当前位置:文档之家› 因104型空气分配阀故障造成车辆抱闸或缓解不良问题的分析及建议

因104型空气分配阀故障造成车辆抱闸或缓解不良问题的分析及建议

因104型空气分配阀故障造成车辆抱闸或缓解不良问题的分析及建议
因104型空气分配阀故障造成车辆抱闸或缓解不良问题的分析及建议

龙源期刊网 https://www.doczj.com/doc/8a16042580.html,

因104型空气分配阀故障造成车辆抱闸或缓解不良问题的分析及建议

作者:郭浩

来源:《硅谷》2011年第03期

摘要:随着我国准高速和高速旅客列车的广泛使用,列车提速范围不断扩大,为了使列

车在有效的制动距离内获得较大的制动力,需要制动机具备优良,准确、灵敏的制动缓解性能。如果旅客列车在运行途中制动机缓解不良,车辆长时间抱闸,严重时造成车轮踏面擦伤,可能引起车辆脱线等行车事故,给旅客运输工作带来严重后果。如何避免制动机在运用周期内不出现或少出现故障,这就需要我们仔细研究空气制动机在制造、检修和运用过程中出现的各种故障,分析其原因,以便解决问题。

关键词:车辆;104型空气分配阀;故障;分析

中图分类号:U2 文献标识码:A 文章编号:1671-7597(2011)0210177-01

1 车辆抱闸故障概述

近年来,旅客列车运行途中发生车辆抱闸事故较多,轻则引起轮对擦伤,重则造成车辆途中甩车,严重影响到旅客列车运行安全和正常的铁路运输秩序。因此对车辆抱闸故障作定性和定量分析,对确保列车运行安全,防止车辆抱闸故障的发生有着重要意义。我国铁路客车车辆使用最多的是104型空气分配阀,因此,本文以使用104型空气分配阀的车辆抱闸故障为研究对象,找出故障发生的原因,从而有效地采取安全对策,以减少事故的发生。

2 车辆抱闸故障案例分析

近几年通过对车辆抱闸事故的分析以及对104型空气分配阀出现缓解不良问题的实验和写实情况,发现造成104型空气分配阀缓解不良问题的原因主要集中以下几个方面:

2.1 104型空气分配阀作用部出现故障造成车辆缓解不良

案例1:有些104型空气分配阀在705试验台试验过程中出现制动后不缓解的问题,并且将操纵阀手把置于一位仍不缓解。当列车管经过减压进入制动状态后,再向列车管充风时,由于列车管风压持续上升,破坏了主活塞两侧原有制动位的压力平衡状态,列车管的压力超过工作风缸的压力并克服了滑阀的阻力,将主活塞连同滑阀一起推向充气缓解位。但是由于主活塞膜板穿孔、老化变质或龟裂,列车管的压力空气经主活塞膜板不密封处所漏向主活塞下侧,主活塞难以向缓解位移动,造成分配阀制动后不缓解或缓解慢。

2019新版车辆钳工高级模拟(7)

车辆钳工高级工 注意事项 1、考试时间:60分钟。 2、请在试卷标封处填写姓名、准考证号和所在单位的名称。 3、请仔细阅读答题要求,在规定位置填写答案。 一二三四五总分 得分 得分 评分人 一、单选题(第1题~第10题。选择一个正确的答案,将相应的字母填入题内的括号 中。每题2.0分,满分20.0分。) 1、车钩缓冲装置主要配件的故障包括(D )。(1.0分) A、钩尾框的磨耗和裂纹 B、从板、钩尾销、钩舌销横裂纹 C、车钩摆块、摆块吊裂纹和磨耗及钩尾销裂纹或磨耗过限 D、ABC三项 2、拆卸密接式钩缓装置,将钩体支撑水平,拆下4个(D )安装螺栓。 (1.0分) A、M12 B、M24 C、M30 D、M38 3、双层、25型客车车钩缓冲器段修要求:钩尾框扁销孔长度磨耗超过(A )时焊修。(1.0分) A、105mm B、115mm C、125mm D、135mm

4、道德具有独特的(A )。(1.0分) A、多层次性 B、不稳定性 C、社会性 D、不平衡性 5、二人以上共同作业时,必须加强(D ),严格按机具操作规程操作。 (1.0分) A、瞭望 B、互相指挥 C、步调一致 D、呼唤应答 6、大多数车轴疲劳断裂是由(A )逐渐发展而来的。(1.0分) A、裂纹 B、磨耗 C、腐蚀 D、超限 7、209HS型转向架摇枕吊轴裂纹时更换,轴身横向锻造皱纹须消除,消除后凹入深度不得超过(D)。(1.0分) A、5mm B、3mm C、4mm D、2mm 8、CW-200K型转向架轴箱节点定位套橡胶与金属件结合面之间产生开裂且长度超过1/4圆周,深度超过(B )时更换。(1.0分) A、4mm B、5mm C、6mm D、7mm 9、HMIS管理层主要有领导决策、生产组织、技术管理、安全管理、(A )等分系统(1.0分) A、质量验收 B、轮轴 C、站修 D、修配 10、转K4型摆动装置摇动轴中央脊背部上平面弯曲、变形大于(D )时更换。(1.0分)

铁路货车车辆基础知识

单项选择题 1.()是铁路货车技术管理信息系统的简称。(B) A. KMIS B. HMIS C. TMIS D. CMIS 2.铁路全部车辆按其用途可分为()。(B) A. 客车和货车 B. 客车、货车和特种用途车 C. 客车、货车和企业自备车 3.铁路货车虽种类繁多,但其结构大致相似。一般由哪五个基本部分组成?(A) A.车体、转向架、车钩缓冲装置、制动装置和车辆内部设备 B.车体、侧架、轮对、轴、轴承 C.车体、转向架、制动装置、动力装置、轮对 D.车体、转向架、制动装置、动力装置、轴承 4.车型C70中的字母C代表()。 (A) A. 敞车 B. 平车 C. 罐车 5.罐车属于()。(B) A. 通用货车 B. 专用货车 C. 特种车辆 6.毒品车属于()。(B) A、通用货车 B、专用货车 C、特种车辆 7.敞车属于()。(A) A、通用货车 B、专用货车 C、特种车辆 8.铁路货车主要车种基本型号编码中X代表()。(C) A、平车 B、矿石车 C、集装箱平车 9.铁路货车主要车种基本型号编码中N代表()。(A) A、平车 B、矿石车 C、集装箱平车 10.铁路货车车型中“SQ”代表()。(B) A、保温车 B、小汽车双层平车 C、水泥车 11.铁路货车车号采用()位数字代码。(C) A、制造企业自定 B、6 C、7 12.车辆供装载货物的部分称为()。(A) A. 车体 B. 底架 C. 地板 13.轴重是指车辆总重()与全车轮对数之比值。(A) A. 自重+载重 B. 自重+标记载重 C. 自重+超载重量

14.车辆底架两心盘中心间的水平距离叫()。(C) A. 固定轴距 B. 轴距 C. 车辆定距 15.车辆标记中○MC代表的含意()。(C) A、禁止进入机械化驼峰的车辆 B、此车可装运特种货物 C、符合国际联运条件的货车 16.空车时,车体或罐体上部外表面至轨面的垂直距离为()。(A) A、车辆高度 B、最大高度 C、实际高度 17.设计车辆时,根据各种条件所规定的容许速度叫做()。(B) A、实际速度 B、构造速度 C、最低速度 18.车辆白色横线标记代表的含意()。(C) A、装运酸碱类货物的罐车及专用危险品的特殊车体(或罐体); B、装运液化气体的特种罐车标记; C、救援列车的专用车辆标记; 19.车辆“特”字标记属于()。(B) A. 共同标记 B. 特殊标记 C. 专用标记 20.固定配属标记的专用货车应按规定涂打(),定期检修原则上均由配属段、专修段负责 施修。(B) A. 制造标记 B. 配属标记 C. 红色标记 D. 黄色标记 21.行包快运专列技检作业时间,有调中转为()。(C) A. 10分钟 B. 15分钟 C. 25分钟 D. 30分钟 22.偏载和偏重的区别是()。(B) A、偏载为左右偏,偏重为前后偏 B、偏载尚未超过每个转向架规定的压力,偏重超过了每个转向架规定的压力 C、偏载为一个货车转向架所受的压力超过货车标记载重的的1/2,偏重为超过了每个转向架规定的压力 23.车辆换长属于()。(A) A. 共同标记 B. 特殊标记 C. 专用标记 24.车辆换长的计算方法:车辆全长÷()。(B) A. 10M B. 11M C. 16M D. 18M

液压系统常见故障及排除方法.

液压系统常见故障及排除方法: 液压系统大部分故障并不是突然发生的,一般总有一些预兆。如噪声、振动、冲击、爬行、污染、气穴和泄漏等。如及时发现并加以适当控制与排除,系统故障就可以消除或相对减少。 一、振动和噪声 (一液压元件的合理选择 (二液压泵吸油管路的气穴现象 排除方法:(1增加吸油管道直径,减少或避免吸油管路的弯曲,以降低吸油速度,减少管路阻力损失。 (2选用适当地吸油过滤器,并且要经常检查清洗,避免堵塞。 (3液压泵的吸入高度要尽量小。自吸性能差的液压泵应由低压辅助泵供油。。 (4避免油粘度过高而产生吸油不足现象。 (5使用正确的配管方法。 (三液压泵的吸空现象 液压泵吸空主要是指泵吸进的油中混入空气,这种现象不仅容易引起气蚀,增加噪声,而且还影响液压泵的容积效率,使工作油液变质,所以是液压系统不允许存在的现象。 主要原因:油箱设计和油管安排不合理,油箱中的油液不足:吸油管浸入油箱太浅:液压泵吸油位置太高:油液粘度太大:液压泵的吸油口通流面积过小,造成吸油不畅:滤油器表面被污物阻塞:管道泄漏或回油管没有浸入油箱而造成大量空气进入油液中。

排除方法:(1液压泵吸油管路联接处严格密封,防止进入空气。(2合理设计油箱,回油管要以 45度的斜切口面朝箱壁并靠近箱壁插入油中。流速不应应太高, 防止回油冲入油箱时搅动液面而混入空气。油箱中要设置隔板。使油中气泡上浮后不会进入吸油管附近。 (3 油箱中油液要加到油标线所示的高度吸油管一定要浸入油箱的 2/3深度处, 液压泵的吸油口至液面的距离尽可能短,以减少吸油阻力。若油液粘度太高要更换低的油液。滤油器堵塞要及时清除污物。这样就能有效的防止过量的空气浸入。 (4采用消泡性好的工作油液,或在油内加入消泡剂。 (四、液压泵的噪声与控制 从液压泵的结构设计上下功夫。 (五、排油管路和机械系统的振动 避免措施:(1用软管连接泵与阀、管路。 (2配置排油管时防止共振与驻波现象发生。 (3配管的支撑应设在坚固定台架上。 (六、流体噪声(压力脉动控制措施: (1 安装减震软管 (2 在管路中设置蓄能器。 (3 在管路上安装消声器或串联滤声器。因体积大、费用高而应用较少。 二、液压冲击 (一液流换向时产生的冲击

溢流阀在液压系统中的作用

溢流阀在液压系统中起着控制压力的作用,如果出现故障,将会影响整个系统的稳定性、可靠性、运动粘度及正常工作。因此,对溢流阀出现的故障应引起足够重视,现介绍几种常见故障及维修方法。 1 .系统压力升不高 ( 1 )溢流阀主阀芯锥面密封差产生的原因有:①主阀芯锥面磨损或不圆。②阀座锥面磨损或不圆。③锥面处有脏物粘住。④主阀芯锥面与阀座锥面不同心。⑤主阀苍工作时有别劲现象,使阀芯与阀座配合不严密。⑥主阀压盖处有泄漏( 如密封垫损坏,装配不良,压盖螺钉有松动等) 。 ( 2 )先导阀故障调压弹簧弯曲或太弱、太短。锥阀与阀座结台处密封差( 如锥阀与阀座磨损,锥阀接触面不圆,接触面太宽容易进^脏物或被胶质粘住) 。 ( 3 )远控口电磁阀故障电磁阀常闭位置时内泄严重;阀口处阀体与滑阀磨损严重;滑阀换向未达到最终位置,造成油封长度不足;远控口管接头处有外泄漏维护方法:清洗、修配阀芯与阅座.使之密封良好,必要时更换溢流阀,消除外泄漏。 2.压力波动、不稳定、不规则的压力变化原因:油液中有微小灰尘,使主阀芯滑动不灵活,有时会使阀卡住,产生不规则的压力变化,或者主阀芯时堵时通。不顺畅。其次是主阀芯阀面与阀座锥面接触不良,磨损不均。阻尼L 径太大,阻尼作用差。先导阀调整弹簧弯曲锥阀与锥阀座接触不好、磨损不均。调节压力的螺钉由于锁紧螺母松动而使压力变动。 维护方法:无论是新旧机床的液压系统,在使用前和维修后,油箱和管路都要进行清洗,进入系统的液压油要过滤;阀类要拆卸清洗,修配或更换不合格的零件或整个阀,适当减小阻尼孔径。 3.压力完全加不上去 ( 1 )主阀故障由于主阀芯阻尼孔被堵,主阀芯在开启位置卡住卡死.主阀芯复位弹簧折断或弯曲,使主阀芯不能复位一维护方法:清洗阻尼孔,使之畅通;油液过滤或更换;拆开检修,重新装配,更换折断或弯曲的弹簧;阀盖紧固螺钉拧紧力要均匀。 ( 2 )先导阀的故障调压弹簧折断或未装入,锥阀或钢球未装,锥阀碎裂维护方法:更换或补装零件,使之正常工作。 ( 3 )远控口电磁阀故障电磁阀未通电( 常开)或滑阀卡死。维护方法:检查线路,接通电源,检修,更换零件。 ( 4 )装错进出油口装错了,要纠正过来。 ( 5 )液压泵故障滑动表面问间隙过大;叶片泵的太多数叶片在转子槽内卡死;叶片和转子方向装反。维护方法:修配间隙,清洗、纠正装错方向。 4.压力突然升高 ( 1 )主闽故障主阀芯工作不灵敏,在关闭状态突然卡死( 如零件加工精度低,装配质量差,油液中杂质多等) 。 ( 2 )先导闻故障先导阀阀芯与阀座结合面被粘住、脱不开;调压弹簧弯曲、别劲。维护方法:清洗、修配、更换溢流阈。 5 .压力突然下降

液压阀常见故障维修

溢流阀常见故障与解决 1.系统压力波动 引起压力波动的主要原因: ①调节压力的螺钉由于震动而使锁紧螺母松动造成压力波动;②液压油不清洁,有微小灰尘存在,使主阀芯滑动不灵活.因而产生不规则的压力变化.有时还会将阀卡住;③主阀芯滑动不畅造成阻尼孔时堵时通;④主阀芯圆锥面与阀座的锥面接触不良好,没有经过良好磨合;⑤主阀芯的阻尼孔太大,没有起到阻尼作用;⑥先导阀调正弹簧弯曲.造成阀芯与锥阀座接触不好,磨损不均。 解决方法:①定时清理油箱,管路,对进入油箱,管路系统的液压油要过滤; ②如管路中已有过滤器,则应增加二次过滤元件.或更换二次元件的过滤精度;并对阀类元件拆卸清洗,更换清洁的液压油;③修配或更换不合格的零件;④适当缩小阻尼孔径。 2.系统压力完全加不上去 原因: A:①主阀芯阻尼孔被堵死,如装配对主阀芯未清洗干净,油液过脏或装配时带人杂物;②装配质量差,在装配时装配精度差.阀间间隙调整不好,主阀芯在开启位置时卡住,装配质量差;③主阀芯复位弹簧折断或弯曲,使主阀芯不能复位。 解决方法:①拆开主阀清洗阻尼孔并从新装配;②过滤或更换油液;③拧紧阀盖紧固螺钉更换折断的弹簧。 B:先导阀故障,①调正弹簧折断或未装入,②锥阀或钢球未装,③锥阀碎裂。 解决方法:更换破损件或补装零件,使先导阀恢复正常工作。 C:远控口电磁阀未通电(常开型)或滑阀卡死。 解决方法:检查电源线路,查看电源是否接通;如正常,说明可能是滑阀卡死,应检修或更换失效零件。 D:液压泵故障:①液压泵联接键脱落或滚动;②滑动表面间问隙过太;③叶片泵的叶片在转子槽内卡死;④叶片和转子方向装反;⑤叶片中的弹簧因所受高频周期负载作用,而疲劳变形或折断。

液压缸常见故障及处理

液压缸常见故障及处理 故障现象原因分析消除方法 (一)活塞杆不能动作 1.压力不足 (1)油液未进入液压缸 1)换向阀未换向 2)系统未供油 (2)虽有油,但没有压力 1)系统有故障,主要是泵或溢流阀有故障 2)内部泄漏严重,活塞与活塞杆松脱,密封件损坏严重 (3)压力达不到规定值 1)密封件老化、失效,密封圈唇口装反或有破损 2)活塞环损坏 3)系统调定压力过低 4)压力调节阀有故障 5)通过调整阀的流量过小,液压缸内泄漏量增大时,流量不足,造成压力不足1 )检查换向阀未换向的原因并排除 2)检查液压泵和主要液压阀的故障原因并排除 1)检查泵或溢流阀的故障原因并排除2)紧固活塞与活塞杆并更换密封件

1)更换密封件,并正确安装 2)更换活塞杆 3)重新调整压力,直至达到要求值 4)检查原因并排除 5)调整阀的通过流量必须大于液压缸内泄漏量 2.压力已达到要求但仍不动作 (1)液压缸结构上的问题 1)活塞端面与缸筒端面紧贴在一起,工作面积不足,故不能启动 2)具有缓冲装置的缸筒上单向阀回路被活塞堵住 (2)活塞杆移动“别劲” 1)缸筒与活塞,导向套与活塞杆配合间隙过小 2)活塞杆与夹布胶木导向套之间的配合间隙过小 3)液压缸装配不良(如活塞杆、活塞和缸盖之间同轴度差,液压缸与工作台平行度差) (3)液压回路引起的原因,主要是液压缸背压腔油液未与油箱相通,回油路上的调速阀节流口调节过小或连通回油的换向阀未动作 1 )端面上要加一条通油槽,使工作液体迅速流进活塞的工作端面 2)缸筒的进出油口位置应与活塞端面错开 1)检查配合间隙,并配研到规定值 2)检查配合间隙,修刮导向套孔,达到要求的配合间隙3)重新装配和安装, 不合格零件应更换 检查原因并消除

泵车配件溢流阀故障预防措施解析

泵车配件溢流阀故障预防措施解析 减小或消除泵车配件先导式溢流阀噪声和振动的措施,一般是在导阀部分加置消振元件。消振套一般固定在导阀前腔,即共振腔内,不能自由活动。 在消振套上都设有各种阻尼孔,以增加阻尼来消除震动。另外,由于共振腔中增加了零件,使共振腔的容积减小,油液在负压时刚度增加,根据刚度大的元件不易发生共振的原理,就能减少发生共振的可能性。 消振垫一般与共振腔活动配合,能自由运动。消振垫正反面都有一条节流槽,油液在流动时能产生阻尼作用,以改变原来的流动情况。由于消振垫的加入,增加了一个振动元件,扰乱了原来的共振频率。共振腔增加了消振垫,同样减少了容积,增加了油液受压时的刚度,以减少发生共振的可能性。 在消振螺堵上设有蓄气小孔和节流边,蓄气小孔中因留有空气,空气在受压时压缩,压缩空气具有吸振作用,相当于一个微型吸振器。小孔中空气压缩时,油液充入,膨胀时,油液压出,这样就增加了一个附加流动,以改变原来的流动情况。故也能减小或消除噪声和振动。 另外,如果溢流阀本身的装配或使用权用不当,也都会造成振动,产生噪声。如三节同心式溢流阀,装配时三节同心配合不当,使用时流量过大或过小,锥阀的不正常磨损等。在这种情况下,应认真检查调整,或更换零件。 调压失灵 溢流阀在使用中有时会出现调压失灵现象。先导式溢流阀调压失灵现象有二种情况:一种是调节调压手轮建立不起压力,或压力达不到额定数值;另一种调节手轮压力不下降,甚至不断升压。出现调压失灵,除阀芯因种种原因造成径向卡紧外,还有下列一些原因: 第一是主阀体(2)阻尼器堵塞,油压传递不到主阀上腔和导阀前腔,导阀就失去对主阀压力的调节作用。因主阀上腔无油压力,弹簧力又很小,所以主阀变成了一个弹簧力很小的直动型溢流阀,在进油腔压力很低的情况下,主阀就打开溢流,系统就建立不起压力。 压力达不到额定值的原因,是调压弹簧变形或选用错误,调压弹簧压缩行程不够,阀的内泄漏过大,或导阀部分锥阀过度磨损等。 第二是阻尼器(3)堵塞,油压传递不到锥阀上,导阀就失去了支主阀压力的调节作用。阻尼器(小孔)堵塞后,在任何压力下锥阀都不会打开溢流油液,阀内始终无油液流动,主阀上下腔压力一直相等,由于主阀芯上端环形承压面积大于下端环形承压面积,所以主阀也始终关闭,不会溢流,主阀压力随负载增加而上升。当执行机构停止工作时,系统压力就会无限升高。除这些原因以外,尚需检查外控口是否堵住,锥阀安装是否良好等。

怠速控制阀的故障与排除

怠速控制阀的故障与排除 姓名:詹剑鹏 班级:06汽车运用技术一班学号:06124084 指导教师:林文光(老师)

目录 摘要 (1) 前言................................. 错误!未定义书签。正文................................. 错误!未定义书签。 (一)故障现象 (1) (二)故障原因分析诊断 (1) 2-1.进气系统 (2) 2-2. 燃油系统 (2) 2-3. 点火系统 (2) 2-4. 机械结构 (3) (三)故障诊断与排除 (4) 3-1检查各线接头 (4) 3-2检查快怠速感温阀 (4) 3-3检查高压线及分电器 (4) 3-4检查真空管路 (4) (四)EGR的结构及工作原理 (5) 结论 (6) 结束语 (6) 致谢: (7)

摘要 本文主要介绍一辆1994款的本田雅阁轿车,冷车怠速一切正常,但车主反映,此车行驶一段时间后,例如在路上等红灯停车,会发生怠速不稳,甚至会发生熄火现象。通过故障诊断与合理的分析,并结合一定的实际经验利用车间的工艺把故障排除。 关键词:怠速不稳 EGR阀故障诊断故障排除分析 前言 发动机怠速不稳是汽车使用中常见的故障之一。尽管现在大多数的轿车都有故障自诊断系统,但也会出现汽车有故障面自诊断系统却显示正常代码或显示与故障无关的代码的情况。这通常是由不受电控单元(ECU)直接控制的执行装置发生故障或传统机械故障成。我们作为汽车维修的一线人员,除了要认真学好汽车基本构造等一般理论知识,更要对某一款,或某几款车做到精益求精,举一反三,真真正正排除故障,给汽车行业的发展做出贡献。 正文 (一)故障现象 一辆94款发动机为F22B2的雅阁轿车,在冷车过程中没有不正常现象,热车时怠速不稳。 利用自诊断系统读取故障码,电控系统没有故障存储。我们等该车发动机冷却,再着火,发现过程中突然出现了发动机怠速在800~1200r/min之间波动的现象。该车冷机起动时,发动机转速为1200r/min,属于冷机怠速,此时发动机运转平稳,但发动机大约运转5min后,发动机转速忽高忽低,发动机转速表在800~1200r/min之间有规律地波动,但是仪表板报上的发动机故障指示灯不亮。 (二)故障原因分析诊断 我们知道,如图1所示,该发动机电控系统是通过各种传感器将发动机的温度、空燃比.油门状况、发动机的转速、负荷、曲轴位置、车辆行驶状况等信号输入电子控制装置.电子控制装置根据这些信号参数.计算并控制发动机各气缸所需要的喷油量和喷油时刻,将汽油在一定压力下通过喷油器喷入到进气管中雾化。并与进入的空气气流混合,进入燃烧室燃烧,从而确保发动机始终工作在最佳状态。

分配阀的工作原理与结构解析

分配阀根据列车管内的压力变化来控制作用风缸的充气和排气,并通过变向阀,作用阀的作用来实现机车的制动,保压或缓解。分配阀在空气制动机中的重要性,如同人的心脏一样,如果一旦发生故障,则整个车辆空气制动机的作用就会完全失效,行车安全就没有保证。 分配阀(图1) 分配阀的构造 104 型空气分配阀由主阀、紧急阀和中间体三部分组成,主阀和紧急阀都是用螺栓与中间体连接。中间体用螺栓安装在车底架上。 中间体 中间体用铸铁铸成,外形呈长方体形,外部四个立面分别作为主阀、紧急阀安装座和制动管、工作风缸管、副风缸管、制动缸管的管座,内部为三个独立的空腔经通道与主阀座或紧急阀座相关孔连通。中间体上紧急阀安装座在靠车体的外侧面,与紧急阀安装座相邻的右侧面为主阀安装座,与紧急阀安装座相邻的左侧面上方管座为工作风缸连接管座,下方为制动管连接管座,另一个侧面上方管座为副风缸连接管座,下方为制动缸连接管座。中间体内有三个空腔,靠紧急阀安装座侧的上角部为1.5L的紧急室,下角部为0.6L的局减室,另有占中间体很大容积(3.8L)的容积室。中间体主阀安装座面的列车管通路L上设有过滤性能、机械性能优越的杯形滤尘器。

中间体各通路及外形图(图2) 主阀 主阀是分配阀的心脏部件,它根据制动管不同的压力变化,控制制动机实现充气、缓解、制动、保压等作用。主阀由作用部、充气部、均衡部、局减阀部、增压阀部等五部分组成。 主阀分解结构外形图(图3)

紧急阀 紧急阀是专为改善列车紧急制动性能而独立设置的。动作、作用不受主阀部的牵制和影响。紧急阀的功用是在紧急制动减压时,产生强烈的制动管紧急局部减压,加快制动管的排气速度,提高列车制动机紧急制动的灵敏度及可靠性,提高紧急制动波速,改善紧急制动性能。紧急阀由紧急阀上盖、紧急活塞杆、密封圈、紧急活塞、紧急活塞膜板、紧急活塞压板、压板螺母、安定弹簧、放风阀座、紧急阀体、排气保护罩垫、排气垫铆钉、滤尘网、放风阀(橡胶夹心阀)、放风阀弹簧、放风阀导向杆、放风阀套、紧急阀下盖等组成。 紧急阀分解结构外形图(图4)

车辆制动机 习题集 --1

列车制动习题 第一章1绪论 一、判断题 1.人为地施加于运动物体(含防止其加速)或停止运动或施加于静止物体,保持其静止状态。这种作用被称为制动作用。() 2.解除制动作用的过程称为缓和。() 3.制动波是一种空气波。() 4.实现制动作用的力称为阻力。 5.制动距离 6.缓解位储存压缩空气 7.制动时 二、选择题 1.基础制动装置通常包括()。 A转向架基础制动装置B空气制动装置 C手制动机D机车制动装置 2.仅用于原地制动或在调车作业中使用的制动机是。 A电空制动机B真空制动机C手制动机D自动空气制动机 3.自动式空气制动机的特点是。 A增压缓解一旦列车分离全车均能自动制动而停车。 B增压制动 C增压制动 D增压缓解 4.安装于机车上通过它向制动管充入压缩空气或将制动管压缩空气排向大气。 A调压阀B自动制动阀C空气压缩机D三通阀 5.将总风缸的压缩空气调整至规定压力后。 A调压阀B紧急制动阀C空气压缩机D三通阀 6.和制动管连通,根据制动管空气压力的变化情况,从而控制向副风缸充入压缩空气的同时把制动缸内压缩空气排向大气实现制动机缓解或者将副风缸内压缩空气充入制动缸产生制动机制动作用的是。 A调压阀B紧急制动阀C空气压缩机D三通阀 7.三通阀(分配阀或控制阀)属压力机构阀,是自动空气制动机的关键部件。 A一B二C三D混合 8.三通阀发生充气、缓解作用时。 A列车管通过三通阀的充气沟向副风缸充气。 B制动内压缩空气通过三通阀排气口排入大气。 C列车管通过三通阀的充气沟向副风缸充气阀内联络通路进入制动缸。 D列车管通过三通阀的充气沟向副风缸充气阀排气口排入大气。9.三通阀发生制动作用时。 A副风缸内压缩空气通过三通阀内联络通路进入制动缸。 B制动内压缩空气通过三通阀排气口排入大气。 C列车管停止向副风缸充气再上升。 D列车管通过三通阀的充气沟向副风缸充气阀排气口排入大气。

液压阀常见故障维修技巧教学文案

液压阀常见故障维修 技巧

溢流阀常见故障与解决 1.系统压力波动 引起压力波动的主要原因: ①调节压力的螺钉由于震动而使锁紧螺母松动造成压力波动;②液压油不清洁,有微小灰尘存在,使主阀芯滑动不灵活.因而产生不规则的压力变化.有时还会将阀卡住;③主阀芯滑动不畅造成阻尼孔时堵时通;④主阀芯圆锥面与阀座的锥面接触不良好,没有经过良好磨合;⑤主阀芯的阻尼孔太大,没有起到阻尼作用;⑥先导阀调正弹簧弯曲.造成阀芯与锥阀座接触不好,磨损不均。 解决方法:①定时清理油箱,管路,对进入油箱,管路系统的液压油要过滤;②如管路中已有过滤器,则应增加二次过滤元件.或更换二次元件的过滤精度;并对阀类元件拆卸清洗,更换清洁的液压油;③修配或更换不合格的零件;④适当缩小阻尼孔径。 2.系统压力完全加不上去 原因: A:①主阀芯阻尼孔被堵死,如装配对主阀芯未清洗干净,油液过脏或装配时带人杂物;②装配质量差,在装配时装配精度差.阀间间隙调整不好,主阀芯在开启位置时卡住,装配质量差;③主阀芯复位弹簧折断或弯曲,使主阀芯不能复位。 解决方法:①拆开主阀清洗阻尼孔并从新装配;②过滤或更换油液;③拧紧阀盖紧固螺钉更换折断的弹簧。 B:先导阀故障,①调正弹簧折断或未装入,②锥阀或钢球未装,③锥阀碎裂。 解决方法:更换破损件或补装零件,使先导阀恢复正常工作。 C:远控口电磁阀未通电(常开型)或滑阀卡死。 解决方法:检查电源线路,查看电源是否接通;如正常,说明可能是滑阀卡死,应检修或更换失效零件。

D:液压泵故障:①液压泵联接键脱落或滚动;②滑动表面间问隙过太; ③叶片泵的叶片在转子槽内卡死;④叶片和转子方向装反;⑤叶片中的弹簧因所受高频周期负载作用,而疲劳变形或折断。 解决方法:①更换或从新调正联接键,并修配键槽;②修配滑动表面间间隙;③拆卸清洗叶片泵;④纠正装错方向;⑤更换折断弹簧。 E:进出油口装反,调正过来。 3.系统压力升不高 原因: A:①主阀芯锥面磨损或不圆,阀座锥面磨损或不圆;②锥面处有脏物粘住;③锥面与阀座由于机械加工误差导致的不同心;④主阀芯与阀座配合不好,主阀芯有别劲或损坏,使阀芯与阀座配合不严密,⑤主阀压盖处有泄漏,如密封垫损坏,装配不良,压盖螺钉有松动等。 解决方法:①更换或修配溢流阀体或主阀芯及阀座,②清洗溢流阀使之配合良好或更换不合格元件,③拆卸主阀调正阀芯,更换破损密封垫,消除泄漏使密封良好。 B:先导阀调正弹簧弯曲或太短、太软,致使锥阀与阀座结合处封闭性差,如锥阀与阀座磨损,锥阀接触面不圆,接触面太宽,容易进入脏物,或被胶质粘住。 解决方法:更换不合格件或检修先导阀,使之达到使用要求。 C:①远控口电磁常闭位置时内漏严重;②阀口处阀体与滑阀严重磨损; ③滑阀换向未达到正确位置,造成油封长度不足;④远控口管路有泄漏。 解决方法:①检修更换失效件,使之达到要求,②检查管路消除泄漏。 4.压力突然升高 原因: A:①由于主阀芯零件工作不灵敏,在关闭状态时突然被卡死;②加工的液压元件精度低,装配质量差,油液过脏等原因。 B:先导阀阀芯与阀座结合面粘住脱不开,造成系统不能实现正常卸荷;调正弹簧弯曲“别劲”。 解决方法:清洗主阀阀体,修配更换失效零件。 5.压力突然下降

怠速控制阀检修

怠速控制阀检修 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

实验四怠速控制阀检修 一、实验目的: 1.掌握怠速控制系统的工作原理。 2.掌握怠速控制阀的种类及工作原理。 3.掌握怠速控制阀的检修方法及常用工具的使用方法。 二、实验设备及器材 丰田8A发动机台架1台,几种常用怠速控制阀,万用表2块及导线若干。 三、实验原理 怠速控制系统主要有传感器、ECU和执行元件三部分组成。控制怠速进气量的基本类型有节气门直动式和旁通空气式。节气门直动式通过执行元件改变节气门的最小开度来控制怠速进气量。旁通空气怠速控制系统中,设有旁通空气道,由执行元件控制流经怠速空气道的空气量。旁通空气式怠速控制系统按执行元件不同分:步进电机型、旋转电磁阀型、占空比型和开关型等。 1.步进电机型 步进电机型怠速控制阀主要有转子和定子组成,丝杠机构将步进电机的旋转运动转变为阀杆的直线运动,使阀芯作轴向移动,改变阀芯与阀座之间的间隙,从而改变怠速空气道的流通截面,控制发动机怠速工况下的进气量。

工作原理:当ECU控制使步进电机的线圈按1-2-3-4顺序依次搭铁时,定子磁场顺时针转动,由于与转子磁场间的相互作用,使转子随定子磁场同步转动。同理,步进电机的线圈按相反顺序通电时,转子随定子磁场同步反转。转子每转一步与定子错开一个爪极的位置,定子有32个爪极,所以步进电机每转一步为1/32圈,步进电机的工作范围为0~125个步进级。如图1所示。 图1 步进电机原理 2.旋转电磁阀型 ECU控制两个线圈的通电或断开,改变两个线圈产生的磁场强度,两线圈产生的磁场与永久磁铁形成的磁场相互作用,即改变控制阀的位置,从而调节怠速空气口的开度,以实现怠速空气量的控制。双金属片制成的卷簧,主要起保护作用。当流过阀体冷却液腔的冷却液温度变化时,双金属片变形,带动挡块转动,从而改变阀轴转动的两个极限位置,以控制怠速控制阀的最大开度和最小开度。 工作原理:ECU控制旋转电磁阀型怠速控制阀工作时,控制阀的开度是通过控制两个线圈的平均通电时间(占空比)来实现的。如图2所示。 图2 旋转电磁阀式控制原理 四、实验内容 1.步进电机怠速控制阀检修方法

104分配阀论文

1.论文封面 武汉铁路职业技术学院 毕业论文 课题名称104型分配阀 系部机车车辆工程系 专业铁道机车车辆 班级车辆091 指导教师何洲红 学生姓名翟小春 学号09931995 二○一二年五月

2. 摘要 摘要 随着我国准高速和高速旅客列车的广泛使用,列车提速范围不断扩大,为了使列车在有效的制动距离内获得较大的制动力,需要制动机具备优良,准确、灵敏的制动缓解性能。在列车实施制动、缓解操纵时,编组中每辆车的制动、缓解、保压等过程同步进行,能够减少制动和缓解过程中的列车纵向冲动,提高旅客列车运行的平稳性和列车操纵的灵活性。而控制制动机形成充气缓解、常用制动、制动保压、紧急制动等各种不同的作用位置的就是104型分配阀。如果104型分配阀故障,会导致旅客列车在运行途中制动机缓解不良,车辆长时间抱闸,严重时造成车轮踏面擦伤,可能引起车辆脱线等行车事故,给旅客运输工作带来严重后果。为了杜绝这样的事故出现,这就需要我们仔细研究104型分配阀在制造、检修和运用过程中出现的各种故障,分析其原因,以便解决问题。 【关键词】高速制动机 104型分配阀紧急制动充气缓解保压

3.论文目录 目录 一、104型空气分配阀构造....................................... (一)中间体................................................... (二)主阀..................................................... (三)紧急阀................................................... 二、104型空气分配阀作用原理................................... (一)充气缓解位................................................ (二)常用制动位................................................ (三)制动保压位................................................. (四)紧急制动位.................................................

浅谈定压溢流阀

主要作用 定压溢流作用:在定量泵节流调节系统中,定量泵提供的是恒定流量。当系统压力增大时,会使流量需求减小。此时溢流阀开启,使多余流量溢回油箱,保证溢流阀进口压力,即泵出口压力恒定(阀口常随压力波动开启)。 稳压作用:溢流阀串联在回油路上,溢流阀产生背压,运动部件平稳性增加。 系统卸荷作用:在溢流阀的遥控口串接溢小流量的电磁阀,当电磁铁通电时,溢流阀的遥控口通油箱,此时液压泵卸荷。溢流阀此时作为卸荷阀使用。 安全保护作用:系统正常工作时,阀门关闭。只有负载超过规定的极限(系统压力超过调定压力)时开启溢流,进行过载保护,使系统压力不再增加(通常使溢流阀的调定压力比系统最高工作压力高10%~20%)。 实际应用中一般有:作卸荷阀用,作远程调压阀,作高低压多级控制阀,作顺序阀,用于产生背压(串在回油路上)。 溢流阀一般有两种结构:1、直动型溢流阀。2、先导式溢流阀。

对溢流阀的主要要求:调压范围大,调压偏差小,压力振摆小,动作灵敏,过载能力大,噪声小。 注意事项 噪声和振动 液压装置中容易产生噪声的元件一般认为是泵和阀,阀中又以溢流阀和电磁换向阀等为主。产生噪声的因素很多。溢流阀的噪声有流速声和机械声二种。流速声中主要由油液振动、空穴以及液压冲击等原因产生的噪声。机械声中主要由阀中零件的撞击和磨擦等原因产生的噪声。 (1)压力不均匀引起的噪声 先导型溢流阀的导阀部分是一个易振部位如图3所示。在高压情况下溢流时,导阀的轴向开口很小,仅0.003~0.006厘米。过流面积很小,流速很高,可达200米/秒,易引起压力分布不均匀,使锥阀径向力不平衡而产生振动。另外锥阀和锥阀座加工时产生的椭圆度、导阀口的脏物粘住及调压弹簧变形等,也会引起锥阀的振动。所以一般认为导阀是发生噪声的振源部位。 由于有弹性元件(弹簧)和运动质量(锥阀)的存在,构成了一个产生振荡的条件,而导阀前腔又起了一个共振腔的作用,所以锥阀发生振动后易引起整个阀的共振而发出噪声,发生噪声时一般多伴随有剧烈的压力跳动。

溢流阀控制压力不稳定的原因和解决办法

溢流阀控制压力波动大,振动大的原因及解决办法 溢流阀用于控制系统压力设定,在实际使用中,可能出现溢流阀控制压力不准确,出现较大范围的波动,或溢流阀在动作时会产生很大振动及噪音。这些非正常现象通常因以下原因造成: 1 液压油中混有较多空气。当液压油中有气泡产生,由于气体容易被压缩,因此在系统的低压区域内,气泡的体积相对较大,而当气泡随着液流进入系统的高压部分,由于压力的变大导致气泡收缩,体积可能突然变小。当液压油中混杂足够数量的气泡,其体积的突然变化容易引起压力不稳定,出现上下波动,同时也容易引发噪音,振动等问题。因此液压系统设计时应充分考虑防止液压油进入气体,同时注意使用中的维护。 2 溢流阀每种型号均有其额定的使用流量范围,与大部分液压阀一样,实际使用中的最大流量应小于液压阀的额定流量。当液压系统的实际流量远远大于溢流阀的最大允许流量时,也容易产生压力波动范围大等问题。 3 溢流阀的主阀芯有可能因液压油中的杂质卡阻而导致运动不畅,也可能引起压力调节出现波动甚至无法调节压力到指定范围。应注意液压油清洁度保持在规定范围内。 4 溢流阀的压力调节通常依靠手柄进行手动调节。当调节到合适压力后,应注意用锁紧螺母将调节手柄固定在所需位置。否则因系统振动,人员误操作等原因,也可能导致调节手柄振动,进而引起压力小范围波动。 5 溢流阀虽然用于控制系统压力,但液压泵的压力,流量波动大,也会引

起溢流阀出现压力波动。应首先排除液压泵的输出问题。 6 溢流阀,特别是使用溢流阀的遥控口进行控制时,如果与遥控口相连接的油管内空间过大,也极易引起振动及噪音。因此在设计系统时应该注意尽可能减小这部分配管的直径和长度,以避免此类问题。 7 更换同规格压力表,以排除压力表故障所导致的问题。 8 液压系统吸油不畅也会造成压力有较大变化,出现振动等问题。一般情况是因滤油器选型不当或严重堵塞导致。

5种液压系统常见故障原因、表现及消除方法

5种液压泵站常见故障及液压老师傅的实战解决方法 液压系统故障一、之压力不正常 液压系统压力不正常主要表现为工作压力建立不起来、升不到调定值或压力过高,其原因往往与发动机、泵和阀等许多部分有关。在检修中,按照发动机、泵和阀等部分的功能,依顺序隔离出一个回路或一个元件分别诊断、排除,最后找出故障的真正原因并排除。 1.表现:没有压力,压力指数为0 故障原因1.液压泵吸不进油液 情况a.液压油不足 消除办法:加液压油至液位计的标定高度。(一般油面高度为油箱的0.8倍)。 情况b.滤油器堵塞、液流通道太小和油液粘度过高,以致吸不上油。 消除办法:清洗或更换滤油器,或更换液压油。

故障原因2:溢流阀阀芯卡死或溢流阀损坏,油液全部从溢流阀溢回油箱。消除方法:溢流阀清洗或更换 故障原因3.液压泵装配不当、泵不工作、液压泵损坏 消除方法:重新装配、修理或更换液压泵 故障原因4.泵的定向控制装置位置错误 消除方法:检查控制装置线路 故障原因5.泵的驱动装置扭断 消除方法:更换、调整联轴器

2.表现:压力不足 故障原因1.溢流阀旁通阀损坏 溢流阀密封件损坏,主阀芯及锥阀芯磨损过大,造成内、外泄漏严重,压力不稳定、忽高忽低。 消除方法:更换溢流阀的密封件或阀芯 故障原因2.减压阀或溢流阀设定值过低 消除方法:重新设定 故障原因3.集成通道块设计有误 消除方法:重新设计 故障原因4.减压阀损坏 减压阀出油口压力由于以下原因不能上升到额定压力值:①调压弹簧永久性变形,压缩行程不够。应在弹簧底座加调整垫片,如仍无改善则更换;②锥阀磨损过大,清洗锥阀,更换损坏件。

MBRV减压阀的安装顺序:7通过旋紧与6固定,5垫片,衔接弹簧4与6;阀芯2放置于3中心孔位置,1通过旋紧与3底部固定。更换掉相应损坏的部件并安装完整。 故障原因5.泵、马达或缸损坏、內泄大 消除方法:修理或直接更换 故障原因6.泵转速过低 检查电动机及控制,电动机功率不足或转速达不到规定要求。 消除方法:检查电压,校核电动机性能。 故障原因7.油箱油液面低 消除方法:加油至标定高度。标定高度:油位在红线与黑线之间。(一般油面高度为油箱的0.8倍)。 3表现:压力不稳定

国内常见车型怠速控制系统分析(修车经典)

国内常见车型怠速控制系统分析(修车经典) 一、北京现代索纳塔怠速控制执行器 怠速控制执行器安装在节气门体上,有电脑ECU控制。调整发动机的怠速。怠速控制执行器有双重线圈组成,两个线圈受ECU内部两个单独驱动控制电路控制。两个线圈的磁力平衡改变怠速阀的角度。与节气门平行地安排的一个软管,并在此插入执行器。 怠速控制器有3个插头,如图2-3-41所示,在环境温度为20℃时,2号和3号端子之间电阻为10.5-14.0Ω,1号和2号端子之间电阻为10.0-12.5Ω. 1、故障诊断过程 点火开关在ON位置.怠速控制系统中 形成断路或开放回路时.使用万用表检查 怠速控制执行器. 2、检查线束步骤: 1)按图2-3-42所示,测量执行器电源,把线 束连接器断开,接通点火开关位ON置于,用电压表测量电源电压,应为系统电压,否则检查电源线束. 2)按图2-3-43所示,检查ECM和怠速控制阀之间的断路或搭铁侧断路.必要时更

换线束. 3、检查执行器: 1)分离怠速控制阀的接头. 2)检查端子之间电阻.如图2-3-44所示. 标准值:端子3和2:10.5-14Ω;端子1和3;10-12.5Ω(20℃). 3)连接怠速控制阀接头。 二、上海凯越怠速空气控制电路 (IAC)阀 怠速空气控制 电路 1、怠速空气系统的工作: 怠速空气控制的工作由节气门体和怠速空气控制阀的基本怠速设定控制。发动机控制模块利用怠速空气控制阀,根据工况设置怠速。发动机控制模块利用各种信号,如发动机冷却液温度.进气歧管真空度等对怠速转速实现有效的控制。

线圈阻值为40——80欧姆。 2、怠速学习程序操作步骤 步骤1234567891011 将点火开关拧到ON 位置,保持5S 将点火开关拧到OFF 位置,保持5S 将点火开关拧到ON 位置,保持5S 变速器设定在空挡/驻车位置,起动发动机 保持发动机运转,直至发动机冷却液温度超过85摄氏度开启空调10S 关闭空调 10S 如果车辆配备的是自动变速驱动桥,则拉起驻车制动器。踩下制动踏板,将变速杆挂在D 档开启空调10S 关闭空调10S 关闭点火开关,怠速控制学习程序完成 三、君威2.5.L 3.0L 1、怠速空气控制阀(IAC ) 怠速空气控制阀(IAC )是一个执行元件,它的作用就是控制发动机在不同 怠速工况下,保持适当的转速。IAC 阀位于节气门体上跨越节流片的一个旁通气道上,见图6-26。 它带有一个可移动针阀,由一个小步进电机驱动,其移动的单位测量值称为“步”。IAC 阀对发 动机怠速转速的控制原理见图6-27,IAC 阀工作原理见6-28,IAC 阀电路图见图6-29。

铁路客车F8型空气分配阀

铁路客车F8型空气分配阀 作者 刘云峰 内容提要:本文叙述了F8型空气分配阀的产生、组成及其功能。 ※ ※ ※ 1 概述 在20世纪20年代,铁路客车都使用L型三通阀,这种阀有一定的缺点:主要是结构形式落后;作用性能简单;制动波速低;灵敏度差;紧急制动作用不可靠等。后来出现的GL型三通阀,性能上有所提高,但是随着铁路列车不断扩编,列车越来越长,而客车三通阀和分配阀不能适应这种要求,故制动灵敏度和操纵灵活性越来越差,在20世纪60年代,开始研制104型分配阀,1975年11月经铁道部初步定型及批准逐步推广使用。由于104型分配阀不具有阶段缓解功能,不适合在长大坡道上使用,因此,在20世纪80年代,铁道部工业总公司四方车辆研究所和天津机车车辆机械工厂共同研制了供客车使用的F8型空气分配阀。 下面重点介绍一下F8型空气分配阀。 2 F8型分配阀组成 F8型分配阀由主阀部分、辅助阀及中间体组成。分配阀采用膜板鞲鞴和柱塞结构,保证良好的密封效果,取消通常采用的鞲鞴涨圈滑阀结构。 2.1 主阀部分 主阀部分由主阀、充气阀、限压阀、副风缸充气止回阀、局减阀、转换盖板等组成,见图1所示。 2.1.1 主阀 主阀是由平衡阀组成4、主阀杆11、小鞲鞴17、小膜板18、主鞲鞴20、大膜板21、局减阀套36、缓解柱塞37、制动弹簧39、缓解阀33等组成。 主阀是三压力平衡机构,主鞲鞴两侧分别是工作风缸和列车管压力空气,小鞲鞴上方是制动缸压力,下方通大气。通过三压力的平衡作用(即P制、P列与P工平衡),来实现分配阀的制动、保压、缓解等基本作用。 当P制+P列P工时,分配阀发生缓解作用; 当P制+P列=P工时,分配阀发生保压作用。 主阀的基本作用有: a) 制动作用:当列车管施行减压后,主鞲鞴两侧的工作风缸和列车管间形成一定差值(即P制+P列

溢流阀知识大全

溢流阀知识大全 一、DB/DBW型先导溢流阀 1.结构和工作原理 DB型阀是先导控制式的溢流阀;DBW型阀是先导控制式的电磁溢阀。DB 型阀是用来控制液压系统的压力;DBW型阀也可以控制液压系统的压力,并且能在任意时刻使系统卸荷。 DB型阀主要是由先导阀和主阀组成。DBW型阀是由电磁换向阀、先导阀和主阀组成。 DB型溢流阀: A腔的压力油作用在主阀芯(1)下端的同时,通过阻尼器(2)、(3)和通道(12)、(4)、(5)作用在主阀芯上端和先导阀(7)的锥阀(6)上。当系统压力超过弹簧(8)的调定值时,锥阀(6)被打开。同时主阀芯上端的压力油通过阻尼器(3)、通道(5)、弹簧腔(9)及通道(10)流回B腔(控制油内排型)或通过外排口(11)流回油箱(控制油外排型)。这样,当压力油通过阻尼器(2)、(3)时在主阀芯(1)上产生了一个压力差,主阀芯在这个压差的作用下打开,这样在调定的工作压力下压力油从A腔流到B腔(即卸荷)。 DBW型电磁溢流阀: 此阀工作原理与DB型阀相同,只是可通过安装在先导阀上的电磁换向阀(14)使系统在任意时刻卸荷。 DB/DBW型阀均设有控制油内部供油道(12)、(4)和内部排油道(10);控制油外供口X和外排口Y。这样就可根据控制油供给和排出的不同形式的组合内供内排、外供内排、内供外排和外供外排4种型式。 2.溢流阀常见故障及排除 溢流阀在使用中,常见的故障有噪声、振动、阀芯径向卡紧和调压失灵等。 (一)噪声和振动 液压装置中容易产生噪声的元件一般认为是泵和阀,阀中又以溢流阀和电磁换向阀等为主。产生噪声的因素很多。溢流阀的噪声有流速声和机械声二种。流速声中主要由油液振动、空穴以及液压冲击等原因产生的噪声。机械声中主要由阀中零件的撞击和磨擦等原因产生的噪声。 (1)压力不均匀引起的噪声 先导型溢流阀的导阀部分是一个易振部位如图3所示。在高压情况下溢流时,导阀的轴向开口很小,仅0.003~0.006厘米。过流面积很小,流速很高,可达200米/秒,易引起压力分布不均匀,使锥阀径向力不平衡而产生振动。另外锥阀和锥阀座加工时产生的椭圆度、导阀口的脏物粘住及调压弹簧变形等,也会引起锥阀的振动。所以一般认为导阀是发生噪声的振源部位。 由于有弹性元件(弹簧)和运动质量(锥阀)的存在,构成了一个产生振荡的条件,而导阀前腔又起了一个共振腔的作用,所以锥阀发生振动后易引起整个阀的共振而发出噪声,发生噪声时一般多伴随有剧烈的压力跳动。(2)空穴产生的噪声 当由于各种原因,空气被吸入油液中,或者在油液压力低于大气压时,溶解在油液中的部分空气就会析出形成

相关主题
文本预览
相关文档 最新文档