周期为T,引力常量为G,行星半径为求:(1)行星的质量M;(2)行星表面的重力加速度g;(3)行星的第一宇宙速度v.【答案】(1)(2)(3)【解析】【详解】(1)设宇宙飞船的质量为m,根据万有引力定律求出行星质量(2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.2.如图所示,P、Q为某地区水平地面上的两点,在P点正下方一球形区域内储藏有石油.假定区域周围岩石均匀分布,密度为ρ;石油密度远小于ρ,可将上述球形区域视为空腔.如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向;当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏离.重力加速度在原竖直方向(即PO方向)上的投影相对于正常值的偏离叫做“重力加速度反常”.为了探寻石油区域的位置和石油储量,常利用P点附近重力加速度反常现象.已知引力常数为G.(1)设球形空腔体积为V,球心深度为d(远小于地球半径),,PQ x =求空腔所引起的Q 点处的重力加速度反常;(2)若在水平地面上半径为L 的范围内发现:重力加速度反常值在δ与kδ(k>1)之间变化,且重力加速度反常的最大值出现在半径为L 的范围的中心.如果这种反常是由于地下存在某一球形空腔造成的,试求此球形空腔球心的深度和空腔的体积.【答案】(1)223/2()G Vd d x ρ+(2)22/3.(1)L k V G k δρ=- 【解析】 【详解】(1)如果将近地表的球形空腔填满密度为ρ的岩石,则该地区重力加速度便回到正常值.因此,重力加速度反常可通过填充后的球形区域产生的附加引力来计算,2MmGr=mΔg① 式中m 是Q 点处某质点的质量,M 是填充后球形区域的质量.M=ρV② 而r 是球形空腔中心O 至Q 点的距离22d x +Δg 在数值上等于由于存在球形空腔所引起的Q 点处重力加速度改变的大小。Q 点处重力加速度改变的方向沿OQ 方向,重力加速度反常Δg′是这一改变在竖直方向上的投影 Δg′=drΔg④ 联立①②③④式得Δg′=223/2()G Vdd x ρ+⑤ (2)由⑤式得,重力加速度反常Δg′的最大值和最小值分别为 (Δg′)max =2G Vd ρ⑥ (Δg′)min =223/2()G Vdd L ρ+⑦由题设有(Δg′)max =kδ,(Δg′)min =δ⑧联立⑥⑦⑧式得,地下球形空腔球心的深度和空腔的体积分别为22/32/3d .(1)1L k G k k δρ==--3.对某行星的一颗卫星进行观测,运行的轨迹是半径为r 的圆周,周期为T ,已知万有引力常量为G .求: (1)该行星的质量.(2)测得行星的半径为卫星轨道半径的十分之一,则此行星的表面重力加速度有多大?【答案】(1)2324r M GT π=(2)22400rg T π=【解析】(1)卫星围绕地球做匀速圆周运动,由地球对卫星的万有引力提供卫星所需的向心力.则有:2224Mm G m r r T π=,可得2324r M GTπ= (2)由21()10MmGmg r =,则得:222400100GM r g r T π==4.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.5.为了测量某行星的质量和半径,宇航员记录了登陆舱在该行星表面做圆周运动的周期T,登陆舱在行星表面着陆后,用弹簧测力计称量一个质量为m 的砝码,读数为F. 已知引力常量为G.求该行星的半径R 和质量M 。
高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形.2013年6月,“神舟十号”与“天宫一号”成功对接,6月20日3位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞行器运行周期T ,地球半径为R ,地球表面的重力加速度为g ,“天宫一号”环绕地球做匀速圆周运动,万有引力常量为G .求: (1)地球的密度; (2)地球的第一宇宙速度v ; (3)“天宫一号”距离地球表面的高度. 【答案】(1)34gGRρπ=(2)v =h R = 【解析】(1)在地球表面重力与万有引力相等:2MmGmg R =, 地球密度:343M M R Vρπ==解得:34gGRρπ=(2)第一宇宙速度是近地卫星运行的速度,2v mg m R=v =(3)天宫一号的轨道半径r R h =+, 据万有引力提供圆周运动向心力有:()()2224MmGm R h TR h π=++,解得:h R =2.半径R =4500km 的某星球上有一倾角为30o 的固定斜面,一质量为1kg 的小物块在力F 作用下从静止开始沿斜面向上运动,力F始终与斜面平行.如果物块和斜面间的摩擦因数3μ=,力F 随时间变化的规律如图所示(取沿斜面向上方向为正),2s 末物块速度恰好又为0,引力常量11226.6710/kg G N m -=⨯⋅.试求:(1)该星球的质量大约是多少?(2)要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要多大速度?(计算结果均保留二位有效数字)【答案】(1)242.410M kg =⨯ (2)6.0km/s【解析】 【详解】(1)假设星球表面的重力加速度为g ,小物块在力F 1=20N 作用过程中,有:F 1-mg sin θ-μmg cos θ=ma 1小物块在力F 2=-4N 作用过程中,有:F 2+mg sin θ+μmg cos θ=ma 2 且有1s 末速度v=a 1t 1=a 2t 2 联立解得:g=8m/s 2. 由G2MmR=mg 解得M=gR 2/G .代入数据得M=2.4×1024kg(2)要使抛出的物体不再落回到星球,物体的最小速度v 1要满足mg=m 21v R解得v 1=gR =6.0×103ms=6.0km/s即要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要6.0km/s 的速度. 【点睛】本题是万有引力定律与牛顿定律的综合应用,重力加速度是联系这两个问题的桥梁;第二题,由重力或万有引力提供向心力,求出该星球的第一宇宙速度.3.某课外小组经长期观测,发现靠近某行星周围有众多卫星,且相对均匀地分布于行星周围,假设所有卫星绕该行星的运动都是匀速圆周运动,通过天文观测,测得离行星最近的一颗卫星的运动半径为R 1,周期为T 1,已知万有引力常量为G 。
高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求:(1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F Rm-(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】(1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l在最高点:222mv F mg l += ① 在最低点:211mv F mg l-= ② 由机械能守恒定律,得221211222mv mg l mv =⋅+ ③ 由①②③,解得126F F g m-= (2)2GMmmg R= 2GMm R =2mv R两式联立得:12()6F F Rm-(3)在星球表面:2GMmmg R = ④ 星球密度:MVρ=⑤ 由④⑤,解得128F F GmRρπ-=点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度.2.已知地球的自转周期和半径分别为T 和R ,地球同步卫星A 的圆轨道半径为h .卫星B 沿半径为r (r <h )的圆轨道在地球赤道的正上方运行,其运行方向与地球自转方向相同.求:(1)卫星B 做圆周运动的周期;(2)卫星A 和B 连续地不能直接通讯的最长时间间隔(信号传输时间可忽略).【答案】(1)3/2()r T h (2)3/23/23/2π()r h r -(arcsin R h+arcsin Rr )T 【解析】试题分析:(1)设卫星B 绕地心转动的周期为T′,地球质量为M ,卫星A 、B 的质量分别为m 、m′,根据万有引力定律和圆周运动的规律有:2Mm G h =mh 224T π① 2Mm G r '=m′r 224T π'② 联立①②两式解得:T′=3/2()rT h③(2)设卫星A 和B 连续地不能直接通讯的最长时间间隔t ,在时间间隔t 内,卫星A 和B 绕地心转过的角度分别为α和β,则:α=t T ×2π,β=tT '×2π ④ 若不考虑卫星A 的公转,两卫星不能直接通讯时,卫星B 的位置应在下图中B 点和B′点之间,图中内圆表示地球的赤道.由图中几何关系得:∠BOB′=2(arcsinR h+arcsin Rr ) ⑤由③式知,当r <h 时,卫星B 比卫星A 转得快,考虑卫星A 的公转后应有:β-α=∠BOB′ ⑥由③④⑤⑥式联立解得:t =3/23/23/2()r h r π-(arcsin R h+arcsin Rr )T 考点:本题主要考查了万有引力定律的应用和空间想象能力问题,属于中档偏高题.3.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求: (1)用题中的已知量表示此卫星距地面高度h 的表达式 (2)此高度的数值为多少?(保留3位有效数字) 【答案】(1)2GMh R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GMh R v =- (2)将(1)中结果代入数据有h=8.41×107m 考点:考查了万有引力定律的应用4.如图所示,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧,引力常量为G .求:(1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ; (2)两星球做圆周运动的周期.【答案】(1) R=m M M +L, r=m Mm+L,(2)()3L G M m +【解析】(1)令A 星的轨道半径为R ,B 星的轨道半径为r ,则由题意有L r R =+两星做圆周运动时的向心力由万有引力提供,则有:2222244mM G mR Mr L T Tππ==可得 R Mr m=,又因为L R r =+ 所以可以解得:M R L M m =+,mr L M m=+; (2)根据(1)可以得到:2222244mM MG m R m L L T T M m ππ==⋅+则:2T == 点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不能把它们的距离当成轨道半径.5.经过逾6 个月的飞行,质量为40kg 的洞察号火星探测器终于在北京时间2018 年11 月27 日03:56在火星安全着陆。
高考物理万有引力定律的应用真题汇编( 含答案 ) 含分析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地址与抛出点的水平距离为x 和落地时间为 R,己知万有引力常量为G,求:t,又已知该星球的半径(1)小球抛出的初速度 v o(2)该星球表面的重力加快度g(3)该星球的质量 M(4)该星球的第一宇宙速度 v(最后结果一定用题中己知物理量表示)【答案】 (1) v0=x/t (2) g=2h/t 2(3) 2hR2/(Gt 2) (4)2hRt【分析】(1)小球做平抛运动,在水平方向: x=vt,解得从抛出到落地时间为: v0=x/t(2)小球做平抛运动时在竖直方向上有:1h= gt2,2解得该星球表面的重力加快度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m,由万有引力等于物体的重力得:mg= GMmR2所以该星球的质量为:M= gR2= 2hR2/(Gt 2);G(4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v,由牛顿第二定律得:G Mm m v2R2R重力等于万有引力,即mg= G MmR2,解得该星球的第一宇宙速度为:v2hR gRt2.“天宫一号”是我国自主研发的目标飞翔器,是中国空间实验室的雏形.2013 年 6 月,“神舟十号”与“天宫一号”成功对接, 6 月 20 日 3 位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞翔器运转周期T,地球半径为R,地球表面的重力加快度为g,“天宫一号”围绕地球做匀速圆周运动,万有引力常量为G.求:(1)地球的密度;(2)地球的第一宇宙速度v;(3)天“宫一号”距离地球表面的高度.【答案】 (1)3g (2) vgR (3) h3gT 2 R 2 R4 GR42【分析】(1)在地球表面重力与万有引力相等:GMmmg ,R 2M M 地球密度:V4 R 33解得:3g4 GR(2)第一宇宙速度是近地卫星运转的速度,mgmvgRv 2R(3)天宫一号的轨道半径 r Rh ,Mmm R h42据万有引力供给圆周运动向心力有:G 22,R hT解得: h3gT 2 R 2 R243.以下图 ,P 、 Q 为某地域水平川面上的两点 ,在 P 点正下方一球形地区内储蓄有石油 .假定地区四周岩石均匀散布 ,密度为 ρ;石油密度远小于 ρ,可将上述球形地区视为空腔 .假如没有这一空腔 ,则该地域重力加快度 (正常值 )沿竖直方向 ;当存在空腔时 ,该地域重力加快度的大小和方向会与正常状况有细小偏离 .重力加快度在原竖直方向 (即 PO 方向 )上的投影相关于正常值的偏离叫做 “重力加快度失常 ”为.了探访石油地区的地点和石油储量,常利用 P 点邻近重力加快度失常现象 .已知引力常数为 G.(1)设球形空腔体积为 V,球心深度为 d(远小于地球半径 ), PQ x, 求空腔所惹起的 Q 点处的重力加快度失常 ;(2)若在水平川面上半径为 L 的范围内发现 :重力加快度失常值在δ与 k δ (k>1)之间变化 ,且重力加快度失常的最大值出此刻半径为 L 的范围的中心 .假如这类失常是因为地下存在某一球形空腔造成的 ,试求此球形空腔球心的深度和空腔的体积.G Vd(2) VL 2 k .【答案】(1)x 2 )3/2 G( k 2/31)( d 2【分析】【详解】(1)假如快要地表的球形空腔填满密度为 ρ的岩石 ,则该地域重力加快度便回到正常值.所以 ,重力加快度失常可经过填补后的球形地区产生的附带引力来计算,Mm Gr2m g ①式中 m 是 Q 点处某质点的质量 ,M 是填补后球形地区的质量 .M=ρV ②而 r 是球形空腔中心O 至 Q 点的距离 r= d 2 x2③Δg 在数值上等于因为存在球形空腔所惹起的Q 点处重力加快度改变的大小 ?Q 点处重力加 速度改变的方向沿 OQ ,g ′ 方向 重力加快度失常是这一改变在竖直方向上的投影dg ′= g ④rG Vd联立 ①②③④ 式得g ′=22 )3/2 ⑤(dx(2) 由 ⑤ 式得 ,重力加快度失常g 的′最大值和最小值分别为(G Vg max ′)=d2⑥(minG Vd 3/2⑦g ′)=22( d L )由题设有 ( g max ′)=k δ ,(min g=′)δ⑧联立 ⑥⑦⑧式得 ,地下球形空腔球心的深度和空腔的体积分别为LV L 2 k .dG ( k 2/3k 2/311)4. 一宇航员登上某星球表面,在高为 2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为 5m ,且物体只受该星球引力作用求:( 1 )该星球表面重力加快度( 2 )已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍.【答案】( 1 ) 4m/s 2;( 2) 1;10【分析】(1)依据平抛运动的规律:x =v 0t得t = x = 5s =1s v 0 5由 h = 1gt 22得: g = 22h = 2 2 2m / s 2=4m / s 2t1G M 星 m(2)依据星球表面物体重力等于万有引力:mg =R 星2G M 地 m地球表面物体重力等于万有引力:mg =R 地22=4( 1 )2则 M 星 = gR 星21 M 地 g R 地 10210点睛:本题是平抛运动与万有引力定律的综合题,重力加快度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.5. 以下图,质量分别为m 和M的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 二者中心之间距离为L .已知A 、B 的中心和O 三点一直共线,A 和B 分别在 O 的双侧,引力常量为G .求:(1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ;(2)两星球做圆周运动的周期.M L,m L,( 2) 2πL 3【答案】 (1) R=r=m Mm MG M m【分析】(1)令 A 星的轨道半径为R , B 星的轨道半径为 r ,则由题意有 L r R两星做圆周运动时的向心力由万有引力供给,则有:G mMmR 4 2 Mr 4 2L 2T 2T 2可得R=M,又因为 LRrrm所以能够解得: M L , r m L ;RmMmM(2)依据( 1)能够获得 : GmM4 24 2 M 2m2Rm2LLTTMm4 2L32L 3则: Tm GG m MM点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不可以把它们的距离当作轨道半径 .6. 以下图,返回式月球软着陆器在达成了对月球表面的观察任务后,由月球表面回到绕月球做圆周运动的轨道舱.已知月球表面的重力加快度为 g ,月球的半径为月球中心的距离为 r ,引力常量为 G ,不考虑月球的自转.求:R ,轨道舱到( 1)月球的质量 M ;( 2)轨道舱绕月飞翔的周期 T .gR 22 r r【答案】 (1) M( 2) TgGR【分析】【剖析】月球表面上质量为m 1 的物体 ,依据万有引力等于重力可得月球的质量;轨道舱绕月球做圆周运动,由万有引力等于向心力可得轨道舱绕月飞翔的周期 ;【详解】解: (1)设月球表面上质量为m 1 的物体 ,其在月球表面有 : GMm 1 m 1g GMm 1 m 1gR2R2gR 2 月球质量 : MG(2)轨道舱绕月球做圆周运动,设轨道舱的质量为mMm2π 2Mm 2 2由牛顿运动定律得:rG r 2m TrG2m() rT2 r r解得: TgR7.“嫦娥一号 ”在西昌卫星发射中心发射升空,正确进入预约轨道.随后, “嫦娥一号 ”经过变轨和制动成功进入环月轨道.以下图,暗影部分表示月球,假想飞船在圆形轨道 Ⅰ 上作匀速圆周运动,在圆轨道Ⅰ 上飞翔 n 圈所用时间为 t ,抵达 A 点时经过暂短的点火变速,进入椭圆轨道 Ⅱ,在抵达轨道 Ⅱ 近月点 B 点时再次点火变速,进入近月圆形轨道 Ⅲ,尔后飞船在轨道 Ⅲ 上绕月球作匀速圆周运动,在圆轨道 Ⅲ 上飞翔 n 圈所用时间为 .不考虑其余星体对飞船的影响,求:( 1)月球的均匀密度是多少?( 2)假如在 Ⅰ 、 Ⅲ 轨道上有两只飞船,它们绕月球飞翔方向同样,某时辰两飞船相距近来(两飞船在月球球心的同侧,且两飞船与月球球心在同向来线上),则经过多长时间,他们又会相距近来?2mt【答案】( 1) 192n;( 2) t1,2,3 )( mGt 27n【分析】试题剖析:( 1)在圆轨道 Ⅲ 上的周期: T 3t,由万有引力供给向心力有:8nG Mmm22RR 2T又: M4 33 192 n 2 .R ,联立得:GT 32Gt 23(2)设飞船在轨道I 上的角速度为1 、在轨道 III 上的角速度为23 ,有:1T 1所以32设飞飞船再经过t 时间相距近来,有:3t ﹣ 1t2m 所以有:T 3tmtm ,, ).(7n 1 2 3考点:人造卫星的加快度、周期和轨道的关系【名师点睛】本题主要观察万有引力定律的应用,开普勒定律的应用.同时依据万有引力供给向心力列式计算.8. 我国科学家正在研究设计返回式月球软着陆器,计划在 2030 年前后实现航天员登月,对月球进行科学探测。
(物理)高考必刷题物理万有引力定律的应用题含解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能) 【答案】(1)2GMm R (22122GM GM v R h R +-+32GMR【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMmmv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:22122GM GMv v R h R=+-+ (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:32GMvR.【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.3.在不久的将来,我国科学家乘坐“嫦娥N号”飞上月球(可认为是均匀球体),为了研究月球,科学家在月球的“赤道”上以大小为v0的初速度竖直上抛一物体,经过时间t1,物体回到抛出点;在月球的“两极”处仍以大小为v0的初速度竖直上抛同一物体,经过时间t2,物体回到抛出点。
2.万有引力定律基础巩固1.行星之所以绕太阳运动是因为()A.行星运动时的惯性作用B.太阳是宇宙的中心,所以行星都绕太阳运动C.太阳对行星有约束运动的引力作用D.太阳对行星有排斥作用,所以不会落向太阳答案:C解析:行星能够绕太阳运动,是因为太阳对行星有引力作用,故只有C选项正确。
2.(多选)下列关于太阳对行星的引力的说法正确的是()A.太阳对行星的引力等于行星做匀速圆周运动的向心力B.太阳对行星的引力大小与行星的质量成正比,与行星和太阳间的距离成正比C.太阳对行星的引力是由实验得出的D.太阳对行星的引力规律是由开普勒定律和行星绕太阳做匀速圆周运动的规律推导出来的答案:AD解析:太阳对行星的引力提供行星做圆周运动的向心力,太阳与行星间的引力F∝mr2,可知A正确,B错误。
太阳对行星的引力规律由开普勒定律和行星绕太阳做匀速圆周运动的规律推导出来,故D正确,C错误。
3.两个质量分布均匀的球体,两球心相距r,它们之间的万有引力为10-8 N,若它们的质量、球心间的距离都增加为原来的2倍,则它们之间的万有引力为()A.10-8 NB.0.25×10-8 NC.4×10-8 ND.10-4 N答案:A解析:原来的万有引力为F=G Mmr2,后来变为F'=G2M·2m(2r)2=G Mmr2,即F'=F=10-8 N,故选项A正确。
4.两个完全相同的实心均质小铁球紧靠在一起,它们之间的万有引力为F。
若将两个用同种材料制成的半径是小铁球2倍的实心大铁球紧靠在一起,则两大铁球之间的万有引力为()A.2FB.4FC.8FD.16F答案:D解析:两个小铁球之间的万有引力为F=G mm(2r)2=G m24r2。
实心小铁球的质量为m=ρV=ρ·43πr3,大铁球的半径是小铁球的2倍,则大铁球的质量m'与小铁球的质量m之比为m'm =r'3r3=8,故两个大铁球间的万有引力为F'=G m'm'r'2=16F。
高三总复习《匀速圆周运动、万有引力定律》测试题
一、选择题 通榆一中:张友 2004.9.15
1. 如图所示,为A 、B
A 为双曲线的一个分支,由图可知 )
A . A 物体运动的线速度大小不变
B . A 物体运动的角速度大小不变
C .
B 物体运动的角速度大小不变 D
. B 物体运动的线速度大小不变
2.甲、乙两个行星质量之比为P ,半径之比为q ,将两个完全相同的单摆置于它的表面,则两单摆作简谐振动的周期之比T 甲∶T 乙为 ( ) A .Pq -2
B.
1
2
1q p - C.q p 2
1-
D.232
1q
p
3.小球被细绳拴着作匀速圆周运动的半径为R,向心加速度大小为a 对小球来说
A.运动的角速度为R
a
=
ω B.在t 时间内通过路程为aR S = C.圆周运动的周期a
R
2T π
= D.球相对圆心的位移不变 ( ) 4.有两颗人造地球卫星质量之比为1∶2,绕地球运动的轨道半径之比为3∶1,下述正确的说法是 ( )
A.它们的周期之比1∶33
B.环绕速度之比为1∶3
C.角速度之比为1∶33
D.所受向心力之比1∶9
5.对人造地球卫星,以下说法正确的是 ( )
A. 根据公式gR v =环绕速度随R 的增大而增大
B. 根据公式R
GM v =
环绕速度随R 的增大而减小 C. 根据公式F=2
R GMm ,当R 增大到原来的4倍时,卫星需要的向心力为原来的1/16
D. 根据公式F=R
v m 2,当R 增大到原来的2倍时,卫星需要的向心力减为原来的
1/2
6.关于人造地球卫星的说法中正确的是 A . 同步通讯卫星的高度和速率是可变的,高度增加速率增大,仍然同步 B . 所有的同步卫星的高度和速率都是一定的,且它们都在赤道上空的同一轨道上运行 C . 欲使某颗卫星的周期比预计的周期增大2倍,可使原来预算的轨道半径r 变为r 43 D . 欲使卫星的周期比预计的周期增大到原来的2倍,可使原来的轨道半径不变,使速
率增大到原来预计的2倍 ( )
7.质量为m 的小球用轻质的细线悬挂如图,绳BC 水平,绳子AB 与竖直方向成α角,剪断绳BC 前后瞬间,AB 绳上张力之比为 ( )
A .1∶cos 2
α B.1∶1
C.cos 2α∶1
D.无法确定 8.如图一个箱子放在水平地面上,质量为M,箱内用一长为L 在箱子的顶板上,小球质量为m 点时,地面受到的压力为( )
A.Mg(2-cos θ)
B.Mg+mg(1-cos θ)
C.(M+m)g
D.Mg+mg(3-2cos θ)
9. 如图所示,一个小球沿竖直放置的光滑圆环形轨道做圆周运动,圆环的半径为R,关于小球的运动情况,下列说法中正确的是 ( )
A. 小球的线速度方向时刻在变化,但总在圆周切线方向上
B. 小球的加速度方向时刻在变化,但总是指向圆心的
C. 小球的线速度的大小总大于或等于Rg
D. 小球通过轨道最低点的加速度的大小一定大于g
10.土星外层上有一个环,为了判断它是土星的一部分还是土星的卫星群,可以根据环中各层的线速度V 与该层到土星中心的距离R 之间的关系来判断 ( ) A .若V ∝R ,则该层是土星的一部分
B .若V 2
∝R ,则该层是土星的卫星群 C .若V ∝1/R ,则该层是土星的一部分
D .若V 2
∝1/R ,则该层是土星的卫星群
11.一个光滑的水平轨道,AB 与一光滑的圆形轨道BCDS 相接,其中圆轨道在竖直平面内B 为最高点,D 为最低点半径为R,一质量为m 的小球以初速度v 0,沿AB 运动,恰能通过最高点则
A.m 越大,V 0值越大)
B.R.越大,V 0值越大
C.V 0值与m,R 无关
D.M 与R 同时增大,有可能使V 0不变
r
12.在光滑的水平面上有三个完全相同的小球A 、B 、C 用细绳连接起来,绳子OA=AB=BC,它们以O 为圆心在水平面上以共同的角速度作匀速圆周运动,在运动中若绳子OA 、AB 、BC 上的张力分别是T 1、T 2、T 3那么T 1∶T 2∶T 3是 A .1∶2∶3 B 。
1∶3∶6
C .7∶5∶3
D 。
6∶5∶3 ( ) 13.长为L 的轻杆AB 固定于A 点,在B 点固定一质量为m 的小球C ,C 可绕A 在竖直面内做 圆周运动,另一质量为m 的摆球D 也固定于A 点,摆长也为L ,开始时拉直AD 使AD 处于水平位置,然后使D 以初速度V 0摆向C ,A 、C 、D 在一个竖直平面内,在最低点D 与C 发生弹性碰撞,碰后,C 在竖直面内做圆周运动,为使C 能够到最高点,D 的初速度V 0大小至少应为 ( )
A .gl 2 B.gl 3 C.gl 4 D.gl 5
14.已知地球质量为M,半径为R,地球表面的重力加速度为g,引力常数为G,有一颗人造地球卫星在离地面上高h 处(该处重力加速度为g)绕地球做匀速圆周运动,那么这个卫星的运行速率为 ( ) A.
R GM B.h
R GM
+ C.Rg D.)h R (g + 二.填空题
15.在质量为M 的电动机飞轮上固定着一个质量为m 的重物,它到转轴的距离为r,如图,为使电动机不从地面跳起,则电动机的飞轮角速度不得超过 ,若以上述角速度匀速转动,它对地面的最大压力为
16.一均匀球以角速度ω绕自己的对称轴转动,若维持球体不被瓦解的唯一作用力是万有引力,则球的最小密度为
17.一内壁光滑的细圆管,形状如图,放在竖直面内,一小钢球自A 口的正上方距A 口h 米处,无初速度自由释放,第一次小球恰能抵达B 点,第二次落入A 口后从B 口射出恰能再进入A 口,两小球下落的高度之比h 1∶h 2=
18.如图,一个半径为R 质量为M 的半圆形光滑小碗,在它的边上1/4圆弧处让一质量为m 的小滑块自由滑下,碗下是一台秤,当滑块在运动时,台秤的最大读数是
三.计算题
19.在光滑斜面上,有一用长20厘米的细绳拴着一个质量为0.1千克的小球,小球绕绳的另一 端在斜面上作圆周运动,若小球通过最高点时绳子拉力恰好为零,已知斜面倾角为300,求最低点时绳子对小球的拉力(g=10米/秒2)
20.一内壁光滑的环形细圆管,
位于竖直平面内,环的半径为R,(比细管的半径大得多)在圆管中有两个直径与细管内径相同的小球(可视为质点)A 球的质量为m 1,B 球的质量为m
2,它们沿着环形圆管顺时针运动,经过最低点时的速度都为V 0,设A 球运动到最低点时,B 球恰运动到最高点,若要此时两球作用于圆管的合力为零,那么m 1、m 2,R 与V 0应满足的关系如何?
21.如图所示,火箭平台上放有测试仪器,火箭从地面起动后,以加速度g/2竖直向上匀加速运动,升到某一高度时,测试仪器对平台的压力为起动前压力的17/18,已知地球半径为R ,求火箭此时离地面的高度(g 为地面附近的重力加速度)
h
参考答案:
1.AC
2.C
3.ABC
4.BC
5.BC
6.BC
7.A
8.D
9.ACD 10.AD 11.B
12.D 13.A 14.BD
15.mr
g
m M )(+ 2(M+m)g 16.G πω432 17.4:5 18.Mg+3mg
19. 3N 20.g m m R
v m m )5()
(212
021+=- 21. 2R。