Mathematica数学实验——极限和导数
- 格式:doc
- 大小:185.50 KB
- 文档页数:7
极限、导数和积分是高等数学中的主要概念和运算,如果你在科研中遇到较复杂的求 极限、求导数或求积分问题, Mathematica 可以帮你快速解决这些问题。
Mathematica 提供了方便的命令使这些运算能在计算机上实现,使一些难题迎刃而解。
4.1求极限运算极限的概念是整个高等数学的基础,对表达式进行极限分析也是数学里很重要的计算分析。
Mathematica 提供了计算函数极限的命令的一般形式为:Limit[函数,极限过程]具体命令形式为命令形式 1:Limit[f, x->xO]功能:计算lim f x ,其中f 是x 的函数。
x x 0命令形式 2:Limit[f, x->x0, Direction->1]功能:计算lim f x ,即求左极限,其中f 是x 的函数。
x x -0命令形式 3:Limit[f, x->x0, Direction->-1]功能:计算lim f x ,即求右极限,其中f 是x 的函数。
x x 0注意:在左右极限不相等或左右极限有一个不存在时, Mathematica 的默认状态为求右极限。
例题:1 1例1.求极限lim (22)x 1xln x x 1解:Mathematica 命令为In [1]:= Limit[1/(x Log[x]A 2)-1/(x-1)A 2, x->1]1OUt[1]= 11n1例2.求极限lim 1—nn解:Mathematica 命令为In [2]:= Limit[(1+1/ n)A n, n->I nfin ity] Out[2]=E第四章微积分运算命令与例题此极限的计算较难,用 Mathematica 很容易得结果。
例31写出求函数e 亍在x->0的三个极限命令解:Mathematica 命令为 1. Limit[Exp[1/x], x->0]2. L imit[Exp[1/x], x->0, Direction->1]3. L imit[Exp[1/x], x->0, Direction->-1] 读者可以比较其结果,观察区别。
mathematica数学实验报告本次实验使用Mathematica进行数学建模实验,主要包括以下内容:三角函数、极限和导数、积分和微分方程。
一、三角函数1. 三角函数的绘制使用Mathematica的Plot函数绘制正弦函数和余弦函数的图像。
代码:Plot[{Sin[x], Cos[x]}, {x, -2 Pi, 2 Pi},PlotStyle -> {Blue, Red}, PlotTheme -> "Web"]结果:在x趋近于4时的极限。
代码:Limit[x^2/(4 - x), x -> 4]结果:82. 求函数的导数使用Mathematica的D函数计算函数x^3 - 3x的导数。
代码:D[x^3 - 3x, x]结果:3 x^2 - 3三、积分和微分方程1. 求定积分使用Mathematica的Integrate函数计算函数e^x * cos(x)在0到π/2之间的定积分。
代码:Integrate[E^x * Cos[x], {x, 0, Pi/2}]结果:1/2 (1 + E^(π/2))2. 解微分方程使用Mathematica的DSolve函数求解微分方程y''(x) + 4y(x) = 0。
代码:DSolve[y''[x] + 4 y[x] == 0, y[x], x]结果:y[x] -> C[1] Cos[2 x] + C[2] Sin[2 x]本次实验使用Mathematica进行数学建模实验,主要包括三角函数的绘制、求三角函数的值,函数的极限、导数,积分和微分方程等内容。
Mathematica 实验报告【实验名称】利用MA THEMA TICA 作图、运算及编程.【实验目的】1。
掌握用MA THEMATICA 作二维图形,熟练作图函数Plot 、ParametricPlot 等应用,对图形中曲线能做简单的修饰.2。
掌握用MATHEMA TICA 做三维图形,对于一些二元函数能做出其等高线图等,熟练函数Plot3D ,ParametricPlot 的用法。
3、掌握用MA THEMATICA 进行微积分基本运算:求极限、导数、积分等。
【实验原理】1.二维绘图命令:二维曲线作图:Plot[fx,{x ,xmin,xmax}],二维参数方程作图:ParametricPlot[{fx ,fy},{t ,tmin ,tmax}]2.三维绘图命令:三维作图plot3D [f,{x ,xmin ,xmax},{y,ymin ,ymax}],三维参数方程作图:ParameticaPlot3D[{fx,fy ,fz },{t ,tmin,tmax }]【实验内容】(含基本步骤、主要程序清单及异常情况记录等)1。
作出函数)sin(22y x z +=π的图形. 步骤: z=Sin [Pi Sqrt[x^2+y^2]];Plot3D [z ,{x,-1,1},{y,—1,1},PlotPoints →30,Lighting →True]2。
椭球面()⎪⎪⎩⎪⎪⎨⎧=∈⎪⎭⎫ ⎝⎛-∈==u z v u v u y v u x R R R R R R sin ,,,2,0,2,2,sin cos cos cos 332121πππ自行给定,作图. 步骤:ParametricPlot3D [{4Cos[u ]Cos[v],3Cos [u]Sin[v],2Sin[u]},{u ,—Pi/2,Pi/2},{v,0,2Pi}]3.做出极坐标描绘的图形:)cos 1(4θ+=r步骤:r [t_]:=4(1+Cos[t ]);ParametricPlot [{r [t ]Cos[t],r [t ]Sin [t]},{t,0,2Pi}]【实验结果】结果1:结果2:结果3:【总结与思考】MATHEMATICA作图的常见错误:General::spell1: Possible spelling error,因为在MATHEMATICA中作图函数大小写有区别.由于拼写间要有空格,易导致错误。
mathematica二元函数求导Mathematica是一款功能强大的计算机代数系统,其在数学和科学领域被广泛应用。
其中一个重要功能就是求导。
当我们想要求二元函数的偏导数时,可以使用Mathematica的求导功能。
下面,我们将介绍如何在Mathematica中求解二元函数的偏导数。
第一步:定义函数在Mathematica中,我们可以使用“:=”符号来定义函数。
例如,我们可以定义一个二元函数f(x,y)=2x^2+3xy+4y^2:f[x_,y_]:=2x^2+3x*y+4y^2在上面的代码中,“x_”和“y_”表示这是两个未知数。
在这种情况下,我们需要告诉Mathematica这个函数有两个输入变量。
第二步:求偏导数接下来,我们可以使用D函数来求偏导数。
偏导数用于计算函数在一个特定变量上的变化率。
我们用D[f[x,y],x]来表示f(x,y)对x 求偏导数。
同样地,我们用D[f[x,y],y]表示f(x,y)对y求偏导数。
例如,我们可以计算f(x,y)对x的偏导数:D[f[x,y],x]=4x+3y同样地,我们也可以计算f(x,y)对y的偏导数:D[f[x,y],y]=3x+8y第三步:验证偏导数我们可以通过验证偏导数是否正确来确认结果。
我们可以使用Limit函数来计算函数在某一点的极限。
例如,f(x,y)的偏导数等于在(x,y)处的函数在x或y方向上的变化率,而极限则是在(x,y)处“无限接近”于函数的点。
因此,偏导数可以用以下公式进行验证:对于f(x,y)对x求偏导数,我们可以计算以下极限:Limit[(f[x+h,y]-f[x,y])/h,h->0]如果D[f[x,y],x]的计算结果与该极限的结果相同,则可以确认结果正确。
对于f(x,y)对y求偏导数,我们可以计算以下极限:Limit[(f[x,y+h]-f[x,y])/h,h->0]如果D[f[x,y],y]的计算结果与该极限的结果相同,则可以确认结果正确。
Mathematica数学实验——极限和导数教师指导实验4实验名称:极限和导数的运算⼀、问题:求⼀元函数的极限和导数。
⼆、实验⽬的:学会使⽤Mathematica 求数列和⼀元函数的极限(包括左极限、右极限),会求⼀元函数的导数,及利⽤导函数求原函数的单调区间和极值。
三、预备知识:本实验所⽤的Mathematica 命令提⽰1、Limit[f,x →x 0] 求函数f(x) 在x →x 0时的极限;2、Limit[f,x →x 0,Direction →-1] 求函数f(x) 在x →x 0时的右极限;Limit[f,x →x 0,Direction →1] 求函数f(x) 在x →x 0时的左极限; 3、D[f, var] 求函数f(x) 对⾃变量var 的导数;SetAttributes[k,Constant] 设定k 为常数;4、FindMinimum[f, {x, x 0}] 从x 0出发求函数f(x)的⼀个极⼩值点和极⼩值。
四、实验的内容和要求:1、求数列的极限1lim 1nn n →∞??+ 、11lim (1)nn i i i →∞=+∑;2、求函数的极限0sin lim x xx →、/2lim tan x x π→+;1lim (1)x x x e →∞-3、求下列函数的导数;sin cos n x nx ?、2cos ln x x ?、2(sin )(cos2)f x f x +4、求函数2()2ln f x x x =-的导数,求其单调区间和极值。
五、操作提⽰1、求数列的极限1lim 1nn n →∞+ 、11lim (1)nn i i i →∞=+∑;In[1]:= Limit[?n11+n ,n->Infinity]Out[1]= e In[2]:= Limit[∑ni=11i(i+1),n->∞] Out[2]= 12、求函数的极限0sin lim x xx→、/2lim tan x x π→+;1lim (1)x x x e →∞-In[3]:= Limit[Sin[x]x,x->0]Out[3]= 1In[4]:= Limit[Tan[x],x->Pi/2,Direction->-1] Out[4]= -∞ In[5]:= Limit[x(E^1 x-1),x->Infinity] Out[5]= 13、求下列函数的导数;sin cos nx nx ?、2cos ln x x ?、2(sin )(cos2)f x f x +In[6]:= D[Sin[x]^n Cos[nx],x] Out[6]= nCos[nx]Cos[x]Sin[x]-1+nIn[7]:= ?x (Cos[x]^2 Log[x])(注:?x 可以在基本输⼊输出模板中输⼊)Out[7]=2Cos[x]-x2Cos[x]Log[x]Sin[x] In[8]:= D[f[Sin[x]^2]+f[Cos[2x]]]Out[8]= -2Sin[2x]f ’[Cos[2x]]+2Cos[x]Sin[x]f ’[Sin[x]2]4、求函数2()2ln f x x x =-的导数,求其单调区间和极值。
实验报告1 函数与极限院系 班号姓名学号成绩一、实验内容函数图形的显示,极限的运算,最值的计算.二、预期目标1.熟悉Mathematica 软件的基本操作.2.掌握函数与极限的有关操作命令.3.学会利用Mathematica 软件对函数进行分析研究.三、常用命令1. 作图命令: 2. 参数作图命令: 3. 图形显示命令: 4. 求极限命令: 5. 求极值名命令:四、练习内容1.画出下列函数的图形: (1) y=cos3x作图命令:(2) f (x )=x 5+3e x+log 3(3-x ) x ∈[-2,2]作图命令:(3)⎪⎩⎪⎨⎧=+=ty t t x 2sin作图命令:(4)⎪⎩⎪⎨⎧==ty t x 33sin cos t ∈[0,2π]作图命令:2.求下列极限:(1)110002lim+∞>-n nn (2)113)2(3)2(lim ++∞>-+-+-n n n n n (3)35)3)(2)(1(limnn n n n +++∞>- (4)3522lim -+>-x x x (5)131lim +->-x x x(6)x e xx arctan lim -+∞>-(7)156182221lim +-->-x x x x (8))sin 11sin (lim x x x x x -∞>-计算结果:(1)(2)(3)(4)(5)(6)(7)(8)3.讨论函数f(x)=2x3-6x2-18x+7在点2.8附近的极值.命令:结果:五、思考与提高1.怎样对隐函数的图形进行显示?2.怎样利用软件对函数极限存在性进行判断?3.如何利用软件对函数的连续性进行判断?4.如何求函数的最大(小)值?实验报告2 微分及其应用院系 班号姓名学号成绩一、实验内容导数的运算法则,复合函数求导法及参数方程求导法等.二、预期目标1.进一步理解导数及其几何应用.2.学习Mathematica 的求导命令与求导法.三、常用命令1.求导命令: 2.求微分命令: 3.隐函数求导命令: 4. 参数方程所确定的函数求导命令:四、练习内容1.求下列函数的导数: (1)x y 2ln 1+=求导命令: 求导结果: (2)21121xx y +++=求导命令:求导结果:(3) y=cos 2(cos2x )求导命令: 求导结果:(4)y=2x/lnx求导命令: 求导结果: (5)y=ln[ln(lnt)]求导命令:求导结果: (6)xxy arccos arcsin =求导命令: 求导结果:(7)y=e arcsinx +arctane x求导命令: 求导结果:(8)xey 1sin 2-=求导命令:求导结果:2.求下列函数的二阶导数:(1) y=tanx 计算结果:y ” =(2)y=(1+x 2)arctanx 计算结果:y ” =(3)y=xtanx -cscx 计算结果:y ” =(4)y=21ln (x -1)-21ln (x+1) 计算结果:y ” = (5)⎪⎩⎪⎨⎧-==21arcsin ty t x 计算结果:y ” =(6)⎪⎩⎪⎨⎧==tb y t a x sin cos计算结果:y ” =3.求下列方程所确定的隐函数y=y (x )的导数xyd d : (1) sin (xy )+cosy=0 计算结果:xyd d =(2)arctan x y =ln 22y x + 计算结果:xyd d =(3)x y =y x计算结果:xy d d =4.验证参数方程⎪⎩⎪⎨⎧==te y t e x tt cos sin 所确定的函数y 满足关系:)d d (2)(d d 222y x y x y x xy -=+ 程序:五、思考与提高1. 如何利用函数的导数判定函数的单调性、凹凸性?2.如何求由方程F(x,y,z)=0确定的隐函数z=z(x,y)的偏导数?实验报告3 积分及其应用院系 班号姓名学号成绩一、实验内容一元函数的不定积分与定积分二、预期目标1.加深理解积分理论中分割、近似、求和、取极限的思想方法.2.学习求积分的命令Integrate 与NIntegrate .3.熟悉Mathematica 软件在积分运算的重要作用.三、常用命令1.求和命令: 2.求不定积分命令: 3.求定积分命令:四、练习内容1.求下列函数的一个原函数:(1)41x (2)212x +积分命令: 积分命令: 积分结果: 积分结果:(3))1()1(22x x x ++ (4)4211xx -+ 积分命令: 积分命令: 积分结果:积分结果:(5)x x 22sin cos 2cos (6)xxe e +1积分命令: 积分命令: 积分结果: 积分结果:(7))tan 1(cos 12x x + (8)x e x 32 积分命令: 积分命令: 积分结果:积分结果:(9)x cos 1+ (10))34cos()23sin(+⋅+x x 积分命令: 积分命令: 积分结果: 积分结果:2.计算下列定积分:(1)⎰2/6/2d cos ππx x (2)⎰+-4/02sin 12sin 1πxxdx计算结果: 计算结果:(3)⎰-2/0d cos 351πx x(4)⎰30d cot arc x x x计算结果: 计算结果:(5)⎰---222d 11x x (6)t t e td cos 2/02⎰π计算结果:计算结果:(7)⎰+12/3d 1x xx (8)⎰π222d sin x x 计算结果: 计算结果:3.计算下列积分,并求其结果关于变量x 的导数:(1)⎰+02d 1x t t (2)⎰-xt t te 0d 2积分结果: 积分结果: 关于x 的导数:关于x 的导数:(3)⎰0sin 2d )cos(x t t (4)⎰+203d 11x t t 积分结果: 积分结果: 关于x 的导数: 关于x 的导数: 4.判定广义积分⎰∞++12)1(1x x dx 及⎰--2022)2(x exdx 的敛散性,收敛时计算出积分值. ⎰∞++12)1(1x x dx ⎰--2022)2(x exdx 程序: 程序: 结果: 结果: 5.求积分⎰-102)43(x x dx 具有6位、10位有效数的近似值. 命令: 五、思考与提高1. Mathematica 系统对分段函数的积分能否进行自动处理?2.《高等数学》中所学的积分换元法在软件系统里如何应用?3.怎样用Mathematica 中动画来演示定积分的定义?实验报告4 三角级数院系 班号 姓名 学号 成绩一、实验内容级数敛散性的判定.二、预期目标1.掌握级数的展开与求和命令.2. 学习使用Mathematica 进行级数敛散性的判定.三、常用命令1.求taylor 展式命令:四、练习内容1.求下列泰勒展开式,并在同一坐标系下画出函数图形及展开式图形. (1) ln (1+x ) 在x0=0点的8阶Taylor 展开. 程序:(2) P (x )=x 4-5x 3+x 2-3x+4 在x0=4点的4阶Taylor 展开. 程序:(3) f (x )=x1在x0=-1点的n 阶Taylor 展开. 程序:2.求下列级数的和函数:(1)∑∞=--112121n n x n (2)∑∞=+1)1(1n n x n n (-1≤x ≤1) 命令:命令:结果: 结果:(3)∑∞=-+112)1(n n x n n 命令: 结果:3.判定下列级数的敛散性:(1)∑∞=12n n n(2)∑∞=++13211n nn 结论:结论:(3)∑∞=1!2n nn (4)∑∞=1)(sin n n n n n π结论: 结论:(5)∑∞=+112tann n n π(6)∑∞=12)!(n nn n 结论: 结论:4.判定下列级数是否收敛,收敛时请指出是绝对收敛,还是条件收敛? (1)∑∞=---11121)1(n n n (2)∑∞=+-122)1(n n n 结论:结论:(3)∑∞=--1ln )1(n nn n (4)∑∞=12sin n n na (a 为常数) 结论: 结论:五、思考与提高用判别法可以判别级数的敛散性,但在实际应用时,往往要使用其和,原则上可用Sum 语句求和,但许多数项级数仅仅使Sum 语句求不出其和,而另-Mathematica 命令NSum 可与判别结果一起用来求出其近似值,问:是否对任一级数均可用NSum 来求其近似值?试以∑∞=-1)1(n n 为例观察.实验报告5 空间解析几何院系 班号 姓名 学号 成绩一、实验内容空间图形的显示,简单动画的制作.二、预期目标1.能正确显示空间图形.2.能用Mathematica 制作简单的动画.三、常用命令1.三维作图命令: 2.参数方程作图命令(三维曲线): (曲面): 3.动画命令:四、练习内容1.显示下列函数图形:(1) 椭球面⎪⎩⎪⎨⎧===v z v u y v u x cos 3sin sin 5sin cos 2,),0(),2,0(ππ∈∈v u作图命令:(2) 椭球抛物面⎪⎩⎪⎨⎧===23sin 3cos 3u z v u y v u x ,其中)2,0(),2,0(π∈∈v u作图命令:(3) 双曲抛物面⎪⎩⎪⎨⎧-===3/)(22v u z v y u x ,其中)4,4(,-∈v u作图命令:(4) 圆柱螺线⎪⎩⎪⎨⎧===t z t y t x 4sin 34cos 3,其中)5,0(∈t作图命令:3. 制作平面振动动画(利用函数y x y x f 3sin 2cos ),(=,其中x,y 均属于(-1,1)).程序:五、思考与提高用参量函数与直接函数显示图形有什么区别?比较谁更容易作出图形?实验报告6 多元微分学院系 班号 姓名 学号 成绩一、 实验题目隐函数的导数,函数的偏导数,函数的极值.二、 预期目标1.求隐函数的导数.2.求函数的偏导数和全微分.3.用微分知识求函数的极值.三、常用命令1.求偏导命令: 2.求全微分命令: 3.解方程(组)命令:四、练习内容1. 设xx xy tan =,求dxdy . 命令: 结果:2. 设),(y x f z =由方程02=+--z xye z e所确定,求xz ∂∂. 程序: 结果:3. 设0ln 2=--xyz xy xz 确定函数),(y x f z =,求z 的全微分. 程序: 结果:4.求下列函数的偏导数:(1)yz x z y y x y y x z ∂∂∂∂-=,sin cos sin cos 2323,求结果:(2)yzx z v u y v u x y x z ∂∂∂∂+=-==,2,22,求,其中结果:4. 求函数22y x z +=在平面x+y=1上的最小值.程序: 结果:五、思考与提高1. 隐函数的二阶(偏)导数应如何求?2.函数的方向导数怎样求?实验报告7 多元积分学院系 班号 姓名 学号 成绩一、 实验题目空间立体体积和表面积.二、 预期目标1.用Mathematica 软件计算重积分.2.能解决空间立体体积和表面积的计算.三、常用命令1.求二重积分命令:四、练习内容1.计算下列重积分:(1)⎰⎰1D dxdy x y,其中D 1是由y=2x ,y=x ,x=4,x=2所围成的区域 . 积分命令:计算结果:(2)⎰⎰+2)(22D dxdy y x,其中D 2是由y=x ,y=x+2,y=2,y=6所围成的区域.积分命令:计算结果:(3)⎰⎰++3)1ln(22D dxdy y x ,其中D 3:0,0,122≥≥≤+y x y x . 积分命令:计算结果:(4)⎰⎰⎰Ω++3)(z y x dxdydz,其中Ω:21≤≤x ,21≤≤y ,21≤≤z . 积分命令:计算结果:(5)⎰⎰⎰Ω++222zy x dxdydz ,其中Ω是由222z y x =+及1=z 所围成的区域. 积分命令:计算结果:2.求抛物面x y x y 2,==及平面z=0,z+x=6所围成的物体(密度为1)的质量.程序: 结果:五、思考与练习1.在实验步骤1中{x,0,1}与{y,2*x,x^2+1}能不能交换次序?为什么?2.在重积分中,如果可以用换元法,也可以用Integrate直接积分时,用哪一种方法好,为什么?3.曲线积分和曲面积分如何计算?实验报告8 常微分方程院系 班号 姓名 学号 成绩一、 实验题目常微分方程(组)的精确解.二、 预期目标1.求一阶常微分方程的精确解.2.求解简单的微分方程组和高阶方程.三、常用命令1.求解微分方程命令: 2.求解微分方程组命令: 3.求微分方程数值解命令:四、练习内容1. 求x y x y tan cos '2=+的通解.命令:结果:2. 求13232=-+y xx dx dy ,且满足y(1)=0的特解. 命令:结果:3. 求⎩⎨⎧=--=++03'5'y x y e y x x t ,满足⎩⎨⎧==0)0(1)0(y x 的特解.命令:结果:五、思考与提高如果遇见无法直接用DSolve 求解的常微分方程,如22112'x y y +=+,怎么办?院系 班号 姓名 学号 成绩一、实验内容矩阵的运算(加法、数乘、乘法、转置、逆)二、预期目标熟悉Mathematica 软件中关于矩阵运算的各种命令.三、常用命令1.矩阵显示命令: 2.求矩阵转置命令: 3.求逆矩阵命令: 4.求矩阵和差命令: 5.求矩阵数乘命令: 6.求矩阵乘命令:四、思考与练习已知矩阵 ⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡------------=031948118763812654286174116470561091143A⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡------=503642237253619129113281510551201187851697236421B求:(1) A'; (2)A-1;(3)A*B .(1)求A'的命令: (2)求A-1的命令:A'= A-1=(3)求A*B 的命令:A*B =(请用矩阵形式表示计算结果)院系 班号 姓名 学号 成绩一、实验内容对矩阵作各种变化,初等变换.二、预期目标1.复习并掌握矩阵初等变换的方法.2.掌握Mathematic 软件中关于矩阵初等变换的相关命令.三、常用命令1.取矩阵元素命令: 2.取矩阵的子矩阵命令: 3.求矩阵维数命令:四、练习内容1.已知矩阵;302 150311101⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=A(1)求A 的行向量组a 1,a 2,a 3, 以及列向量组b 1,b 2,b 3,b 4程序:(2)求A 的一,三,五行,二,三,四列交叉点上的元素做出子矩阵.程序:结果: 2.判断下列向量组是否线性相关(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1211a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1302a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=3123a 程序:结论:(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1121a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1112a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1353a 程序:结论:实验报告11 行列式运算院系 班号 姓名 学号 成绩一、实验内容行列式的计算.二、预期目标1. 复习矩阵的行列式的求法,矩阵初等变换方法.2. 熟悉Mathematic 软件中关于求一个矩阵的行列式的命令把矩阵进行初等变换的命令以及与其相关的其它命令.三、常用命令1.求矩阵行列式命令:四、练习内容 1.求行列式βααββααββα+++100001000(共10阶)的值计算结果:2.利用克莱姆法则求解下列线性方程组(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-+--=++++=-+-+=+-+--=-+-+3322224343238243214225432154321543215422153321x x x x x x x x x x x x x x x x x x x x x x x x x程序:结果:(2) ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x结果:2.已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=876174114A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=614475914B验证:|A×B|=|A|×|B|.程序:实验报告12 求解方程组院系 班号 姓名 学号 成绩一、实验题目求AX=B 的通解.二、实验目的通过本实验,使学生认识到虽然在《线性代数》中求AX=B 的通解比较繁,但在Mathematica 软件中却是比较简单的. 三、常用命令1.矩阵化简命令: 2.解线性方程组命令: 3.求AX=0的基础解系命令:四、练习内容1.求下列矩阵的秩:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=253414312311112A 命令: 结果: (2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=189513411314311B 命令: 结果:2.解下列线性方程组:(1) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----512111211121⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡5514321x x x x 程序:结果:(2) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----1111145212142121⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡3/10324321x x x x结果:实验报告13 特征值、特征向量院系 班号 姓名 学号 成绩一、实验题目计算已知矩阵的特征值和属于每一个特征值的特征向量.二、实验目的1.复习线代中的特征值与特征向量的求法.2.比较Mathematic 软件与普通方法的异同之处.三、常用命令1.求矩阵特征值命令: 2.求矩阵特征向量命令:四、练习内容求出下列矩阵的全部特征值与特征向量:1.⎥⎦⎤⎢⎣⎡-=00a a A ; 程序:结果:2.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001010100B ; 结果:3. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----=1111111111111111C . 结果:实验报告14 离散型随机变量及其相关知识院系班号姓名学号成绩一、实验内容排列、组合的计算,几种离散型随机变量的产生及其相关内容.二、预期目标1.熟练掌握Mathematical软件的基本操作.2.熟悉与排列、组合、离散型随机变量有关的操作命令.3.掌握利用Mathematical软件处理简单的概率问题.三、常用命令1.(双)阶乘运算命令:2.组合数的计算命令:3.排列数的计算命令:4.服从二项分布的随机变量的生成命令:5.服从泊松分布的随机变量命令:6.将离散型随机变量的分布律拟合为函数的命令:四、练习内容1.计算下列结果(1)15!(2)15!!命令:命令:结果:结果:2.计算下列排列组合式的结果(1)P510(2)C510(3)!6!4!2!12⨯⨯命令:命令:命令:结果:结果:结果:3.生成以n=20,p=0.3为参数服从二项分布的随机变量bdist,将其分布律图形显示.程序:4.生成以p=0.4为参数服从几何分布的随机变量bdist,将其分布律图形显示.程序:5.生成以p=0.2为参数服从泊松分布的随机变量bdist,将其分布律图形显示.程序:五、思考与提高1.试分析几种离散型随机变量分布律的最值情况?2.怎样求解离散型随机变量有关的事件概率?实验报告15 连续型随机变量及其相关知识院系班号姓名学号成绩一、实验内容连续型随机变量的产生及其相关内容.二、预期目标1.熟练掌握几种连续型随机变量产生的有关操作命令.2.掌握利用软件对连续型随机变量进行分析的方法.3.掌握利用软件处理简单的概率问题.三、常用命令1.服从均匀分布的随机变量的生成命令:2.服从正态分布的随机变量的生成命令:3.服从t分布的随机变量的生成命令:4.服从χ2分布的随机变量的生成命令:5.服从F分布的随机变量的生成命令:6.求连续型随机变量的概率密度函数的命令:7.求连续型随机变量的分布函数的命令:四、练习内容1.生成以μ=10.05和σ=0.06为参数服从正态分布的连续型随机变量gdist及其概率密度函数、分布函数并图形显示;试求概率P{9.9<gdist<10.17}.程序:2.生成以a=0,b=1为参数服从柯西分布的连续型随机变量gdist及其概率密度函数、分布函数并图形显示.程序:3.生成以n1=4,n2=8为自由度服从F分布的连续型随机变量gdist及其概率密度函数、分布函数并图形显示.程序:4.生成以α=1,β=3为服从威布尔分布的连续型随机变量gdist及其概率密度函数、分布函数并图形显示.程序:五、思考与提高怎样利用软件对随机变量函数的分布进行分析,以及有关事件概率的求解?实验报告16 数字特征院系班号姓名学号成绩一、实验内容随机变量的数字特征及其相关内容.二、预期目标1.熟练掌握随机变量数字特征的有关操作命令.2.掌握利用软件对随机变量的特征函数(母函数)的求解.3.掌握利用软件处理简单的概率问题.三、常用命令1.求随机变量的期望的命令:2.求随机变量的方差的命令:3.求随机变量的标准差的命令:4.求随机变量的函数的方差的命令:5.求数据的协方差的命令:6.求数据的协方差矩阵的命令:7.求两随机变量的相关系数的命令:8.求两数据的相关系数矩阵的命令:四、练习内容1.(1)求以λ为参数服从泊松分布的随机变量的数学期望和方差.(2)求上述随机变量函数(f(x)=x2)的数学期望.(3)求服从参数λ=0.1的指数分布的随机变量的特征函数.程序:结果:2.(1)若样本data={16.5,13.8, 16.6, 15.7, 16.0, 16.4, 15.3},求样本均值、调和均值和中位数.结果:(2)若二维总体的样本data={{1612, 7627}, {1598, 6954},{1804, 8365},{1752, 9469}, {2067, 6410}, {2365, 10327},{1646, 7320}, {1579, 8196}, {1880, 9709}, {1773, 10370},{1712, 7749}, {1932, 6818}, {1820, 9307}, {1900, 6457},{1587, 8309}, {2208, 9559}, {1487, 6255}},求样本均值向量、中位数向量、方差向量和协方差矩阵.程序:结果:实验报告17 估计理论院系班号姓名学号成绩一、实验内容单个和两个总体均值、方差的估计.二、预期目标1.熟练掌握估计理论的相关操作命令.2.熟练掌握利用Mathematical软件对总体均值、方差进行估计.3.掌握利用Mathematical软件处理估计理论相关的实际问题.三、常用命令1.求总体均值的无偏估计的命令:2.求总体方差的无偏估计的命令:3.求总体方差的极大似然估计的命令:4.求单个总体均值的区间估计的命令:5.求两个总体均值之差的区间估计的命令:6.求单个总体方差的区间估计的命令:7.求两个总体方差之比的区间估计的命令:四、练习内容1.若样本data1={4506,4508,4499,4503,4504,4510,4497,4512,4514, 4505,4493,4496,4506,4502,4509,4496}来自正态总体,方差未知(置信度为0.95):求出总体均值、方差的置信区间.程序:结果:2.若样本data2={4507,4507,4497,4506,4503,4511,4498,4510,4514,4510,4493,4491,4507,4501,4510,4495}来自正态总体,设置信度为0.95:(1)若data1与data2的总体方差都未知,均值之差的置信区间;程序:结果:(2)若data1与data2的总体方差都为40,均值之差的置信区间.程序:结果:3.data1与data2的总体方差之比值的置信区间(置信度为0.95).程序:结果:实验报告18 假设检验院系班号姓名学号成绩一、实验内容对单个和两个总体均值、方差的假设检验.二、预期目标1.熟练掌握假设检验有关的操作命令.2.熟练掌握利用Mathematical软件对单个总体均值、方差的假设检验.3.掌握利用Mathematical软件对两个总体均值、方差有关的假设检验.三、常用命令1.求单个总体对均值的假设检验的命令:2.求两个总体对均值之差的假设检验的命令:3.求单个总体方差的假设检验的命令:4.求两个总体方差之比值的假设检验的命令:5.求标准正态分布有关概率的命令:6.求t分布有关概率的命令:7.求χ2分布有关概率的命令:8.求F分布有关概率的命令:四、练习内容设有甲、乙两种安眠药,比较其治疗效果.X表示服用甲药后睡眠时间延长时数,Y 表示服用乙药后睡眠时间延长时数,独立观察20个病人,其中10人服用甲药,另10人服用乙药,数据如下表:试就下列两种情况分析这两种药物的疗效有无显著性的差异.(显著性水平为0.05)(1)X与Y的方差相同;(2)X与Y的方差不同.程序:程序:结论:结论:五、思考与提高针对概率论与数理统计中左边、右边假设检验的问题,如何利用软件加以实现?31。
教师指导实验4实验名称:极限和导数的运算一、问题:求一元函数的极限和导数。
二、实验目的:学会使用Mathematica 求数列和一元函数的极限(包括左极限、右极限),会求一元函数的导数,及利用导函数求原函数的单调区间和极值。
三、预备知识:本实验所用的Mathematica 命令提示1、Limit[f,x →x 0] 求函数f(x) 在x →x 0时的极限;2、Limit[f,x →x 0,Direction →-1] 求函数f(x) 在x →x 0时的右极限;Limit[f,x →x 0,Direction →1] 求函数f(x) 在x →x 0时的左极限; 3、D[f, var] 求函数f(x) 对自变量var 的导数;SetAttributes[k,Constant] 设定k 为常数;4、FindMinimum[f, {x, x 0}] 从x 0出发求函数f(x)的一个极小值点和极小值。
四、实验的内容和要求:1、求数列的极限1lim 1nn n →∞⎛⎫+ ⎪⎝⎭、11lim (1)nn i i i →∞=+∑;2、求函数的极限0sin lim x xx→、/2lim tan x x π→+;1lim (1)x x x e →∞-3、求下列函数的导数;sin cos n x nx ⋅、2cos ln x x ⋅、2(sin )(cos 2)f x f x +4、求函数2()2ln f x x x =-的导数,求其单调区间和极值。
五、操作提示1、求数列的极限1lim 1nn n →∞⎛⎫+ ⎪⎝⎭、11lim (1)nn i i i →∞=+∑;In[1]:= Limit[⎛⎫ ⎪⎝⎭n11+n ,n->Infinity]Out[1]= e In[2]:= Limit[∑ni=11i (i+1),n->∞] Out[2]= 12、求函数的极限0sin lim x xx→、/2lim tan x x π→+;1lim (1)x x x e →∞-In[3]:= Limit[Sin[x]x,x->0]Out[3]= 1In[4]:= Limit[Tan[x],x->Pi/2,Direction->-1] Out[4]= -∞ In[5]:= Limit[x(E^1x-1),x->Infinity] Out[5]= 13、求下列函数的导数;sin cos n x nx ⋅、2cos ln x x ⋅、2(sin )(cos 2)f x f x +In[6]:= D[Sin[x]^n Cos[nx],x] Out[6]= nCos[nx]Cos[x]Sin[x]-1+n In[7]:= ∂x (Cos[x]^2 Log[x])(注:∂x 可以在基本输入输出模板中输入)Out[7]=2Cos[x]-x2Cos[x]Log[x]Sin[x] In[8]:= D[f[Sin[x]^2]+f[Cos[2x]]]Out[8]= -2Sin[2x]f ’[Cos[2x]]+2Cos[x]Sin[x]f ’[Sin[x]2]4、求函数2()2ln f x x x =-的导数,求其单调区间和极值。
In[9]:= f[x_]:=2Log[x]–x 2 In[10]:= D[f[x],x]Out[10]=2-x2x In[11]:= Solve[D[f[x],x]==0,x] Out[11]= {{x->-1},{x->1}}In[12]:= <<Algebra`InequalitySolve`In[13]:= InequalitySolve[{D[f[x],x]>0,x>0},x] Out[13]= 0<x<1In[14]:= FindMinimum[-f[x],{x,0.05}] Out[14]= {1.,{x->1.}}(注:由于Mathematica 4.0没有求f(x)极大值的函数,但可以通过求-f(x)的极小值求f(x)极大值,以上的输出结果表明当x=1时,函数有极大值1)In[15]:= FindMinimum[-f[x],{x,0.05}]FindMinimum::fmnum:Objective function-14.4095+6.28319i is not real at {x}={-0.000743063} Out[15]= FindMinimum[-f[x],{x,0.05}](注:由于f(x)没有极大值,Mathematica 便给出信息,以输入形式输出)In[16]:= Plot [f[x],{x,0.05,4},AspectRatio->1,AxesLabel->{“x ”,”y ”},PlotStyle->RGBColor[1,0,0]Out[16]=学生练习实验4实验名称:极限和导数的运算一、问题:求一元函数的极限和导数。
二、实验目的:学会使用Mathematica 求数列和一元函数的极限(包括左极限、右极限),会求一元函数及复合函数的导数,利用导函数求原函数的单调区间和极值。
三、实验的内容和要求:1、求数列的极限1lim(1)kn n n →∞-;(k 为常数)、lim 2sin 2nnn x →∞(x 为常数);2、求函数的极限0sin 3lim sin 2x x x →、/2lim tan x x π→-;/4tan 1lim sin 4x x x π→-321sin xe -、2log (sin )f x4、求函数2()1xf x x =+的导数,求其单调区间和极值。
四、操作提示1、求数列的极限1lim(1)kn n n→∞-;、lim 2sin2nn n k→∞(k 为常数); In[1]:= SetAttributes[k,Constant] In[2]:= Limit[⎛⎫⎪⎝⎭11-n ^(k n),n->∞] Out[2]= -k eIn[3]:= Limit[n n k2Sin[]2,n->Infinity] Out[3]= k2、求函数的极限0sin 3limsin 2x x x →、/2lim tan x x π→-;/4tan 1lim sin 4x x x π→-In[4]:= Limit[Sin[3x]Sin[2x],x->0]Out[4]=32In[5]:= Limit[Tan[x],x->Pi/2,Direction->-1] Out[5]= -∞In[6]:= Limit[Tan[x]-1Sin[4x],x->Pi/4]Out[6]= 1-2321sin xe -、2log (sin )f xIn[7]:=,x]Out[7]=In[8]:= D[E^-Sin 21[]x,x] Out[8]=21-Sin[]x2112Cos[]Sin[]x x xeIn[8]:= D[Log[2,f[Sin[x]]],x] Out[8]=Cos[x]f'[Sin[x]]f[Sin[x]]Log[2]4、求函数2()1xf x x =+的导数,求其单调区间和极值。
In[9]:= f[x_]:=2x 1+xIn[10]:= D[f[x],x] Out[10]= 2222x 1-+(1+x )1+x In[11]:= Solve[D[f[x],x]==0,x] Out[11]= {{x->-1},{x->1}}In[12]:= <<Algebra`InequalitySolve`In[13]:= InequalitySolve[{D[f[x],x]>0,x>0},x] Out[13]= -1<x<1In[14]:= FindMinimum[f[x],{x,0}] Out[14]= {-0.5,{x->-1.}}In[15]:= FindMinimum[-f[x],{x,0.05}] Out[15]= {-0.5,{x->1.}}In[16]:= Plot [f[x],{x,-10,10},PlotRange->{-0.6,0.6},AspectRatio->1/3, PlotPoint->500,PlotStyle->{RGBColor[1,0,0.4],Thickness->0.003}]Out[16]= -Graphics- In[17]:= g[x_]:=2222x 1-+(1+x )1+xIn[18]:= D[g[x],x]Out[18]= 3232286(1)(1)x x x x -++In[19]:= Solve[D[g[x],x]==0,x]Out[19]= →→→{{x 0},{x {xIn[20]:= InequalitySolve[D[g[x],x]<=0,x] Out[20]= ≤≤≤x x In[21]:= FindMinimum[g[x],{x,2}] Out[21]= {-0.125,{x->1.73205}} In[22]:= FindMinimum[g[x],{x,-2}] Out[22]= {-0.125,{x->-1.73205}} In[23]:= FindMinimum[-g[x],{x,-1}] Out[23]= {-1.,{x->-3.55325×10-14}In[24]:= Plot[g[x],{x,-6,6},PlotRange->{-0.3,1.2},AspectRatio->1/2, PlotPoint->500,PlotStyle->{RGBColor[1,0,0],Thickness->0.005}]Out[24]= -Graphics-In[25]:=h[x_]:=32322 8x6x-(1+x)(1+x)In[26]:=Plot[h[x],{x,-8,8},PlotRange->{-1.6,1.6},AspectRatio->1, PlotPoint->500,PlotStyle->{RGBColor[1,0,0],Thickness->0.005}]Out[26]= -Graphics-。