当前位置:文档之家› 数字图像复原技术综述

数字图像复原技术综述

数字图像复原技术综述
数字图像复原技术综述

数字图像复原技术综述

摘要图像是人类视觉的基础,给人具体而直观的作用。图像的数字化包括取样和量化两个步骤。数字图像处理就是将图像信号转换成数字格式,并利用计算机进行加工和处理的过程。

图像复原是图像处理中的一个重要问题,对于改善图像质量具有重要的意义。解决该问题的关键是对图像的退化过程建立相应的数学模型,然后通过求解该逆问题获得图像的复原模型并对原始图像进行合理估计。

本文主要介绍了图像退化的原因、图像复原技术的分类和目前常用的几种图像复原方法,详细的介绍了维纳滤波、正则滤波、LR算法和盲区卷积,并通过实验证明了该方法的可行性和有效性。

关键词:图像退化、图像复原、维纳滤波、正则滤波、LR算法、盲区卷积、

1 引言

数字图像复原技术(以下简称复原技术)是数字图像处理的重要组成部分。最早的复原技术研究可以追溯到19世纪50至60年代早期美国和前苏联的空间项目。恶劣的成像环境、设备的振动,飞行器旋转等因素使图像产生不同程度的退化。在当时的技术背景下,这些退化造成了巨大的经济损失。为此,业内人士围绕着解决退化问题展开了复原技术的研究。反映复原技术的发展现状和趋势。考虑到彩色图像复原问题的特殊性,也归人到该部分进行讨论;最后,对复原技术的研究方法进行总结与展望。

2、图像复原概述

在图像的获取、传输以及保存过程中,由于各种因素,如大气的湍流效应、摄像设备中光学系统的衍射、传感器特性的非线性、光学系统的像差、成像设备与物体之间的相对运动、感光胶卷的非线性及胶片颗粒噪声以及电视摄像扫描的非线性等所引起的几何失真,都难免会造成图像的畸变和失真。通常,称由于这些因素引起的质量下降为图像退化。

图像退化的典型表现是图像出现模糊、失真,出现附加噪声等。由于图像的退化,在图像接受端显示的图像已不再是传输的原始图像,图像效果明显变差。为此,必须对退化的图像进行处理,才能恢复出真实的原始图像,这一过程就称为图像复原[1]。

图像复原技术是图像处理领域中一类非常重要的处理技术,与图像增强等其他基本图像

处理技术类似,也是以获取视觉质量某种程度的改善为目的,所不同的是图像复原过程实际上是一个估计过程,需要根据某些特定的图像退化模型,对退化图像进行复原。简言之,图像复原的处理过程就是对退化图像品质的提升,并通过图像品质的提升来达到图像在视觉上的改善。

由于引起图像退化的因素众多,且性质各不相同,目前没有统一的复原方法,众多研究人员根据不同的应用物理环境,采用了不同的退化模型、处理技巧和估计准则,从而得到了不同的复原方法。

图像复原算法是整个技术的核心部分。目前,国内在这方面的研究才刚刚起步,而国外却已经取得了较好的成果。早期的图像复原是利用光学的方法对失真的观测图像进行校正,而数字图像复原技术最早则是从对天文观测图像的后期处理中逐步发展起来的。其中一个成功例子是NASA的喷气推进实验室在1964年用计算机处理有关月球的照片。照片是在空间飞行器上用电视摄像机拍摄的,图像的复原包括消除干扰和噪声,校正几何失真和对比度损失以及反卷积。另一个典型的例子是对肯尼迪遇刺事件现场照片的处理。由于事发突然,照片是在相机移动过程中拍摄的,图像复原的主要目的就是消除移动造成的失真[2]。

早期的复原方法有:非邻域滤波法,最近邻域滤波法以及效果较好的维纳滤波和最小二乘滤波等。随着数字信号处理和图像处理的发展,新的复原算法不断出现,在应用中可以根据具体情况加以选择。

目前国内外图像复原技术的研究和应用主要集中于诸如空间探索、天文观测、物质研究、遥感遥测、军事科学、生物科学、医学影象、交通监控、刑事侦察等领域。如生物方面,主要是用于生物活体细胞内部组织的三维再现和重构,通过复原荧光显微镜所采集的细胞内部逐层切片图,来重现细胞内部构成;医学方面,如对肿瘤周围组织进行显微观察,以获取肿瘤安全切缘与癌肿原发部位之间关系的定量数据;天文方面,如采用迭代盲反卷积进行气动光学效应图像复原研究等。

3、图像退化模型

图像复原问题的有效性关键之一取决于描述图像退化过程模型的精确性。要建立图像的退化模型,则首先必须了解、分析图像退化的机理并用数学模型表现出来。在实际的图像处理过程中,图像均需以数字离散函数表示,所以必须将退化模型离散化[3]。

对于退化图像)

g:

x

(y

,

??

+∞∞-+∞

-+--=

),(),(),(),(y x n d d y x h f y x g βαβαβα (1)

如果上式中f ,h ,n ,g 按相同间隔采样,产生相应的阵列[]AB j i f ),(、[]CD j i h ),(、

[]AB j i n ),(、[]AB j i g ),(,然后将这些阵列补零增广得到大小为N M

?的周期延拓阵列,为

了避免重叠误差,这里1-+≥C A M ,1-+≥D B N 。由此,当k=0,1,L,M-1;l=0,1,L,N-1时,即可得到二维离散退化模型形式:

∑∑

-=-=+--=

101

),(),(),(),(M i N j e e e e l k n j l i k h j i f l k g (2)

如果用矩阵表示上式,则可写为:

n Hf g += (3)

其中,f ,g ,n 为一个行堆叠形成的1?MN 列向量,H 为MN MN ?阶的块循环矩阵。 现实中造成图像降质的种类很多,常见的图像退化模型及点扩展函数有如下情景[15]: (1) 线性移动降质

在拍照时,成像系统与目标之间有相对直线移动会造成图像的降质。水平方向线性移动可以用以下降质函数来描述:

???

??=≤≤=其他

若0

01

),(n and

d

m d

n m h (4)

式中,d 是降质函数的长度。在应用中如果线性移动降质函数不在水平方向,则可类似地定义移动降质函数。

(2) 散焦降质

当镜头散焦时,光学系统造成的图像降质相应的点扩展函数是一个均匀分布的圆形光斑。此时,降质函数可表示为:

???

??=+=其他

若0

R

1),(2

2

2

2

n m R n m h π (5)

式中,R 是散焦半径。 (3) 高斯(Gauss)降质

Gauss 降质函数是许多光学测量系统和成像系统最常见的降质函数。对于这些系统,决定系统点扩展函数的因素比较多。众多因素综合的结果总是使点扩展函数趋于Gauss 型。

典型的系统可以举出光学相机和CCD 摄像机、γ相机、CT 相机、成像雷达、显微光学系统等。Gauss 降质函数可以表达为:

?

?

?∈+-=其他

若0),()]

(exp[),(22C

n m n m K n m h α (6)

式中,K 是归一化常数,α是一个正常数,C 是),(n m h 的圆形支持域。

4、几种较经典的复原方法介绍

图像复原算法有线性和非线性两类。线性算法通过对图像进行逆滤波来实现反卷积,这类方法方便快捷,无需循环或迭代,直接可以得到反卷积结果,然而,它有一些局限性,比如无法保证图像的非负性。而非线性方法通过连续的迭代过程不断提高复原质量,直到满足预先设定的终止条件,结果往往令人满意。但是迭代程序导致计算量很大,图像复原时耗较长,有时甚至需要几个小时。所以实际应用中还需要对两种处理方法综合考虑,进行选择[4]

(1) 维纳滤波法

维纳滤波法是由Wiener 首先提出的,应用于一维信号处理,取得了很好的效果。之后,维纳滤波法被用于二维信号处理,也取得了不错的效果,尤其在图像复原领域,由于维纳滤波计算量小,复原效果好,从而得到了广泛的应用和发展。

维纳滤波器寻找一个使统计误差函数

}){(2

2

-=f f E e (7)

最小的估计∧

f 。E 是期望值操作符,f 是未退化的图像。该表达式在频域可表示为

),(])

,(/),(),()

,(),(1

[),(2

2

v u G v u S v u S v u H v u H v u H v u F ηη+=∧

(8)

其中,

),(v u H 表示退化函数 ),(),(),(2

v u H v u H v u H *=

),(v u H *表示),(v u H 的复共轭 2

),(),(v u N v u S =η表示噪声的功率谱

2

),(),(v u F v u S f =表示未退化图像的功率谱

比率),(/),(v u S v u S ηη称为信噪功率比。在IPT 中维纳滤波使用函数deconvwnr 来实现的。 模拟实验结果如下:

(1) 维纳滤波

clc

clear all

close all

I=imread('C:\Documents and Settings\Administrator\桌面\原始图.jpg'); ubplot(231); Imshow(I); I=rgb2gray(I); subplot(232); imshow(I);

noise=0.1*randn(size(I)); PSF=fspecial('motion',21,11); Blurred=imfilter(I,PSF ,'circular'); BlurredNoisy=im2uint8(Blurred); NP=abs(fftn(noise)).^2;

NPOW=sum(NP(:)/prod(size(noise))); NCORR=fftshift(real(ifftn(NP))); IP=abs(fftn(I)).^2;

IPOW=sum(IP(:)/prod(size(noise))); ICORR=fftshift(real(ifftn(IP))); ICORR1=ICORR(:,ceil(size(I,1)/2)); NSR=NPOW/IPOW;

subplot(233);imshow(BlurredNoisy,[]); title('A=Blurred and Noisy');

subplot(234);imshow(deconvwnr(BlurredNoisy,PSF),[]);

title('deconbwnr(A,PSF ,NSR)');

subplot(235);imshow(deconvwnr(BlurredNoisy,PSF,NCORR,ICORR),[]); title('deconbwnr(A,PSF ,NCORR,ICORR)');

subplot(236);imshow(deconvwnr(BlurredNoisy,PSF,NPOW ,ICORR1),[]); title('deconbwnr(A,PSF ,NPOW,ICORR_1_D)');

(2) 正则滤波法

另一个容易实现线性复原的方法称为约束的最小二乘方滤波,在IPT 中称为正则滤波,并且通过函数deconvreg 来实现。

在最小二乘复原处理中,常常需要附加某种约束条件。例如令Q 为f 的线性算子,

那么最小二乘方复原的问题可以看成使形式为2

f

Q 的函数,服从约束条件

2

2

n

f H

g =-∧

的最小化问题,这种有附加条件的极值问题可以用拉格朗日乘数法

来处理。

寻找一个∧

f ,使下述准则函数为最小:

2

2

2

)(n

f H

g f Q f W --+=∧

λ (9)

式中λ叫拉格朗日系数。通过指定不同的Q ,可以得到不同的复原目标。 模拟实验结果如下:

(2) 正则滤波

clc

clear all

close all

I=imread('C:\Documents and Settings\Administrator\桌面\原始图.jpg'); subplot(231);

imshow(I);

I=rgb2gray(I);

subplot(232);

imshow(I);

PSF=fspecial('gaussian',7,10);

V=.01;

BlurredNoisy=imnoise(imfilter(I,PSF),'gaussian',0,V); NOISEPOWER=V*prod(size(I));

[J LAGRA]=deconvreg(BlurredNoisy,PSF,NOISEPOWER);

subplot(233);imshow(BlurredNoisy);

title('A=Blurred and Noisy');

subplot(234);imshow(J);

title('[J LAGRA]=deconvreg(A,PSF,NP)');

subplot(235);imshow(deconvreg(BlurredNoisy,PSF,[],LAGRA/10)); title('deconvreg(A,PSF,[],0.1*LAGRA)');

subplot(236);imshow(deconvreg(BlurredNoisy,PSF,[],LAGRA*10)); title('deconvreg(A,PSF,[],10*LAGRA');

(3)Lucy-Richardson 算法

L-R 算法是一种迭代非线性复原算法,它是从最大似然公式印出来的,图像用泊松分布加以模型化的。当下面这个迭代收敛时模型的最大似然函数就可以得到一个令人满意的方程:

])

,(),()

,(),()[,(),(1y x f y x h y x g y x h y x f y x f k k k ∧

+**

--= (10)

*代表卷积,∧

f 代表未退化图像的估计,

g 和

h 和以前定义一样。 在IPT 中,L-R 算法由名为deconvlucy 的函数完成的。 模拟实验结果如下:

(3) L-R 算法

clc

clear all close all

I=imread('C:\Documents and Settings\Administrator\桌面\原始图.jpg'); subplot(231); imshow(I);

I=rgb2gray(I);

subplot(232);

imshow(I);

PSF=fspecial('gaussian',7,10);

V=.0001;

BlurredNoisy=imnoise(imfilter(I,PSF),'gaussian',0,V);

BlurredNoisy=double(BlurredNoisy);

WT=zeros(size(I));

WT(5:end-4,5:end-4)=1;

J1=deconvlucy(BlurredNoisy,PSF);

J2=deconvlucy(BlurredNoisy,PSF,20,sqrt(V));

J3=deconvlucy(BlurredNoisy,PSF,20,sqrt(V),WT);

subplot(233);

imshow(mat2gray(BlurredNoisy));

title('A=Blurred and Noisy');

subplot(234);

imshow(mat2gray(J1));

title('deconvlucy(A,PSF)');

subplot(235);imshow(mat2gray(J2));

title('deconvlucy(A,PSF,NI,DP)');

subplot(236);imshow(mat2gray(J3));

title('deconvlucy(A,PSF,NI,DP,WT)');

(4)盲去卷积

在图像复原过程中,最困难的问题之一是,如何获得PSF的恰当估计。那些不以PSF 为基础的图像复原方法统称为盲区卷积。

它以MLE为基础的,即一种用被随机噪声所干扰的量进行估计的最优化策略。工具箱通过函数deconvblind来执行盲区卷积。

模拟实验结果如下:

图像分别迭代5次,10次,20次的结果。

(4) 盲去卷积

clc

clear all

close all

I=imread('C:\Documents and Settings\Administrator\桌面\原始图.jpg');

subplot(231);

imshow(I);

I=rgb2gray(I);

subplot(232);

imshow(I);

PSF=fspecial('gaussian',7,10);

V=.0001;

BlurredNoisy=imnoise(imfilter(I,PSF),'gaussian',0,V);

BlurredNoisy=double(BlurredNoisy);

WT=zeros(size(I));

WT(5:end-4,5:end-4)=1;

INITPSF=ones(size(PSF));

FUN=inline('PSF+P1','PSF','P1');

[J P]=deconvblind(BlurredNoisy,INITPSF,5,10*sqrt(V),

WT,FUN,0);

[K P]=deconvblind(BlurredNoisy,INITPSF,10,10*sqrt(V),

WT,FUN,0);

[L P]=deconvblind(BlurredNoisy,INITPSF,20,10*sqrt(V),

WT,FUN,0);

subplot(233);imshow(mat2gray(BlurredNoisy));

title('A=Blurred and Noisy');

subplot(234);imshow(mat2gray(J));

title('True PSF');

subplot(235);imshow(mat2gray(K));

title('Deblured Image');

subplot(236);imshow(mat2gray(L));

title('Recovered PSF');

参考文献

[1] 罗军辉冯平等。MA TLAB7.0在图像处理中的应用[M],北京:机械工业出版社

2006,202~204,257~278。

[2] 刘维一,于德月,王肇圻等。用迭代法消除数字图像放大后的模糊[J]。光电子.

激光,2002,13(4):398~400。

[3] 陶洪。数字共焦显微技术及其图像复原算法研究四川大学硕士学位论文

CNKI::CDMD:10610.2.2003.6632。

[4] 冈萨雷斯等著。数字图像处理(MA TLAB版)[M],电子工业出版社2009。

[5] 阮秋琦编著.—2版。北京:电子工业出版社,2007.2

[6] (美)卡斯尔曼(castleman,k.R)著;朱志刚等译.数字图像处理.北京:电子工业出版社,

2002.2

[7] 罗军辉等主编.MA TLAB7.0在图像处理中的应用.第1版.北京:机械工业出版社,2007.7.

基于日志事务的数据库恢复技术

基于日志的数据库恢复 数据库系统中的非灾难性故障所导致的数据不一致问题,常用的解决方法是基于日志的恢复技术。查阅资料,研究探讨此类恢复技术的基本方法及其实现算法。 事务日志及在数据库恢复中的作用 一、事务日志的工作原理 实际上,事务中的数据操作首先在数据库缓冲区中进行,缓冲区中有用来记录操作活动的数据页和日志页。当事务运行到Commit Transaction时,日志页从缓冲区写入磁盘,而后数据页再从缓冲区写入磁盘,即遵循“先写日志”的原则。如果先写了日志而没有来得及修改实际数据,则在下一次的正常启动或恢复过程中,DBMS检查日志里的记录,将数据的更新补录到数据库中。因此遵循“先写日志”的原则,可以严格地保持事务日志和实际数据更新的一致性。事务的所有日志记录都链接在一起,当系统出现故障时,通过恢复(前滚)或撤消(回滚)事务能够最大限度地恢复数据库。 二、基于事务日志的数据库恢复思路 假如某数据库系统在T1时刻做了一次完整的备份,由于某种原因在T2时刻(T2>T1)出现了故障,丢失了重要的数据。一般的数据恢复思路是利用T1时刻的数据备份将数据库恢复到T1时刻的状态,T1至T2时间段更新的数据则丢失,即做到不完全恢复。 实际上如果充分利用T1至T2 时间段的事务日志,我们完全可以将数据库恢复到T2时刻的状态,即完全的数据库恢复。因为T1至T2时间段的事务日志是按照时间顺序详细记录了这一时间段的事务处理信息,如图所示。 如果我们在T1状态的基础上,重新依次运行这些事务,就可以将数据库由T1状态逐步推演到T2时刻的状态,实现数据库的完整恢复。此外,还可以根据需要在T1与T2之间某个时间点停留,即把数据库恢复到过去某个特定的时间点。 基于事务日志的数据库恢复技术 一、利用事务日志进行数据库恢复的操作步骤 当数据库出现故障时,恢复到当前故障点应按下面的次序进行操作: ①备份当前活动事务日志; ②还原星期一晚上22:00 创建的数据库完全备份;

数字图像处理技术的研究现状及其发展方向

目录 绪论 (1) 1数字图像处理技术 (1) 1.1数字图像处理的主要特点 (1) 1.2数字图像处理的优点 (2) 1.3数字图像处理过程 (3) 2数字图像处理的研究现状 (4) 2.1数字图像的采集与数字化 (4) 2.2图像压缩编码 (5) 2.3图像增强与恢复 (8) 2.4图像分割 (9) 2.5图像分析 (10) 3数字图像处理技术的发展方向 (13) 参考文献 (14)

绪论 图像处理技术基本可以分成两大类:模拟图像处理和数字图像处理。数字图像处理是指将图像信号转换成数字信号并利用计算机进行处理的过程。其优点是处理精度高,处理内容丰富,可进行复杂的非线性处理,有灵活的变通能力,一般来说只要改变软件就可以改变处理内容。困难主要在处理速度上,特别是进行复杂的处理。数字图像处理技术主要包括如下内容:几何处理、算术处理、图像增强、图像复原、图像重建、图像编码、图像识别、图像理解。数字图像处理技术的发展涉及信息科学、计算机科学、数学、物理学以及生物学等学科,因此数理及相关的边缘学科对图像处理科学的发展有越来越大的影响。 数字图像处理的早期应用是对宇宙飞船发回的图像所进行的各种处理。到了70年代,图像处理技术的应用迅速从宇航领域扩展到生物医学、信息科学、资源环境科学、天文学、物理学、工业、农业、国防、教育、艺术等各个领域与行业,对经济、军事、文化及人们的日常生活产生重大的影响。 数字图像处理技术发展速度快、应用范围广的主要原因有两个。最初由于数字图像处理的数据量非常庞大,而计算机运行处理速度相对较慢,这就限制了数字图像处理的发展。现在计算机的计算能力迅速提高,运行速度大大提高,价格迅速下降,图像处理设备从中、小型计算机迅速过渡到个人计算机,为图像处理在各个领域的应用准备了条件。第二个原因是由于视觉是人类感知外部世界最重要的手段。据统计,在人类获取的信息中,视觉信息占60%,而图像正是人类获取信息的主要途径,因此,和视觉紧密相关的数字图像处理技术的潜在应用范围自然十分广阔。近年来,数字图像处理技术日趋成熟,它广泛应用于空间探测、遥感、生物医学、人工智能以及工业检测等许多领域,并促使这些学科产生了新的发展。 1数字图像处理技术 1.1数字图像处理的主要特点 (1)目前数字图像处理的信息大多是二维信息,处理信息量很大,因此对计

数字图像处理的发展现状及研究内容概述

数字图像处理的发展现状及研究内容概述人类传递信息的主要媒介是语音和图像。据统计,在人类接受的信息中,听觉信息占20%,视觉信息占60%,所以作为传递信息的重要媒体和手段——图像信息是十分重要的,俗话说“百闻不如一见”、“一目了然”,都反映了图像在传递信息中独到之处。 目前,图像处理技术发展迅速,其应用领域也愈来愈广,有些技术已相当成熟并产生了惊人的效益,当前图像处理面临的主要任务是研究心的处理方法,构造新的处理系统,开拓更广泛的应用领域。 数字图像处理(Digital Image Processing)又称为计算机数字图像处理,它是指将数字图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和数字图像信息。数字图像处理作为一门学科大约形成于20世纪60年代初期。早期的数字图像处理的目的是改善数字图像的质量,它以人为对象,以改善人的视觉效果为目的。数字图像处理中,输入的是质量低的数字图像,输出的是改善质量后的数字图像,常用的数字图像处理方法有数字图像增强、复原、编码、压缩等。 1:数字图像处理的现状及发展 数字图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天、生物医学工程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,使数字图像处理成为一门引人注目、前景远大的新型学科。随着数字图像处理技术

的深入发展,从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。 人们已开始研究如何用计算机系统解释数字图像,实现类似人类视觉系统理解外部世界,这被称为数字图像理解或计算机视觉。很多国家,特别是发达国家投入更多的人力、物力到这项研究,取得了不少重要的研究成果。其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论,这个理论成为计算机视觉领域其后十多年的主导思想。数字图像理解虽然在理论方法研究上已取得不小的进展,但它本身是一个比较难的研究领域,存在不少困难,人类本身对自己的视觉过程还了解甚少,因此计算机视觉是一个有待人们进一步探索的新领域。如今数字图像处理技术已给人类带来了巨大的经济和社会效益。不久的将来它不仅在理论上会有更深入的发展,在应用上意识科学研究、社会生产乃至人类生活中不可缺少的强有力的工具。 数字图像处理进一步研究的问题,不外乎如下几个方面: (1)在进一步提高精度的同时着重解决处理速度问题。如在航天遥感、气象云图处理方面,巨大的数据量和处理速度任然是主要矛盾之一。 (2)加强软件研究、开发新的处理方法,特别要注意移植和借鉴其他学科的技术和研究成果,创造新的处理方法。 (3)加强边缘学科的研究工作,促进数字图像处理技术的发展。如:人的视觉特性、心理学特性等的研究,如果有所突破,讲对团向处理技术的发展起到极大的促进作用。

图像复原方法综述

图像复原方法综述 1、摘要 图像是人类视觉的基础,给人具体而直观的作用。图像的数字化包括取样和量化两个步骤。数字图像处理就是将图像信号转换成数字格式,并利用计算机进行加工和处理的过程。 图像复原是图像处理中的一个重要问题,对于改善图像质量具有重要的意义。解决该问题的关键是对图像的退化过程建立相应的数学模型,然后通过求解该逆问题获得图像的复原模型并对原始图像进行合理估计。 本文主要介绍了图像退化的原因、图像复原技术的分类和目前常用的几种图像复原方法,详细的介绍了维纳滤波、正则滤波、LR算法和盲区卷积,并通过实验证明了该方法的可行性和有效性。 关键词:图像退化、图像复原、维纳滤波、正则滤波、LR算法、盲区卷积、 2、图像复原概述 在图像的获取、传输以及保存过程中,由于各种因素,如大气的湍流效应、摄像设备中光学系统的衍射、传感器特性的非线性、光学系统的像差、成像设备与物体之间的相对运动、感光胶卷的非线性及胶片颗粒噪声以及电视摄像扫描的非线性等所引起的几何失真,都难免会造成图像的畸变和失真。通常,称由于这些因素引起的质量下降为图像退化。 图像退化的典型表现是图像出现模糊、失真,出现附加噪声等。由于图像的退化,在图像接受端显示的图像已不再是传输的原始图像,图像效果明显变差。为此,必须对退化的图像进行处理,才能恢复出真实的原始图像,这一过程就称为图像复原[1]。 图像复原技术是图像处理领域中一类非常重要的处理技术,与图像增强等其他基本图像处理技术类似,也是以获取视觉质量某种程度的改善为目的,所不同的是图像复原过程实际上是一个估计过程,需要根据某些特定的图像退化模型,对退化图像进行复原。简言之,图像复原的处理过程就是对退化图像品质的提升,并通过图像品质的提升来达到图像在视觉上的改善。 由于引起图像退化的因素众多,且性质各不相同,目前没有统一的复原方法,众多研究人员根据不同的应用物理环境,采用了不同的退化模型、处理技巧和估计准则,从而得到了不同的复原方法。 图像复原算法是整个技术的核心部分。目前,国内在这方面的研究才刚刚起步,而国外

快速数字图像修复技术

快速数字图像修复技术

用高斯内核卷积图像(即计算相邻像素的加权平均数),相当于各向同性扩散(线性热传导方程)。我们的算法使用加权平均的内核,只考虑相邻像素的贡献(即内核中心为零)。图2显示了伪码算法和两个扩散内核。本文中所有重建图像是通过该算法获得,或者是该算法经过轻微的变化获得,将在3.1节解释。 3.1保留边缘 当Ω跨越高对比度边缘的边界时(图3(前左)),该算法最简单版本,会带来附加效果(明显的模糊)。在实践中,只有在Ω和高对比度边缘的相交处,需要各向异性扩散,这些区域通常只占整个区域内很小比例。 创建指定待修复区域的遮盖是修复过程中最耗时的步骤,需用户干预。由于我们的算法可以在短短几秒钟内修复图像,它可用于遮盖互动创建。我们利用这个互动通过扩散障碍进行边界重联,这是Ω内扩散过程的边界。这完成一个边界重建和各向异性扩散类似的的结果,但没有相关的开销。在实践中,扩散屏障是两个像素宽的线段。当扩散过程中达到一个障碍,达到像素进行颜色设定,进程终止。图3进行了说明,图3中(左后方)明显的交叉线代表修复区域。简单扩散修复算法在Ω和高对比度边缘之间的相交处产生模糊点(参见图3中的小圆圈(前左))。通过适当增加扩散屏障(整个遮盖线段图3(右后)),用户停止遮盖两边混合信息的扩散过程。由此产生的直线如图3(前右)所示。 4结果 我们已经在C + +中实施了图2描述的算法,并尝试了两种不同的扩散内核。在这两种情况下的结果相似。文中所有的图片都使用128 MB的内存运行Windows98450兆赫奔腾III 电脑和使用图2所示的最左边内核生成。在图5,8,9和10所示的结果是使用无扩散障碍最简单的版本的算法得到。对于图1,使用了遮盖,两个扩散障碍(图4)。三个女孩的例子,使用了四个扩散障碍,以及有遮盖穿过高对比度边缘的区域(图6(右))。在所有情况下,都用100扩散迭代。 所有修复和线装饰删除系统需要手动遮盖。鉴于有一套功能的绘图系统,创建一个遮盖所需的时间,只依赖于可用的功能,也不受所使用修复算法的影响。对于交互式应用程序,在同一系统中拥有屏蔽功能和修复算法是可取的,以避免在不同的环境之间切换。在我们目前的原型中,我们已经实现了一个简单的绘图系统以及导入和导出JPEG文件的功能。 恢复林肯的画像和三个女孩的图片(图4和6(右),分别)使用的遮盖,是我们的绘画系统创建的。在新奥尔良的例子(图5)所使用的遮盖,通过使用Photoshop中选择颜色

遥感图像分类方法综述

龙源期刊网 https://www.doczj.com/doc/8312892796.html, 遥感图像分类方法综述 作者:胡伟强鹿艳晶 来源:《中小企业管理与科技·下旬刊》2015年第08期 摘要:对传统图像监督分类方法和非监督分类方法在遥感图像分类中的应用进行总结, 对基于人工神经网络、模糊理论、小波分析、支持向量机等理论的新的遥感图像分类方法进行了介绍,并对遥感图像分类方法研究的发展趋势做了展望。 关键词:遥感图像;监督分类;分类精度 1 概述 遥感就是远离地表,借助于电磁波来收集、获取地表的地学、生物学、资源环境等过程和现象的科学技术。遥感技术系统由四部分组成:遥感平台、传感器、遥感数据接收及处理系统、分析系统。遥感数据就是用遥感器探测来自地表的电磁波,通过采样及量化后获得的数字化数据。 2 传统遥感图像分类方法 2.1 非监督分类方法 非监督分类方法也称为聚类分析。进行非监督分类时,不必对遥感图像影像地物获取先验类别知识,仅依靠遥感图像上不同类别地物光谱信息进行特征提取,根据图像本身的统计特征的差别来达到分类的目的。主要的算法有:K-均值聚类(K-means)算法和迭代自组织数据分析法(Iterative Self-organizing Data Analysis Techniques A, ISODATA)等。 2.2 监督分类方法 对于监督分类,训练区的选择要求有代表性,训练样本的选择要考虑到遥感图像的地物光谱特征,而且样本数目应能够满足分类的要求,否则,一旦样本数目超过一定的阈值时,分类器的精度便会下降。主要的算法有:最大似然分类(Maximum Likelihood classification,MLC)、最小距离分类、K-近邻分类等。 3 基于新理论的遥感图像分类方法 3.1 基于人工神经网络的遥感图像分类 在遥感图像的分类处理中,人工神经网络的输入层神经元表征遥感图像的输入模式。每一个输入层神经元对应于一个光谱波段,每一个输出层神经元则对应于一种土地覆盖类型。其

数字图像处理技术现状及发展趋势

数字图像处理技术现状及发展趋势 摘要现今是计算机技术、网络技术以及多媒体技术高速发展的时代,更多高科技技术正在全面发展,数字图像处理技术作为一种新式技术,如今已经广泛地应用于人们的生产生活中。数字图像处理技术的应用和发展为人们的生活发展带来了很多的便利,在遥感技术、工业检测方面发展迅速,在医学领域,气象通信领域也有很大的成就。由此,本文主要探讨数字图像处理技术的现状及发展趋势。 关键词数字图像处理技术;现状;发展趋势 现今是计算机和网络技术高速发展的时代,计算机的应用给人们的生产生活带来了很大的便利,人们应用计算机处理各种复杂的数据,将传统方式不能处理的问题以全新的技术和方式有效解决[1]。数字图像处理技术是应用较为广泛的一种技术,在具体应用过程中,能够经过增强、复原、分割等过程对数据进行处理,且具有多样性、精度高、处理量大的显著优势,本文对数字图像处理技术的现状及发展趋势进行研究和探讨。 1 数字图像处理技术发展现状 数字图像处理技术是近年来发展较为迅速的一种技术,具体是指应用计算机对图像进行一系列的处理,最终达到人们要求的水平,在具体的处理过程中,以改善图像的视觉效果为核心,最终呈现出人们想要表达的意思。笔者查阅国内外诸多文献库,发现对数字图像处理技术的研究多数集中于图像数字化、图像增强、图像还原、图像分割等领域[2]。最初数字图像处理技术产生于20世纪20年代,当时普遍将其应用于报纸业,发展至20世纪50年代,图像处理技术跟随着计算机的发展而迅速发展,也有更多的人开始关注和应用该技术,当时在各国的太空计划中发挥了巨大作用,尤其是对月球照片的处理,获得了很大的成功。发展到20世纪70年代时,数字图像处理技术的应用已经很普遍了,尤其是在计算机断层扫面(CT)等方面,该技术的应用得到了一致好评,而现今,数字图像处理技术随处可见,已广泛应用在各行各业中。 2 数字图像处理技术的特点 数字图像处理技术有以下几个特点:①图像处理的多样性特点。数字图像处理技术可以编写多样的算法,以不同的程序模式施加于数字图像技术上,根据实际需求对图像进行处理,因此最终获取的图像效果也截然不同。②图像处理精度高。应用数字图像处理技术处理的图像,其精度和再现性都提高了一个层次,尤其是在各种算法和程序的支撑下,进一步确保了计算的精度和正确性。③交叉融合了多门学科和新技术。数字图像处理的应用基础包含了众多学科和技术,其中数学和物理是关键,而通信、计算机、电子等技术则是确保其处理质量的关键技术。④数据处理量大[3]。图像本身就包含了大量的信息,数字图像处理技术可以更好地区分有用信息和冗余信息,从而获取处理的关键性信息。

图像运动模糊复原算法综述概要

752b=———=;———#==——====—#==;=————=—=——=====——===——=—#一a以科学发展观促进科技创新(下)21EichmannG,StojancicM.Superresolvingsignalandimagerestorationusingory.Appl.Opt.1987。V01.26:1911~1918linearassociativemem—22collectivecomputationalabilities.HopfieldJJ.NeuralnetworksandphysicalsystemwithemergentProcNatAcadSciUSA。1982,(79):2554~2558ininverseandwienerfilterrestorationsofmotion—blurred2324StenderJ.(ed).ParallelGeneticAlgorithms:TheoryandApplication.10SPress.1993errorsLimH。TanKC,TanBTG.Edgeimagesandtheirwindowingtreatmen

t.CVGIP.1991,53:186。195作者简介刘晶晶,现为北京大学遥感所、中国矿业大学(北京)机电学院计算机硕士。研究方向:图像处理与模式识别。电话:(010)51733380;E—mail:ljj010@126.com。晏磊,现为北京大学地球与空间科学学院教授,博士生导师,北京市空间信息集成与3S工程应用重点实验室主任。何凯,现为北京大学遥感所博士后。研究方向:分形、小波理论及其在遥感影像处理方面的应用。宁书年,现为中国矿业大学(北京)博士生导师,地球探测与信息技术博士点学科带头人。LED显示技术及其发展趋势罗妙宣1王华1’2夏华丽21.北京大学空间信息集成与3S工程应用北京市重点实验室,北京,100871;2.中国矿业大学(北京)机电与信息工程学院,北京,100083摘要本文介绍了LED显示技术的工作原理、简要介绍了它的系统组成;并与CRT技术、LCD技术进行了比较,阐明了该技术的发展趋势及其应用前景。关键词LED显示技术半导体一、引言随着时代步伐的前进,信息已经日益成为人们关注的焦点,信息发布的方式就显得尤为重要,基于LED显示技术的显示屏就这样应运而生了。LED显示屏是由发光二极管组成的平面点阵来显示图像信息的器件。它以其自身的高亮度、低能耗、长寿命、响应快和无辐射的优点在短短的几十年发展成为现代信息发布的重要手段,并被广泛地应用于证券交易、金融、交通、体育、广告等领域。最近几年以GaN为基础的2%族半导体材料和器件方面取得了突破性进展,导致了GaN基蓝光LED进入市场,并被用于全色大屏幕显示器,使LED显示器的发展进入了一个全新阶段。LED材料分无机和有机两种,无机材料激发电压低、设备工艺简单、亮度高;近年来基于有机发光二极管(OLED)的平板显示器,由于其新颖的特性正在成为平板显示器领域的一个新增长点。二、LED显示技术的工作原理LED(LightEmittingDiode)是指通过一定的控制方式,用于显示文字、文本图形图像和行情等各种 图像运动模糊复原算法综述作者:作者单位:刘晶晶,晏磊,何凯,宁书年刘晶晶(北京大学遥感与地理信息系统研究所,北京,100871;中国矿业大学(北京机电与信息工程学院,北京,100083,晏磊,何凯(北京大学遥感与地理信息系统研究所,北京,100871,宁书年(中国矿业大学(北京机电与信息工程学院,北京,100083 本文读

遥感图像分类方法研究综述

第2期,总第64期国 土 资 源 遥 感No.2,2005 2005年6月15日RE MOTE SENSI N G F OR LAND&RES OURCES Jun.,2005  遥感图像分类方法研究综述 李石华1,王金亮1,毕艳1,2,陈姚1,朱妙园1,杨帅3,朱佳1 (1.云南师范大学旅游与地理科学学院,昆明 650092;2.云南省寄生虫病防治所,思茅 665000; 3.云南开远市第一中学,开远 661600) 摘要:综述了遥感图像监督分类和非监督分类中的各种方法,介绍了各种方法的优缺点、适用领域和应用情况,并作了简单评述,最后,展望了遥感图像分类方法研究发展方向和研究热点。 关键词:遥感;图像分类;分类方法 中图分类号:TP751 文献标识码:A 文章编号:1001-070X(2005)02-0001-06 0 引言 随着卫星遥感和航空遥感图像分辨率的不断提 高,人们可以从遥感图像中获得更多有用的数据和 信息。由于不同领域遥感图像的应用对遥感图像处 理提出了不同的要求,所以图像处理中重要的环 节———图像分类也就显得尤为重要,经过多年的努 力,形成了许多分类方法和算法。本文较全面地综 述了这些分类方法和算法,为遥感图像分类提供理 论指导。 1 遥感图像分类研究现状 在目前遥感分类应用中,用得较多的是传统的 模式识别分类方法,诸如最小距离法、平行六面体 法、最大似然法、等混合距离法(I S OM I X)、循环集群 法(I S ODAT A)等监督与非监督分类法。其分类结果 由于遥感图像本身的空间分辨率以及“同物异谱”、 “异物同谱”现象的存在,往往出现较多的错分、漏分 现象,导致分类精度不高[1]。随着遥感应用技术的 发展,傅肃性等对P.V.Balstad(1986)利用神经网络 进行遥感影像分类的研究情况以及章杨清等在利用 分维向量改进神经网络在遥感模式识别中的分类精 度问题作了阐述[2], 孙家对M.A.Friedl(1992)和 C.E.B r odley(1996)研究的大量适用于遥感图像分类的决策树结构作了阐述[3],尤其是近年来针对高光谱数据的广泛应用,各种新理论新方法相继涌现,对传统计算机分类方法提出了新的要求[4,5]。 2 基于统计分析的遥感图像分类方法 2.1 监督分类 监督分类是一种常用的精度较高的统计判决分类,在已知类别的训练场地上提取各类训练样本,通过选择特征变量、确定判别函数或判别规则,从而把图像中的各个像元点划归到各个给定类的分类方法[2,3,6,7]。常用的监督分类方法有:K邻近法(K-Nearest Neighbor)、决策树法(Decisi on Tree Classifi2 er)和贝叶斯分类法(Bayesian Classifier)。主要步骤包括:①选择特征波段;②选择训练区;③选择或构造训练分类器;④对分类精度进行评价。 最大似然分类法(MLC)是遥感分类的主要手段之一。其分类器被认为是一种稳定性、鲁棒性好的分类器[8]。但是,如果图像数据在特征空间中分布比较复杂、离散,或采集的训练样本不够充分、不具代表性,通过直接手段来估计最大似然函数的参数,就有可能造成与实际分布的较大偏差,导致分类结果精度下降。为此,不少学者提出了最大似然分类器和神经网络分类器。改进的最大似然分类器多采用Gauss光谱模型作为条件概率密度函数模型,其中最简单的是各类先验概率相等的分类器(即通常所说的最大似然分类器),复杂的有Ediri w ickre ma等提出的启发式像素分类估计先验概率法。Mclachlang J 收稿日期:2004-11-23;修订日期:2005-03-15 基金项目:国家重点基础研究发展计划(973计划)项目(2003CB41505-11)、国家自然科学基金项目(40361007)和云南省自然科学基金项目(2002D0036M和2003C0030Q)资助。

数据恢复

数据恢复 数据恢复的重要意义 在当今这样一个信息和网络化的社会里,计算机正在我们的工作和生活中扮演着日益重要的角色。越来越多的企业、商家、政府机关和个人通过计算机来获取信息、处理信息,同时将自己最重要的信息以数据文件的形式保存在计算机中。一旦这些重要的数据发生灾难,将会导致一个企业停止运转,如果数据丢失还有可能使一个企业面临破产!因此,找回灾难的数据显得日益重要,轻则,找回的只是几个文件而已,重则,能拯救一个单位、一个企业的生命! 数据丢失的主要原因 造成数据丢失主要有以下几个原因: (1)用户的硬盘数据保护意识不高。目前不论是企业用户还是个人用户,多数都是在计算机里安装了一种或几种防病毒软件,然后就认为可以高枕无忧了。这种过分依赖防病毒软件的思想使得用户疏忽了对数据的保护,等到数据灾难发生的时候才发觉:原来防护软件并不是万能的!到了那个时候,后悔晚矣! (2)黑客入侵与病毒感染。相信这一因素造成数据灾难所占的比例是最高的了,如今的黑客能在装有防火墙的网络中进出自如,病毒可以在几个小时之内遍布全球,时刻都在威胁着我们数据的安全,这些都是人们无法预料的事情。 (3)硬盘或系统、软件故障。由这一原因造成的数据丢失多数表现为:数据无法找到,系统不认识所使用的装置,机器发出噪音,电脑或硬盘不工作等,这与用户使用电脑的方式和在电脑上安装的软件有关,不能一概而论。 (4)自然损坏。风、雷电、洪水以及意外事故(如电磁干扰、地板振动等)也有可能导致数据丢失,不过这一因素出现的可能性比前面三点要低很多。 (5)人为丢失。例如我们在使当中对存储设备进行了误格式化、误分区、误克隆、误删除等操作引志的文件丢失。 数据可恢复的前提 是不是一切丢失的数据都可以恢复过来呢?当然不是了,要不然就不能称为数据灾难了。如果被删除的文件已经被其他文件取代,或者文件数据占用的空间已经分配给其他文件,那么该文件就不可能再恢复了。 出现数据丢失时的处理

数字图像处理发展及现状

数字图像处理的发展及现状 网络092 张海波 0904681468 摘要: 简述了数字图像处理技术的发展及应用现状,系统分析了数字图像处理技术的主要优点,不足及制约其发展的因素,阐述了数字图像处理技术研究的主要内容和将来的研究重点,概述了数字图像处理技术未来的应用领域,并提出了该技术未来的研究方向。 关键词:数字图像;图像处理;现状与展望;计算机技术 1 前言: 图像处理技术基本可以分成两大类:模拟图像处理(Analog Image Processing)和数字图像处理(Digtal Image Processing)。数字图像处理是指将图像信号转换成数字信号并利用计算机进行处理的过程。其优点是处理精度高,处理内容丰富,可进行复杂的非线性处理,有灵活的变通能力,一般来说只要改变软件就可以处理内容[1]。困难主要在处理速度上,特别是进行复杂的处理。数字图像处理技术主要包括如下内容:几何处理(Geometrical Processing)、算术处理(Arithmetic Processing)、图像增强(Image Enhancement)、图像复原(Image Restoration)、图像重建(Image Reconstruction)、图像编码(Image Encoding)、图像识别(Image Recognition)、图像理解(Image Understanding)。数字图像处理技术的发展涉及信息科学、计算机科学、数学、物理学以及生物学等学科[2],因此数理及相关的边缘学科对图像处理科学的发展有越来越大的影响。近年来,数字图像处理技术日趋成熟,它广泛应用于空间探测、遥感、生物医学、人工智能以及工业检测等许多领域,并促使这些学科产生了新的发展。 2 数字图像处理技术发展: 数字图像处理技术使20世纪60年代随着计算机技术和 VLSY Very Large Scale Integration的发展而产生、发展和不断成熟起来的一个新兴技术领域,它在理论上和实际应用中都取得了很大的成就。 视觉是人类最重要的感知手段,图像又是视觉的基础[3]。早期图像处理的目的是改善图像质量,它以人为对象,以改善人的视觉效果为目的。图像处理中输入的是质量低的图像,输出的是改善质量后的图像。常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在1964年发回的几千张月球照片进行图像处理,如几何校正、灰度变换、去除噪声等,并考虑了太阳位置和月球环境的影响。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,获得了月球的地形图、彩色图及全景镶嵌图,为人类登月创举奠定了基础,也推动了数字图像处理这门学科的诞生。在以后的宇航空间技术探测研究中,数字图像处理技术都发挥了巨大的作用。 数字图像处理技术取得的另一个巨大成就是在医学上。1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置,也就是我们通常所说的CT

数字图像处理技术的现状及其发展方向(笔记)

数字图像处理技术的现状及其发展方向 一、数字图像处理历史发展 数字图像处理(Digital Image Processing)将图像信号转换成数字信号并利用计算机对其进行处理。 1.起源于20世纪20年代。 2.数字图像处理作为一门学科形成于20世纪60年代初期,美国喷气推进实验室(JPL)推动了数字图像处理这门学科的诞生。 3.1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置即CT(Computer Tomograph),1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。 4.从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展,人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论。 二、数字图像处理的主要特点 1.目前数字图像处理的信息大多是二维信息,处理信息量很大,对计算机的计算速度、存储容量等要求较高。 2.数字图像处理占用的频带较宽,在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本也高,这就对频带压缩技术提出了更高的要求。 3.数字图像中各个像素是不独立的,其相关性大。因此,图像处理中信息压缩的潜力很大。 4.由于图像是三维景物的二维投影,一幅图像本身不具备复现三维景物的全部几何信息的能力,要分析和理解三维景物必须作合适的假定或附加新的测量。在理解三维景物时需要知识导引,这也是人工智能中正在致力解决的知识工程问题。 5.一方面,数字图像处理后的图像一般是给人观察和评价的,因此受人的因素影响较大,作为图像质量的评价还有待进一步深入的研究;另一方面,计算机视觉是模仿人的视觉,人的感知机理必然影响着计算机视觉的研究,这些都是心理学和神经心理学正在着力研究的课题。 三、数字图像处理的优点 1.再现性好;图像的存储、传输或复制等一系列变换操作不会导致图像质量的退化。 2.处理精度高;可将一幅模拟图像数字化为任意大小的二维数组,现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高。 3.适用面宽;图像可以来自多种信息源,图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像组合而成,因而均可用计算机来处理。 4.灵活性高;数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数学公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 四、数字图像处理过程及其主要进展 常见的数字图像处理有:图像的采集、数字化、编码、增强、恢复、变换、

计算机取证中的数据恢复技术综述

计算机取证中的数据恢复技术综述 摘要 传统数据恢复已经有很多成熟的技术,通过分析计算机取证中数据恢复技术与传统数据恢复的关系,我们证明了在计算机取证中应用数据恢复技术的可行性,实践也证明了其有效性和重要性。本文主要在介绍和分析磁盘在FAT32和NTFS两种不同文件系统的分区结构的前提下,在综述了各种计算机取证中基于FAT32和基于NTFS的数据恢复技术和原理、基于闪存的数据恢复技术、基于新型存储设备SSD固态盘的数据恢复技术。然后讨论了未来计算机取证中数据恢复技术的发展趋势和挑战,即文件碎片的重组和恢复和基于SSD的数据恢复。相比传统数据恢复,计算机取证中的数据恢复有其自己的特点和要求,最后本文从法律角度,总结了数据恢复技术在计算机取证中应用时所需要遵循的原则和流程规范。 关键字:计算机取证、数据恢复 Abstract Traditional data recovery has a lot of mature technologies, According to analysis the relationship between data recovery in computer forensics and traditional data recovery, feasibility of applying data recovery techniques to computer forensics has been proved,much practice also has proved its effectiveness and importance. This paper describes and analyzes the different disk partition structure respectively in the FAT32 and NTFS file systems, then reviews a variety of data recovery techniques and principles respectively based on FAT32 and NTFS, flash-based data recovery techniques, SSD-based data recovery techniques in computer forensics. Next we discuss the trends and challenges of data recovery technology in computer forensics in the future, namely restructuring and recovery of file fragmentation and SSD-based data recovery. Compared to traditional data recovery, data recovery in computer forensics has own characteristics and requirements, and finally from a legal point of view, this paper summed up the principles and process specifications that need to be followed when data recovery techniques are applied to computer forensics . Keywords: computer forensics, data recovery

数字图像处理技术的研究现状与发展方向

数字图像处理技术的研究现状与发展方向 孔大力崔洋 (山东水利职业学院,山东日照276826) 摘要:随着计算机技术的不断发展,数字图像处理技术的应用领域越来越广泛。本文主要对数字图像处理技术的方法、优点、数字图像处理的传统领域及热门领域及其未来的发展等进行相关的讨论。 关键词:数字图像处理;特征提取;分割;检索 引言 图像是指物体的描述信息,数字图像是一个物体的数字表示,图像处理则是对图像信息进行加工以满足人的视觉心理和应用需求的行为。数字图像处理是指利用计算机或其他数字设备对图像信息进行各种加工和处理,它是一门新兴的应用学科,其发展速度异常迅速,应用领域极为广泛。 数字图像处理的早期应用是对宇宙飞船发回的图像所进行的各种处理。到了70年代,图像处理技术的应用迅速从宇航领域扩展到生物医学、信息科学、资源环境科学、天文学、物理学、工业、农业、国防、教育、艺术等各个领域与行业,对经济、军事、文化及人们的日常生活产生重大的影响。 数字图像处理技术发展速度快、应用范围广的主要原因有两个。最初由于数字图像处理的数据量非常庞大,而计算机运行处理速度相对较慢,这就限制了数字图像处理的发展。现在计算机的计算能力迅速提高,运行速度大大提高,价格迅速下降,图像处理设备从中、小型计算机迅速过渡到个人计算机,为图像处理在各个领域的应用准备了条件。第二个原因是由于视觉是人类感知外部世界最重要的手段。据统计,在人类获取的信息中,视觉信息占60%,而图像正是人类获取信息的主要途径,因此,和视觉紧密相关的数字图像处理技术的潜在应用范围自然十分广阔。 1数字图像处理的目的 一般而言,对图像进行加工和分析主要有以下三方面的目的[1]: (1)提高图像的视感质量,以达到赏心悦目的目的。如去除图像中的噪声,改变图像中的亮度和颜色,增强图像中的某些成分与抑制某些成分,对图像进行几何变换等,从而改善图像的质量,以达到或真实的、或清晰的、或色彩丰富的、或意想不到的艺术效果。 (2)提取图像中所包含的某些特征或特殊信息,以便于计算机进行分析,例如,常用做模式识别和计算机视觉的预处理等。这些特征包含很多方面,如频域特性、灰度/颜色特性、边界/区域特性、纹理特性、形状/拓扑特性以及关系结构等。 (3)对图像数据进行变换、编码和压缩,以便于图像的存储和传输。 2数字图像处理的方法 数字图像处理按处理方法分,主要有以下三类,即图像到图像的处理、图像到数据的处理和数据到图像的处理[2]。 (1)图像到图像。图像到图像的处理,其输入和输出均为图像。这种处理技术主要有图像增强、图像复原和图像编码。 首先,各类图像系统中图像的传送和转换中,总要造成图像的某些降质。第一类解决方法不考虑图像降质的原因,只将图像中感兴趣的特征有选择地突出,衰减次要信息,提高图像的可读性,增强图像中某些特征,使处理后的图像更适合人眼观察和机器分析。这类方法就是图像增强。例如,对图像的灰度值进行修正,可以增强图像的对比度;对图像进行平滑,可以抑制混入图像的噪声;利用锐化技

遥感影像云识别方法综述

遥感影像云识别方法综述 国内外对云的检测与分类研究较多,有较多的研究成果报道。其方法大致可以分为两类,一类是基于光谱的方法,主要利用云在不同的光谱波段有不同反射特征,大部分以灰度阈值或灰度聚类的方法实现,主要用于多光谱影像,早期研究较多。如用于A VHRR的ISCCR 法(ROSSOW,1989)、CLA VR法(STOWE,1991)和用于的C02法(WGLIE,1994),近期亦研究用于MODIS的一些云识别与分类的方法,主要为以前方法的改造。另一类是基于纹理的方法主要应用云影像的灰度空间分布特征。纹理特征常以统计模型法、结构法、场模型法或频域/空域联合分析法来度量。其中尤以传统的统计模型研究较多,如灰度共生矩阵(GLCM)、灰度差分矩阵(GLDM)、灰度差分矢量(GLDV)、和差直方图(SADH)等,新近提出的一些方法如场模型法中的分形分维、马尔可夫随机场方法,频域/空域联合分析法中的Gabor变换、小波变换等,有不少的研究成果报道。 1. 基于光谱特征的方法: 主要有ISCCP方法、APLOOL方法、CO薄片法、CLAVR方法等。 ISCCP方法主要由Rossow(1989)Seze和Rossow(1991a)及RossowG和arder(1993)和等开发研制,检测方法中公用到窄的可见光波段(0.6)和红外窗区波段的资料。它假定观测辐射办一自晴空和云两种情况(这两种大气状况相联系的辐射值变化并不相互重叠),把每一个像元的观测辐射值与晴空辐射值比较,若两者的差大于晴空辐射值本身的变化时,定该像元点为云点。因此算法依赖于阈值,阈值勤的大小就确定了晴空计值中不确定性的大小,当像元的车射值明显有别于晴空像元时,认为像元被云覆盖,但当像元部分被云覆盖时,会发生误判。 算法主要由有五部分组成: (1)单一红外图像的空间对比试验。 (2)三个连续红处图像的时间对比试验。 (3)可见光和红外图像的空间/时间的累计统计合成。 (4)每5天的可见光和红处辐射的晴空合成。 (5)每个像元的可见光和红外辐射阈值勤的选取。 APOLLO(The A VHRR Processing scheme Over cloud Land and Ocean)算法主要由Saunders和Kriebel(1988),Kriebel等(1989)和Gesell(1989)研制开发,它利用了A VHRR 五个全分辨探测通道资料。在五个通道资料的基础上,像元被认为是有云像元,必须满足几个条件:像元的反射率比所设定的阈值高或温度比所设定的阈值低;通道2与通道1的比值介于0.7和1.1之间;通道4和通道5的亮度温差大于所设定的阈值;若像元在海洋上,其空间均一性还要大于设定的阈值。若像元通过了所有的多光谱云检测,像元为晴空,只要有一个未通过,就认为像元被云污染,因此这个检测方法具有保守性。利用其中的两个检测,。设定不同的阈值,可区分完全云覆盖像元和部分云覆盖像元。 CKA VR(The NOAA Cloud Advanced Very High Resolution Radiometer)算法(Phase I)(Stowe et al.,1991)利用A VHRR五个通道资料在全球范围内进行云检测。它同样采用了一系列判识阈值,不同之处在于采用2*2的像元矩阵作为判识单位。当2*2的像素点数列中4个像素点全不通过有云判识时,像元矩阵为无云;4个像素点全通过有云识别时,像素点矩阵为完全云盖;4个像素点中有1至3个像元通过有云判识时,认为像元矩阵是混合型。如果被判识为云或混合型的像元矩阵中的4个像元,满足另类晴空检测条件,像元矩阵被重新判别为晴空像元。根据下垫面性质和观测时间的不同,把算法分为白天海洋、白天陆地、夜间海洋和夜间陆地四类。在后来的改进方案中,用9天的合成晴空辐射作为晴空辐射值,并对云污染的像元进行分类。

数字图像处理技术的现状及其发展方向

数字图像处理技术的现状及其发展方向 人类通过眼、耳、鼻、舌、身接受信息,感知世界。约有75%的信息是通过视觉系统获取的。数字图象处理是用数字计算机处理所获取视觉信息的技术,上世纪20年代Bartlane 电缆图片传输系统(纽约和伦敦之间海底电缆)传输一幅图片所需的时间由一周多减少到小于3个小时;上世纪5O年代,计算机的发展,数字图像处理才真正地引起人们的巨大兴趣;1964年,数字图像处理有效地应用于美国喷气推进实验室(J.P.L)对“徘徊者七号”太空船发回的大批月球照片的处理;但是直到上世纪六十年代末至七十年代初,由于离散数学理论的创立和完善,使之形成了比较完整的理论体系。成为一门新兴的学科。数字图像处理的两个主要任务:如何利用计算机来改进图像的品质以便于人类视觉分析;对图像数据进行存储、传输和表示,便于计算机自动化处理。图像处理的范畴是一个受争论的话题,因此也产生了其他的领域比如图像分析和计算机视觉等等。 1.数字图像处理主要技术概述 不论图像处理是基于什么样的目的,一般都需要通过利用计算机图像处理对输入的图像数据进行相关的处理,如加工以及输出,所以关于数字图像处理的研究,其主要内容可以分为以下几个过程。图像获取:这个过程基本上就是把模拟图像通过转换转变为计算机真正可以接受的数字图像,同时,将数字图像显示并且体现出来(例如彩色打印)。数据压缩和转换技术:通过数据压缩和数据转换技术的研究,减少数据载体空间,节省运算时间,实现不同星系遥感数据应用的一体化。图像分割:虽然国内外学者已提出很多种图像分割算法,但由于背景的多变性和复杂性,至今为止还没有一种能适用于各种背景的图像分割算法。当前提出的小波分析、模糊集、分形等新的智能信息处理方法有可能找到新的图像分割方法。图像校正:在理想情况下,卫星图像上的像素值只依赖于进入传感器的辐射强度;而辐射强度又只与太阳照射到地面的辐射强度和地物的辐射特性(反射率和发射率)有关,使图像上灰度值的差异直接反映了地物目标光谱辐射特性的差异,从而区分地物目标。图像复原:以图像退化的数学模型为基础,来改善图像质量表达与描述,图像分割后,输出分割标记或目标特征参数;特征提取:计算描述目标的特征,如目标的几何形状特征、统计特征、矩特征、纹理特征等。图像增强:显示图像中被模糊的细节,或是突出图像中感兴趣的特征。图像识别:统计模式识别、模糊模式识别、人工神经网络等。 2.数字图像处理设备研究 通常,要把模拟图像转化为数字图像,需要用到相应的一些图像数字化设备。常见的数字化设备有数字相机、扫描仪、数字化仪等。一般来说,图像的数字化包括采样和量化两个过程。图像在空间上的离散化称为采样。用空间上部分点的灰度值代表图像,这些点称为采样点。模拟图像经过采样后,离散化为像素。但像素值(即灰度值)仍是连续量。把采样后所得的各像素的灰度值从模拟量到离散量的转换称为图像灰度的量化。通常来说,采样点数越多,图像质量越好,但占空间大。当图像的采样点数一定时,量化级数越多,图像质量越好。数字图像处理系统由图像数字化设备、图像处理计算机和图像输出设备组成。 为完成上述功能,图像数字处理系统应当包含以下五个组成部分:1)采样孔;2)图像扫描机构;3)光传感器;4)量化器:将传感器输出的连续量转化为整数值;5)输出存储装置。 3.数字图像处理的应用领域研究 目前,数字图像处理主要被应用在以下几个方面:通信:图象传输,电视电话,HDTV 等;生物特征识别:基于生理特征的身份识别:指纹、人脸、虹膜等,基于行为特征的身份识别:步态、语音等,可以用于安保、视频监控等;光学字符识别:印刷体识别(例如:扫描识别软件),手写体识别(例如:手机手写字符识别);宇宙探测:星体图片处理;遥感:地形、地质、矿藏探查,森林、水利、海洋、农业等资源调查,自然灾害预测,环境污染的

相关主题
文本预览
相关文档 最新文档